1 /*
2 * EAP peer state machines (RFC 4137)
3 * Copyright (c) 2004-2014, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 *
8 * This file implements the Peer State Machine as defined in RFC 4137. The used
9 * states and state transitions match mostly with the RFC. However, there are
10 * couple of additional transitions for working around small issues noticed
11 * during testing. These exceptions are explained in comments within the
12 * functions in this file. The method functions, m.func(), are similar to the
13 * ones used in RFC 4137, but some small changes have used here to optimize
14 * operations and to add functionality needed for fast re-authentication
15 * (session resumption).
16 */
17
18 #include "includes.h"
19
20 #include "common.h"
21 #include "pcsc_funcs.h"
22 #include "state_machine.h"
23 #include "ext_password.h"
24 #include "crypto/crypto.h"
25 #include "crypto/tls.h"
26 #include "crypto/sha256.h"
27 #include "common/wpa_ctrl.h"
28 #include "eap_common/eap_wsc_common.h"
29 #include "eap_i.h"
30 #include "eap_config.h"
31
32 #define STATE_MACHINE_DATA struct eap_sm
33 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
34
35 #define EAP_MAX_AUTH_ROUNDS 50
36 #define EAP_CLIENT_TIMEOUT_DEFAULT 60
37
38
39 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
40 EapType method);
41 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
42 static void eap_sm_processIdentity(struct eap_sm *sm,
43 const struct wpabuf *req);
44 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
45 static struct wpabuf * eap_sm_buildNotify(int id);
46 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
47 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
48 static const char * eap_sm_method_state_txt(EapMethodState state);
49 static const char * eap_sm_decision_txt(EapDecision decision);
50 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
51 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
52 const char *msg, size_t msglen);
53
54
55
eapol_get_bool(struct eap_sm * sm,enum eapol_bool_var var)56 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
57 {
58 return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
59 }
60
61
eapol_set_bool(struct eap_sm * sm,enum eapol_bool_var var,Boolean value)62 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
63 Boolean value)
64 {
65 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
66 }
67
68
eapol_get_int(struct eap_sm * sm,enum eapol_int_var var)69 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
70 {
71 return sm->eapol_cb->get_int(sm->eapol_ctx, var);
72 }
73
74
eapol_set_int(struct eap_sm * sm,enum eapol_int_var var,unsigned int value)75 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
76 unsigned int value)
77 {
78 sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
79 }
80
81
eapol_get_eapReqData(struct eap_sm * sm)82 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
83 {
84 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
85 }
86
87
eap_notify_status(struct eap_sm * sm,const char * status,const char * parameter)88 static void eap_notify_status(struct eap_sm *sm, const char *status,
89 const char *parameter)
90 {
91 wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
92 status, parameter);
93 if (sm->eapol_cb->notify_status)
94 sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
95 }
96
97
eap_sm_free_key(struct eap_sm * sm)98 static void eap_sm_free_key(struct eap_sm *sm)
99 {
100 if (sm->eapKeyData) {
101 bin_clear_free(sm->eapKeyData, sm->eapKeyDataLen);
102 sm->eapKeyData = NULL;
103 }
104 }
105
106
eap_deinit_prev_method(struct eap_sm * sm,const char * txt)107 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
108 {
109 ext_password_free(sm->ext_pw_buf);
110 sm->ext_pw_buf = NULL;
111
112 if (sm->m == NULL || sm->eap_method_priv == NULL)
113 return;
114
115 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
116 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
117 sm->m->deinit(sm, sm->eap_method_priv);
118 sm->eap_method_priv = NULL;
119 sm->m = NULL;
120 }
121
122
123 /**
124 * eap_allowed_method - Check whether EAP method is allowed
125 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
126 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
127 * @method: EAP type
128 * Returns: 1 = allowed EAP method, 0 = not allowed
129 */
eap_allowed_method(struct eap_sm * sm,int vendor,u32 method)130 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
131 {
132 struct eap_peer_config *config = eap_get_config(sm);
133 int i;
134 struct eap_method_type *m;
135
136 if (config == NULL || config->eap_methods == NULL)
137 return 1;
138
139 m = config->eap_methods;
140 for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
141 m[i].method != EAP_TYPE_NONE; i++) {
142 if (m[i].vendor == vendor && m[i].method == method)
143 return 1;
144 }
145 return 0;
146 }
147
148
149 /*
150 * This state initializes state machine variables when the machine is
151 * activated (portEnabled = TRUE). This is also used when re-starting
152 * authentication (eapRestart == TRUE).
153 */
SM_STATE(EAP,INITIALIZE)154 SM_STATE(EAP, INITIALIZE)
155 {
156 SM_ENTRY(EAP, INITIALIZE);
157 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
158 sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
159 !sm->prev_failure &&
160 sm->last_config == eap_get_config(sm)) {
161 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
162 "fast reauthentication");
163 sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
164 } else {
165 sm->last_config = eap_get_config(sm);
166 eap_deinit_prev_method(sm, "INITIALIZE");
167 }
168 sm->selectedMethod = EAP_TYPE_NONE;
169 sm->methodState = METHOD_NONE;
170 sm->allowNotifications = TRUE;
171 sm->decision = DECISION_FAIL;
172 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
173 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
174 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
175 eapol_set_bool(sm, EAPOL_eapFail, FALSE);
176 eap_sm_free_key(sm);
177 os_free(sm->eapSessionId);
178 sm->eapSessionId = NULL;
179 sm->eapKeyAvailable = FALSE;
180 eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
181 sm->lastId = -1; /* new session - make sure this does not match with
182 * the first EAP-Packet */
183 /*
184 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
185 * seemed to be able to trigger cases where both were set and if EAPOL
186 * state machine uses eapNoResp first, it may end up not sending a real
187 * reply correctly. This occurred when the workaround in FAIL state set
188 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
189 * something else(?)
190 */
191 eapol_set_bool(sm, EAPOL_eapResp, FALSE);
192 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
193 /*
194 * RFC 4137 does not reset ignore here, but since it is possible for
195 * some method code paths to end up not setting ignore=FALSE, clear the
196 * value here to avoid issues if a previous authentication attempt
197 * failed with ignore=TRUE being left behind in the last
198 * m.check(eapReqData) operation.
199 */
200 sm->ignore = 0;
201 sm->num_rounds = 0;
202 sm->prev_failure = 0;
203 sm->expected_failure = 0;
204 sm->reauthInit = FALSE;
205 sm->erp_seq = (u32) -1;
206 }
207
208
209 /*
210 * This state is reached whenever service from the lower layer is interrupted
211 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
212 * occurs when the port becomes enabled.
213 */
SM_STATE(EAP,DISABLED)214 SM_STATE(EAP, DISABLED)
215 {
216 SM_ENTRY(EAP, DISABLED);
217 sm->num_rounds = 0;
218 /*
219 * RFC 4137 does not describe clearing of idleWhile here, but doing so
220 * allows the timer tick to be stopped more quickly when EAP is not in
221 * use.
222 */
223 eapol_set_int(sm, EAPOL_idleWhile, 0);
224 }
225
226
227 /*
228 * The state machine spends most of its time here, waiting for something to
229 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
230 * SEND_RESPONSE states.
231 */
SM_STATE(EAP,IDLE)232 SM_STATE(EAP, IDLE)
233 {
234 SM_ENTRY(EAP, IDLE);
235 }
236
237
238 /*
239 * This state is entered when an EAP packet is received (eapReq == TRUE) to
240 * parse the packet header.
241 */
SM_STATE(EAP,RECEIVED)242 SM_STATE(EAP, RECEIVED)
243 {
244 const struct wpabuf *eapReqData;
245
246 SM_ENTRY(EAP, RECEIVED);
247 eapReqData = eapol_get_eapReqData(sm);
248 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
249 eap_sm_parseEapReq(sm, eapReqData);
250 sm->num_rounds++;
251 }
252
253
254 /*
255 * This state is entered when a request for a new type comes in. Either the
256 * correct method is started, or a Nak response is built.
257 */
SM_STATE(EAP,GET_METHOD)258 SM_STATE(EAP, GET_METHOD)
259 {
260 int reinit;
261 EapType method;
262 const struct eap_method *eap_method;
263
264 SM_ENTRY(EAP, GET_METHOD);
265
266 if (sm->reqMethod == EAP_TYPE_EXPANDED)
267 method = sm->reqVendorMethod;
268 else
269 method = sm->reqMethod;
270
271 eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
272
273 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
274 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
275 sm->reqVendor, method);
276 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
277 "vendor=%u method=%u -> NAK",
278 sm->reqVendor, method);
279 eap_notify_status(sm, "refuse proposed method",
280 eap_method ? eap_method->name : "unknown");
281 goto nak;
282 }
283
284 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
285 "vendor=%u method=%u", sm->reqVendor, method);
286
287 eap_notify_status(sm, "accept proposed method",
288 eap_method ? eap_method->name : "unknown");
289 /*
290 * RFC 4137 does not define specific operation for fast
291 * re-authentication (session resumption). The design here is to allow
292 * the previously used method data to be maintained for
293 * re-authentication if the method support session resumption.
294 * Otherwise, the previously used method data is freed and a new method
295 * is allocated here.
296 */
297 if (sm->fast_reauth &&
298 sm->m && sm->m->vendor == sm->reqVendor &&
299 sm->m->method == method &&
300 sm->m->has_reauth_data &&
301 sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
302 wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
303 " for fast re-authentication");
304 reinit = 1;
305 } else {
306 eap_deinit_prev_method(sm, "GET_METHOD");
307 reinit = 0;
308 }
309
310 sm->selectedMethod = sm->reqMethod;
311 if (sm->m == NULL)
312 sm->m = eap_method;
313 if (!sm->m) {
314 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
315 "vendor %d method %d",
316 sm->reqVendor, method);
317 goto nak;
318 }
319
320 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
321
322 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
323 "vendor %u method %u (%s)",
324 sm->reqVendor, method, sm->m->name);
325 if (reinit) {
326 sm->eap_method_priv = sm->m->init_for_reauth(
327 sm, sm->eap_method_priv);
328 } else {
329 sm->waiting_ext_cert_check = 0;
330 sm->ext_cert_check = 0;
331 sm->eap_method_priv = sm->m->init(sm);
332 }
333
334 if (sm->eap_method_priv == NULL) {
335 struct eap_peer_config *config = eap_get_config(sm);
336 wpa_msg(sm->msg_ctx, MSG_INFO,
337 "EAP: Failed to initialize EAP method: vendor %u "
338 "method %u (%s)",
339 sm->reqVendor, method, sm->m->name);
340 sm->m = NULL;
341 sm->methodState = METHOD_NONE;
342 sm->selectedMethod = EAP_TYPE_NONE;
343 if (sm->reqMethod == EAP_TYPE_TLS && config &&
344 (config->pending_req_pin ||
345 config->pending_req_passphrase)) {
346 /*
347 * Return without generating Nak in order to allow
348 * entering of PIN code or passphrase to retry the
349 * current EAP packet.
