1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_ARM64
6
7 #include "src/ast/scopes.h"
8 #include "src/code-factory.h"
9 #include "src/code-stubs.h"
10 #include "src/codegen.h"
11 #include "src/debug/debug.h"
12 #include "src/full-codegen/full-codegen.h"
13 #include "src/ic/ic.h"
14 #include "src/parsing/parser.h"
15
16 #include "src/arm64/code-stubs-arm64.h"
17 #include "src/arm64/frames-arm64.h"
18 #include "src/arm64/macro-assembler-arm64.h"
19
20 namespace v8 {
21 namespace internal {
22
23 #define __ ACCESS_MASM(masm_)
24
25 class JumpPatchSite BASE_EMBEDDED {
26 public:
JumpPatchSite(MacroAssembler * masm)27 explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm), reg_(NoReg) {
28 #ifdef DEBUG
29 info_emitted_ = false;
30 #endif
31 }
32
~JumpPatchSite()33 ~JumpPatchSite() {
34 if (patch_site_.is_bound()) {
35 DCHECK(info_emitted_);
36 } else {
37 DCHECK(reg_.IsNone());
38 }
39 }
40
EmitJumpIfNotSmi(Register reg,Label * target)41 void EmitJumpIfNotSmi(Register reg, Label* target) {
42 // This code will be patched by PatchInlinedSmiCode, in ic-arm64.cc.
43 InstructionAccurateScope scope(masm_, 1);
44 DCHECK(!info_emitted_);
45 DCHECK(reg.Is64Bits());
46 DCHECK(!reg.Is(csp));
47 reg_ = reg;
48 __ bind(&patch_site_);
49 __ tbz(xzr, 0, target); // Always taken before patched.
50 }
51
EmitJumpIfSmi(Register reg,Label * target)52 void EmitJumpIfSmi(Register reg, Label* target) {
53 // This code will be patched by PatchInlinedSmiCode, in ic-arm64.cc.
54 InstructionAccurateScope scope(masm_, 1);
55 DCHECK(!info_emitted_);
56 DCHECK(reg.Is64Bits());
57 DCHECK(!reg.Is(csp));
58 reg_ = reg;
59 __ bind(&patch_site_);
60 __ tbnz(xzr, 0, target); // Never taken before patched.
61 }
62
EmitJumpIfEitherNotSmi(Register reg1,Register reg2,Label * target)63 void EmitJumpIfEitherNotSmi(Register reg1, Register reg2, Label* target) {
64 UseScratchRegisterScope temps(masm_);
65 Register temp = temps.AcquireX();
66 __ Orr(temp, reg1, reg2);
67 EmitJumpIfNotSmi(temp, target);
68 }
69
EmitPatchInfo()70 void EmitPatchInfo() {
71 Assembler::BlockPoolsScope scope(masm_);
72 InlineSmiCheckInfo::Emit(masm_, reg_, &patch_site_);
73 #ifdef DEBUG
74 info_emitted_ = true;
75 #endif
76 }
77
78 private:
79 MacroAssembler* masm_;
80 Label patch_site_;
81 Register reg_;
82 #ifdef DEBUG
83 bool info_emitted_;
84 #endif
85 };
86
87
88 // Generate code for a JS function. On entry to the function the receiver
89 // and arguments have been pushed on the stack left to right. The actual
90 // argument count matches the formal parameter count expected by the
91 // function.
92 //
93 // The live registers are:
94 // - x1: the JS function object being called (i.e. ourselves).
95 // - x3: the new target value
96 // - cp: our context.
97 // - fp: our caller's frame pointer.
98 // - jssp: stack pointer.
99 // - lr: return address.
100 //
101 // The function builds a JS frame. See JavaScriptFrameConstants in
102 // frames-arm.h for its layout.
