1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> 5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H 12 #define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H 13 14 namespace Eigen { 15 16 namespace internal { 17 18 template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType; 19 20 template<typename MatrixType> 21 struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> > 22 { 23 typedef typename MatrixType::PlainObject ReturnType; 24 }; 25 26 } 27 28 /** \ingroup QR_Module 29 * 30 * \class FullPivHouseholderQR 31 * 32 * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting 33 * 34 * \param MatrixType the type of the matrix of which we are computing the QR decomposition 35 * 36 * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R 37 * such that 38 * \f[ 39 * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R} 40 * \f] 41 * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an 42 * upper triangular matrix. 43 * 44 * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal 45 * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR. 46 * 47 * \sa MatrixBase::fullPivHouseholderQr() 48 */ 49 template<typename _MatrixType> class FullPivHouseholderQR 50 { 51 public: 52 53 typedef _MatrixType MatrixType; 54 enum { 55 RowsAtCompileTime = MatrixType::RowsAtCompileTime, 56 ColsAtCompileTime = MatrixType::ColsAtCompileTime, 57 Options = MatrixType::Options, 58 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, 59 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime 60 }; 61 typedef typename MatrixType::Scalar Scalar; 62 typedef typename MatrixType::RealScalar RealScalar; 63 typedef typename MatrixType::Index Index; 64 typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> MatrixQReturnType; 65 typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; 66 typedef Matrix<Index, 1, 67 EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime,RowsAtCompileTime), RowMajor, 1, 68 EIGEN_SIZE_MIN_PREFER_FIXED(MaxColsAtCompileTime,MaxRowsAtCompileTime)> IntDiagSizeVectorType; 69 typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType; 70 typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; 71 typedef typename internal::plain_col_type<MatrixType>::type ColVectorType; 72 73 /** \brief Default Constructor. 74 * 75 * The default constructor is useful in cases in which the user intends to 76 * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&). 77 */ 78 FullPivHouseholderQR() 79 : m_qr(), 80 m_hCoeffs(), 81 m_rows_transpositions(), 82 m_cols_transpositions(), 83 m_cols_permutation(), 84 m_temp(), 85 m_isInitialized(false), 86 m_usePrescribedThreshold(false) {} 87 88 /** \brief Default Constructor with memory preallocation 89 * 90 * Like the default constructor but with preallocation of the internal data 91 * according to the specified problem \a size. 92 * \sa FullPivHouseholderQR() 93 */ 94 FullPivHouseholderQR(Index rows, Index cols) 95 : m_qr(rows, cols), 96 m_hCoeffs((std::min)(rows,cols)), 97 m_rows_transpositions((std::min)(rows,cols)), 98 m_cols_transpositions((std::min)(rows,cols)), 99 m_cols_permutation(cols), 100 m_temp(cols), 101 m_isInitialized(false), 102 m_usePrescribedThreshold(false) {} 103 104 /** \brief Constructs a QR factorization from a given matrix 105 * 106 * This constructor computes the QR factorization of the matrix \a matrix by calling 107 * the method compute(). It is a short cut for: 108 * 109 * \code 110 * FullPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols()); 111 * qr.compute(matrix); 112 * \endcode 113 * 114 * \sa compute() 115 */ 116 FullPivHouseholderQR(const MatrixType& matrix) 117 : m_qr(matrix.rows(), matrix.cols()), 118 m_hCoeffs((std::min)(matrix.rows(), matrix.cols())), 119 m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())), 120 m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())), 121 m_cols_permutation(matrix.cols()), 122 m_temp(matrix.cols()), 123 m_isInitialized(false), 124 m_usePrescribedThreshold(false) 125 { 126 compute(matrix); 127 } 128 129 /** This method finds a solution x to the equation Ax=b, where A is the matrix of which 130 * \c *this is the QR decomposition. 131 * 132 * \param b the right-hand-side of the equation to solve. 133 * 134 * \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A, 135 * and an arbitrary solution otherwise. 