1 /* Copyright (c) 2014, Intel Corporation.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 /* Developers and authors:
16 * Shay Gueron (1, 2), and Vlad Krasnov (1)
17 * (1) Intel Corporation, Israel Development Center
18 * (2) University of Haifa
19 * Reference:
20 * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
21 * 256 Bit Primes" */
22
23 #include <openssl/ec.h>
24
25 #include <assert.h>
26 #include <stdint.h>
27 #include <string.h>
28
29 #include <openssl/bn.h>
30 #include <openssl/crypto.h>
31 #include <openssl/err.h>
32
33 #include "../bn/internal.h"
34 #include "../ec/internal.h"
35 #include "../internal.h"
36
37
38 #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
39 !defined(OPENSSL_SMALL)
40
41
42 #if defined(__GNUC__)
43 #define ALIGN(x) __attribute((aligned(x)))
44 #elif defined(_MSC_VER)
45 #define ALIGN(x) __declspec(align(x))
46 #else
47 #define ALIGN(x)
48 #endif
49
50 #define ALIGNPTR(p, N) ((uint8_t *)p + N - (size_t)p % N)
51 #define P256_LIMBS (256 / BN_BITS2)
52
53 typedef struct {
54 BN_ULONG X[P256_LIMBS];
55 BN_ULONG Y[P256_LIMBS];
56 BN_ULONG Z[P256_LIMBS];
57 } P256_POINT;
58
59 typedef struct {
60 BN_ULONG X[P256_LIMBS];
61 BN_ULONG Y[P256_LIMBS];
62 } P256_POINT_AFFINE;
63
64 typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
65
66 /* Functions implemented in assembly */
67
68 /* Modular neg: res = -a mod P */
69 void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]);
70 /* Montgomery mul: res = a*b*2^-256 mod P */
71 void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
72 const BN_ULONG a[P256_LIMBS],
73 const BN_ULONG b[P256_LIMBS]);
74 /* Montgomery sqr: res = a*a*2^-256 mod P */
75 void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
76 const BN_ULONG a[P256_LIMBS]);
77 /* Convert a number from Montgomery domain, by multiplying with 1 */
78 void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
79 const BN_ULONG in[P256_LIMBS]);
80 /* Functions that perform constant time access to the precomputed tables */
81 void ecp_nistz256_select_w5(P256_POINT *val, const P256_POINT *in_t, int index);
82 void ecp_nistz256_select_w7(P256_POINT_AFFINE *val,
83 const P256_POINT_AFFINE *in_t, int index);
84
85 /* One converted into the Montgomery domain */
86 static const BN_ULONG ONE[P256_LIMBS] = {
87 TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
88 TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe),
89 };
90
91 /* Precomputed tables for the default generator */
92 #include "p256-x86_64-table.h"
93
94 /* Recode window to a signed digit, see ecp_nistputil.c for details */
booth_recode_w5(unsigned in)95 static unsigned booth_recode_w5(unsigned in) {
96 unsigned s, d;
97
98 s = ~((in >> 5) - 1);
99 d = (1 << 6) - in - 1;
100 d = (d & s) | (in & ~s);
101 d = (d >> 1) + (d & 1);
102
103 return (d << 1) + (s & 1);
104 }
105
booth_recode_w7(unsigned in)106 static unsigned booth_recode_w7(unsigned in) {
107 unsigned s, d;
108
109 s = ~((in >> 7) - 1);
110 d = (1 << 8) - in - 1;
111 d = (d & s) | (in & ~s);
112 d = (d >> 1) + (d & 1);
113
114 return (d << 1) + (s & 1);
115 }
116
copy_conditional(BN_ULONG dst[P256_LIMBS],const BN_ULONG src[P256_LIMBS],BN_ULONG move)117 static void copy_conditional(BN_ULONG dst[P256_LIMBS],
118 const BN_ULONG src[P256_LIMBS], BN_ULONG move) {
119 BN_ULONG mask1 = ((BN_ULONG)0) - move;
120 BN_ULONG mask2 = ~mask1;
121
122 dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
123 dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
124 dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