Generate()103 void FullCodeGenerator::Generate() {
104 CompilationInfo* info = info_;
105 profiling_counter_ = isolate()->factory()->NewCell(
106 Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
107 SetFunctionPosition(literal());
108 Comment cmnt(masm_, "[ Function compiled by full code generator");
109
110 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
111
112 #ifdef DEBUG
113 if (strlen(FLAG_stop_at) > 0 &&
114 info->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
115 __ Debug("stop-at", __LINE__, BREAK);
116 }
117 #endif
118
119 if (FLAG_debug_code && info->ExpectsJSReceiverAsReceiver()) {
120 int receiver_offset = info->scope()->num_parameters() * kXRegSize;
121 __ Peek(x10, receiver_offset);
122 __ AssertNotSmi(x10);
123 __ CompareObjectType(x10, x10, x11, FIRST_JS_RECEIVER_TYPE);
124 __ Assert(ge, kSloppyFunctionExpectsJSReceiverReceiver);
125 }
126
127 // Open a frame scope to indicate that there is a frame on the stack.
128 // The MANUAL indicates that the scope shouldn't actually generate code
129 // to set up the frame because we do it manually below.
130 FrameScope frame_scope(masm_, StackFrame::MANUAL);
131
132 // This call emits the following sequence in a way that can be patched for
133 // code ageing support:
134 // Push(lr, fp, cp, x1);
135 // Add(fp, jssp, 2 * kPointerSize);
136 info->set_prologue_offset(masm_->pc_offset());
137 __ Prologue(info->GeneratePreagedPrologue());
138
139 // Reserve space on the stack for locals.
140 { Comment cmnt(masm_, "[ Allocate locals");
141 int locals_count = info->scope()->num_stack_slots();
142 // Generators allocate locals, if any, in context slots.
143 DCHECK(!IsGeneratorFunction(info->literal()->kind()) || locals_count == 0);
144
145 if (locals_count > 0) {
146 if (locals_count >= 128) {
147 Label ok;
148 DCHECK(jssp.Is(__ StackPointer()));
149 __ Sub(x10, jssp, locals_count * kPointerSize);
150 __ CompareRoot(x10, Heap::kRealStackLimitRootIndex);
151 __ B(hs, &ok);
152 __ CallRuntime(Runtime::kThrowStackOverflow);
153 __ Bind(&ok);
154 }
155 __ LoadRoot(x10, Heap::kUndefinedValueRootIndex);
156 if (FLAG_optimize_for_size) {
157 __ PushMultipleTimes(x10 , locals_count);
158 } else {
159 const int kMaxPushes = 32;
160 if (locals_count >= kMaxPushes) {
161 int loop_iterations = locals_count / kMaxPushes;
162 __ Mov(x2, loop_iterations);
163 Label loop_header;
164 __ Bind(&loop_header);
165 // Do pushes.
166 __ PushMultipleTimes(x10 , kMaxPushes);
167 __ Subs(x2, x2, 1);
168 __ B(ne, &loop_header);
169 }
170 int remaining = locals_count % kMaxPushes;
171 // Emit the remaining pushes.
172 __ PushMultipleTimes(x10 , remaining);
173 }
174 }
175 }
176
177 bool function_in_register_x1 = true;
178
179 if (info->scope()->num_heap_slots() > 0) {
180 // Argument to NewContext is the function, which is still in x1.
181 Comment cmnt(masm_, "[ Allocate context");
182 bool need_write_barrier = true;
183 int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
184 if (info->scope()->is_script_scope()) {
185 __ Mov(x10, Operand(info->scope()->GetScopeInfo(info->isolate())));
186 __ Push(x1, x10);
187 __ CallRuntime(Runtime::kNewScriptContext);
188 PrepareForBailoutForId(BailoutId::ScriptContext(), TOS_REG);
189 // The new target value is not used, clobbering is safe.
190 DCHECK_NULL(info->scope()->new_target_var());
191 } else {
192 if (info->scope()->new_target_var() != nullptr) {
193 __ Push(x3); // Preserve new target.
194 }
195 if (slots <= FastNewContextStub::kMaximumSlots) {
196 FastNewContextStub stub(isolate(), slots);
197 __ CallStub(&stub);
198 // Result of FastNewContextStub is always in new space.
199 need_write_barrier = false;
200 } else {
201 __ Push(x1);
202 __ CallRuntime(Runtime::kNewFunctionContext);
203 }
204 if (info->scope()->new_target_var() != nullptr) {
205 __ Pop(x3); // Restore new target.
206 }
207 }
208 function_in_register_x1 = false;
209 // Context is returned in x0. It replaces the context passed to us.
210 // It's saved in the stack and kept live in cp.
211 __ Mov(cp, x0);
212 __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
213 // Copy any necessary parameters into the context.
