1 /* Copyright (c) 2014, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 /* ====================================================================
16 *
17 * When updating this file, also update chacha_vec_arm.S
18 *
19 * ==================================================================== */
20
21
22 /* This implementation is by Ted Krovetz and was submitted to SUPERCOP and
23 * marked as public domain. It was been altered to allow for non-aligned inputs
24 * and to allow the block counter to be passed in specifically. */
25
26 #include <openssl/chacha.h>
27
28 #if defined(ASM_GEN) || \
29 !defined(OPENSSL_WINDOWS) && \
30 (defined(OPENSSL_X86_64) || defined(OPENSSL_X86)) && defined(__SSE2__)
31
32 #define CHACHA_RNDS 20 /* 8 (high speed), 20 (conservative), 12 (middle) */
33
34 /* Architecture-neutral way to specify 16-byte vector of ints */
35 typedef unsigned vec __attribute__((vector_size(16)));
36
37 /* This implementation is designed for Neon, SSE and AltiVec machines. The
38 * following specify how to do certain vector operations efficiently on
39 * each architecture, using intrinsics.
40 * This implementation supports parallel processing of multiple blocks,
41 * including potentially using general-purpose registers. */
42 #if __ARM_NEON__
43 #include <string.h>
44 #include <arm_neon.h>
45 #define GPR_TOO 1
46 #define VBPI 2
47 #define ONE (vec) vsetq_lane_u32(1, vdupq_n_u32(0), 0)
48 #define LOAD_ALIGNED(m) (vec)(*((vec *)(m)))
49 #define LOAD(m) ({ \
50 memcpy(alignment_buffer, m, 16); \
51 LOAD_ALIGNED(alignment_buffer); \
52 })
53 #define STORE(m, r) ({ \
54 (*((vec *)(alignment_buffer))) = (r); \
55 memcpy(m, alignment_buffer, 16); \
56 })
57 #define ROTV1(x) (vec) vextq_u32((uint32x4_t)x, (uint32x4_t)x, 1)
58 #define ROTV2(x) (vec) vextq_u32((uint32x4_t)x, (uint32x4_t)x, 2)
59 #define ROTV3(x) (vec) vextq_u32((uint32x4_t)x, (uint32x4_t)x, 3)
60 #define ROTW16(x) (vec) vrev32q_u16((uint16x8_t)x)
61 #if __clang__
62 #define ROTW7(x) (x << ((vec) {7, 7, 7, 7})) ^ (x >> ((vec) {25, 25, 25, 25}))
63 #define ROTW8(x) (x << ((vec) {8, 8, 8, 8})) ^ (x >> ((vec) {24, 24, 24, 24}))
64 #define ROTW12(x) \
65 (x << ((vec) {12, 12, 12, 12})) ^ (x >> ((vec) {20, 20, 20, 20}))
66 #else
67 #define ROTW7(x) \
68 (vec) vsriq_n_u32(vshlq_n_u32((uint32x4_t)x, 7), (uint32x4_t)x, 25)
69 #define ROTW8(x) \
70 (vec) vsriq_n_u32(vshlq_n_u32((uint32x4_t)x, 8), (uint32x4_t)x, 24)
71 #define ROTW12(x) \
72 (vec) vsriq_n_u32(vshlq_n_u32((uint32x4_t)x, 12), (uint32x4_t)x, 20)
73 #endif
74 #elif __SSE2__