136 * 137 * \note The case where b is a matrix is not yet implemented. Also, this 138 * code is space inefficient. 139 * 140 * \note_about_checking_solutions 141 * 142 * \note_about_arbitrary_choice_of_solution 143 * 144 * Example: \include FullPivHouseholderQR_solve.cpp 145 * Output: \verbinclude FullPivHouseholderQR_solve.out 146 */ 147 template<typename Rhs> 148 inline const internal::solve_retval<FullPivHouseholderQR, Rhs> 149 solve(const MatrixBase<Rhs>& b) const 150 { 151 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 152 return internal::solve_retval<FullPivHouseholderQR, Rhs>(*this, b.derived()); 153 } 154 155 /** \returns Expression object representing the matrix Q 156 */ 157 MatrixQReturnType matrixQ(void) const; 158 159 /** \returns a reference to the matrix where the Householder QR decomposition is stored 160 */ 161 const MatrixType& matrixQR() const 162 { 163 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 164 return m_qr; 165 } 166 167 FullPivHouseholderQR& compute(const MatrixType& matrix); 168 169 /** \returns a const reference to the column permutation matrix */ 170 const PermutationType& colsPermutation() const 171 { 172 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 173 return m_cols_permutation; 174 } 175 176 /** \returns a const reference to the vector of indices representing the rows transpositions */ 177 const IntDiagSizeVectorType& rowsTranspositions() const 178 { 179 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 180 return m_rows_transpositions; 181 } 182 183 /** \returns the absolute value of the determinant of the matrix of which 184 * *this is the QR decomposition. It has only linear complexity 185 * (that is, O(n) where n is the dimension of the square matrix) 186 * as the QR decomposition has already been computed. 187 * 188 * \note This is only for square matrices. 189 * 190 * \warning a determinant can be very big or small, so for matrices 191 * of large enough dimension, there is a risk of overflow/underflow. 192 * One way to work around that is to use logAbsDeterminant() instead. 193 * 194 * \sa logAbsDeterminant(), MatrixBase::determinant() 195 */ 196 typename MatrixType::RealScalar absDeterminant() const; 197 198 /** \returns the natural log of the absolute value of the determinant of the matrix of which 199 * *this is the QR decomposition. It has only linear complexity 200 * (that is, O(n) where n is the dimension of the square matrix) 201 * as the QR decomposition has already been computed. 202 * 203 * \note This is only for square matrices. 204 * 205 * \note This method is useful to work around the risk of overflow/underflow that's inherent 206 * to determinant computation. 207 * 208 * \sa absDeterminant(), MatrixBase::determinant() 209 */ 210 typename MatrixType::RealScalar logAbsDeterminant() const; 211 212 /** \returns the rank of the matrix of which *this is the QR decomposition. 213 * 214 * \note This method has to determine which pivots should be considered nonzero. 215 * For that, it uses the threshold value that you can control by calling 216 * setThreshold(const RealScalar&). 217 */ 218 inline Index rank() const 219 { 220 using std::abs; 221 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 222 RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); 223 Index result = 0; 224 for(Index i = 0; i < m_nonzero_pivots; ++i) 225 result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold); 226 return result; 227 } 228 229 /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. 230 * 231 * \note This method has to determine which pivots should be considered nonzero. 232 * For that, it uses the threshold value that you can control by calling 233 * setThreshold(const RealScalar&). 234 */ 235 inline Index dimensionOfKernel() const 236 { 237 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 238 return cols() - rank(); 239 } 240 241 /** \returns true if the matrix of which *this is the QR decomposition represents an injective 242 * linear map, i.e. has trivial kernel; false otherwise. 243 * 244 * \note This method has to determine which pivots should be considered nonzero. 245 * For that, it uses the threshold value that you can control by calling 246 * setThreshold(const RealScalar&). 