214 int num_parameters = info->scope()->num_parameters();
215 int first_parameter = info->scope()->has_this_declaration() ? -1 : 0;
216 for (int i = first_parameter; i < num_parameters; i++) {
217 Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
218 if (var->IsContextSlot()) {
219 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
220 (num_parameters - 1 - i) * kPointerSize;
221 // Load parameter from stack.
222 __ Ldr(x10, MemOperand(fp, parameter_offset));
223 // Store it in the context.
224 MemOperand target = ContextMemOperand(cp, var->index());
225 __ Str(x10, target);
226
227 // Update the write barrier.
228 if (need_write_barrier) {
229 __ RecordWriteContextSlot(cp, static_cast<int>(target.offset()), x10,
230 x11, kLRHasBeenSaved, kDontSaveFPRegs);
231 } else if (FLAG_debug_code) {
232 Label done;
233 __ JumpIfInNewSpace(cp, &done);
234 __ Abort(kExpectedNewSpaceObject);
235 __ bind(&done);
236 }
237 }
238 }
239 }
240
241 // Register holding this function and new target are both trashed in case we
242 // bailout here. But since that can happen only when new target is not used
243 // and we allocate a context, the value of |function_in_register| is correct.
244 PrepareForBailoutForId(BailoutId::FunctionContext(), NO_REGISTERS);
245
246 // Possibly set up a local binding to the this function which is used in
247 // derived constructors with super calls.
248 Variable* this_function_var = scope()->this_function_var();
249 if (this_function_var != nullptr) {
250 Comment cmnt(masm_, "[ This function");
251 if (!function_in_register_x1) {
252 __ Ldr(x1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
253 // The write barrier clobbers register again, keep it marked as such.
254 }
255 SetVar(this_function_var, x1, x0, x2);
256 }
257
258 // Possibly set up a local binding to the new target value.
259 Variable* new_target_var = scope()->new_target_var();
260 if (new_target_var != nullptr) {
261 Comment cmnt(masm_, "[ new.target");
262 SetVar(new_target_var, x3, x0, x2);
263 }
264
265 // Possibly allocate RestParameters
266 int rest_index;
267 Variable* rest_param = scope()->rest_parameter(&rest_index);
268 if (rest_param) {
269 Comment cmnt(masm_, "[ Allocate rest parameter array");
270
271 int num_parameters = info->scope()->num_parameters();
272 int offset = num_parameters * kPointerSize;
273 __ Mov(RestParamAccessDescriptor::parameter_count(),
274 Smi::FromInt(num_parameters));
275 __ Add(RestParamAccessDescriptor::parameter_pointer(), fp,
276 StandardFrameConstants::kCallerSPOffset + offset);
277 __ Mov(RestParamAccessDescriptor::rest_parameter_index(),
278 Smi::FromInt(rest_index));
279
280 function_in_register_x1 = false;
281
282 RestParamAccessStub stub(isolate());
283 __ CallStub(&stub);
284
285 SetVar(rest_param, x0, x1, x2);
286 }
287
288 Variable* arguments = scope()->arguments();
289 if (arguments != NULL) {
290 // Function uses arguments object.
291 Comment cmnt(masm_, "[ Allocate arguments object");
292 DCHECK(x1.is(ArgumentsAccessNewDescriptor::function()));
293 if (!function_in_register_x1) {
294 // Load this again, if it's used by the local context below.
295 __ Ldr(x1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
296 }
297 // Receiver is just before the parameters on the caller's stack.
298 int num_parameters = info->scope()->num_parameters();
299 int offset = num_parameters * kPointerSize;
300 __ Mov(ArgumentsAccessNewDescriptor::parameter_count(),
301 Smi::FromInt(num_parameters));
302 __ Add(ArgumentsAccessNewDescriptor::parameter_pointer(), fp,
303 StandardFrameConstants::kCallerSPOffset + offset);
304
305 // Arguments to ArgumentsAccessStub:
306 // function, parameter pointer, parameter count.
307 // The stub will rewrite parameter pointer and parameter count if the
308 // previous stack frame was an arguments adapter frame.
