1 /* ====================================================================
2  * Copyright (c) 2010 The OpenSSL Project.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in
13  *    the documentation and/or other materials provided with the
14  *    distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  *    software must display the following acknowledgment:
18  *    "This product includes software developed by the OpenSSL Project
19  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  *    endorse or promote products derived from this software without
23  *    prior written permission. For written permission, please contact
24  *    licensing@OpenSSL.org.
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  *    nor may "OpenSSL" appear in their names without prior written
28  *    permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  *    acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ==================================================================== */
48 
49 #include <openssl/cmac.h>
50 
51 #include <assert.h>
52 #include <string.h>
53 
54 #include <openssl/aes.h>
55 #include <openssl/cipher.h>
56 #include <openssl/mem.h>
57 
58 
59 struct cmac_ctx_st {
60   EVP_CIPHER_CTX cipher_ctx;
61   /* k1 and k2 are the CMAC subkeys. See
62    * https://tools.ietf.org/html/rfc4493#section-2.3 */
63   uint8_t k1[AES_BLOCK_SIZE];
64   uint8_t k2[AES_BLOCK_SIZE];
65   /* Last (possibly partial) scratch */
66   uint8_t block[AES_BLOCK_SIZE];
67   /* block_used contains the number of valid bytes in |block|. */
68   unsigned block_used;
69 };
70 
CMAC_CTX_init(CMAC_CTX * ctx)71 static void CMAC_CTX_init(CMAC_CTX *ctx) {
72   EVP_CIPHER_CTX_init(&ctx->cipher_ctx);
73 }
74 
CMAC_CTX_cleanup(CMAC_CTX * ctx)75 static void CMAC_CTX_cleanup(CMAC_CTX *ctx) {
76   EVP_CIPHER_CTX_cleanup(&ctx->cipher_ctx);
77   OPENSSL_cleanse(ctx->k1, sizeof(ctx->k1));
78   OPENSSL_cleanse(ctx->k2, sizeof(ctx->k2));
79   OPENSSL_cleanse(ctx->block, sizeof(ctx->block));
80 }
81 
AES_CMAC(uint8_t out[16],const uint8_t * key,size_t key_len,const uint8_t * in,size_t in_len)82 int AES_CMAC(uint8_t out[16], const uint8_t *key, size_t key_len,
83              const uint8_t *in, size_t in_len) {
84   const EVP_CIPHER *cipher;
85   switch (key_len) {
86     case 16:
87       cipher = EVP_aes_128_cbc();
88       break;
89     case 32:
90       cipher = EVP_aes_256_cbc();
91       break;
92     default:
93       return 0;
94   }
95 
96   size_t scratch_out_len;
97   CMAC_CTX ctx;
98   CMAC_CTX_init(&ctx);
99 
100   const int ok = CMAC_Init(&ctx, key, key_len, cipher, NULL /* engine */) &&
101                  CMAC_Update(&ctx, in, in_len) &&
102                  CMAC_Final(&ctx, out, &scratch_out_len);
103 
104   CMAC_CTX_cleanup(&ctx);
105   return ok;
106 }
107 
CMAC_CTX_new(void)108 CMAC_CTX *CMAC_CTX_new(void) {
109   CMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx));
110   if (ctx != NULL) {
111     CMAC_CTX_init(ctx);
112   }
113   return ctx;
114 }
115 
CMAC_CTX_free(CMAC_CTX * ctx)116 void CMAC_CTX_free(CMAC_CTX *ctx) {
117   if (ctx == NULL) {
118     return;
119   }
120 
121   CMAC_CTX_cleanup(ctx);
122   OPENSSL_free(ctx);
123 }
124 
125 /* binary_field_mul_x treats the 128 bits at |in| as an element of GF(2¹²⁸)
126  * with a hard-coded reduction polynomial and sets |out| as x times the
127  * input.
