1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
12 #define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 
18 template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType;
19 
20 template<typename MatrixType>
21 struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
22 {
23   typedef typename MatrixType::PlainObject ReturnType;
24 };
25 
26 }
27 
28 /** \ingroup QR_Module
29   *
30   * \class FullPivHouseholderQR
31   *
32   * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
33   *
34   * \param MatrixType the type of the matrix of which we are computing the QR decomposition
35   *
36   * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
37   * such that
38   * \f[
39   *  \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
40   * \f]
41   * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
42   * upper triangular matrix.
43   *
44   * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
45   * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
46   *
47   * \sa MatrixBase::fullPivHouseholderQr()
48   */
49 template<typename _MatrixType> class FullPivHouseholderQR
50 {
51   public:
52 
53     typedef _MatrixType MatrixType;
54     enum {
55       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
56       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
57       Options = MatrixType::Options,
58       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
59       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
60     };
61     typedef typename MatrixType::Scalar Scalar;
62     typedef typename MatrixType::RealScalar RealScalar;
63     typedef typename MatrixType::Index Index;
64     typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> MatrixQReturnType;
65     typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
66     typedef Matrix<Index, 1,
67                    EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime,RowsAtCompileTime), RowMajor, 1,
68                    EIGEN_SIZE_MIN_PREFER_FIXED(MaxColsAtCompileTime,MaxRowsAtCompileTime)> IntDiagSizeVectorType;
69     typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
70     typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
71     typedef typename internal::plain_col_type<MatrixType>::type ColVectorType;
72 
73     /** \brief Default Constructor.
74       *
75       * The default constructor is useful in cases in which the user intends to
76       * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
77       */
78     FullPivHouseholderQR()
79       : m_qr(),
80         m_hCoeffs(),
81         m_rows_transpositions(),
82         m_cols_transpositions(),
83         m_cols_permutation(),
84         m_temp(),
85         m_isInitialized(false),
86         m_usePrescribedThreshold(false) {}
87 
88     /** \brief Default Constructor with memory preallocation
89       *
90       * Like the default constructor but with preallocation of the internal data
91       * according to the specified problem \a size.
92       * \sa FullPivHouseholderQR()
93       */
94     FullPivHouseholderQR(Index rows, Index cols)
95       : m_qr(rows, cols),
96         m_hCoeffs((std::min)(rows,cols)),
97         m_rows_transpositions((std::min)(rows,cols)),
98         m_cols_transpositions((std::min)(rows,cols)),
99         m_cols_permutation(cols),
100         m_temp(cols),
101         m_isInitialized(false),
102         m_usePrescribedThreshold(false) {}
103 
104     /** \brief Constructs a QR factorization from a given matrix
105       *
106       * This constructor computes the QR factorization of the matrix \a matrix by calling
107       * the method compute(). It is a short cut for:
108       *
109       * \code
110       * FullPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
111       * qr.compute(matrix);
112       * \endcode
113       *
114       * \sa compute()
115       */
116     FullPivHouseholderQR(const MatrixType& matrix)
117       : m_qr(matrix.rows(), matrix.cols()),
118         m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
119         m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())),
120         m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())),
121         m_cols_permutation(matrix.cols()),
122         m_temp(matrix.cols()),
123         m_isInitialized(false),
124         m_usePrescribedThreshold(false)
125     {
126       compute(matrix);
127     }
128 
129     /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
130       * \c *this is the QR decomposition.
131       *
132       * \param b the right-hand-side of the equation to solve.
133       *
134       * \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A,
135       * and an arbitrary solution otherwise.
136       *
137       * \note The case where b is a matrix is not yet implemented. Also, this
138       *       code is space inefficient.
139       *
140       * \note_about_checking_solutions
141       *
142       * \note_about_arbitrary_choice_of_solution
143       *
144       * Example: \include FullPivHouseholderQR_solve.cpp
145       * Output: \verbinclude FullPivHouseholderQR_solve.out
146       */
147     template<typename Rhs>
148     inline const internal::solve_retval<FullPivHouseholderQR, Rhs>
149     solve(const MatrixBase<Rhs>& b) const
150     {
151       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
152       return internal::solve_retval<FullPivHouseholderQR, Rhs>(*this, b.derived());
153     }
154 
155     /** \returns Expression object representing the matrix Q
156       */
157     MatrixQReturnType matrixQ(void) const;
158 
159     /** \returns a reference to the matrix where the Householder QR decomposition is stored
160       */
161     const MatrixType& matrixQR() const
162     {
163       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
164       return m_qr;
165     }
166 
167     FullPivHouseholderQR& compute(const MatrixType& matrix);
168 
169     /** \returns a const reference to the column permutation matrix */
170     const PermutationType& colsPermutation() const
171     {
172       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
173       return m_cols_permutation;
174     }
175 
176     /** \returns a const reference to the vector of indices representing the rows transpositions */
177     const IntDiagSizeVectorType& rowsTranspositions() const
178     {
179       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
180       return m_rows_transpositions;
181     }
182 
183     /** \returns the absolute value of the determinant of the matrix of which
184       * *this is the QR decomposition. It has only linear complexity
185       * (that is, O(n) where n is the dimension of the square matrix)
186       * as the QR decomposition has already been computed.