309 bool is_unmapped = is_strict(language_mode()) || !has_simple_parameters();
310 ArgumentsAccessStub::Type type = ArgumentsAccessStub::ComputeType(
311 is_unmapped, literal()->has_duplicate_parameters());
312 ArgumentsAccessStub stub(isolate(), type);
313 __ CallStub(&stub);
314
315 SetVar(arguments, x0, x1, x2);
316 }
317
318 if (FLAG_trace) {
319 __ CallRuntime(Runtime::kTraceEnter);
320 }
321
322 // Visit the declarations and body unless there is an illegal
323 // redeclaration.
324 if (scope()->HasIllegalRedeclaration()) {
325 Comment cmnt(masm_, "[ Declarations");
326 VisitForEffect(scope()->GetIllegalRedeclaration());
327
328 } else {
329 PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
330 { Comment cmnt(masm_, "[ Declarations");
331 VisitDeclarations(scope()->declarations());
332 }
333
334 // Assert that the declarations do not use ICs. Otherwise the debugger
335 // won't be able to redirect a PC at an IC to the correct IC in newly
336 // recompiled code.
337 DCHECK_EQ(0, ic_total_count_);
338
339 {
340 Comment cmnt(masm_, "[ Stack check");
341 PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
342 Label ok;
343 DCHECK(jssp.Is(__ StackPointer()));
344 __ CompareRoot(jssp, Heap::kStackLimitRootIndex);
345 __ B(hs, &ok);
346 PredictableCodeSizeScope predictable(masm_,
347 Assembler::kCallSizeWithRelocation);
348 __ Call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
349 __ Bind(&ok);
350 }
351
352 {
353 Comment cmnt(masm_, "[ Body");
354 DCHECK(loop_depth() == 0);
355 VisitStatements(literal()->body());
356 DCHECK(loop_depth() == 0);
357 }
358 }
359
360 // Always emit a 'return undefined' in case control fell off the end of
361 // the body.
362 { Comment cmnt(masm_, "[ return <undefined>;");
363 __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
364 }
365 EmitReturnSequence();
366
367 // Force emission of the pools, so they don't get emitted in the middle
368 // of the back edge table.
369 masm()->CheckVeneerPool(true, false);
370 masm()->CheckConstPool(true, false);
371 }
372
373
ClearAccumulator()374 void FullCodeGenerator::ClearAccumulator() {
375 __ Mov(x0, Smi::FromInt(0));
376 }
377
378
EmitProfilingCounterDecrement(int delta)379 void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
380 __ Mov(x2, Operand(profiling_counter_));
381 __ Ldr(x3, FieldMemOperand(x2, Cell::kValueOffset));
382 __ Subs(x3, x3, Smi::FromInt(delta));
383 __ Str(x3, FieldMemOperand(x2, Cell::kValueOffset));
384 }
385
386
EmitProfilingCounterReset()387 void FullCodeGenerator::EmitProfilingCounterReset() {
388 int reset_value = FLAG_interrupt_budget;
389 __ Mov(x2, Operand(profiling_counter_));
390 __ Mov(x3, Smi::FromInt(reset_value));
391 __ Str(x3, FieldMemOperand(x2, Cell::kValueOffset));
392 }
393
394
EmitBackEdgeBookkeeping(IterationStatement * stmt,Label * back_edge_target)395 void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
396 Label* back_edge_target) {
397 DCHECK(jssp.Is(__ StackPointer()));
398 Comment cmnt(masm_, "[ Back edge bookkeeping");
399 // Block literal pools whilst emitting back edge code.
400 Assembler::BlockPoolsScope block_const_pool(masm_);
401 Label ok;
402
403 DCHECK(back_edge_target->is_bound());
404 // We want to do a round rather than a floor of distance/kCodeSizeMultiplier
405 // to reduce the absolute error due to the integer division. To do that,
406 // we add kCodeSizeMultiplier/2 to the distance (equivalent to adding 0.5 to
407 // the result).
408 int distance =
409 static_cast<int>(masm_->SizeOfCodeGeneratedSince(back_edge_target) +
410 kCodeSizeMultiplier / 2);
411 int weight = Min(kMaxBackEdgeWeight,
412 Max(1, distance / kCodeSizeMultiplier));
413 EmitProfilingCounterDecrement(weight);
414 __ B(pl, &ok);
415 __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
416
417 // Record a mapping of this PC offset to the OSR id. This is used to find
418 // the AST id from the unoptimized code in order to use it as a key into
419 // the deoptimization input data found in the optimized code.