350 */
351 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
352 "request - skip Nak");
353 return;
354 }
355
356 goto nak;
357 }
358
359 sm->methodState = METHOD_INIT;
360 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
361 "EAP vendor %u method %u (%s) selected",
362 sm->reqVendor, method, sm->m->name);
363 return;
364
365 nak:
366 wpabuf_free(sm->eapRespData);
367 sm->eapRespData = NULL;
368 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
369 }
370
371
372 #ifdef CONFIG_ERP
373
eap_home_realm(struct eap_sm * sm)374 static char * eap_home_realm(struct eap_sm *sm)
375 {
376 struct eap_peer_config *config = eap_get_config(sm);
377 char *realm;
378 size_t i, realm_len;
379
380 if (!config)
381 return NULL;
382
383 if (config->identity) {
384 for (i = 0; i < config->identity_len; i++) {
385 if (config->identity[i] == '@')
386 break;
387 }
388 if (i < config->identity_len) {
389 realm_len = config->identity_len - i - 1;
390 realm = os_malloc(realm_len + 1);
391 if (realm == NULL)
392 return NULL;
393 os_memcpy(realm, &config->identity[i + 1], realm_len);
394 realm[realm_len] = '\0';
395 return realm;
396 }
397 }
398
399 if (config->anonymous_identity) {
400 for (i = 0; i < config->anonymous_identity_len; i++) {
401 if (config->anonymous_identity[i] == '@')
402 break;
403 }
404 if (i < config->anonymous_identity_len) {
405 realm_len = config->anonymous_identity_len - i - 1;
406 realm = os_malloc(realm_len + 1);
407 if (realm == NULL)
408 return NULL;
409 os_memcpy(realm, &config->anonymous_identity[i + 1],
410 realm_len);
411 realm[realm_len] = '\0';
412 return realm;
413 }
414 }
415
416 return os_strdup("");
417 }
418
419
420 static struct eap_erp_key *
eap_erp_get_key(struct eap_sm * sm,const char * realm)421 eap_erp_get_key(struct eap_sm *sm, const char *realm)
422 {
423 struct eap_erp_key *erp;
424
425 dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
426 char *pos;
427
428 pos = os_strchr(erp->keyname_nai, '@');
429 if (!pos)
430 continue;
431 pos++;
432 if (os_strcmp(pos, realm) == 0)
433 return erp;
434 }
435
436 return NULL;
437 }
438
439
440 static struct eap_erp_key *
eap_erp_get_key_nai(struct eap_sm * sm,const char * nai)441 eap_erp_get_key_nai(struct eap_sm *sm, const char *nai)
442 {
443 struct eap_erp_key *erp;
444
445 dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
446 if (os_strcmp(erp->keyname_nai, nai) == 0)
447 return erp;
448 }
449
450 return NULL;
451 }
452
453
eap_peer_erp_free_key(struct eap_erp_key * erp)454 static void eap_peer_erp_free_key(struct eap_erp_key *erp)
455 {
456 dl_list_del(&erp->list);
457 bin_clear_free(erp, sizeof(*erp));
458 }
459
460
eap_erp_remove_keys_realm(struct eap_sm * sm,const char * realm)461 static void eap_erp_remove_keys_realm(struct eap_sm *sm, const char *realm)
462 {
463 struct eap_erp_key *erp;
464
465 while ((erp = eap_erp_get_key(sm, realm)) != NULL) {
466 wpa_printf(MSG_DEBUG, "EAP: Delete old ERP key %s",
467 erp->keyname_nai);
468 eap_peer_erp_free_key(erp);
469 }
470 }
471
472 #endif /* CONFIG_ERP */
473
474
eap_peer_erp_free_keys(struct eap_sm * sm)475 void eap_peer_erp_free_keys(struct eap_sm *sm)
476 {
477 #ifdef CONFIG_ERP
478 struct eap_erp_key *erp, *tmp;
479
480 dl_list_for_each_safe(erp, tmp, &sm->erp_keys, struct eap_erp_key, list)
481 eap_peer_erp_free_key(erp);
482 #endif /* CONFIG_ERP */
483 }
484
485
eap_peer_erp_init(struct eap_sm * sm)486 static void eap_peer_erp_init(struct eap_sm *sm)
487 {
488 #ifdef CONFIG_ERP
489 u8 *emsk = NULL;
490 size_t emsk_len = 0;
491 u8 EMSKname[EAP_EMSK_NAME_LEN];
492 u8 len[2];
493 char *realm;
494 size_t realm_len, nai_buf_len;
495 struct eap_erp_key *erp = NULL;
496 int pos;
497
498 realm = eap_home_realm(sm);
499 if (!realm)
500 return;
501 realm_len = os_strlen(realm);
502 wpa_printf(MSG_DEBUG, "EAP: Realm for ERP keyName-NAI: %s", realm);
503 eap_erp_remove_keys_realm(sm, realm);
504
505 nai_buf_len = 2 * EAP_EMSK_NAME_LEN + 1 + realm_len;
506 if (nai_buf_len > 253) {
507 /*
508 * keyName-NAI has a maximum length of 253 octet to fit in
509 * RADIUS attributes.
510 */
511 wpa_printf(MSG_DEBUG,
512 "EAP: Too long realm for ERP keyName-NAI maximum length");
513 goto fail;
514 }
515 nai_buf_len++; /* null termination */
516 erp = os_zalloc(sizeof(*erp) + nai_buf_len);
517 if (erp == NULL)
518 goto fail;
519
520 emsk = sm->m->get_emsk(sm, sm->eap_method_priv, &emsk_len);
521 if (!emsk || emsk_len == 0 || emsk_len > ERP_MAX_KEY_LEN) {
522 wpa_printf(MSG_DEBUG,
523 "EAP: No suitable EMSK available for ERP");
524 goto fail;
525 }
526
527 wpa_hexdump_key(MSG_DEBUG, "EAP: EMSK", emsk, emsk_len);
528
529 WPA_PUT_BE16(len, 8);
530 if (hmac_sha256_kdf(sm->eapSessionId, sm->eapSessionIdLen, "EMSK",
531 len, sizeof(len),
532 EMSKname, EAP_EMSK_NAME_LEN) < 0) {
533 wpa_printf(MSG_DEBUG, "EAP: Could not derive EMSKname");
534 goto fail;
535 }
536 wpa_hexdump(MSG_DEBUG, "EAP: EMSKname", EMSKname, EAP_EMSK_NAME_LEN);
537
538 pos = wpa_snprintf_hex(erp->keyname_nai, nai_buf_len,
539 EMSKname, EAP_EMSK_NAME_LEN);
540 erp->keyname_nai[pos] = '@';
541 os_memcpy(&erp->keyname_nai[pos + 1], realm, realm_len);
542
543 WPA_PUT_BE16(len, emsk_len);
544 if (hmac_sha256_kdf(emsk, emsk_len,
545 "EAP Re-authentication Root Key@ietf.org",
546 len, sizeof(len), erp->rRK, emsk_len) < 0) {
547 wpa_printf(MSG_DEBUG, "EAP: Could not derive rRK for ERP");
548 goto fail;
549 }
550 erp->rRK_len = emsk_len;
551 wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rRK", erp->rRK, erp->rRK_len);
552
553 if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
554 "EAP Re-authentication Integrity Key@ietf.org",
555 len, sizeof(len), erp->rIK, erp->rRK_len) < 0) {
556 wpa_printf(MSG_DEBUG, "EAP: Could not derive rIK for ERP");
557 goto fail;
558 }
559 erp->rIK_len = erp->rRK_len;
560 wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rIK", erp->rIK, erp->rIK_len);
561
562 wpa_printf(MSG_DEBUG, "EAP: Stored ERP keys %s", erp->keyname_nai);
563 dl_list_add(&sm->erp_keys, &erp->list);
564 erp = NULL;
565 fail:
566 bin_clear_free(emsk, emsk_len);
567 bin_clear_free(erp, sizeof(*erp));
568 os_free(realm);
569 #endif /* CONFIG_ERP */
570 }
571
572
573 #ifdef CONFIG_ERP
eap_peer_erp_reauth_start(struct eap_sm * sm,const struct eap_hdr * hdr,size_t len)574 static int eap_peer_erp_reauth_start(struct eap_sm *sm,
575 const struct eap_hdr *hdr, size_t len)
576 {
577 char *realm;
578 struct eap_erp_key *erp;
579 struct wpabuf *msg;
580 u8 hash[SHA256_MAC_LEN];
581
582 realm = eap_home_realm(sm);
583 if (!realm)
584 return -1;
585
586 erp = eap_erp_get_key(sm, realm);
587 os_free(realm);
588 realm = NULL;
589 if (!erp)
590 return -1;
591
592 if (erp->next_seq >= 65536)
593 return -1; /* SEQ has range of 0..65535 */
594
595 /* TODO: check rRK lifetime expiration */
596
597 wpa_printf(MSG_DEBUG, "EAP: Valid ERP key found %s (SEQ=%u)",
598 erp->keyname_nai, erp->next_seq);
599
600 msg = eap_msg_alloc(EAP_VENDOR_IETF, (EapType) EAP_ERP_TYPE_REAUTH,
601 1 + 2 + 2 + os_strlen(erp->keyname_nai) + 1 + 16,
602 EAP_CODE_INITIATE, hdr->identifier);
603 if (msg == NULL)
604 return -1;
605
606 wpabuf_put_u8(msg, 0x20); /* Flags: R=0 B=0 L=1 */
607 wpabuf_put_be16(msg, erp->next_seq);
608
609 wpabuf_put_u8(msg, EAP_ERP_TLV_KEYNAME_NAI);
610 wpabuf_put_u8(msg, os_strlen(erp->keyname_nai));
611 wpabuf_put_str(msg, erp->keyname_nai);
612
613 wpabuf_put_u8(msg, EAP_ERP_CS_HMAC_SHA256_128); /* Cryptosuite */
614
615 if (hmac_sha256(erp->rIK, erp->rIK_len,
616 wpabuf_head(msg), wpabuf_len(msg), hash) < 0) {
617 wpabuf_free(msg);
618 return -1;
619 }
620 wpabuf_put_data(msg, hash, 16);
621
622 wpa_printf(MSG_DEBUG, "EAP: Sending EAP-Initiate/Re-auth");
623 sm->erp_seq = erp->next_seq;
624 erp->next_seq++;
625 wpabuf_free(sm->eapRespData);
626 sm->eapRespData = msg;
627 sm->reauthInit = TRUE;
628 return 0;
629 }
630 #endif /* CONFIG_ERP */
631
632
633 /*
634 * The method processing happens here. The request from the authenticator is
635 * processed, and an appropriate response packet is built.
636 */
SM_STATE(EAP,METHOD)637 SM_STATE(EAP, METHOD)
638 {
639 struct wpabuf *eapReqData;
640 struct eap_method_ret ret;
641 int min_len = 1;
642
643 SM_ENTRY(EAP, METHOD);
644 if (sm->m == NULL) {
645 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
646 return;
647 }
648
649 eapReqData = eapol_get_eapReqData(sm);
650 if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
651 min_len = 0; /* LEAP uses EAP-Success without payload */
652 if (!eap_hdr_len_valid(eapReqData, min_len))
653 return;
654
655 /*
656 * Get ignore, methodState, decision, allowNotifications, and
657 * eapRespData. RFC 4137 uses three separate method procedure (check,
658 * process, and buildResp) in this state. These have been combined into
659 * a single function call to m->process() in order to optimize EAP
660 * method implementation interface a bit. These procedures are only
661 * used from within this METHOD state, so there is no need to keep
662 * these as separate C functions.
663 *
664 * The RFC 4137 procedures return values as follows:
665 * ignore = m.check(eapReqData)
666 * (methodState, decision, allowNotifications) = m.process(eapReqData)
667 * eapRespData = m.buildResp(reqId)
668 */
669 os_memset(&ret, 0, sizeof(ret));
670 ret.ignore = sm->ignore;
671 ret.methodState = sm->methodState;
672 ret.decision = sm->decision;
673 ret.allowNotifications = sm->allowNotifications;
674 wpabuf_free(sm->eapRespData);
675 sm->eapRespData = NULL;
676 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
677 eapReqData);
678 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
679 "methodState=%s decision=%s eapRespData=%p",
680 ret.ignore ? "TRUE" : "FALSE",
681 eap_sm_method_state_txt(ret.methodState),
682 eap_sm_decision_txt(ret.decision),
683 sm->eapRespData);
684
685 sm->ignore = ret.ignore;
686 if (sm->ignore)
687 return;
688 sm->methodState = ret.methodState;
689 sm->decision = ret.decision;
690 sm->allowNotifications = ret.allowNotifications;
691
692 if (sm->m->isKeyAvailable && sm->m->getKey &&
693 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
694 struct eap_peer_config *config = eap_get_config(sm);
695
696 eap_sm_free_key(sm);
697 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
698 &sm->eapKeyDataLen);
699 os_free(sm->eapSessionId);
700 sm->eapSessionId = NULL;
701 if (sm->m->getSessionId) {
702 sm->eapSessionId = sm->m->getSessionId(
703 sm, sm->eap_method_priv,
704 &sm->eapSessionIdLen);
705 wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
706 sm->eapSessionId, sm->eapSessionIdLen);
707 }
708 if (config->erp && sm->m->get_emsk && sm->eapSessionId)
709 eap_peer_erp_init(sm);
710 }
711 }
712
713
714 /*
715 * This state signals the lower layer that a response packet is ready to be
716 * sent.
717 */
SM_STATE(EAP,SEND_RESPONSE)718 SM_STATE(EAP, SEND_RESPONSE)
719 {
720 SM_ENTRY(EAP, SEND_RESPONSE);
721 wpabuf_free(sm->lastRespData);
722 if (sm->eapRespData) {
723 if (sm->workaround)
724 os_memcpy(sm->last_sha1, sm->req_sha1, 20);
725 sm->lastId = sm->reqId;
726 sm->lastRespData = wpabuf_dup(sm->eapRespData);
727 eapol_set_bool(sm, EAPOL_eapResp, TRUE);
728 } else {
729 wpa_printf(MSG_DEBUG, "EAP: No eapRespData available");
730 sm->lastRespData = NULL;
731 }
732 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
733 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
734 sm->reauthInit = FALSE;
735 }
736
737
738 /*
739 * This state signals the lower layer that the request was discarded, and no
740 * response packet will be sent at this time.