125 dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
126 if (P256_LIMBS == 8) {
127 dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
128 dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
129 dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
130 dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
131 }
132 }
133
134 void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
135 void ecp_nistz256_point_add(P256_POINT *r, const P256_POINT *a,
136 const P256_POINT *b);
137 void ecp_nistz256_point_add_affine(P256_POINT *r, const P256_POINT *a,
138 const P256_POINT_AFFINE *b);
139
140 /* r = in^-1 mod p */
ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],const BN_ULONG in[P256_LIMBS])141 static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS],
142 const BN_ULONG in[P256_LIMBS]) {
143 /* The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff
144 ffffffff
145 We use FLT and used poly-2 as exponent */
146 BN_ULONG p2[P256_LIMBS];
147 BN_ULONG p4[P256_LIMBS];
148 BN_ULONG p8[P256_LIMBS];
149 BN_ULONG p16[P256_LIMBS];
150 BN_ULONG p32[P256_LIMBS];
151 BN_ULONG res[P256_LIMBS];
152 int i;
153
154 ecp_nistz256_sqr_mont(res, in);
155 ecp_nistz256_mul_mont(p2, res, in); /* 3*p */
156
157 ecp_nistz256_sqr_mont(res, p2);
158 ecp_nistz256_sqr_mont(res, res);
159 ecp_nistz256_mul_mont(p4, res, p2); /* f*p */
160
161 ecp_nistz256_sqr_mont(res, p4);
162 ecp_nistz256_sqr_mont(res, res);
163 ecp_nistz256_sqr_mont(res, res);
164 ecp_nistz256_sqr_mont(res, res);
165 ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */
166
167 ecp_nistz256_sqr_mont(res, p8);
168 for (i = 0; i < 7; i++) {
169 ecp_nistz256_sqr_mont(res, res);
170 }
171 ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */
172
173 ecp_nistz256_sqr_mont(res, p16);
174 for (i = 0; i < 15; i++) {
175 ecp_nistz256_sqr_mont(res, res);
176 }
177 ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */
178
179 ecp_nistz256_sqr_mont(res, p32);
180 for (i = 0; i < 31; i++) {
181 ecp_nistz256_sqr_mont(res, res);
182 }
183 ecp_nistz256_mul_mont(res, res, in);
184
185 for (i = 0; i < 32 * 4; i++) {
186 ecp_nistz256_sqr_mont(res, res);
187 }
188 ecp_nistz256_mul_mont(res, res, p32);
189
190 for (i = 0; i < 32; i++) {
191 ecp_nistz256_sqr_mont(res, res);
192 }
193 ecp_nistz256_mul_mont(res, res, p32);
194
195 for (i = 0; i < 16; i++) {
196 ecp_nistz256_sqr_mont(res, res);
197 }
198 ecp_nistz256_mul_mont(res, res, p16);
199
200 for (i = 0; i < 8; i++) {
201 ecp_nistz256_sqr_mont(res, res);
202 }
203 ecp_nistz256_mul_mont(res, res, p8);
204
205 ecp_nistz256_sqr_mont(res, res);
206 ecp_nistz256_sqr_mont(res, res);
207 ecp_nistz256_sqr_mont(res, res);
208 ecp_nistz256_sqr_mont(res, res);
209 ecp_nistz256_mul_mont(res, res, p4);
210
211 ecp_nistz256_sqr_mont(res, res);
212 ecp_nistz256_sqr_mont(res, res);
213 ecp_nistz256_mul_mont(res, res, p2);
214
215 ecp_nistz256_sqr_mont(res, res);
216 ecp_nistz256_sqr_mont(res, res);
217 ecp_nistz256_mul_mont(res, res, in);
218
219 memcpy(r, res, sizeof(res));
220 }
221
222 /* ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
223 * returns one if it fits. Otherwise it returns zero. */
ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],const BIGNUM * in)224 static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
225 const BIGNUM *in) {
226 if (in->top > P256_LIMBS) {
227 return 0;
228 }
229
230 memset(out, 0, sizeof(BN_ULONG) * P256_LIMBS);
231 memcpy(out, in->d, sizeof(BN_ULONG) * in->top);
232 return 1;
233 }
234
235 /* r = p * p_scalar */