128  *
129  * See https://tools.ietf.org/html/rfc4493#section-2.3 */
binary_field_mul_x(uint8_t out[16],const uint8_t in[16])130 static void binary_field_mul_x(uint8_t out[16], const uint8_t in[16]) {
131   unsigned i;
132 
133   /* Shift |in| to left, including carry. */
134   for (i = 0; i < 15; i++) {
135     out[i] = (in[i] << 1) | (in[i+1] >> 7);
136   }
137 
138   /* If MSB set fixup with R. */
139   const uint8_t carry = in[0] >> 7;
140   out[i] = (in[i] << 1) ^ ((0 - carry) & 0x87);
141 }
142 
143 static const uint8_t kZeroIV[AES_BLOCK_SIZE] = {0};
144 
CMAC_Init(CMAC_CTX * ctx,const void * key,size_t key_len,const EVP_CIPHER * cipher,ENGINE * engine)145 int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t key_len,
146               const EVP_CIPHER *cipher, ENGINE *engine) {
147   uint8_t scratch[AES_BLOCK_SIZE];
148 
149   if (EVP_CIPHER_block_size(cipher) != AES_BLOCK_SIZE ||
150       EVP_CIPHER_key_length(cipher) != key_len ||
151       !EVP_EncryptInit_ex(&ctx->cipher_ctx, cipher, NULL, key, kZeroIV) ||
152       !EVP_Cipher(&ctx->cipher_ctx, scratch, kZeroIV, AES_BLOCK_SIZE) ||
153       /* Reset context again ready for first data. */
154       !EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV)) {
155     return 0;
156   }
157 
158   binary_field_mul_x(ctx->k1, scratch);
159   binary_field_mul_x(ctx->k2, ctx->k1);
160   ctx->block_used = 0;
161 
162   return 1;
163 }
164 
CMAC_Reset(CMAC_CTX * ctx)165 int CMAC_Reset(CMAC_CTX *ctx) {
166   ctx->block_used = 0;
167   return EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV);
168 }
169 
CMAC_Update(CMAC_CTX * ctx,const uint8_t * in,size_t in_len)170 int CMAC_Update(CMAC_CTX *ctx, const uint8_t *in, size_t in_len) {
171   uint8_t scratch[AES_BLOCK_SIZE];
172 
173   if (ctx->block_used > 0) {
174     size_t todo = AES_BLOCK_SIZE - ctx->block_used;
175     if (in_len < todo) {
176       todo = in_len;
177     }
178 
179     memcpy(ctx->block + ctx->block_used, in, todo);
180     in += todo;
181     in_len -= todo;
182     ctx->block_used += todo;
183 
184     /* If |in_len| is zero then either |ctx->block_used| is less than
185      * |AES_BLOCK_SIZE|, in which case we can stop here, or |ctx->block_used|
186      * is exactly |AES_BLOCK_SIZE| but there's no more data to process. In the
187      * latter case we don't want to process this block now because it might be
188      * the last block and that block is treated specially. */
189     if (in_len == 0) {
190       return 1;
191     }
192 
193     assert(ctx->block_used == AES_BLOCK_SIZE);
194 
195     if (!EVP_Cipher(&ctx->cipher_ctx, scratch, ctx->block, AES_BLOCK_SIZE)) {
196       return 0;
197     }
198   }
199 
200   /* Encrypt all but one of the remaining blocks. */
201   while (in_len > AES_BLOCK_SIZE) {
202     if (!EVP_Cipher(&ctx->cipher_ctx, scratch, in, AES_BLOCK_SIZE)) {
203       return 0;
204     }
205     in += AES_BLOCK_SIZE;
206     in_len -= AES_BLOCK_SIZE;
207   }
208 
209   memcpy(ctx->block, in, in_len);
210   ctx->block_used = in_len;
211 
212   return 1;
213 }
214 
CMAC_Final(CMAC_CTX * ctx,uint8_t * out,size_t * out_len)215 int CMAC_Final(CMAC_CTX *ctx, uint8_t *out, size_t *out_len) {
216   *out_len = AES_BLOCK_SIZE;
217   if (out == NULL) {
218     return 1;
219   }
220 
221   const uint8_t *mask = ctx->k1;
222 
223   if (ctx->block_used != AES_BLOCK_SIZE) {
224     /* If the last block is incomplete, terminate it with a single 'one' bit
225      * followed by zeros. */
226     ctx->block[ctx->block_used] = 0x80;
227     memset(ctx->block + ctx->block_used + 1, 0,
228            AES_BLOCK_SIZE - (ctx->block_used + 1));
229 
230     mask = ctx->k2;
231   }
232 
233   unsigned i;
234   for (i = 0; i < AES_BLOCK_SIZE; i++) {
235     out[i] = ctx->block[i] ^ mask[i];
236   }
237 
238   return EVP_Cipher(&ctx->cipher_ctx, out, out, AES_BLOCK_SIZE);
239 }
240