741 */
SM_STATE(EAP,DISCARD)742 SM_STATE(EAP, DISCARD)
743 {
744 SM_ENTRY(EAP, DISCARD);
745 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
746 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
747 }
748
749
750 /*
751 * Handles requests for Identity method and builds a response.
752 */
SM_STATE(EAP,IDENTITY)753 SM_STATE(EAP, IDENTITY)
754 {
755 const struct wpabuf *eapReqData;
756
757 SM_ENTRY(EAP, IDENTITY);
758 eapReqData = eapol_get_eapReqData(sm);
759 if (!eap_hdr_len_valid(eapReqData, 1))
760 return;
761 eap_sm_processIdentity(sm, eapReqData);
762 wpabuf_free(sm->eapRespData);
763 sm->eapRespData = NULL;
764 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
765 }
766
767
768 /*
769 * Handles requests for Notification method and builds a response.
770 */
SM_STATE(EAP,NOTIFICATION)771 SM_STATE(EAP, NOTIFICATION)
772 {
773 const struct wpabuf *eapReqData;
774
775 SM_ENTRY(EAP, NOTIFICATION);
776 eapReqData = eapol_get_eapReqData(sm);
777 if (!eap_hdr_len_valid(eapReqData, 1))
778 return;
779 eap_sm_processNotify(sm, eapReqData);
780 wpabuf_free(sm->eapRespData);
781 sm->eapRespData = NULL;
782 sm->eapRespData = eap_sm_buildNotify(sm->reqId);
783 }
784
785
786 /*
787 * This state retransmits the previous response packet.
788 */
SM_STATE(EAP,RETRANSMIT)789 SM_STATE(EAP, RETRANSMIT)
790 {
791 SM_ENTRY(EAP, RETRANSMIT);
792 wpabuf_free(sm->eapRespData);
793 if (sm->lastRespData)
794 sm->eapRespData = wpabuf_dup(sm->lastRespData);
795 else
796 sm->eapRespData = NULL;
797 }
798
799
800 /*
801 * This state is entered in case of a successful completion of authentication
802 * and state machine waits here until port is disabled or EAP authentication is
803 * restarted.
804 */
SM_STATE(EAP,SUCCESS)805 SM_STATE(EAP, SUCCESS)
806 {
807 SM_ENTRY(EAP, SUCCESS);
808 if (sm->eapKeyData != NULL)
809 sm->eapKeyAvailable = TRUE;
810 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
811
812 /*
813 * RFC 4137 does not clear eapReq here, but this seems to be required
814 * to avoid processing the same request twice when state machine is
815 * initialized.
816 */
817 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
818
819 /*
820 * RFC 4137 does not set eapNoResp here, but this seems to be required
821 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
822 * addition, either eapResp or eapNoResp is required to be set after
823 * processing the received EAP frame.
824 */
825 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
826
827 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
828 "EAP authentication completed successfully");
829 }
830
831
832 /*
833 * This state is entered in case of a failure and state machine waits here
834 * until port is disabled or EAP authentication is restarted.
835 */
SM_STATE(EAP,FAILURE)836 SM_STATE(EAP, FAILURE)
837 {
838 SM_ENTRY(EAP, FAILURE);
839 eapol_set_bool(sm, EAPOL_eapFail, TRUE);
840
841 /*
842 * RFC 4137 does not clear eapReq here, but this seems to be required
843 * to avoid processing the same request twice when state machine is
844 * initialized.
845 */
846 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
847
848 /*
849 * RFC 4137 does not set eapNoResp here. However, either eapResp or
850 * eapNoResp is required to be set after processing the received EAP
851 * frame.
852 */
853 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
854
855 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
856 "EAP authentication failed");
857
858 sm->prev_failure = 1;
859 }
860
861
eap_success_workaround(struct eap_sm * sm,int reqId,int lastId)862 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
863 {
864 /*
865 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
866 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
867 * RFC 4137 require that reqId == lastId. In addition, it looks like
868 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
869 *
870 * Accept this kind of Id if EAP workarounds are enabled. These are
871 * unauthenticated plaintext messages, so this should have minimal
872 * security implications (bit easier to fake EAP-Success/Failure).
873 */
874 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
875 reqId == ((lastId + 2) & 0xff))) {
876 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
877 "identifier field in EAP Success: "
878 "reqId=%d lastId=%d (these are supposed to be "
879 "same)", reqId, lastId);
880 return 1;
881 }
882 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
883 "lastId=%d", reqId, lastId);
884 return 0;
885 }
886
887
888 /*
889 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
890 */
891
eap_peer_sm_step_idle(struct eap_sm * sm)892 static void eap_peer_sm_step_idle(struct eap_sm *sm)
893 {
894 /*
895 * The first three transitions are from RFC 4137. The last two are
896 * local additions to handle special cases with LEAP and PEAP server
897 * not sending EAP-Success in some cases.
898 */
899 if (eapol_get_bool(sm, EAPOL_eapReq))
900 SM_ENTER(EAP, RECEIVED);
901 else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
902 sm->decision != DECISION_FAIL) ||
903 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
904 sm->decision == DECISION_UNCOND_SUCC))
905 SM_ENTER(EAP, SUCCESS);
906 else if (eapol_get_bool(sm, EAPOL_altReject) ||
907 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
908 sm->decision != DECISION_UNCOND_SUCC) ||
909 (eapol_get_bool(sm, EAPOL_altAccept) &&
910 sm->methodState != METHOD_CONT &&
911 sm->decision == DECISION_FAIL))
912 SM_ENTER(EAP, FAILURE);
913 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
914 sm->leap_done && sm->decision != DECISION_FAIL &&
915 sm->methodState == METHOD_DONE)
916 SM_ENTER(EAP, SUCCESS);
917 else if (sm->selectedMethod == EAP_TYPE_PEAP &&
918 sm->peap_done && sm->decision != DECISION_FAIL &&
919 sm->methodState == METHOD_DONE)
920 SM_ENTER(EAP, SUCCESS);
921 }
922
923
eap_peer_req_is_duplicate(struct eap_sm * sm)924 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
925 {
926 int duplicate;
927
928 duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
929 if (sm->workaround && duplicate &&
930 os_memcmp(sm->req_sha1, sm->last_sha1, 20) != 0) {
931 /*
932 * RFC 4137 uses (reqId == lastId) as the only verification for
933 * duplicate EAP requests. However, this misses cases where the
934 * AS is incorrectly using the same id again; and
935 * unfortunately, such implementations exist. Use SHA1 hash as
936 * an extra verification for the packets being duplicate to
937 * workaround these issues.
938 */
939 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
940 "EAP packets were not identical");
941 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
942 "duplicate packet");
943 duplicate = 0;
944 }
945
946 return duplicate;
947 }
948
949
eap_peer_sm_allow_canned(struct eap_sm * sm)950 static int eap_peer_sm_allow_canned(struct eap_sm *sm)
951 {
952 struct eap_peer_config *config = eap_get_config(sm);
953
954 return config && config->phase1 &&
955 os_strstr(config->phase1, "allow_canned_success=1");
956 }
957
958
eap_peer_sm_step_received(struct eap_sm * sm)959 static void eap_peer_sm_step_received(struct eap_sm *sm)
960 {
961 int duplicate = eap_peer_req_is_duplicate(sm);
962
963 /*
964 * Two special cases below for LEAP are local additions to work around
965 * odd LEAP behavior (EAP-Success in the middle of authentication and
966 * then swapped roles). Other transitions are based on RFC 4137.
967 */
968 if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
969 (sm->reqId == sm->lastId ||
970 eap_success_workaround(sm, sm->reqId, sm->lastId)))
971 SM_ENTER(EAP, SUCCESS);
972 else if (sm->workaround && sm->lastId == -1 && sm->rxSuccess &&
973 !sm->rxFailure && !sm->rxReq && eap_peer_sm_allow_canned(sm))
974 SM_ENTER(EAP, SUCCESS); /* EAP-Success prior any EAP method */
975 else if (sm->workaround && sm->lastId == -1 && sm->rxFailure &&
976 !sm->rxReq && sm->methodState != METHOD_CONT &&
977 eap_peer_sm_allow_canned(sm))
978 SM_ENTER(EAP, FAILURE); /* EAP-Failure prior any EAP method */
979 else if (sm->workaround && sm->rxSuccess && !sm->rxFailure &&
980 !sm->rxReq && sm->methodState != METHOD_CONT &&
981 eap_peer_sm_allow_canned(sm))
982 SM_ENTER(EAP, SUCCESS); /* EAP-Success after Identity */
983 else if (sm->methodState != METHOD_CONT &&
984 ((sm->rxFailure &&
985 sm->decision != DECISION_UNCOND_SUCC) ||
986 (sm->rxSuccess && sm->decision == DECISION_FAIL &&
987 (sm->selectedMethod != EAP_TYPE_LEAP ||
988 sm->methodState != METHOD_MAY_CONT))) &&
989 (sm->reqId == sm->lastId ||
990 eap_success_workaround(sm, sm->reqId, sm->lastId)))
991 SM_ENTER(EAP, FAILURE);
992 else if (sm->rxReq && duplicate)
993 SM_ENTER(EAP, RETRANSMIT);
994 else if (sm->rxReq && !duplicate &&
995 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
996 sm->allowNotifications)
997 SM_ENTER(EAP, NOTIFICATION);
998 else if (sm->rxReq && !duplicate &&
999 sm->selectedMethod == EAP_TYPE_NONE &&
1000 sm->reqMethod == EAP_TYPE_IDENTITY)
1001 SM_ENTER(EAP, IDENTITY);
1002 else if (sm->rxReq && !duplicate &&
1003 sm->selectedMethod == EAP_TYPE_NONE &&
1004 sm->reqMethod != EAP_TYPE_IDENTITY &&
1005 sm->reqMethod != EAP_TYPE_NOTIFICATION)
1006 SM_ENTER(EAP, GET_METHOD);
1007 else if (sm->rxReq && !duplicate &&
1008 sm->reqMethod == sm->selectedMethod &&
1009 sm->methodState != METHOD_DONE)
1010 SM_ENTER(EAP, METHOD);
1011 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
1012 (sm->rxSuccess || sm->rxResp))
1013 SM_ENTER(EAP, METHOD);
1014 else if (sm->reauthInit)
1015 SM_ENTER(EAP, SEND_RESPONSE);
1016 else
1017 SM_ENTER(EAP, DISCARD);
1018 }
1019
1020
eap_peer_sm_step_local(struct eap_sm * sm)1021 static void eap_peer_sm_step_local(struct eap_sm *sm)
1022 {
1023 switch (sm->EAP_state) {
1024 case EAP_INITIALIZE:
1025 SM_ENTER(EAP, IDLE);
1026 break;
1027 case EAP_DISABLED:
1028 if (eapol_get_bool(sm, EAPOL_portEnabled) &&
1029 !sm->force_disabled)
1030 SM_ENTER(EAP, INITIALIZE);
1031 break;
1032 case EAP_IDLE:
1033 eap_peer_sm_step_idle(sm);
1034 break;
1035 case EAP_RECEIVED:
1036 eap_peer_sm_step_received(sm);
1037 break;
1038 case EAP_GET_METHOD:
1039 if (sm->selectedMethod == sm->reqMethod)
1040 SM_ENTER(EAP, METHOD);
1041 else
1042 SM_ENTER(EAP, SEND_RESPONSE);
1043 break;
1044 case EAP_METHOD:
1045 /*
1046 * Note: RFC 4137 uses methodState == DONE && decision == FAIL
1047 * as the condition. eapRespData == NULL here is used to allow
1048 * final EAP method response to be sent without having to change
1049 * all methods to either use methodState MAY_CONT or leaving
1050 * decision to something else than FAIL in cases where the only
1051 * expected response is EAP-Failure.