75 #include <emmintrin.h>
76 #define GPR_TOO 0
77 #if __clang__
78 #define VBPI 4
79 #else
80 #define VBPI 3
81 #endif
82 #define ONE (vec) _mm_set_epi32(0, 0, 0, 1)
83 #define LOAD(m) (vec) _mm_loadu_si128((__m128i *)(m))
84 #define LOAD_ALIGNED(m) (vec) _mm_load_si128((__m128i *)(m))
85 #define STORE(m, r) _mm_storeu_si128((__m128i *)(m), (__m128i)(r))
86 #define ROTV1(x) (vec) _mm_shuffle_epi32((__m128i)x, _MM_SHUFFLE(0, 3, 2, 1))
87 #define ROTV2(x) (vec) _mm_shuffle_epi32((__m128i)x, _MM_SHUFFLE(1, 0, 3, 2))
88 #define ROTV3(x) (vec) _mm_shuffle_epi32((__m128i)x, _MM_SHUFFLE(2, 1, 0, 3))
89 #define ROTW7(x) \
90 (vec)(_mm_slli_epi32((__m128i)x, 7) ^ _mm_srli_epi32((__m128i)x, 25))
91 #define ROTW12(x) \
92 (vec)(_mm_slli_epi32((__m128i)x, 12) ^ _mm_srli_epi32((__m128i)x, 20))
93 #if __SSSE3__
94 #include <tmmintrin.h>
95 #define ROTW8(x) \
96 (vec) _mm_shuffle_epi8((__m128i)x, _mm_set_epi8(14, 13, 12, 15, 10, 9, 8, \
97 11, 6, 5, 4, 7, 2, 1, 0, 3))
98 #define ROTW16(x) \
99 (vec) _mm_shuffle_epi8((__m128i)x, _mm_set_epi8(13, 12, 15, 14, 9, 8, 11, \
100 10, 5, 4, 7, 6, 1, 0, 3, 2))
101 #else
102 #define ROTW8(x) \
103 (vec)(_mm_slli_epi32((__m128i)x, 8) ^ _mm_srli_epi32((__m128i)x, 24))
104 #define ROTW16(x) \
105 (vec)(_mm_slli_epi32((__m128i)x, 16) ^ _mm_srli_epi32((__m128i)x, 16))
106 #endif
107 #else
108 #error-- Implementation supports only machines with neon or SSE2
109 #endif
110
111 #ifndef REVV_BE
112 #define REVV_BE(x) (x)
113 #endif
114
115 #ifndef REVW_BE
116 #define REVW_BE(x) (x)
117 #endif
118
119 #define BPI (VBPI + GPR_TOO) /* Blocks computed per loop iteration */
120
121 #define DQROUND_VECTORS(a,b,c,d) \
122 a += b; d ^= a; d = ROTW16(d); \
123 c += d; b ^= c; b = ROTW12(b); \
124 a += b; d ^= a; d = ROTW8(d); \
125 c += d; b ^= c; b = ROTW7(b); \
126 b = ROTV1(b); c = ROTV2(c); d = ROTV3(d); \
127 a += b; d ^= a; d = ROTW16(d); \
128 c += d; b ^= c; b = ROTW12(b); \
129 a += b; d ^= a; d = ROTW8(d); \
130 c += d; b ^= c; b = ROTW7(b); \
131 b = ROTV3(b); c = ROTV2(c); d = ROTV1(d);
132
133 #define QROUND_WORDS(a,b,c,d) \
134 a = a+b; d ^= a; d = d<<16 | d>>16; \
135 c = c+d; b ^= c; b = b<<12 | b>>20; \
136 a = a+b; d ^= a; d = d<< 8 | d>>24; \
137 c = c+d; b ^= c; b = b<< 7 | b>>25;
138
139 #define WRITE_XOR(in, op, d, v0, v1, v2, v3) \
140 STORE(op + d + 0, LOAD(in + d + 0) ^ REVV_BE(v0)); \
141 STORE(op + d + 4, LOAD(in + d + 4) ^ REVV_BE(v1)); \
142 STORE(op + d + 8, LOAD(in + d + 8) ^ REVV_BE(v2)); \
143 STORE(op + d +12, LOAD(in + d +12) ^ REVV_BE(v3));
144
145 #if __ARM_NEON__