ecp_nistz256_windowed_mul(const EC_GROUP * group,P256_POINT * r,const EC_POINT * p,const BIGNUM * p_scalar,BN_CTX * ctx)236 static int ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r,
237 const EC_POINT *p, const BIGNUM *p_scalar,
238 BN_CTX *ctx) {
239 assert(p != NULL);
240 assert(p_scalar != NULL);
241
242 static const unsigned kWindowSize = 5;
243 static const unsigned kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;
244
245 /* A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should
246 * add no more than 63 bytes of overhead. Thus, |table| should require
247 * ~1599 ((96 * 16) + 63) bytes of stack space. */
248 ALIGN(64) P256_POINT table[16];
249 uint8_t p_str[33];
250
251
252 int ret = 0;
253 BN_CTX *new_ctx = NULL;
254 int ctx_started = 0;
255
256 if (BN_num_bits(p_scalar) > 256 || BN_is_negative(p_scalar)) {
257 if (ctx == NULL) {
258 new_ctx = BN_CTX_new();
259 if (new_ctx == NULL) {
260 OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
261 goto err;
262 }
263 ctx = new_ctx;
264 }
265 BN_CTX_start(ctx);
266 ctx_started = 1;
267 BIGNUM *mod = BN_CTX_get(ctx);
268 if (mod == NULL) {
269 OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
270 goto err;
271 }
272 if (!BN_nnmod(mod, p_scalar, &group->order, ctx)) {
273 OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
274 goto err;
275 }
276 p_scalar = mod;
277 }
278
279 int j;
280 for (j = 0; j < p_scalar->top * BN_BYTES; j += BN_BYTES) {
281 BN_ULONG d = p_scalar->d[j / BN_BYTES];
282
283 p_str[j + 0] = d & 0xff;
284 p_str[j + 1] = (d >> 8) & 0xff;
285 p_str[j + 2] = (d >> 16) & 0xff;
286 p_str[j + 3] = (d >>= 24) & 0xff;
287 if (BN_BYTES == 8) {
288 d >>= 8;
289 p_str[j + 4] = d & 0xff;
290 p_str[j + 5] = (d >> 8) & 0xff;
291 p_str[j + 6] = (d >> 16) & 0xff;
292 p_str[j + 7] = (d >> 24) & 0xff;
293 }
294 }
295
296 for (; j < 33; j++) {
297 p_str[j] = 0;
298 }
299
300 /* table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
301 * not stored. All other values are actually stored with an offset of -1 in
302 * table. */
303 P256_POINT *row = table;
304
305 if (!ecp_nistz256_bignum_to_field_elem(row[1 - 1].X, &p->X) ||
306 !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Y, &p->Y) ||
307 !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Z, &p->Z)) {
308 OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE);
309 goto err;
310 }
311
312 ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]);
313 ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
314 ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]);
315 ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]);
316 ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]);
317 ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]);
318 ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
319 ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
320 ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
321 ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
322 ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]);
323 ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]);
324 ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
325 ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
326 ecp_nistz256_point_add(&row[16 - 1], &row[15 - 1], &row[1 - 1]);
327
328 BN_ULONG tmp[P256_LIMBS];
329 ALIGN(32) P256_POINT h;
330 unsigned index = 255;
331 unsigned wvalue = p_str[(index - 1) / 8];
332 wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
333
334 ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1);
335
336 while (index >= 5) {
337 if (index != 255) {