187       *
188       * \note This is only for square matrices.
189       *
190       * \warning a determinant can be very big or small, so for matrices
191       * of large enough dimension, there is a risk of overflow/underflow.
192       * One way to work around that is to use logAbsDeterminant() instead.
193       *
194       * \sa logAbsDeterminant(), MatrixBase::determinant()
195       */
196     typename MatrixType::RealScalar absDeterminant() const;
197 
198     /** \returns the natural log of the absolute value of the determinant of the matrix of which
199       * *this is the QR decomposition. It has only linear complexity
200       * (that is, O(n) where n is the dimension of the square matrix)
201       * as the QR decomposition has already been computed.
202       *
203       * \note This is only for square matrices.
204       *
205       * \note This method is useful to work around the risk of overflow/underflow that's inherent
206       * to determinant computation.
207       *
208       * \sa absDeterminant(), MatrixBase::determinant()
209       */
210     typename MatrixType::RealScalar logAbsDeterminant() const;
211 
212     /** \returns the rank of the matrix of which *this is the QR decomposition.
213       *
214       * \note This method has to determine which pivots should be considered nonzero.
215       *       For that, it uses the threshold value that you can control by calling
216       *       setThreshold(const RealScalar&).
217       */
218     inline Index rank() const
219     {
220       using std::abs;
221       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
222       RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
223       Index result = 0;
224       for(Index i = 0; i < m_nonzero_pivots; ++i)
225         result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
226       return result;
227     }
228 
229     /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
230       *
231       * \note This method has to determine which pivots should be considered nonzero.
232       *       For that, it uses the threshold value that you can control by calling
233       *       setThreshold(const RealScalar&).
234       */
235     inline Index dimensionOfKernel() const
236     {
237       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
238       return cols() - rank();
239     }
240 
241     /** \returns true if the matrix of which *this is the QR decomposition represents an injective
242       *          linear map, i.e. has trivial kernel; false otherwise.
243       *
244       * \note This method has to determine which pivots should be considered nonzero.
245       *       For that, it uses the threshold value that you can control by calling
246       *       setThreshold(const RealScalar&).
247       */
248     inline bool isInjective() const
249     {
250       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
251       return rank() == cols();
252     }
253 
254     /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
255       *          linear map; false otherwise.
256       *
257       * \note This method has to determine which pivots should be considered nonzero.
258       *       For that, it uses the threshold value that you can control by calling
259       *       setThreshold(const RealScalar&).
260       */
261     inline bool isSurjective() const
262     {
263       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
264       return rank() == rows();
265     }
266 
267     /** \returns true if the matrix of which *this is the QR decomposition is invertible.
268       *
269       * \note This method has to determine which pivots should be considered nonzero.
270       *       For that, it uses the threshold value that you can control by calling
271       *       setThreshold(const RealScalar&).
272       */
273     inline bool isInvertible() const
274     {
275       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
276       return isInjective() && isSurjective();
277     }
278 
279     /** \returns the inverse of the matrix of which *this is the QR decomposition.
280       *
281       * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
282       *       Use isInvertible() to first determine whether this matrix is invertible.
283       */    inline const
284     internal::solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType>
285     inverse() const
286     {
287       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
288       return internal::solve_retval<FullPivHouseholderQR,typename MatrixType::IdentityReturnType>
289                (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
290     }
291 
292     inline Index rows() const { return m_qr.rows(); }
293     inline Index cols() const { return m_qr.cols(); }
294 
295     /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
296       *
297       * For advanced uses only.
298       */
299     const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
300 
301     /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
302       * who need to determine when pivots are to be considered nonzero. This is not used for the
303       * QR decomposition itself.
304       *
305       * When it needs to get the threshold value, Eigen calls threshold(). By default, this
306       * uses a formula to automatically determine a reasonable threshold.
307       * Once you have called the present method setThreshold(const RealScalar&),
308       * your value is used instead.
309       *
310       * \param threshold The new value to use as the threshold.
311       *
312       * A pivot will be considered nonzero if its absolute value is strictly greater than
313       *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
314       * where maxpivot is the biggest pivot.
315       *
316       * If you want to come back to the default behavior, call setThreshold(Default_t)
317       */
318     FullPivHouseholderQR& setThreshold(const RealScalar& threshold)
319     {
320       m_usePrescribedThreshold = true;
321       m_prescribedThreshold = threshold;
322       return *this;
323     }
324 
325     /** Allows to come back to the default behavior, letting Eigen use its default formula for
326       * determining the threshold.