1052 */
1053 if (sm->ignore)
1054 SM_ENTER(EAP, DISCARD);
1055 else if (sm->methodState == METHOD_DONE &&
1056 sm->decision == DECISION_FAIL && !sm->eapRespData)
1057 SM_ENTER(EAP, FAILURE);
1058 else
1059 SM_ENTER(EAP, SEND_RESPONSE);
1060 break;
1061 case EAP_SEND_RESPONSE:
1062 SM_ENTER(EAP, IDLE);
1063 break;
1064 case EAP_DISCARD:
1065 SM_ENTER(EAP, IDLE);
1066 break;
1067 case EAP_IDENTITY:
1068 SM_ENTER(EAP, SEND_RESPONSE);
1069 break;
1070 case EAP_NOTIFICATION:
1071 SM_ENTER(EAP, SEND_RESPONSE);
1072 break;
1073 case EAP_RETRANSMIT:
1074 SM_ENTER(EAP, SEND_RESPONSE);
1075 break;
1076 case EAP_SUCCESS:
1077 break;
1078 case EAP_FAILURE:
1079 break;
1080 }
1081 }
1082
1083
SM_STEP(EAP)1084 SM_STEP(EAP)
1085 {
1086 /* Global transitions */
1087 if (eapol_get_bool(sm, EAPOL_eapRestart) &&
1088 eapol_get_bool(sm, EAPOL_portEnabled))
1089 SM_ENTER_GLOBAL(EAP, INITIALIZE);
1090 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
1091 SM_ENTER_GLOBAL(EAP, DISABLED);
1092 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
1093 /* RFC 4137 does not place any limit on number of EAP messages
1094 * in an authentication session. However, some error cases have
1095 * ended up in a state were EAP messages were sent between the
1096 * peer and server in a loop (e.g., TLS ACK frame in both
1097 * direction). Since this is quite undesired outcome, limit the
1098 * total number of EAP round-trips and abort authentication if
1099 * this limit is exceeded.
1100 */
1101 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
1102 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
1103 "authentication rounds - abort",
1104 EAP_MAX_AUTH_ROUNDS);
1105 sm->num_rounds++;
1106 SM_ENTER_GLOBAL(EAP, FAILURE);
1107 }
1108 } else {
1109 /* Local transitions */
1110 eap_peer_sm_step_local(sm);
1111 }
1112 }
1113
1114
eap_sm_allowMethod(struct eap_sm * sm,int vendor,EapType method)1115 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
1116 EapType method)
1117 {
1118 if (!eap_allowed_method(sm, vendor, method)) {
1119 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
1120 "vendor %u method %u", vendor, method);
1121 return FALSE;
1122 }
1123 if (eap_peer_get_eap_method(vendor, method))
1124 return TRUE;
1125 wpa_printf(MSG_DEBUG, "EAP: not included in build: "
1126 "vendor %u method %u", vendor, method);
1127 return FALSE;
1128 }
1129
1130
eap_sm_build_expanded_nak(struct eap_sm * sm,int id,const struct eap_method * methods,size_t count)1131 static struct wpabuf * eap_sm_build_expanded_nak(
1132 struct eap_sm *sm, int id, const struct eap_method *methods,
1133 size_t count)
1134 {
1135 struct wpabuf *resp;
1136 int found = 0;
1137 const struct eap_method *m;
1138
1139 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
1140
1141 /* RFC 3748 - 5.3.2: Expanded Nak */
1142 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
1143 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
1144 if (resp == NULL)
1145 return NULL;
1146
1147 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
1148 wpabuf_put_be32(resp, EAP_TYPE_NAK);
1149
1150 for (m = methods; m; m = m->next) {
1151 if (sm->reqVendor == m->vendor &&
1152 sm->reqVendorMethod == m->method)
1153 continue; /* do not allow the current method again */
1154 if (eap_allowed_method(sm, m->vendor, m->method)) {
1155 wpa_printf(MSG_DEBUG, "EAP: allowed type: "
1156 "vendor=%u method=%u",
1157 m->vendor, m->method);
1158 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1159 wpabuf_put_be24(resp, m->vendor);
1160 wpabuf_put_be32(resp, m->method);
1161
1162 found++;
1163 }
1164 }
1165 if (!found) {
1166 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
1167 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1168 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
1169 wpabuf_put_be32(resp, EAP_TYPE_NONE);
1170 }
1171
1172 eap_update_len(resp);
1173
1174 return resp;
1175 }
1176
1177
eap_sm_buildNak(struct eap_sm * sm,int id)1178 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
1179 {
1180 struct wpabuf *resp;
1181 u8 *start;
1182 int found = 0, expanded_found = 0;
1183 size_t count;
1184 const struct eap_method *methods, *m;
1185
1186 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
1187 "vendor=%u method=%u not allowed)", sm->reqMethod,
1188 sm->reqVendor, sm->reqVendorMethod);
1189 methods = eap_peer_get_methods(&count);
1190 if (methods == NULL)
1191 return NULL;
1192 if (sm->reqMethod == EAP_TYPE_EXPANDED)
1193 return eap_sm_build_expanded_nak(sm, id, methods, count);
1194
1195 /* RFC 3748 - 5.3.1: Legacy Nak */
1196 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
1197 sizeof(struct eap_hdr) + 1 + count + 1,
1198 EAP_CODE_RESPONSE, id);
1199 if (resp == NULL)
1200 return NULL;
1201
1202 start = wpabuf_put(resp, 0);
1203 for (m = methods; m; m = m->next) {
1204 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
1205 continue; /* do not allow the current method again */
1206 if (eap_allowed_method(sm, m->vendor, m->method)) {
1207 if (m->vendor != EAP_VENDOR_IETF) {
1208 if (expanded_found)
1209 continue;
1210 expanded_found = 1;
1211 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1212 } else
1213 wpabuf_put_u8(resp, m->method);
1214 found++;
1215 }
1216 }
1217 if (!found)
1218 wpabuf_put_u8(resp, EAP_TYPE_NONE);
1219 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
1220
1221 eap_update_len(resp);
1222
1223 return resp;
1224 }
1225
1226
eap_sm_processIdentity(struct eap_sm * sm,const struct wpabuf * req)1227 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
1228 {
1229 const u8 *pos;
1230 size_t msg_len;
1231
1232 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
1233 "EAP authentication started");
1234 eap_notify_status(sm, "started", "");
1235
1236 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
1237 &msg_len);
1238 if (pos == NULL)
1239 return;
1240
1241 /*
1242 * RFC 3748 - 5.1: Identity
1243 * Data field may contain a displayable message in UTF-8. If this
1244 * includes NUL-character, only the data before that should be
1245 * displayed. Some EAP implementasitons may piggy-back additional
1246 * options after the NUL.
1247 */
1248 /* TODO: could save displayable message so that it can be shown to the
1249 * user in case of interaction is required */
1250 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
1251 pos, msg_len);
1252 }
1253
1254
1255 #ifdef PCSC_FUNCS
1256
1257 /*
1258 * Rules for figuring out MNC length based on IMSI for SIM cards that do not
1259 * include MNC length field.
1260 */
mnc_len_from_imsi(const char * imsi)1261 static int mnc_len_from_imsi(const char *imsi)
1262 {
1263 char mcc_str[4];
1264 unsigned int mcc;
1265
1266 os_memcpy(mcc_str, imsi, 3);
1267 mcc_str[3] = '\0';
1268 mcc = atoi(mcc_str);
1269
1270 if (mcc == 228)
1271 return 2; /* Networks in Switzerland use 2-digit MNC */
1272 if (mcc == 244)
1273 return 2; /* Networks in Finland use 2-digit MNC */
1274
1275 return -1;
1276 }
1277
1278
eap_sm_append_3gpp_realm(struct eap_sm * sm,char * imsi,size_t max_len,size_t * imsi_len)1279 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
1280 size_t max_len, size_t *imsi_len)
1281 {
1282 int mnc_len;
1283 char *pos, mnc[4];
1284
1285 if (*imsi_len + 36 > max_len) {
1286 wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
1287 return -1;
1288 }
1289
1290 /* MNC (2 or 3 digits) */
1291 mnc_len = scard_get_mnc_len(sm->scard_ctx);
1292 if (mnc_len < 0)
1293 mnc_len = mnc_len_from_imsi(imsi);
1294 if (mnc_len < 0) {
1295 wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
1296 "assuming 3");
1297 mnc_len = 3;
1298 }
1299
1300 if (mnc_len == 2) {
1301 mnc[0] = '0';
1302 mnc[1] = imsi[3];
1303 mnc[2] = imsi[4];
1304 } else if (mnc_len == 3) {
1305 mnc[0] = imsi[3];
1306 mnc[1] = imsi[4];
1307 mnc[2] = imsi[5];
1308 }
1309 mnc[3] = '\0';
1310
1311 pos = imsi + *imsi_len;
1312 pos += os_snprintf(pos, imsi + max_len - pos,
1313 "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
1314 mnc, imsi[0], imsi[1], imsi[2]);
1315 *imsi_len = pos - imsi;
1316
1317 return 0;
1318 }
1319
1320
eap_sm_imsi_identity(struct eap_sm * sm,struct eap_peer_config * conf)1321 static int eap_sm_imsi_identity(struct eap_sm *sm,
1322 struct eap_peer_config *conf)
1323 {
1324 enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
1325 char imsi[100];
1326 size_t imsi_len;
1327 struct eap_method_type *m = conf->eap_methods;
1328 int i;
1329
1330 imsi_len = sizeof(imsi);
1331 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
1332 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
1333 return -1;
1334 }
1335
1336 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
1337
1338 if (imsi_len < 7) {
1339 wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
1340 return -1;
1341 }
1342
1343 if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
1344 wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
1345 return -1;
1346 }
1347 wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
1348
1349 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
1350 m[i].method != EAP_TYPE_NONE); i++) {
1351 if (m[i].vendor == EAP_VENDOR_IETF &&
1352 m[i].method == EAP_TYPE_AKA_PRIME) {
1353 method = EAP_SM_AKA_PRIME;
1354 break;
1355 }
1356
1357 if (m[i].vendor == EAP_VENDOR_IETF &&
1358 m[i].method == EAP_TYPE_AKA) {
1359 method = EAP_SM_AKA;
1360 break;
1361 }
1362 }
1363
1364 os_free(conf->identity);
1365 conf->identity = os_malloc(1 + imsi_len);
1366 if (conf->identity == NULL) {
1367 wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
1368 "IMSI-based identity");
1369 return -1;
1370 }
1371
1372 switch (method) {
1373 case EAP_SM_SIM:
1374 conf->identity[0] = '1';
1375 break;
1376 case EAP_SM_AKA:
1377 conf->identity[0] = '0';
1378 break;
1379 case EAP_SM_AKA_PRIME:
1380 conf->identity[0] = '6';
1381 break;
1382 }
1383 os_memcpy(conf->identity + 1, imsi, imsi_len);
1384 conf->identity_len = 1 + imsi_len;
1385
1386 return 0;
1387 }
1388
1389
eap_sm_set_scard_pin(struct eap_sm * sm,struct eap_peer_config * conf)1390 static int eap_sm_set_scard_pin(struct eap_sm *sm,
1391 struct eap_peer_config *conf)
1392 {
1393 if (scard_set_pin(sm->scard_ctx, conf->pin)) {
1394 /*
1395 * Make sure the same PIN is not tried again in order to avoid
1396 * blocking SIM.
1397 */
1398 os_free(conf->pin);
1399 conf->pin = NULL;
1400
1401 wpa_printf(MSG_WARNING, "PIN validation failed");
1402 eap_sm_request_pin(sm);
1403 return -1;
1404 }
1405 return 0;
1406 }
1407
1408
eap_sm_get_scard_identity(struct eap_sm * sm,struct eap_peer_config * conf)1409 static int eap_sm_get_scard_identity(struct eap_sm *sm,
1410 struct eap_peer_config *conf)
1411 {
1412 if (eap_sm_set_scard_pin(sm, conf))
1413 return -1;
1414
1415 return eap_sm_imsi_identity(sm, conf);
1416 }
1417
1418 #endif /* PCSC_FUNCS */
1419
1420
1421 /**
1422 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
1423 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1424 * @id: EAP identifier for the packet
1425 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
1426 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
1427 * failure
1428 *
1429 * This function allocates and builds an EAP-Identity/Response packet for the
1430 * current network. The caller is responsible for freeing the returned data.