146 /* For ARM, we can't depend on NEON support, so this function is compiled with
147 * a different name, along with the generic code, and can be enabled at
148 * run-time. */
CRYPTO_chacha_20_neon(uint8_t * out,const uint8_t * in,size_t inlen,const uint8_t key[32],const uint8_t nonce[12],uint32_t counter)149 void CRYPTO_chacha_20_neon(
150 #else
151 void CRYPTO_chacha_20(
152 #endif
153 uint8_t *out,
154 const uint8_t *in,
155 size_t inlen,
156 const uint8_t key[32],
157 const uint8_t nonce[12],
158 uint32_t counter)
159 {
160 unsigned iters, i, *op=(unsigned *)out, *ip=(unsigned *)in, *kp;
161 #if defined(__ARM_NEON__)
162 uint32_t np[3];
163 uint8_t alignment_buffer[16] __attribute__((aligned(16)));
164 #endif
165 vec s0, s1, s2, s3;
166 __attribute__ ((aligned (16))) unsigned chacha_const[] =
167 {0x61707865,0x3320646E,0x79622D32,0x6B206574};
168 kp = (unsigned *)key;
169 #if defined(__ARM_NEON__)
170 memcpy(np, nonce, 12);
171 #endif
172 s0 = LOAD_ALIGNED(chacha_const);
173 s1 = LOAD(&((vec*)kp)[0]);
174 s2 = LOAD(&((vec*)kp)[1]);
175 s3 = (vec){
176 counter,
177 ((uint32_t*)nonce)[0],
178 ((uint32_t*)nonce)[1],
179 ((uint32_t*)nonce)[2]
180 };
181
182 for (iters = 0; iters < inlen/(BPI*64); iters++)
183 {
184 #if GPR_TOO
185 register unsigned x0, x1, x2, x3, x4, x5, x6, x7, x8,
186 x9, x10, x11, x12, x13, x14, x15;
187 #endif
188 #if VBPI > 2
189 vec v8,v9,v10,v11;
190 #endif
191 #if VBPI > 3
192 vec v12,v13,v14,v15;
193 #endif
194
195 vec v0,v1,v2,v3,v4,v5,v6,v7;
196 v4 = v0 = s0; v5 = v1 = s1; v6 = v2 = s2; v3 = s3;
197 v7 = v3 + ONE;
198 #if VBPI > 2
199 v8 = v4; v9 = v5; v10 = v6;
200 v11 = v7 + ONE;
201 #endif
202 #if VBPI > 3
203 v12 = v8; v13 = v9; v14 = v10;
204 v15 = v11 + ONE;
205 #endif
206 #if GPR_TOO
207 x0 = chacha_const[0]; x1 = chacha_const[1];
208 x2 = chacha_const[2]; x3 = chacha_const[3];
209 x4 = kp[0]; x5 = kp[1]; x6 = kp[2]; x7 = kp[3];
210 x8 = kp[4]; x9 = kp[5]; x10 = kp[6]; x11 = kp[7];
211 x12 = counter+BPI*iters+(BPI-1); x13 = np[0];
212 x14 = np[1]; x15 = np[2];
213 #endif
214 for (i = CHACHA_RNDS/2; i; i--)
215 {
216 DQROUND_VECTORS(v0,v1,v2,v3)
217 DQROUND_VECTORS(v4,v5,v6,v7)
218 #if VBPI > 2
219 DQROUND_VECTORS(v8,v9,v10,v11)
220 #endif
221 #if VBPI > 3
222 DQROUND_VECTORS(v12,v13,v14,v15)
223 #endif
224 #if GPR_TOO
225 QROUND_WORDS( x0, x4, x8,x12)
226 QROUND_WORDS( x1, x5, x9,x13)
227 QROUND_WORDS( x2, x6,x10,x14)
228 QROUND_WORDS( x3, x7,x11,x15)
229 QROUND_WORDS( x0, x5,x10,x15)
230 QROUND_WORDS( x1, x6,x11,x12)
231 QROUND_WORDS( x2, x7, x8,x13)
232 QROUND_WORDS( x3, x4, x9,x14)