327       *
328       * You should pass the special object Eigen::Default as parameter here.
329       * \code qr.setThreshold(Eigen::Default); \endcode
330       *
331       * See the documentation of setThreshold(const RealScalar&).
332       */
333     FullPivHouseholderQR& setThreshold(Default_t)
334     {
335       m_usePrescribedThreshold = false;
336       return *this;
337     }
338 
339     /** Returns the threshold that will be used by certain methods such as rank().
340       *
341       * See the documentation of setThreshold(const RealScalar&).
342       */
343     RealScalar threshold() const
344     {
345       eigen_assert(m_isInitialized || m_usePrescribedThreshold);
346       return m_usePrescribedThreshold ? m_prescribedThreshold
347       // this formula comes from experimenting (see "LU precision tuning" thread on the list)
348       // and turns out to be identical to Higham's formula used already in LDLt.
349                                       : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
350     }
351 
352     /** \returns the number of nonzero pivots in the QR decomposition.
353       * Here nonzero is meant in the exact sense, not in a fuzzy sense.
354       * So that notion isn't really intrinsically interesting, but it is
355       * still useful when implementing algorithms.
356       *
357       * \sa rank()
358       */
359     inline Index nonzeroPivots() const
360     {
361       eigen_assert(m_isInitialized && "LU is not initialized.");
362       return m_nonzero_pivots;
363     }
364 
365     /** \returns the absolute value of the biggest pivot, i.e. the biggest
366       *          diagonal coefficient of U.
367       */
368     RealScalar maxPivot() const { return m_maxpivot; }
369 
370   protected:
371 
372     static void check_template_parameters()
373     {
374       EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
375     }
376 
377     MatrixType m_qr;
378     HCoeffsType m_hCoeffs;
379     IntDiagSizeVectorType m_rows_transpositions;
380     IntDiagSizeVectorType m_cols_transpositions;
381     PermutationType m_cols_permutation;
382     RowVectorType m_temp;
383     bool m_isInitialized, m_usePrescribedThreshold;
384     RealScalar m_prescribedThreshold, m_maxpivot;
385     Index m_nonzero_pivots;
386     RealScalar m_precision;
387     Index m_det_pq;
388 };
389 
390 template<typename MatrixType>
391 typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const
392 {
393   using std::abs;
394   eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
395   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
396   return abs(m_qr.diagonal().prod());
397 }
398 
399 template<typename MatrixType>
400 typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const
401 {
402   eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
403   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
404   return m_qr.diagonal().cwiseAbs().array().log().sum();
405 }
406 
407 /** Performs the QR factorization of the given matrix \a matrix. The result of
408   * the factorization is stored into \c *this, and a reference to \c *this
409   * is returned.
410   *
411   * \sa class FullPivHouseholderQR, FullPivHouseholderQR(const MatrixType&)
412   */
413 template<typename MatrixType>
414 FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
415 {
416   check_template_parameters();
417 
418   using std::abs;
419   Index rows = matrix.rows();
420   Index cols = matrix.cols();
421   Index size = (std::min)(rows,cols);
422 
423   m_qr = matrix;
424   m_hCoeffs.resize(size);
425 
426   m_temp.resize(cols);
427 
428   m_precision = NumTraits<Scalar>::epsilon() * RealScalar(size);
429 
430   m_rows_transpositions.resize(size);
431   m_cols_transpositions.resize(size);
432   Index number_of_transpositions = 0;
433 
434   RealScalar biggest(0);
435 
436   m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
437   m_maxpivot = RealScalar(0);
438 
439   for (Index k = 0; k < size; ++k)
440   {
441     Index row_of_biggest_in_corner, col_of_biggest_in_corner;
442     RealScalar biggest_in_corner;
443 
444     biggest_in_corner = m_qr.bottomRightCorner(rows-k, cols-k)
445                             .cwiseAbs()
446                             .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
447     row_of_biggest_in_corner += k;
448     col_of_biggest_in_corner += k;
449     if(k==0) biggest = biggest_in_corner;
450 
451     // if the corner is negligible, then we have less than full rank, and we can finish early
452     if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
453     {
454       m_nonzero_pivots = k;
455       for(Index i = k; i < size; i++)
456       {
457         m_rows_transpositions.coeffRef(i) = i;
458         m_cols_transpositions.coeffRef(i) = i;
459         m_hCoeffs.coeffRef(i) = Scalar(0);
460       }
461       break;
462     }
463 
464     m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
465     m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
466     if(k != row_of_biggest_in_corner) {
467       m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k));
468       ++number_of_transpositions;
469     }
470     if(k != col_of_biggest_in_corner) {
471       m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
472       ++number_of_transpositions;
473     }
474 
475     RealScalar beta;
476     m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
477     m_qr.coeffRef(k,k) = beta;
478 
479     // remember the maximum absolute value of diagonal coefficients
480     if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
481 
482     m_qr.bottomRightCorner(rows-k, cols-k-1)
483         .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
484   }
485 
486   m_cols_permutation.setIdentity(cols);
487   for(Index k = 0; k < size; ++k)
488     m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k));
489 
490   m_det_pq = (number_of_transpositions%2) ? -1 : 1;
491   m_isInitialized = true;
492 
493   return *this;
494 }
495 
496 namespace internal {
497 
498 template<typename _MatrixType, typename Rhs>
499 struct solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs>
500   : solve_retval_base<FullPivHouseholderQR<_MatrixType>, Rhs>
501 {
502   EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs)
503 
504   template<typename Dest> void evalTo(Dest& dst) const
505   {
506     const Index rows = dec().rows(), cols = dec().cols();
507     eigen_assert(rhs().rows() == rows);
508 
509     // FIXME introduce nonzeroPivots() and use it here. and more generally,
510     // make the same improvements in this dec as in FullPivLU.