247 */ 248 inline bool isInjective() const 249 { 250 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 251 return rank() == cols(); 252 } 253 254 /** \returns true if the matrix of which *this is the QR decomposition represents a surjective 255 * linear map; false otherwise. 256 * 257 * \note This method has to determine which pivots should be considered nonzero. 258 * For that, it uses the threshold value that you can control by calling 259 * setThreshold(const RealScalar&). 260 */ 261 inline bool isSurjective() const 262 { 263 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 264 return rank() == rows(); 265 } 266 267 /** \returns true if the matrix of which *this is the QR decomposition is invertible. 268 * 269 * \note This method has to determine which pivots should be considered nonzero. 270 * For that, it uses the threshold value that you can control by calling 271 * setThreshold(const RealScalar&). 272 */ 273 inline bool isInvertible() const 274 { 275 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 276 return isInjective() && isSurjective(); 277 } 278 279 /** \returns the inverse of the matrix of which *this is the QR decomposition. 280 * 281 * \note If this matrix is not invertible, the returned matrix has undefined coefficients. 282 * Use isInvertible() to first determine whether this matrix is invertible. 283 */ inline const 284 internal::solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType> 285 inverse() const 286 { 287 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 288 return internal::solve_retval<FullPivHouseholderQR,typename MatrixType::IdentityReturnType> 289 (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols())); 290 } 291 292 inline Index rows() const { return m_qr.rows(); } 293 inline Index cols() const { return m_qr.cols(); } 294 295 /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. 296 * 297 * For advanced uses only. 298 */ 299 const HCoeffsType& hCoeffs() const { return m_hCoeffs; } 300 301 /** Allows to prescribe a threshold to be used by certain methods, such as rank(), 302 * who need to determine when pivots are to be considered nonzero. This is not used for the 303 * QR decomposition itself. 304 * 305 * When it needs to get the threshold value, Eigen calls threshold(). By default, this 306 * uses a formula to automatically determine a reasonable threshold. 307 * Once you have called the present method setThreshold(const RealScalar&), 308 * your value is used instead. 309 * 310 * \param threshold The new value to use as the threshold. 311 * 312 * A pivot will be considered nonzero if its absolute value is strictly greater than 313 * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ 314 * where maxpivot is the biggest pivot. 315 * 316 * If you want to come back to the default behavior, call setThreshold(Default_t) 317 */ 318 FullPivHouseholderQR& setThreshold(const RealScalar& threshold) 319 { 320 m_usePrescribedThreshold = true; 321 m_prescribedThreshold = threshold; 322 return *this; 323 } 324 325 /** Allows to come back to the default behavior, letting Eigen use its default formula for 326 * determining the threshold. 327 * 328 * You should pass the special object Eigen::Default as parameter here. 329 * \code qr.setThreshold(Eigen::Default); \endcode 330 * 331 * See the documentation of setThreshold(const RealScalar&). 332 */ 333 FullPivHouseholderQR& setThreshold(Default_t) 334 { 335 m_usePrescribedThreshold = false; 336 return *this; 337 } 338 339 /** Returns the threshold that will be used by certain methods such as rank(). 340 * 341 * See the documentation of setThreshold(const RealScalar&). 342 */ 343 RealScalar threshold() const 344 { 345 eigen_assert(m_isInitialized || m_usePrescribedThreshold); 346 return m_usePrescribedThreshold ? m_prescribedThreshold 347 // this formula comes from experimenting (see "LU precision tuning" thread on the list) 348 // and turns out to be identical to Higham's formula used already in LDLt. 349 : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize()); 350 } 351 352 /** \returns the number of nonzero pivots in the QR decomposition. 353 * Here nonzero is meant in the exact sense, not in a fuzzy sense. 354 * So that notion isn't really intrinsically interesting, but it is 355 * still useful when implementing algorithms. 