1431 */
eap_sm_buildIdentity(struct eap_sm * sm,int id,int encrypted)1432 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
1433 {
1434 struct eap_peer_config *config = eap_get_config(sm);
1435 struct wpabuf *resp;
1436 const u8 *identity;
1437 size_t identity_len;
1438
1439 if (config == NULL) {
1440 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
1441 "was not available");
1442 return NULL;
1443 }
1444
1445 if (sm->m && sm->m->get_identity &&
1446 (identity = sm->m->get_identity(sm, sm->eap_method_priv,
1447 &identity_len)) != NULL) {
1448 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
1449 "identity", identity, identity_len);
1450 } else if (!encrypted && config->anonymous_identity) {
1451 identity = config->anonymous_identity;
1452 identity_len = config->anonymous_identity_len;
1453 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
1454 identity, identity_len);
1455 } else {
1456 identity = config->identity;
1457 identity_len = config->identity_len;
1458 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
1459 identity, identity_len);
1460 }
1461
1462 if (config->pcsc) {
1463 #ifdef PCSC_FUNCS
1464 if (!identity) {
1465 if (eap_sm_get_scard_identity(sm, config) < 0)
1466 return NULL;
1467 identity = config->identity;
1468 identity_len = config->identity_len;
1469 wpa_hexdump_ascii(MSG_DEBUG,
1470 "permanent identity from IMSI",
1471 identity, identity_len);
1472 } else if (eap_sm_set_scard_pin(sm, config) < 0) {
1473 return NULL;
1474 }
1475 #else /* PCSC_FUNCS */
1476 return NULL;
1477 #endif /* PCSC_FUNCS */
1478 } else if (!identity) {
1479 wpa_printf(MSG_WARNING,
1480 "EAP: buildIdentity: identity configuration was not available");
1481 eap_sm_request_identity(sm);
1482 return NULL;
1483 }
1484
1485 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1486 EAP_CODE_RESPONSE, id);
1487 if (resp == NULL)
1488 return NULL;
1489
1490 wpabuf_put_data(resp, identity, identity_len);
1491
1492 return resp;
1493 }
1494
1495
eap_sm_processNotify(struct eap_sm * sm,const struct wpabuf * req)1496 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1497 {
1498 const u8 *pos;
1499 char *msg;
1500 size_t i, msg_len;
1501
1502 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1503 &msg_len);
1504 if (pos == NULL)
1505 return;
1506 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1507 pos, msg_len);
1508
1509 msg = os_malloc(msg_len + 1);
1510 if (msg == NULL)
1511 return;
1512 for (i = 0; i < msg_len; i++)
1513 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1514 msg[msg_len] = '\0';
1515 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1516 WPA_EVENT_EAP_NOTIFICATION, msg);
1517 os_free(msg);
1518 }
1519
1520
eap_sm_buildNotify(int id)1521 static struct wpabuf * eap_sm_buildNotify(int id)
1522 {
1523 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1524 return eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1525 EAP_CODE_RESPONSE, id);
1526 }
1527
1528
eap_peer_initiate(struct eap_sm * sm,const struct eap_hdr * hdr,size_t len)1529 static void eap_peer_initiate(struct eap_sm *sm, const struct eap_hdr *hdr,
1530 size_t len)
1531 {
1532 #ifdef CONFIG_ERP
1533 const u8 *pos = (const u8 *) (hdr + 1);
1534 const u8 *end = ((const u8 *) hdr) + len;
1535 struct erp_tlvs parse;
1536
1537 if (len < sizeof(*hdr) + 1) {
1538 wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Initiate");
1539 return;
1540 }
1541
1542 if (*pos != EAP_ERP_TYPE_REAUTH_START) {
1543 wpa_printf(MSG_DEBUG,
1544 "EAP: Ignored unexpected EAP-Initiate Type=%u",
1545 *pos);
1546 return;
1547 }
1548
1549 pos++;
1550 if (pos >= end) {
1551 wpa_printf(MSG_DEBUG,
1552 "EAP: Too short EAP-Initiate/Re-auth-Start");
1553 return;
1554 }
1555 pos++; /* Reserved */
1556 wpa_hexdump(MSG_DEBUG, "EAP: EAP-Initiate/Re-auth-Start TVs/TLVs",
1557 pos, end - pos);
1558
1559 if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
1560 goto invalid;
1561
1562 if (parse.domain) {
1563 wpa_hexdump_ascii(MSG_DEBUG,
1564 "EAP: EAP-Initiate/Re-auth-Start - Domain name",
1565 parse.domain, parse.domain_len);
1566 /* TODO: Derivation of domain specific keys for local ER */
1567 }
1568
1569 if (eap_peer_erp_reauth_start(sm, hdr, len) == 0)
1570 return;
1571
1572 invalid:
1573 #endif /* CONFIG_ERP */
1574 wpa_printf(MSG_DEBUG,
1575 "EAP: EAP-Initiate/Re-auth-Start - No suitable ERP keys available - try to start full EAP authentication");
1576 eapol_set_bool(sm, EAPOL_eapTriggerStart, TRUE);
1577 }
1578
1579
eap_peer_finish(struct eap_sm * sm,const struct eap_hdr * hdr,size_t len)1580 static void eap_peer_finish(struct eap_sm *sm, const struct eap_hdr *hdr,
1581 size_t len)
1582 {
1583 #ifdef CONFIG_ERP
1584 const u8 *pos = (const u8 *) (hdr + 1);
1585 const u8 *end = ((const u8 *) hdr) + len;
1586 const u8 *start;
1587 struct erp_tlvs parse;
1588 u8 flags;
1589 u16 seq;
1590 u8 hash[SHA256_MAC_LEN];
1591 size_t hash_len;
1592 struct eap_erp_key *erp;
1593 int max_len;
1594 char nai[254];
1595 u8 seed[4];
1596 int auth_tag_ok = 0;
1597
1598 if (len < sizeof(*hdr) + 1) {
1599 wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Finish");
1600 return;
1601 }
1602
1603 if (*pos != EAP_ERP_TYPE_REAUTH) {
1604 wpa_printf(MSG_DEBUG,
1605 "EAP: Ignored unexpected EAP-Finish Type=%u", *pos);
1606 return;
1607 }
1608
1609 if (len < sizeof(*hdr) + 4) {
1610 wpa_printf(MSG_DEBUG,
1611 "EAP: Ignored too short EAP-Finish/Re-auth");
1612 return;
1613 }
1614
1615 pos++;
1616 flags = *pos++;
1617 seq = WPA_GET_BE16(pos);
1618 pos += 2;
1619 wpa_printf(MSG_DEBUG, "EAP: Flags=0x%x SEQ=%u", flags, seq);
1620
1621 if (seq != sm->erp_seq) {
1622 wpa_printf(MSG_DEBUG,
1623 "EAP: Unexpected EAP-Finish/Re-auth SEQ=%u", seq);
1624 return;
1625 }
1626
1627 /*
1628 * Parse TVs/TLVs. Since we do not yet know the length of the
1629 * Authentication Tag, stop parsing if an unknown TV/TLV is seen and
1630 * just try to find the keyName-NAI first so that we can check the
1631 * Authentication Tag.
1632 */
1633 if (erp_parse_tlvs(pos, end, &parse, 1) < 0)
1634 return;
1635
1636 if (!parse.keyname) {
1637 wpa_printf(MSG_DEBUG,
1638 "EAP: No keyName-NAI in EAP-Finish/Re-auth Packet");
1639 return;
1640 }
1641
1642 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Finish/Re-auth - keyName-NAI",
1643 parse.keyname, parse.keyname_len);
1644 if (parse.keyname_len > 253) {
1645 wpa_printf(MSG_DEBUG,
1646 "EAP: Too long keyName-NAI in EAP-Finish/Re-auth");
1647 return;
1648 }
1649 os_memcpy(nai, parse.keyname, parse.keyname_len);
1650 nai[parse.keyname_len] = '\0';
1651
1652 erp = eap_erp_get_key_nai(sm, nai);
1653 if (!erp) {
1654 wpa_printf(MSG_DEBUG, "EAP: No matching ERP key found for %s",
1655 nai);
1656 return;
1657 }
1658
1659 /* Is there enough room for Cryptosuite and Authentication Tag? */
1660 start = parse.keyname + parse.keyname_len;
1661 max_len = end - start;
1662 hash_len = 16;
1663 if (max_len < 1 + (int) hash_len) {
1664 wpa_printf(MSG_DEBUG,
1665 "EAP: Not enough room for Authentication Tag");
1666 if (flags & 0x80)
1667 goto no_auth_tag;
1668 return;
1669 }
1670 if (end[-17] != EAP_ERP_CS_HMAC_SHA256_128) {
1671 wpa_printf(MSG_DEBUG, "EAP: Different Cryptosuite used");
1672 if (flags & 0x80)
1673 goto no_auth_tag;
1674 return;
1675 }
1676
1677 if (hmac_sha256(erp->rIK, erp->rIK_len, (const u8 *) hdr,
1678 end - ((const u8 *) hdr) - hash_len, hash) < 0)
1679 return;
1680 if (os_memcmp(end - hash_len, hash, hash_len) != 0) {
1681 wpa_printf(MSG_DEBUG,
1682 "EAP: Authentication Tag mismatch");
1683 return;
1684 }
1685 auth_tag_ok = 1;
1686 end -= 1 + hash_len;
1687
1688 no_auth_tag:
1689 /*
1690 * Parse TVs/TLVs again now that we know the exact part of the buffer
1691 * that contains them.
1692 */
1693 wpa_hexdump(MSG_DEBUG, "EAP: EAP-Finish/Re-Auth TVs/TLVs",
1694 pos, end - pos);
1695 if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
1696 return;
1697
1698 if (flags & 0x80 || !auth_tag_ok) {
1699 wpa_printf(MSG_DEBUG,
1700 "EAP: EAP-Finish/Re-auth indicated failure");
1701 eapol_set_bool(sm, EAPOL_eapFail, TRUE);
1702 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
1703 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
1704 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
1705 "EAP authentication failed");
1706 sm->prev_failure = 1;
1707 wpa_printf(MSG_DEBUG,
1708 "EAP: Drop ERP key to try full authentication on next attempt");
1709 eap_peer_erp_free_key(erp);
1710 return;
1711 }
1712
1713 eap_sm_free_key(sm);
1714 sm->eapKeyDataLen = 0;
1715 sm->eapKeyData = os_malloc(erp->rRK_len);
1716 if (!sm->eapKeyData)
1717 return;
1718 sm->eapKeyDataLen = erp->rRK_len;
1719
1720 WPA_PUT_BE16(seed, seq);
1721 WPA_PUT_BE16(&seed[2], erp->rRK_len);
1722 if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
1723 "Re-authentication Master Session Key@ietf.org",
1724 seed, sizeof(seed),
1725 sm->eapKeyData, erp->rRK_len) < 0) {
1726 wpa_printf(MSG_DEBUG, "EAP: Could not derive rMSK for ERP");
1727 eap_sm_free_key(sm);
1728 return;
1729 }
1730 wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rMSK",
1731 sm->eapKeyData, sm->eapKeyDataLen);
1732 sm->eapKeyAvailable = TRUE;
1733 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
1734 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
1735 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
1736 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
1737 "EAP re-authentication completed successfully");
1738 #endif /* CONFIG_ERP */
1739 }
1740
1741
eap_sm_parseEapReq(struct eap_sm * sm,const struct wpabuf * req)1742 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1743 {
1744 const struct eap_hdr *hdr;
1745 size_t plen;
1746 const u8 *pos;
1747
1748 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1749 sm->reqId = 0;
1750 sm->reqMethod = EAP_TYPE_NONE;
1751 sm->reqVendor = EAP_VENDOR_IETF;
1752 sm->reqVendorMethod = EAP_TYPE_NONE;
1753
1754 if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1755 return;
1756
1757 hdr = wpabuf_head(req);
1758 plen = be_to_host16(hdr->length);
1759 if (plen > wpabuf_len(req)) {
1760 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1761 "(len=%lu plen=%lu)",
1762 (unsigned long) wpabuf_len(req),
1763 (unsigned long) plen);
1764 return;
1765 }
1766
1767 sm->reqId = hdr->identifier;
1768
1769 if (sm->workaround) {
1770 const u8 *addr[1];
1771 addr[0] = wpabuf_head(req);
1772 sha1_vector(1, addr, &plen, sm->req_sha1);
1773 }
1774
1775 switch (hdr->code) {
1776 case EAP_CODE_REQUEST:
1777 if (plen < sizeof(*hdr) + 1) {
1778 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1779 "no Type field");
1780 return;
1781 }
1782 sm->rxReq = TRUE;
1783 pos = (const u8 *) (hdr + 1);
1784 sm->reqMethod = *pos++;
1785 if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1786 if (plen < sizeof(*hdr) + 8) {
1787 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1788 "expanded EAP-Packet (plen=%lu)",
1789 (unsigned long) plen);
1790 return;
1791 }
1792 sm->reqVendor = WPA_GET_BE24(pos);
1793 pos += 3;
1794 sm->reqVendorMethod = WPA_GET_BE32(pos);
1795 }
1796 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1797 "method=%u vendor=%u vendorMethod=%u",
1798 sm->reqId, sm->reqMethod, sm->reqVendor,
1799 sm->reqVendorMethod);
1800 break;
1801 case EAP_CODE_RESPONSE:
1802 if (sm->selectedMethod == EAP_TYPE_LEAP) {
1803 /*
1804 * LEAP differs from RFC 4137 by using reversed roles
1805 * for mutual authentication and because of this, we
1806 * need to accept EAP-Response frames if LEAP is used.