511     if(dec().rank()==0)
512     {
513       dst.setZero();
514       return;
515     }
516 
517     typename Rhs::PlainObject c(rhs());
518 
519     Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs().cols());
520     for (Index k = 0; k < dec().rank(); ++k)
521     {
522       Index remainingSize = rows-k;
523       c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k)));
524       c.bottomRightCorner(remainingSize, rhs().cols())
525        .applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1),
526                                   dec().hCoeffs().coeff(k), &temp.coeffRef(0));
527     }
528 
529     dec().matrixQR()
530        .topLeftCorner(dec().rank(), dec().rank())
531        .template triangularView<Upper>()
532        .solveInPlace(c.topRows(dec().rank()));
533 
534     for(Index i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
535     for(Index i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
536   }
537 };
538 
539 /** \ingroup QR_Module
540   *
541   * \brief Expression type for return value of FullPivHouseholderQR::matrixQ()
542   *
543   * \tparam MatrixType type of underlying dense matrix
544   */
545 template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType
546   : public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
547 {
548 public:
549   typedef typename MatrixType::Index Index;
550   typedef typename FullPivHouseholderQR<MatrixType>::IntDiagSizeVectorType IntDiagSizeVectorType;
551   typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
552   typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1,
553                  MatrixType::MaxRowsAtCompileTime> WorkVectorType;
554 
555   FullPivHouseholderQRMatrixQReturnType(const MatrixType&       qr,
556                                         const HCoeffsType&      hCoeffs,
557                                         const IntDiagSizeVectorType& rowsTranspositions)
558     : m_qr(qr),
559       m_hCoeffs(hCoeffs),
560       m_rowsTranspositions(rowsTranspositions)
561       {}
562 
563   template <typename ResultType>
564   void evalTo(ResultType& result) const
565   {
566     const Index rows = m_qr.rows();
567     WorkVectorType workspace(rows);
568     evalTo(result, workspace);
569   }
570 
571   template <typename ResultType>
572   void evalTo(ResultType& result, WorkVectorType& workspace) const
573   {
574     using numext::conj;
575     // compute the product H'_0 H'_1 ... H'_n-1,
576     // where H_k is the k-th Householder transformation I - h_k v_k v_k'
577     // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
578     const Index rows = m_qr.rows();
579     const Index cols = m_qr.cols();
580     const Index size = (std::min)(rows, cols);
581     workspace.resize(rows);
582     result.setIdentity(rows, rows);
583     for (Index k = size-1; k >= 0; k--)
584     {
585       result.block(k, k, rows-k, rows-k)
586             .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k));
587       result.row(k).swap(result.row(m_rowsTranspositions.coeff(k)));
588     }
589   }
590 
591     Index rows() const { return m_qr.rows(); }
592     Index cols() const { return m_qr.rows(); }
593 
594 protected:
595   typename MatrixType::Nested m_qr;
596   typename HCoeffsType::Nested m_hCoeffs;
597   typename IntDiagSizeVectorType::Nested m_rowsTranspositions;
598 };
599 
600 } // end namespace internal
601 
602 template<typename MatrixType>
603 inline typename FullPivHouseholderQR<MatrixType>::MatrixQReturnType FullPivHouseholderQR<MatrixType>::matrixQ() const
604 {
605   eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
606   return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions);
607 }
608 
609 /** \return the full-pivoting Householder QR decomposition of \c *this.
610   *
611   * \sa class FullPivHouseholderQR
612   */
613 template<typename Derived>
614 const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
615 MatrixBase<Derived>::fullPivHouseholderQr() const
616 {
617   return FullPivHouseholderQR<PlainObject>(eval());
618 }
619 
620 } // end namespace Eigen
621 
622 #endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
623