356 * 357 * \sa rank() 358 */ 359 inline Index nonzeroPivots() const 360 { 361 eigen_assert(m_isInitialized && "LU is not initialized."); 362 return m_nonzero_pivots; 363 } 364 365 /** \returns the absolute value of the biggest pivot, i.e. the biggest 366 * diagonal coefficient of U. 367 */ 368 RealScalar maxPivot() const { return m_maxpivot; } 369 370 protected: 371 372 static void check_template_parameters() 373 { 374 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); 375 } 376 377 MatrixType m_qr; 378 HCoeffsType m_hCoeffs; 379 IntDiagSizeVectorType m_rows_transpositions; 380 IntDiagSizeVectorType m_cols_transpositions; 381 PermutationType m_cols_permutation; 382 RowVectorType m_temp; 383 bool m_isInitialized, m_usePrescribedThreshold; 384 RealScalar m_prescribedThreshold, m_maxpivot; 385 Index m_nonzero_pivots; 386 RealScalar m_precision; 387 Index m_det_pq; 388 }; 389 390 template<typename MatrixType> 391 typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const 392 { 393 using std::abs; 394 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 395 eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); 396 return abs(m_qr.diagonal().prod()); 397 } 398 399 template<typename MatrixType> 400 typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const 401 { 402 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 403 eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); 404 return m_qr.diagonal().cwiseAbs().array().log().sum(); 405 } 406 407 /** Performs the QR factorization of the given matrix \a matrix. The result of 408 * the factorization is stored into \c *this, and a reference to \c *this 409 * is returned. 410 * 411 * \sa class FullPivHouseholderQR, FullPivHouseholderQR(const MatrixType&) 412 */ 413 template<typename MatrixType> 414 FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix) 415 { 416 check_template_parameters(); 417 418 using std::abs; 419 Index rows = matrix.rows(); 420 Index cols = matrix.cols(); 421 Index size = (std::min)(rows,cols); 422 423 m_qr = matrix; 424 m_hCoeffs.resize(size); 425 426 m_temp.resize(cols); 427 428 m_precision = NumTraits<Scalar>::epsilon() * RealScalar(size); 429 430 m_rows_transpositions.resize(size); 431 m_cols_transpositions.resize(size); 432 Index number_of_transpositions = 0; 433 434 RealScalar biggest(0); 435 436 m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) 437 m_maxpivot = RealScalar(0); 438 439 for (Index k = 0; k < size; ++k) 440 { 441 Index row_of_biggest_in_corner, col_of_biggest_in_corner; 442 RealScalar biggest_in_corner; 443 444 biggest_in_corner = m_qr.bottomRightCorner(rows-k, cols-k) 445 .cwiseAbs() 446 .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); 447 row_of_biggest_in_corner += k; 448 col_of_biggest_in_corner += k; 449 if(k==0) biggest = biggest_in_corner; 450 451 // if the corner is negligible, then we have less than full rank, and we can finish early 452 if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision)) 453 { 454 m_nonzero_pivots = k; 455 for(Index i = k; i < size; i++) 456 { 457 m_rows_transpositions.coeffRef(i) = i; 458 m_cols_transpositions.coeffRef(i) = i; 459 m_hCoeffs.coeffRef(i) = Scalar(0); 460 } 461 break; 462 } 463 464 m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner; 465 m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner; 466 if(k != row_of_biggest_in_corner) { 467 m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k)); 468 ++number_of_transpositions; 469 } 470 if(k != col_of_biggest_in_corner) { 471 m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner)); 472 ++number_of_transpositions; 473 } 474 475 RealScalar beta; 476 m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); 477 m_qr.coeffRef(k,k) = beta; 478 479 // remember the maximum absolute value of diagonal coefficients 480 if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta); 481 482 m_qr.bottomRightCorner(rows-k, cols-k-1) 483 .