233 #endif
234 }
235
236 WRITE_XOR(ip, op, 0, v0+s0, v1+s1, v2+s2, v3+s3)
237 s3 += ONE;
238 WRITE_XOR(ip, op, 16, v4+s0, v5+s1, v6+s2, v7+s3)
239 s3 += ONE;
240 #if VBPI > 2
241 WRITE_XOR(ip, op, 32, v8+s0, v9+s1, v10+s2, v11+s3)
242 s3 += ONE;
243 #endif
244 #if VBPI > 3
245 WRITE_XOR(ip, op, 48, v12+s0, v13+s1, v14+s2, v15+s3)
246 s3 += ONE;
247 #endif
248 ip += VBPI*16;
249 op += VBPI*16;
250 #if GPR_TOO
251 op[0] = REVW_BE(REVW_BE(ip[0]) ^ (x0 + chacha_const[0]));
252 op[1] = REVW_BE(REVW_BE(ip[1]) ^ (x1 + chacha_const[1]));
253 op[2] = REVW_BE(REVW_BE(ip[2]) ^ (x2 + chacha_const[2]));
254 op[3] = REVW_BE(REVW_BE(ip[3]) ^ (x3 + chacha_const[3]));
255 op[4] = REVW_BE(REVW_BE(ip[4]) ^ (x4 + kp[0]));
256 op[5] = REVW_BE(REVW_BE(ip[5]) ^ (x5 + kp[1]));
257 op[6] = REVW_BE(REVW_BE(ip[6]) ^ (x6 + kp[2]));
258 op[7] = REVW_BE(REVW_BE(ip[7]) ^ (x7 + kp[3]));
259 op[8] = REVW_BE(REVW_BE(ip[8]) ^ (x8 + kp[4]));
260 op[9] = REVW_BE(REVW_BE(ip[9]) ^ (x9 + kp[5]));
261 op[10] = REVW_BE(REVW_BE(ip[10]) ^ (x10 + kp[6]));
262 op[11] = REVW_BE(REVW_BE(ip[11]) ^ (x11 + kp[7]));
263 op[12] = REVW_BE(REVW_BE(ip[12]) ^ (x12 + counter+BPI*iters+(BPI-1)));
264 op[13] = REVW_BE(REVW_BE(ip[13]) ^ (x13 + np[0]));
265 op[14] = REVW_BE(REVW_BE(ip[14]) ^ (x14 + np[1]));
266 op[15] = REVW_BE(REVW_BE(ip[15]) ^ (x15 + np[2]));
267 s3 += ONE;
268 ip += 16;
269 op += 16;
270 #endif
271 }
272
273 for (iters = inlen%(BPI*64)/64; iters != 0; iters--)
274 {
275 vec v0 = s0, v1 = s1, v2 = s2, v3 = s3;
276 for (i = CHACHA_RNDS/2; i; i--)
277 {
278 DQROUND_VECTORS(v0,v1,v2,v3);
279 }
280 WRITE_XOR(ip, op, 0, v0+s0, v1+s1, v2+s2, v3+s3)
281 s3 += ONE;
282 ip += 16;
283 op += 16;
284 }
285
286 inlen = inlen % 64;
287 if (inlen)
288 {
289 __attribute__ ((aligned (16))) vec buf[4];
290 vec v0,v1,v2,v3;
291 v0 = s0; v1 = s1; v2 = s2; v3 = s3;
292 for (i = CHACHA_RNDS/2; i; i--)
293 {
294 DQROUND_VECTORS(v0,v1,v2,v3);
295 }
296
297 if (inlen >= 16)
298 {
299 STORE(op + 0, LOAD(ip + 0) ^ REVV_BE(v0 + s0));
300 if (inlen >= 32)
301 {
302 STORE(op + 4, LOAD(ip + 4) ^ REVV_BE(v1 + s1));
303 if (inlen >= 48)
304 {
305 STORE(op + 8, LOAD(ip + 8) ^
306 REVV_BE(v2 + s2));
307 buf[3] = REVV_BE(v3 + s3);
308 }
309 else
310 buf[2] = REVV_BE(v2 + s2);
311 }
312 else
313 buf[1] = REVV_BE(v1 + s1);
314 }
315 else
316 buf[0] = REVV_BE(v0 + s0);
317
318 for (i=inlen & ~15; i<inlen; i++)
319 ((char *)op)[i] = ((char *)ip)[i] ^ ((char *)buf)[i];
320 }
321 }
322
323 #endif /* ASM_GEN || !OPENSSL_WINDOWS && (OPENSSL_X86_64 || OPENSSL_X86) && SSE2 */
324