420 RecordBackEdge(stmt->OsrEntryId());
421
422 EmitProfilingCounterReset();
423
424 __ Bind(&ok);
425 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
426 // Record a mapping of the OSR id to this PC. This is used if the OSR
427 // entry becomes the target of a bailout. We don't expect it to be, but
428 // we want it to work if it is.
429 PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
430 }
431
432
EmitReturnSequence()433 void FullCodeGenerator::EmitReturnSequence() {
434 Comment cmnt(masm_, "[ Return sequence");
435
436 if (return_label_.is_bound()) {
437 __ B(&return_label_);
438
439 } else {
440 __ Bind(&return_label_);
441 if (FLAG_trace) {
442 // Push the return value on the stack as the parameter.
443 // Runtime::TraceExit returns its parameter in x0.
444 __ Push(result_register());
445 __ CallRuntime(Runtime::kTraceExit);
446 DCHECK(x0.Is(result_register()));
447 }
448 // Pretend that the exit is a backwards jump to the entry.
449 int weight = 1;
450 if (info_->ShouldSelfOptimize()) {
451 weight = FLAG_interrupt_budget / FLAG_self_opt_count;
452 } else {
453 int distance = masm_->pc_offset() + kCodeSizeMultiplier / 2;
454 weight = Min(kMaxBackEdgeWeight,
455 Max(1, distance / kCodeSizeMultiplier));
456 }
457 EmitProfilingCounterDecrement(weight);
458 Label ok;
459 __ B(pl, &ok);
460 __ Push(x0);
461 __ Call(isolate()->builtins()->InterruptCheck(),
462 RelocInfo::CODE_TARGET);
463 __ Pop(x0);
464 EmitProfilingCounterReset();
465 __ Bind(&ok);
466
467 SetReturnPosition(literal());
468 const Register& current_sp = __ StackPointer();
469 // Nothing ensures 16 bytes alignment here.
470 DCHECK(!current_sp.Is(csp));
471 __ Mov(current_sp, fp);
472 __ Ldp(fp, lr, MemOperand(current_sp, 2 * kXRegSize, PostIndex));
473 // Drop the arguments and receiver and return.
474 // TODO(all): This implementation is overkill as it supports 2**31+1
475 // arguments, consider how to improve it without creating a security
476 // hole.
477 __ ldr_pcrel(ip0, (3 * kInstructionSize) >> kLoadLiteralScaleLog2);
478 __ Add(current_sp, current_sp, ip0);
479 __ Ret();
480 int32_t arg_count = info_->scope()->num_parameters() + 1;
481 __ dc64(kXRegSize * arg_count);
482 }
483 }
484
485
Plug(Variable * var) const486 void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
487 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
488 codegen()->GetVar(result_register(), var);
489 __ Push(result_register());
490 }
491
492
Plug(Heap::RootListIndex index) const493 void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
494 // Root values have no side effects.
495 }
496
497
Plug(Heap::RootListIndex index) const498 void FullCodeGenerator::AccumulatorValueContext::Plug(
499 Heap::RootListIndex index) const {
500 __ LoadRoot(result_register(), index);
501 }
502
503
Plug(Heap::RootListIndex index) const504 void FullCodeGenerator::StackValueContext::Plug(
505 Heap::RootListIndex index) const {
506 __ LoadRoot(result_register(), index);
507 __ Push(result_register());
508 }
509
510
Plug(Heap::RootListIndex index) const511 void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
512 codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
513 false_label_);
514 if (index == Heap::kUndefinedValueRootIndex ||
515 index == Heap::kNullValueRootIndex ||
516 index == Heap::kFalseValueRootIndex) {
517 if (false_label_ != fall_through_) __ B(false_label_);
518 } else if (index == Heap::kTrueValueRootIndex) {
519 if (true_label_ != fall_through_) __ B(true_label_);
520 } else {
521 __ LoadRoot(result_register(), index);
522 codegen()->DoTest(this);
523 }
524 }
525
526
Plug(Handle<Object> lit) const527 void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
528 }
529
530
Plug(Handle<Object> lit) const531 void FullCodeGenerator::AccumulatorValueContext::Plug(
532 Handle<Object> lit) const {
533 __ Mov(result_register(), Operand(lit));
534 }
535
536
Plug(Handle<Object> lit) const537 void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
538 // Immediates cannot be pushed directly.