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1)); 484 } 485 486 m_cols_permutation.setIdentity(cols); 487 for(Index k = 0; k < size; ++k) 488 m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k)); 489 490 m_det_pq = (number_of_transpositions%2) ? -1 : 1; 491 m_isInitialized = true; 492 493 return *this; 494 } 495 496 namespace internal { 497 498 template<typename _MatrixType, typename Rhs> 499 struct solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs> 500 : solve_retval_base<FullPivHouseholderQR<_MatrixType>, Rhs> 501 { 502 EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs) 503 504 template<typename Dest> void evalTo(Dest& dst) const 505 { 506 const Index rows = dec().rows(), cols = dec().cols(); 507 eigen_assert(rhs().rows() == rows); 508 509 // FIXME introduce nonzeroPivots() and use it here. and more generally, 510 // make the same improvements in this dec as in FullPivLU. 511 if(dec().rank()==0) 512 { 513 dst.setZero(); 514 return; 515 } 516 517 typename Rhs::PlainObject c(rhs()); 518 519 Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs().cols()); 520 for (Index k = 0; k < dec().rank(); ++k) 521 { 522 Index remainingSize = rows-k; 523 c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k))); 524 c.bottomRightCorner(remainingSize, rhs().cols()) 525 .applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1), 526 dec().hCoeffs().coeff(k), &temp.coeffRef(0)); 527 } 528 529 dec().matrixQR() 530 .topLeftCorner(dec().rank(), dec().rank()) 531 .template triangularView<Upper>() 532 .solveInPlace(c.topRows(dec().rank())); 533 534 for(Index i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i); 535 for(Index i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero(); 536 } 537 }; 538 539 /** \ingroup QR_Module 540 * 541 * \brief Expression type for return value of FullPivHouseholderQR::matrixQ() 542 * 543 * \tparam MatrixType type of underlying dense matrix 544 */ 545 template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType 546 : public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> > 547 { 548 public: 549 typedef typename MatrixType::Index Index; 550 typedef typename FullPivHouseholderQR<MatrixType>::IntDiagSizeVectorType IntDiagSizeVectorType; 551 typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; 552 typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1, 553 MatrixType::MaxRowsAtCompileTime> WorkVectorType; 554 555 FullPivHouseholderQRMatrixQReturnType(const MatrixType& qr, 556 const HCoeffsType& hCoeffs, 557 const IntDiagSizeVectorType& rowsTranspositions) 558 : m_qr(qr), 559 m_hCoeffs(hCoeffs), 560 m_rowsTranspositions(rowsTranspositions) 561 {} 562 563 template <typename ResultType> 564 void evalTo(ResultType& result) const 565 { 566 const Index rows = m_qr.rows(); 567 WorkVectorType workspace(rows); 568 evalTo(result, workspace); 569 } 570 571 template <typename ResultType> 572 void evalTo(ResultType& result, WorkVectorType& workspace) const 573 { 574 using numext::conj; 575 // compute the product H'_0 H'_1 ... H'_n-1, 576 // where H_k is the k-th Householder transformation I - h_k v_k v_k' 577 // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...] 578 const Index rows = m_qr.rows(); 579 const Index cols = m_qr.cols(); 580 const Index size = (std::min)(rows, cols); 581 workspace.resize(rows); 582 result.setIdentity(rows, rows); 583 for (Index k = size-1; k >= 0; k--) 584 { 585 result.block(k, k, rows-k, rows-k) 586 .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k)); 587 result.row(k).swap(result.row(m_rowsTranspositions.coeff(k))); 588 } 589 } 590 591 Index rows() const { return m_qr.rows(); } 592 Index cols() const { return m_qr.rows(); } 593 594 protected: 595 typename MatrixType::Nested m_qr; 596 typename HCoeffsType::Nested m_hCoeffs; 597 typename IntDiagSizeVectorType::Nested m_rowsTranspositions; 598 }; 599 600 } // end namespace internal 601 602 template<typename MatrixType> 603 inline typename FullPivHouseholderQR<MatrixType>::MatrixQReturnType FullPivHouseholderQR<MatrixType>::matrixQ() const 604 { 605 eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); 606 return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions); 607 } 608 609 /** \return the full-pivoting Householder QR decomposition of \c *this. 610 * 611 * \sa class FullPivHouseholderQR 612 */ 613 template<typename Derived> 614 const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject> 615 MatrixBase<Derived>::fullPivHouseholderQr() const 616 { 617 return FullPivHouseholderQR<PlainObject>(eval()); 618 } 619 620 } // end namespace Eigen 621 622 #endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H 623