338 unsigned off = (index - 1) / 8;
339
340 wvalue = p_str[off] | p_str[off + 1] << 8;
341 wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
342
343 wvalue = booth_recode_w5(wvalue);
344
345 ecp_nistz256_select_w5(&h, table, wvalue >> 1);
346
347 ecp_nistz256_neg(tmp, h.Y);
348 copy_conditional(h.Y, tmp, (wvalue & 1));
349
350 ecp_nistz256_point_add(r, r, &h);
351 }
352
353 index -= kWindowSize;
354
355 ecp_nistz256_point_double(r, r);
356 ecp_nistz256_point_double(r, r);
357 ecp_nistz256_point_double(r, r);
358 ecp_nistz256_point_double(r, r);
359 ecp_nistz256_point_double(r, r);
360 }
361
362 /* Final window */
363 wvalue = p_str[0];
364 wvalue = (wvalue << 1) & kMask;
365
366 wvalue = booth_recode_w5(wvalue);
367
368 ecp_nistz256_select_w5(&h, table, wvalue >> 1);
369
370 ecp_nistz256_neg(tmp, h.Y);
371 copy_conditional(h.Y, tmp, wvalue & 1);
372
373 ecp_nistz256_point_add(r, r, &h);
374
375 ret = 1;
376
377 err:
378 if (ctx_started) {
379 BN_CTX_end(ctx);
380 }
381 BN_CTX_free(new_ctx);
382 return ret;
383 }
384
ecp_nistz256_points_mul(const EC_GROUP * group,EC_POINT * r,const BIGNUM * g_scalar,const EC_POINT * p_,const BIGNUM * p_scalar,BN_CTX * ctx)385 static int ecp_nistz256_points_mul(
386 const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
387 const EC_POINT *p_, const BIGNUM *p_scalar, BN_CTX *ctx) {
388 assert((p_ != NULL) == (p_scalar != NULL));
389
390 static const unsigned kWindowSize = 7;
391 static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
392
393 ALIGN(32) union {
394 P256_POINT p;
395 P256_POINT_AFFINE a;
396 } t, p;
397
398 int ret = 0;
399 BN_CTX *new_ctx = NULL;
400 int ctx_started = 0;
401
402 /* Need 256 bits for space for all coordinates. */
403 if (bn_wexpand(&r->X, P256_LIMBS) == NULL ||
404 bn_wexpand(&r->Y, P256_LIMBS) == NULL ||
405 bn_wexpand(&r->Z, P256_LIMBS) == NULL) {
406 OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
407 goto err;
408 }
409 r->X.top = P256_LIMBS;
410 r->Y.top = P256_LIMBS;
411 r->Z.top = P256_LIMBS;
412
413 if (g_scalar != NULL) {
414 if (BN_num_bits(g_scalar) > 256 || BN_is_negative(g_scalar)) {
415 if (ctx == NULL) {
416 new_ctx = BN_CTX_new();
417 if (new_ctx == NULL) {
418 goto err;
419 }
420 ctx = new_ctx;
421 }
422 BN_CTX_start(ctx);
423 ctx_started = 1;
424 BIGNUM *tmp_scalar = BN_CTX_get(ctx);
425 if (tmp_scalar == NULL) {
426 goto err;
427 }
428
429 if (!BN_nnmod(tmp_scalar, g_scalar, &group->order, ctx)) {
430 OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
431 goto err;
432 }
433 g_scalar = tmp_scalar;
434 }
435
436 uint8_t p_str[33] = {0};
437 int i;
438 for (i = 0; i < g_scalar->top * BN_BYTES; i += BN_BYTES) {
439 BN_ULONG d = g_scalar->d[i / BN_BYTES];
440
441 p_str[i + 0] = d & 0xff;
442 p_str[i + 1] = (d >> 8) & 0xff;
443 p_str[i + 2] = (d >> 16) & 0xff;
444 p_str[i + 3] = (d >>= 24) & 0xff;
445 if (BN_BYTES == 8) {
446 d >>= 8;
447 p_str[i + 4] = d & 0xff;
448 p_str[i + 5] = (d >> 8) & 0xff;
449 p_str[i + 6] = (d >> 16) & 0xff;
450 p_str[i + 7] = (d >> 24) & 0xff;
451 }
452 }
453
454 for (; i < (int) sizeof(p_str); i++) {
455 p_str[i] = 0;
456 }
457
458 /* First window */
459 unsigned wvalue = (p_str[0] << 1) & kMask;
460 unsigned index = kWindowSize;
461
462 wvalue = booth_recode_w7(wvalue);
463
464 const PRECOMP256_ROW *const precomputed_table =
465 (const PRECOMP256_ROW *)ecp_nistz256_precomputed;
466 ecp_nistz256_select_w7(&p.a, precomputed_table[0], wvalue >> 1);
467
468 ecp_nistz256_neg(p.p.Z, p.p.Y);
469 copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
470
471 memcpy(p.p.Z, ONE, sizeof(ONE));