1807 */
1808 if (plen < sizeof(*hdr) + 1) {
1809 wpa_printf(MSG_DEBUG, "EAP: Too short "
1810 "EAP-Response - no Type field");
1811 return;
1812 }
1813 sm->rxResp = TRUE;
1814 pos = (const u8 *) (hdr + 1);
1815 sm->reqMethod = *pos;
1816 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1817 "LEAP method=%d id=%d",
1818 sm->reqMethod, sm->reqId);
1819 break;
1820 }
1821 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1822 break;
1823 case EAP_CODE_SUCCESS:
1824 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1825 eap_notify_status(sm, "completion", "success");
1826 sm->rxSuccess = TRUE;
1827 break;
1828 case EAP_CODE_FAILURE:
1829 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1830 eap_notify_status(sm, "completion", "failure");
1831 sm->rxFailure = TRUE;
1832 break;
1833 case EAP_CODE_INITIATE:
1834 eap_peer_initiate(sm, hdr, plen);
1835 break;
1836 case EAP_CODE_FINISH:
1837 eap_peer_finish(sm, hdr, plen);
1838 break;
1839 default:
1840 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1841 "code %d", hdr->code);
1842 break;
1843 }
1844 }
1845
1846
eap_peer_sm_tls_event(void * ctx,enum tls_event ev,union tls_event_data * data)1847 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
1848 union tls_event_data *data)
1849 {
1850 struct eap_sm *sm = ctx;
1851 char *hash_hex = NULL;
1852
1853 switch (ev) {
1854 case TLS_CERT_CHAIN_SUCCESS:
1855 eap_notify_status(sm, "remote certificate verification",
1856 "success");
1857 if (sm->ext_cert_check) {
1858 sm->waiting_ext_cert_check = 1;
1859 eap_sm_request(sm, WPA_CTRL_REQ_EXT_CERT_CHECK,
1860 NULL, 0);
1861 }
1862 break;
1863 case TLS_CERT_CHAIN_FAILURE:
1864 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
1865 "reason=%d depth=%d subject='%s' err='%s'",
1866 data->cert_fail.reason,
1867 data->cert_fail.depth,
1868 data->cert_fail.subject,
1869 data->cert_fail.reason_txt);
1870 eap_notify_status(sm, "remote certificate verification",
1871 data->cert_fail.reason_txt);
1872 break;
1873 case TLS_PEER_CERTIFICATE:
1874 if (!sm->eapol_cb->notify_cert)
1875 break;
1876
1877 if (data->peer_cert.hash) {
1878 size_t len = data->peer_cert.hash_len * 2 + 1;
1879 hash_hex = os_malloc(len);
1880 if (hash_hex) {
1881 wpa_snprintf_hex(hash_hex, len,
1882 data->peer_cert.hash,
1883 data->peer_cert.hash_len);
1884 }
1885 }
1886
1887 sm->eapol_cb->notify_cert(sm->eapol_ctx,
1888 data->peer_cert.depth,
1889 data->peer_cert.subject,
1890 data->peer_cert.altsubject,
1891 data->peer_cert.num_altsubject,
1892 hash_hex, data->peer_cert.cert);
1893 break;
1894 case TLS_ALERT:
1895 if (data->alert.is_local)
1896 eap_notify_status(sm, "local TLS alert",
1897 data->alert.description);
1898 else
1899 eap_notify_status(sm, "remote TLS alert",
1900 data->alert.description);
1901 break;
1902 }
1903
1904 os_free(hash_hex);
1905 }
1906
1907
1908 /**
1909 * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1910 * @eapol_ctx: Context data to be used with eapol_cb calls
1911 * @eapol_cb: Pointer to EAPOL callback functions
1912 * @msg_ctx: Context data for wpa_msg() calls
1913 * @conf: EAP configuration
1914 * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1915 *
1916 * This function allocates and initializes an EAP state machine. In addition,
1917 * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1918 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1919 * state machine. Consequently, the caller must make sure that this data
1920 * structure remains alive while the EAP state machine is active.
1921 */
eap_peer_sm_init(void * eapol_ctx,const struct eapol_callbacks * eapol_cb,void * msg_ctx,struct eap_config * conf)1922 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1923 const struct eapol_callbacks *eapol_cb,
1924 void *msg_ctx, struct eap_config *conf)
1925 {
1926 struct eap_sm *sm;
1927 struct tls_config tlsconf;
1928
1929 sm = os_zalloc(sizeof(*sm));
1930 if (sm == NULL)
1931 return NULL;
1932 sm->eapol_ctx = eapol_ctx;
1933 sm->eapol_cb = eapol_cb;
1934 sm->msg_ctx = msg_ctx;
1935 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
1936 sm->wps = conf->wps;
1937 dl_list_init(&sm->erp_keys);
1938
1939 os_memset(&tlsconf, 0, sizeof(tlsconf));
1940 tlsconf.opensc_engine_path = conf->opensc_engine_path;
1941 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1942 tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1943 tlsconf.openssl_ciphers = conf->openssl_ciphers;
1944 #ifdef CONFIG_FIPS
1945 tlsconf.fips_mode = 1;
1946 #endif /* CONFIG_FIPS */
1947 tlsconf.event_cb = eap_peer_sm_tls_event;
1948 tlsconf.cb_ctx = sm;
1949 tlsconf.cert_in_cb = conf->cert_in_cb;
1950 sm->ssl_ctx = tls_init(&tlsconf);
1951 if (sm->ssl_ctx == NULL) {
1952 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1953 "context.");
1954 os_free(sm);
1955 return NULL;
1956 }
1957
1958 sm->ssl_ctx2 = tls_init(&tlsconf);
1959 if (sm->ssl_ctx2 == NULL) {
1960 wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
1961 "context (2).");
1962 /* Run without separate TLS context within TLS tunnel */
1963 }
1964
1965 return sm;
1966 }
1967
1968
1969 /**
1970 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1971 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1972 *
1973 * This function deinitializes EAP state machine and frees all allocated
1974 * resources.
1975 */
eap_peer_sm_deinit(struct eap_sm * sm)1976 void eap_peer_sm_deinit(struct eap_sm *sm)
1977 {
1978 if (sm == NULL)
1979 return;
1980 eap_deinit_prev_method(sm, "EAP deinit");
1981 eap_sm_abort(sm);
1982 if (sm->ssl_ctx2)
1983 tls_deinit(sm->ssl_ctx2);
1984 tls_deinit(sm->ssl_ctx);
1985 eap_peer_erp_free_keys(sm);
1986 os_free(sm);
1987 }
1988
1989
1990 /**
1991 * eap_peer_sm_step - Step EAP peer state machine
1992 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1993 * Returns: 1 if EAP state was changed or 0 if not
1994 *
1995 * This function advances EAP state machine to a new state to match with the
1996 * current variables. This should be called whenever variables used by the EAP
1997 * state machine have changed.
1998 */
eap_peer_sm_step(struct eap_sm * sm)1999 int eap_peer_sm_step(struct eap_sm *sm)
2000 {
2001 int res = 0;
2002 do {
2003 sm->changed = FALSE;
2004 SM_STEP_RUN(EAP);
2005 if (sm->changed)
2006 res = 1;
2007 } while (sm->changed);
2008 return res;
2009 }
2010
2011
2012 /**
2013 * eap_sm_abort - Abort EAP authentication
2014 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2015 *
2016 * Release system resources that have been allocated for the authentication
2017 * session without fully deinitializing the EAP state machine.
2018 */
eap_sm_abort(struct eap_sm * sm)2019 void eap_sm_abort(struct eap_sm *sm)
2020 {
2021 wpabuf_free(sm->lastRespData);
2022 sm->lastRespData = NULL;
2023 wpabuf_free(sm->eapRespData);
2024 sm->eapRespData = NULL;
2025 eap_sm_free_key(sm);
2026 os_free(sm->eapSessionId);
2027 sm->eapSessionId = NULL;
2028
2029 /* This is not clearly specified in the EAP statemachines draft, but
2030 * it seems necessary to make sure that some of the EAPOL variables get
2031 * cleared for the next authentication. */
2032 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
2033 }
2034
2035
2036 #ifdef CONFIG_CTRL_IFACE
eap_sm_state_txt(int state)2037 static const char * eap_sm_state_txt(int state)
2038 {
2039 switch (state) {
2040 case EAP_INITIALIZE:
2041 return "INITIALIZE";
2042 case EAP_DISABLED:
2043 return "DISABLED";
2044 case EAP_IDLE:
2045 return "IDLE";
2046 case EAP_RECEIVED:
2047 return "RECEIVED";
2048 case EAP_GET_METHOD:
2049 return "GET_METHOD";
2050 case EAP_METHOD:
2051 return "METHOD";
2052 case EAP_SEND_RESPONSE:
2053 return "SEND_RESPONSE";
2054 case EAP_DISCARD:
2055 return "DISCARD";
2056 case EAP_IDENTITY:
2057 return "IDENTITY";
2058 case EAP_NOTIFICATION:
2059 return "NOTIFICATION";
2060 case EAP_RETRANSMIT:
2061 return "RETRANSMIT";
2062 case EAP_SUCCESS:
2063 return "SUCCESS";
2064 case EAP_FAILURE:
2065 return "FAILURE";
2066 default:
2067 return "UNKNOWN";
2068 }
2069 }
2070 #endif /* CONFIG_CTRL_IFACE */
2071
2072
2073 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
eap_sm_method_state_txt(EapMethodState state)2074 static const char * eap_sm_method_state_txt(EapMethodState state)
2075 {
2076 switch (state) {
2077 case METHOD_NONE:
2078 return "NONE";
2079 case METHOD_INIT:
2080 return "INIT";
2081 case METHOD_CONT:
2082 return "CONT";
2083 case METHOD_MAY_CONT:
2084 return "MAY_CONT";
2085 case METHOD_DONE:
2086 return "DONE";
2087 default:
2088 return "UNKNOWN";
2089 }
2090 }
2091
2092
eap_sm_decision_txt(EapDecision decision)2093 static const char * eap_sm_decision_txt(EapDecision decision)
2094 {
2095 switch (decision) {
2096 case DECISION_FAIL:
2097 return "FAIL";
2098 case DECISION_COND_SUCC:
2099 return "COND_SUCC";
2100 case DECISION_UNCOND_SUCC:
2101 return "UNCOND_SUCC";
2102 default:
2103 return "UNKNOWN";
2104 }
2105 }
2106 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2107
2108
2109 #ifdef CONFIG_CTRL_IFACE
2110
2111 /**
2112 * eap_sm_get_status - Get EAP state machine status
2113 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2114 * @buf: Buffer for status information
2115 * @buflen: Maximum buffer length
2116 * @verbose: Whether to include verbose status information
2117 * Returns: Number of bytes written to buf.
2118 *
2119 * Query EAP state machine for status information. This function fills in a
2120 * text area with current status information from the EAPOL state machine. If
2121 * the buffer (buf) is not large enough, status information will be truncated
2122 * to fit the buffer.
2123 */
eap_sm_get_status(struct eap_sm * sm,char * buf,size_t buflen,int verbose)2124 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
2125 {
2126 int len, ret;
2127
2128 if (sm == NULL)
2129 return 0;
2130
2131 len = os_snprintf(buf, buflen,
2132 "EAP state=%s\n",
2133 eap_sm_state_txt(sm->EAP_state));
2134 if (os_snprintf_error(buflen, len))
2135 return 0;
2136
2137 if (sm->selectedMethod != EAP_TYPE_NONE) {
2138 const char *name;
2139 if (sm->m) {
2140 name = sm->m->name;
2141 } else {
2142 const struct eap_method *m =
2143 eap_peer_get_eap_method(EAP_VENDOR_IETF,
2144 sm->selectedMethod);
2145 if (m)
2146 name = m->name;
2147 else
2148 name = "?";
2149 }
2150 ret = os_snprintf(buf + len, buflen - len,
2151 "selectedMethod=%d (EAP-%s)\n",
2152 sm->selectedMethod, name);
2153 if (os_snprintf_error(buflen - len, ret))
2154 return len;
2155 len += ret;
2156
2157 if (sm->m && sm->m->get_status) {
2158 len += sm->m->get_status(sm, sm->eap_method_priv,
2159 buf + len, buflen - len,
2160 verbose);
2161 }
2162 }
2163
2164 if (verbose) {
2165 ret = os_snprintf(buf + len, buflen - len,
2166 "reqMethod=%d\n"
2167 "methodState=%s\n"
2168 "decision=%s\n"
2169 "ClientTimeout=%d\n",
2170 sm->reqMethod,
2171 eap_sm_method_state_txt(sm->methodState),
2172 eap_sm_decision_txt(sm->decision),
2173 sm->ClientTimeout);
2174 if (os_snprintf_error(buflen - len, ret))
2175 return len;
2176 len += ret;
2177 }
2178
2179 return len;
2180 }
2181 #endif /* CONFIG_CTRL_IFACE */
2182
2183
eap_sm_request(struct eap_sm * sm,enum wpa_ctrl_req_type field,const char * msg,size_t msglen)2184 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
2185 const char *msg, size_t msglen)
2186 {
2187 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
2188 struct eap_peer_config *config;
2189 const char *txt = NULL;
2190 char *tmp;
2191
2192 if (sm == NULL)
2193 return;
2194 config = eap_get_config(sm);
2195 if (config == NULL)
2196 return;
2197
2198 switch (field) {
2199 case WPA_CTRL_REQ_EAP_IDENTITY:
2200 config->pending_req_identity++;
2201 break;
2202 case WPA_CTRL_REQ_EAP_PASSWORD:
2203 config->pending_req_password++;
2204 break;
2205 case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
2206 config->pending_req_new_password++;
2207 break;
2208 case WPA_CTRL_REQ_EAP_PIN:
2209 config->pending_req_pin++;
2210 break;
2211 case WPA_CTRL_REQ_EAP_OTP:
2212 if (msg) {
2213 tmp = os_malloc(msglen + 3);
2214 if (tmp == NULL)
2215 return;
2216 tmp[0] = '[';
2217 os_memcpy(tmp + 1, msg, msglen);
2218 tmp[msglen + 1] = ']';
2219 tmp[msglen + 2] = '\0';
2220 txt = tmp;
2221 os_free(config->pending_req_otp);
2222 config->pending_req_otp = tmp;
2223 config->pending_req_otp_len = msglen + 3;
2224 } else {
2225 if (config->pending_req_otp == NULL)
2226 return;
2227 txt = config->pending_req_otp;
2228 }
2229 break;
2230 case WPA_CTRL_REQ_EAP_PASSPHRASE:
2231 config->pending_req_passphrase++;
2232 break;
2233 case WPA_CTRL_REQ_SIM:
2234 txt = msg;
2235 break;
2236 case WPA_CTRL_REQ_EXT_CERT_CHECK:
2237 break;
2238 default:
2239 return;
2240 }
2241
2242 if (sm->eapol_cb->eap_param_needed)
2243 sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
2244 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2245 }
2246
2247
eap_sm_get_method_name(struct eap_sm * sm)2248 const char * eap_sm_get_method_name(struct eap_sm *sm)
2249 {
2250 if (sm->m == NULL)
2251 return "UNKNOWN";
2252 return sm->m->name;
2253 }
2254
2255
2256 /**
2257 * eap_sm_request_identity - Request identity from user (ctrl_iface)
2258 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2259 *
2260 * EAP methods can call this function to request identity information for the
2261 * current network. This is normally called when the identity is not included
2262 * in the network configuration. The request will be sent to monitor programs
2263 * through the control interface.
2264 */
eap_sm_request_identity(struct eap_sm * sm)2265 void eap_sm_request_identity(struct eap_sm *sm)
2266 {
2267 eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
2268 }
2269
2270
2271 /**
2272 * eap_sm_request_password - Request password from user (ctrl_iface)
2273 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2274 *
2275 * EAP methods can call this function to request password information for the
2276 * current network. This is normally called when the password is not included
2277 * in the network configuration. The request will be sent to monitor programs
2278 * through the control interface.
2279 */
eap_sm_request_password(struct eap_sm * sm)2280 void eap_sm_request_password(struct eap_sm *sm)
2281 {
2282 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
2283 }
2284
2285
2286 /**
2287 * eap_sm_request_new_password - Request new password from user (ctrl_iface)
2288 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2289 *
2290 * EAP methods can call this function to request new password information for
2291 * the current network. This is normally called when the EAP method indicates
2292 * that the current password has expired and password change is required. The
2293 * request will be sent to monitor programs through the control interface.
2294 */
eap_sm_request_new_password(struct eap_sm * sm)2295 void eap_sm_request_new_password(struct eap_sm *sm)
2296 {
2297 eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
2298 }
2299
2300
2301 /**
2302 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
2303 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2304 *
2305 * EAP methods can call this function to request SIM or smart card PIN
2306 * information for the current network. This is normally called when the PIN is
2307 * not included in the network configuration. The request will be sent to
2308 * monitor programs through the control interface.
2309 */
eap_sm_request_pin(struct eap_sm * sm)2310 void eap_sm_request_pin(struct eap_sm *sm)
2311 {
2312 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
2313 }
2314
2315
2316 /**
2317 * eap_sm_request_otp - Request one time password from user (ctrl_iface)
2318 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2319 * @msg: Message to be displayed to the user when asking for OTP
2320 * @msg_len: Length of the user displayable message
2321 *
2322 * EAP methods can call this function to request open time password (OTP) for
2323 * the current network. The request will be sent to monitor programs through
2324 * the control interface.
2325 */
eap_sm_request_otp(struct eap_sm * sm,const char * msg,size_t msg_len)2326 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
2327 {
2328 eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
2329 }
2330
2331
2332 /**
2333 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
2334 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2335 *
2336 * EAP methods can call this function to request passphrase for a private key
2337 * for the current network. This is normally called when the passphrase is not
2338 * included in the network configuration. The request will be sent to monitor
2339 * programs through the control interface.
2340 */
eap_sm_request_passphrase(struct eap_sm * sm)2341 void eap_sm_request_passphrase(struct eap_sm *sm)
2342 {
2343 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
2344 }
2345
2346
2347 /**
2348 * eap_sm_request_sim - Request external SIM processing
2349 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2350 * @req: EAP method specific request
2351 */
eap_sm_request_sim(struct eap_sm * sm,const char * req)2352 void eap_sm_request_sim(struct eap_sm *sm, const char *req)
2353 {
2354 eap_sm_request(sm, WPA_CTRL_REQ_SIM, req, os_strlen(req));
2355 }
2356
2357
2358 /**
2359 * eap_sm_notify_ctrl_attached - Notification of attached monitor
2360 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2361 *
2362 * Notify EAP state machines that a monitor was attached to the control
2363 * interface to trigger re-sending of pending requests for user input.
2364 */
eap_sm_notify_ctrl_attached(struct eap_sm * sm)2365 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
2366 {
2367 struct eap_peer_config *config = eap_get_config(sm);
2368
2369 if (config == NULL)
2370 return;
2371
2372 /* Re-send any pending requests for user data since a new control
2373 * interface was added. This handles cases where the EAP authentication
2374 * starts immediately after system startup when the user interface is
2375 * not yet running. */
2376 if (config->pending_req_identity)
2377 eap_sm_request_identity(sm);
2378 if (config->pending_req_password)
2379 eap_sm_request_password(sm);
2380 if (config->pending_req_new_password)
2381 eap_sm_request_new_password(sm);
2382 if (config->pending_req_otp)
2383 eap_sm_request_otp(sm, NULL, 0);
2384 if (config->pending_req_pin)
2385 eap_sm_request_pin(sm);
2386 if (config->pending_req_passphrase)
2387 eap_sm_request_passphrase(sm);
2388 }
2389
2390
eap_allowed_phase2_type(int vendor,int type)2391 static int eap_allowed_phase2_type(int vendor, int type)
2392 {
2393 if (vendor != EAP_VENDOR_IETF)
2394 return 0;
2395 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
2396 type != EAP_TYPE_FAST;
2397 }
2398
2399
2400 /**
2401 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
2402 * @name: EAP method name, e.g., MD5
2403 * @vendor: Buffer for returning EAP Vendor-Id
2404 * Returns: EAP method type or %EAP_TYPE_NONE if not found
2405 *
2406 * This function maps EAP type names into EAP type numbers that are allowed for
2407 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
2408 * EAP-PEAP, EAP-TTLS, and EAP-FAST.
2409 */
eap_get_phase2_type(const char * name,int * vendor)2410 u32 eap_get_phase2_type(const char *name, int *vendor)
2411 {
2412 int v;
2413 u32 type = eap_peer_get_type(name, &v);
2414 if (eap_allowed_phase2_type(v, type)) {
2415 *vendor = v;
2416 return type;
2417 }
2418 *vendor = EAP_VENDOR_IETF;
2419 return EAP_TYPE_NONE;
2420 }
2421
2422
2423 /**
2424 * eap_get_phase2_types - Get list of allowed EAP phase 2 types
2425 * @config: Pointer to a network configuration
2426 * @count: Pointer to a variable to be filled with number of returned EAP types
2427 * Returns: Pointer to allocated type list or %NULL on failure
2428 *
2429 * This function generates an array of allowed EAP phase 2 (tunneled) types for
2430 * the given network configuration.
2431 */
eap_get_phase2_types(struct eap_peer_config * config,size_t * count)2432 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
2433 size_t *count)
2434 {
2435 struct eap_method_type *buf;
2436 u32 method;
2437 int vendor;
2438 size_t mcount;
2439 const struct eap_method *methods, *m;
2440
2441 methods = eap_peer_get_methods(&mcount);
2442 if (methods == NULL)
2443 return NULL;
2444 *count = 0;
2445 buf = os_malloc(mcount * sizeof(struct eap_method_type));
2446 if (buf == NULL)
2447 return NULL;
2448
2449 for (m = methods; m; m = m->next) {
2450 vendor = m->vendor;
2451 method = m->method;
2452 if (eap_allowed_phase2_type(vendor, method)) {
2453 if (vendor == EAP_VENDOR_IETF &&
2454 method == EAP_TYPE_TLS && config &&
2455 config->private_key2 == NULL)
2456 continue;
2457 buf[*count].vendor = vendor;
2458 buf[*count].method = method;
2459 (*count)++;
2460 }
2461 }
2462
2463 return buf;
2464 }
2465
2466
2467 /**
2468 * eap_set_fast_reauth - Update fast_reauth setting
2469 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2470 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
2471 */
eap_set_fast_reauth(struct eap_sm * sm,int enabled)2472 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
2473 {
2474 sm->fast_reauth = enabled;
2475 }
2476
2477
2478 /**
2479 * eap_set_workaround - Update EAP workarounds setting
2480 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2481 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
2482 */
eap_set_workaround(struct eap_sm * sm,unsigned int workaround)2483 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
2484 {
2485 sm->workaround = workaround;
2486 }
2487
2488
2489 /**
2490 * eap_get_config - Get current network configuration
2491 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2492 * Returns: Pointer to the current network configuration or %NULL if not found
2493 *
2494 * EAP peer methods should avoid using this function if they can use other
2495 * access functions, like eap_get_config_identity() and
2496 * eap_get_config_password(), that do not require direct access to
2497 * struct eap_peer_config.
2498 */
eap_get_config(struct eap_sm * sm)2499 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
2500 {
2501 return sm->eapol_cb->get_config(sm->eapol_ctx);
2502 }
2503
2504
2505 /**
2506 * eap_get_config_identity - Get identity from the network configuration
2507 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2508 * @len: Buffer for the length of the identity
2509 * Returns: Pointer to the identity or %NULL if not found
2510 */
eap_get_config_identity(struct eap_sm * sm,size_t * len)2511 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
2512 {
2513 struct eap_peer_config *config = eap_get_config(sm);
2514 if (config == NULL)
2515 return NULL;
2516 *len = config->identity_len;
2517 return config->identity;
2518 }
2519
2520
eap_get_ext_password(struct eap_sm * sm,struct eap_peer_config * config)2521 static int eap_get_ext_password(struct eap_sm *sm,
2522 struct eap_peer_config *config)
2523 {
2524 char *name;
2525
2526 if (config->password == NULL)
2527 return -1;
2528
2529 name = os_zalloc(config->password_len + 1);
2530 if (name == NULL)
2531 return -1;
2532 os_memcpy(name, config->password, config->password_len);
2533
2534 ext_password_free(sm->ext_pw_buf);
2535 sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
2536 os_free(name);
2537
2538 return sm->ext_pw_buf == NULL ? -1 : 0;
2539 }
2540
2541
2542 /**
2543 * eap_get_config_password - Get password from the network configuration
2544 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2545 * @len: Buffer for the length of the password
2546 * Returns: Pointer to the password or %NULL if not found
2547 */
eap_get_config_password(struct eap_sm * sm,size_t * len)2548 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
2549 {
2550 struct eap_peer_config *config = eap_get_config(sm);
2551 if (config == NULL)
2552 return NULL;
2553
2554 if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2555 if (eap_get_ext_password(sm, config) < 0)
2556 return NULL;
2557 *len = wpabuf_len(sm->ext_pw_buf);
2558 return wpabuf_head(sm->ext_pw_buf);
2559 }
2560
2561 *len = config->password_len;
2562 return config->password;
2563 }
2564
2565
2566 /**
2567 * eap_get_config_password2 - Get password from the network configuration
2568 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2569 * @len: Buffer for the length of the password
2570 * @hash: Buffer for returning whether the password is stored as a
2571 * NtPasswordHash instead of plaintext password; can be %NULL if this
2572 * information is not needed
2573 * Returns: Pointer to the password or %NULL if not found
2574 */
eap_get_config_password2(struct eap_sm * sm,size_t * len,int * hash)2575 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
2576 {
2577 struct eap_peer_config *config = eap_get_config(sm);
2578 if (config == NULL)
2579 return NULL;
2580
2581 if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2582 if (eap_get_ext_password(sm, config) < 0)
2583 return NULL;
2584 if (hash)
2585 *hash = 0;
2586 *len = wpabuf_len(sm->ext_pw_buf);
2587 return wpabuf_head(sm->ext_pw_buf);
2588 }
2589
2590 *len = config->password_len;
2591 if (hash)
2592 *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
2593 return config->password;
2594 }
2595
2596
2597 /**
2598 * eap_get_config_new_password - Get new password from network configuration
2599 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2600 * @len: Buffer for the length of the new password
2601 * Returns: Pointer to the new password or %NULL if not found
2602 */
eap_get_config_new_password(struct eap_sm * sm,size_t * len)2603 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
2604 {
2605 struct eap_peer_config *config = eap_get_config(sm);
2606 if (config == NULL)
2607 return NULL;
2608 *len = config->new_password_len;
2609 return config->new_password;
2610 }
2611
2612
2613 /**
2614 * eap_get_config_otp - Get one-time password from the network configuration
2615 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2616 * @len: Buffer for the length of the one-time password
2617 * Returns: Pointer to the one-time password or %NULL if not found
2618 */
eap_get_config_otp(struct eap_sm * sm,size_t * len)2619 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
2620 {
2621 struct eap_peer_config *config = eap_get_config(sm);
2622 if (config == NULL)
2623 return NULL;
2624 *len = config->otp_len;
2625 return config->otp;
2626 }
2627
2628
2629 /**
2630 * eap_clear_config_otp - Clear used one-time password
2631 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2632 *
2633 * This function clears a used one-time password (OTP) from the current network
2634 * configuration. This should be called when the OTP has been used and is not
2635 * needed anymore.