472
473 for (i = 1; i < 37; i++) {
474 unsigned off = (index - 1) / 8;
475 wvalue = p_str[off] | p_str[off + 1] << 8;
476 wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
477 index += kWindowSize;
478
479 wvalue = booth_recode_w7(wvalue);
480
481 ecp_nistz256_select_w7(&t.a, precomputed_table[i], wvalue >> 1);
482
483 ecp_nistz256_neg(t.p.Z, t.a.Y);
484 copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
485
486 ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
487 }
488 }
489
490 const int p_is_infinity = g_scalar == NULL;
491 if (p_scalar != NULL) {
492 P256_POINT *out = &t.p;
493 if (p_is_infinity) {
494 out = &p.p;
495 }
496
497 if (!ecp_nistz256_windowed_mul(group, out, p_, p_scalar, ctx)) {
498 goto err;
499 }
500
501 if (!p_is_infinity) {
502 ecp_nistz256_point_add(&p.p, &p.p, out);
503 }
504 }
505
506 memcpy(r->X.d, p.p.X, sizeof(p.p.X));
507 memcpy(r->Y.d, p.p.Y, sizeof(p.p.Y));
508 memcpy(r->Z.d, p.p.Z, sizeof(p.p.Z));
509
510 /* Not constant-time, but we're only operating on the public output. */
511 bn_correct_top(&r->X);
512 bn_correct_top(&r->Y);
513 bn_correct_top(&r->Z);
514 r->Z_is_one = BN_is_one(&r->Z);
515
516 ret = 1;
517
518 err:
519 if (ctx_started) {
520 BN_CTX_end(ctx);
521 }
522 BN_CTX_free(new_ctx);
523 return ret;
524 }
525
ecp_nistz256_get_affine(const EC_GROUP * group,const EC_POINT * point,BIGNUM * x,BIGNUM * y,BN_CTX * ctx)526 static int ecp_nistz256_get_affine(const EC_GROUP *group, const EC_POINT *point,
527 BIGNUM *x, BIGNUM *y, BN_CTX *ctx) {
528 BN_ULONG z_inv2[P256_LIMBS];
529 BN_ULONG z_inv3[P256_LIMBS];
530 BN_ULONG x_aff[P256_LIMBS];
531 BN_ULONG y_aff[P256_LIMBS];
532 BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
533
534 if (EC_POINT_is_at_infinity(group, point)) {
535 OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
536 return 0;
537 }
538
539 if (!ecp_nistz256_bignum_to_field_elem(point_x, &point->X) ||
540 !ecp_nistz256_bignum_to_field_elem(point_y, &point->Y) ||
541 !ecp_nistz256_bignum_to_field_elem(point_z, &point->Z)) {
542 OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE);
543 return 0;
544 }
545
546 ecp_nistz256_mod_inverse(z_inv3, point_z);
547 ecp_nistz256_sqr_mont(z_inv2, z_inv3);
548 ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
549
550 if (x != NULL) {
551 if (bn_wexpand(x, P256_LIMBS) == NULL) {
552 OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
553 return 0;
554 }
555 x->top = P256_LIMBS;
556 ecp_nistz256_from_mont(x->d, x_aff);
557 bn_correct_top(x);
558 }
559
560 if (y != NULL) {
561 ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
562 ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
563 if (bn_wexpand(y, P256_LIMBS) == NULL) {
564 OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
565 return 0;
566 }
567 y->top = P256_LIMBS;
568 ecp_nistz256_from_mont(y->d, y_aff);
569 bn_correct_top(y);
570 }
571
572 return 1;
573 }
574
EC_GFp_nistz256_method(void)575 const EC_METHOD *EC_GFp_nistz256_method(void) {
576 static const EC_METHOD ret = {
577 ec_GFp_mont_group_init,
578 ec_GFp_mont_group_finish,
579 ec_GFp_mont_group_clear_finish,
580 ec_GFp_mont_group_copy,
581 ec_GFp_mont_group_set_curve,
582 ecp_nistz256_get_affine,
583 ecp_nistz256_points_mul,
584 0 /* check_pub_key_order */,
585 ec_GFp_mont_field_mul,
586 ec_GFp_mont_field_sqr,
587 ec_GFp_mont_field_encode,
588 ec_GFp_mont_field_decode,
589 ec_GFp_mont_field_set_to_one,
590 };
591
592 return &ret;
593 }
594
595 #endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
596 !defined(OPENSSL_SMALL) */
597