2636 */
eap_clear_config_otp(struct eap_sm * sm)2637 void eap_clear_config_otp(struct eap_sm *sm)
2638 {
2639 struct eap_peer_config *config = eap_get_config(sm);
2640 if (config == NULL)
2641 return;
2642 os_memset(config->otp, 0, config->otp_len);
2643 os_free(config->otp);
2644 config->otp = NULL;
2645 config->otp_len = 0;
2646 }
2647
2648
2649 /**
2650 * eap_get_config_phase1 - Get phase1 data from the network configuration
2651 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2652 * Returns: Pointer to the phase1 data or %NULL if not found
2653 */
eap_get_config_phase1(struct eap_sm * sm)2654 const char * eap_get_config_phase1(struct eap_sm *sm)
2655 {
2656 struct eap_peer_config *config = eap_get_config(sm);
2657 if (config == NULL)
2658 return NULL;
2659 return config->phase1;
2660 }
2661
2662
2663 /**
2664 * eap_get_config_phase2 - Get phase2 data from the network configuration
2665 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2666 * Returns: Pointer to the phase1 data or %NULL if not found
2667 */
eap_get_config_phase2(struct eap_sm * sm)2668 const char * eap_get_config_phase2(struct eap_sm *sm)
2669 {
2670 struct eap_peer_config *config = eap_get_config(sm);
2671 if (config == NULL)
2672 return NULL;
2673 return config->phase2;
2674 }
2675
2676
eap_get_config_fragment_size(struct eap_sm * sm)2677 int eap_get_config_fragment_size(struct eap_sm *sm)
2678 {
2679 struct eap_peer_config *config = eap_get_config(sm);
2680 if (config == NULL)
2681 return -1;
2682 return config->fragment_size;
2683 }
2684
2685
2686 /**
2687 * eap_key_available - Get key availability (eapKeyAvailable variable)
2688 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2689 * Returns: 1 if EAP keying material is available, 0 if not
2690 */
eap_key_available(struct eap_sm * sm)2691 int eap_key_available(struct eap_sm *sm)
2692 {
2693 return sm ? sm->eapKeyAvailable : 0;
2694 }
2695
2696
2697 /**
2698 * eap_notify_success - Notify EAP state machine about external success trigger
2699 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2700 *
2701 * This function is called when external event, e.g., successful completion of
2702 * WPA-PSK key handshake, is indicating that EAP state machine should move to
2703 * success state. This is mainly used with security modes that do not use EAP
2704 * state machine (e.g., WPA-PSK).
2705 */
eap_notify_success(struct eap_sm * sm)2706 void eap_notify_success(struct eap_sm *sm)
2707 {
2708 if (sm) {
2709 sm->decision = DECISION_COND_SUCC;
2710 sm->EAP_state = EAP_SUCCESS;
2711 }
2712 }
2713
2714
2715 /**
2716 * eap_notify_lower_layer_success - Notification of lower layer success
2717 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2718 *
2719 * Notify EAP state machines that a lower layer has detected a successful
2720 * authentication. This is used to recover from dropped EAP-Success messages.
2721 */
eap_notify_lower_layer_success(struct eap_sm * sm)2722 void eap_notify_lower_layer_success(struct eap_sm *sm)
2723 {
2724 if (sm == NULL)
2725 return;
2726
2727 if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
2728 sm->decision == DECISION_FAIL ||
2729 (sm->methodState != METHOD_MAY_CONT &&
2730 sm->methodState != METHOD_DONE))
2731 return;
2732
2733 if (sm->eapKeyData != NULL)
2734 sm->eapKeyAvailable = TRUE;
2735 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
2736 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
2737 "EAP authentication completed successfully (based on lower "
2738 "layer success)");
2739 }
2740
2741
2742 /**
2743 * eap_get_eapSessionId - Get Session-Id from EAP state machine
2744 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2745 * @len: Pointer to variable that will be set to number of bytes in the session
2746 * Returns: Pointer to the EAP Session-Id or %NULL on failure
2747 *
2748 * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
2749 * only after a successful authentication. EAP state machine continues to manage
2750 * the Session-Id and the caller must not change or free the returned data.
2751 */
eap_get_eapSessionId(struct eap_sm * sm,size_t * len)2752 const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
2753 {
2754 if (sm == NULL || sm->eapSessionId == NULL) {
2755 *len = 0;
2756 return NULL;
2757 }
2758
2759 *len = sm->eapSessionIdLen;
2760 return sm->eapSessionId;
2761 }
2762
2763
2764 /**
2765 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
2766 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2767 * @len: Pointer to variable that will be set to number of bytes in the key
2768 * Returns: Pointer to the EAP keying data or %NULL on failure
2769 *
2770 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
2771 * key is available only after a successful authentication. EAP state machine
2772 * continues to manage the key data and the caller must not change or free the
2773 * returned data.
2774 */
eap_get_eapKeyData(struct eap_sm * sm,size_t * len)2775 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
2776 {
2777 if (sm == NULL || sm->eapKeyData == NULL) {
2778 *len = 0;
2779 return NULL;
2780 }
2781
2782 *len = sm->eapKeyDataLen;
2783 return sm->eapKeyData;
2784 }
2785
2786
2787 /**
2788 * eap_get_eapKeyData - Get EAP response data
2789 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2790 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
2791 *
2792 * Fetch EAP response (eapRespData) from the EAP state machine. This data is
2793 * available when EAP state machine has processed an incoming EAP request. The
2794 * EAP state machine does not maintain a reference to the response after this
2795 * function is called and the caller is responsible for freeing the data.
2796 */
eap_get_eapRespData(struct eap_sm * sm)2797 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
2798 {
2799 struct wpabuf *resp;
2800
2801 if (sm == NULL || sm->eapRespData == NULL)
2802 return NULL;
2803
2804 resp = sm->eapRespData;
2805 sm->eapRespData = NULL;
2806
2807 return resp;
2808 }
2809
2810
2811 /**
2812 * eap_sm_register_scard_ctx - Notification of smart card context
2813 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2814 * @ctx: Context data for smart card operations
2815 *
2816 * Notify EAP state machines of context data for smart card operations. This
2817 * context data will be used as a parameter for scard_*() functions.
2818 */
eap_register_scard_ctx(struct eap_sm * sm,void * ctx)2819 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
2820 {
2821 if (sm)
2822 sm->scard_ctx = ctx;
2823 }
2824
2825
2826 /**
2827 * eap_set_config_blob - Set or add a named configuration blob
2828 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2829 * @blob: New value for the blob
2830 *
2831 * Adds a new configuration blob or replaces the current value of an existing
2832 * blob.
2833 */
eap_set_config_blob(struct eap_sm * sm,struct wpa_config_blob * blob)2834 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
2835 {
2836 #ifndef CONFIG_NO_CONFIG_BLOBS
2837 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
2838 #endif /* CONFIG_NO_CONFIG_BLOBS */
2839 }
2840
2841
2842 /**
2843 * eap_get_config_blob - Get a named configuration blob
2844 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2845 * @name: Name of the blob
2846 * Returns: Pointer to blob data or %NULL if not found
2847 */
eap_get_config_blob(struct eap_sm * sm,const char * name)2848 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2849 const char *name)
2850 {
2851 #ifndef CONFIG_NO_CONFIG_BLOBS
2852 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2853 #else /* CONFIG_NO_CONFIG_BLOBS */
2854 return NULL;
2855 #endif /* CONFIG_NO_CONFIG_BLOBS */
2856 }
2857
2858
2859 /**
2860 * eap_set_force_disabled - Set force_disabled flag
2861 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2862 * @disabled: 1 = EAP disabled, 0 = EAP enabled
2863 *
2864 * This function is used to force EAP state machine to be disabled when it is
2865 * not in use (e.g., with WPA-PSK or plaintext connections).
2866 */
eap_set_force_disabled(struct eap_sm * sm,int disabled)2867 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2868 {
2869 sm->force_disabled = disabled;
2870 }
2871
2872
2873 /**
2874 * eap_set_external_sim - Set external_sim flag
2875 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2876 * @external_sim: Whether external SIM/USIM processing is used
2877 */
eap_set_external_sim(struct eap_sm * sm,int external_sim)2878 void eap_set_external_sim(struct eap_sm *sm, int external_sim)
2879 {
2880 sm->external_sim = external_sim;
2881 }
2882
2883
2884 /**
2885 * eap_notify_pending - Notify that EAP method is ready to re-process a request
2886 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2887 *
2888 * An EAP method can perform a pending operation (e.g., to get a response from
2889 * an external process). Once the response is available, this function can be
2890 * used to request EAPOL state machine to retry delivering the previously
2891 * received (and still unanswered) EAP request to EAP state machine.
2892 */
eap_notify_pending(struct eap_sm * sm)2893 void eap_notify_pending(struct eap_sm *sm)
2894 {
2895 sm->eapol_cb->notify_pending(sm->eapol_ctx);
2896 }
2897
2898
2899 /**
2900 * eap_invalidate_cached_session - Mark cached session data invalid
2901 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2902 */
eap_invalidate_cached_session(struct eap_sm * sm)2903 void eap_invalidate_cached_session(struct eap_sm *sm)
2904 {
2905 if (sm)
2906 eap_deinit_prev_method(sm, "invalidate");
2907 }
2908
2909
eap_is_wps_pbc_enrollee(struct eap_peer_config * conf)2910 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2911 {
2912 if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2913 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2914 return 0; /* Not a WPS Enrollee */
2915
2916 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2917 return 0; /* Not using PBC */
2918
2919 return 1;
2920 }
2921
2922
eap_is_wps_pin_enrollee(struct eap_peer_config * conf)2923 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2924 {
2925 if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2926 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2927 return 0; /* Not a WPS Enrollee */
2928
2929 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2930 return 0; /* Not using PIN */
2931
2932 return 1;
2933 }
2934
2935
eap_sm_set_ext_pw_ctx(struct eap_sm * sm,struct ext_password_data * ext)2936 void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
2937 {
2938 ext_password_free(sm->ext_pw_buf);
2939 sm->ext_pw_buf = NULL;
2940 sm->ext_pw = ext;
2941 }
2942
2943
2944 /**
2945 * eap_set_anon_id - Set or add anonymous identity
2946 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2947 * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
2948 * @len: Length of anonymous identity in octets
2949 */
eap_set_anon_id(struct eap_sm * sm,const u8 * id,size_t len)2950 void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
2951 {
2952 if (sm->eapol_cb->set_anon_id)
2953 sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
2954 }
2955
2956
eap_peer_was_failure_expected(struct eap_sm * sm)2957 int eap_peer_was_failure_expected(struct eap_sm *sm)
2958 {
2959 return sm->expected_failure;
2960 }
2961