539 __ Mov(result_register(), Operand(lit));
540 __ Push(result_register());
541 }
542
543
Plug(Handle<Object> lit) const544 void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
545 codegen()->PrepareForBailoutBeforeSplit(condition(),
546 true,
547 true_label_,
548 false_label_);
549 DCHECK(!lit->IsUndetectableObject()); // There are no undetectable literals.
550 if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
551 if (false_label_ != fall_through_) __ B(false_label_);
552 } else if (lit->IsTrue() || lit->IsJSObject()) {
553 if (true_label_ != fall_through_) __ B(true_label_);
554 } else if (lit->IsString()) {
555 if (String::cast(*lit)->length() == 0) {
556 if (false_label_ != fall_through_) __ B(false_label_);
557 } else {
558 if (true_label_ != fall_through_) __ B(true_label_);
559 }
560 } else if (lit->IsSmi()) {
561 if (Smi::cast(*lit)->value() == 0) {
562 if (false_label_ != fall_through_) __ B(false_label_);
563 } else {
564 if (true_label_ != fall_through_) __ B(true_label_);
565 }
566 } else {
567 // For simplicity we always test the accumulator register.
568 __ Mov(result_register(), Operand(lit));
569 codegen()->DoTest(this);
570 }
571 }
572
573
DropAndPlug(int count,Register reg) const574 void FullCodeGenerator::EffectContext::DropAndPlug(int count,
575 Register reg) const {
576 DCHECK(count > 0);
577 __ Drop(count);
578 }
579
580
DropAndPlug(int count,Register reg) const581 void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
582 int count,
583 Register reg) const {
584 DCHECK(count > 0);
585 __ Drop(count);
586 __ Move(result_register(), reg);
587 }
588
589
DropAndPlug(int count,Register reg) const590 void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
591 Register reg) const {
592 DCHECK(count > 0);
593 if (count > 1) __ Drop(count - 1);
594 __ Poke(reg, 0);
595 }
596
597
DropAndPlug(int count,Register reg) const598 void FullCodeGenerator::TestContext::DropAndPlug(int count,
599 Register reg) const {
600 DCHECK(count > 0);
601 // For simplicity we always test the accumulator register.
602 __ Drop(count);
603 __ Mov(result_register(), reg);
604 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
605 codegen()->DoTest(this);
606 }
607
608
Plug(Label * materialize_true,Label * materialize_false) const609 void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
610 Label* materialize_false) const {
611 DCHECK(materialize_true == materialize_false);
612 __ Bind(materialize_true);
613 }
614
615
Plug(Label * materialize_true,Label * materialize_false) const616 void FullCodeGenerator::AccumulatorValueContext::Plug(
617 Label* materialize_true,
618 Label* materialize_false) const {
619 Label done;
620 __ Bind(materialize_true);
621 __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
622 __ B(&done);
623 __ Bind(materialize_false);
624 __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
625 __ Bind(&done);
626 }
627
628
Plug(Label * materialize_true,Label * materialize_false) const629 void FullCodeGenerator::StackValueContext::Plug(
630 Label* materialize_true,
631 Label* materialize_false) const {
632 Label done;
633 __ Bind(materialize_true);
634 __ LoadRoot(x10, Heap::kTrueValueRootIndex);
635 __ B(&done);
636 __ Bind(materialize_false);
637 __ LoadRoot(x10, Heap::kFalseValueRootIndex);
638 __ Bind(&done);
639 __ Push(x10);
640 }
641
642
Plug(Label * materialize_true,Label * materialize_false) const643 void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
644 Label* materialize_false) const {
645 DCHECK(materialize_true == true_label_);
646 DCHECK(materialize_false == false_label_);
647 }
648
649
Plug(bool flag) const650 void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
651 Heap::RootListIndex value_root_index =
652 flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
653 __ LoadRoot(result_register(), value_root_index);
654 }
655
656
Plug(bool flag) const657 void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
658 Heap::RootListIndex value_root_index =
659 flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
660 __ LoadRoot(x10, value_root_index);
661 __ Push(x10);
662 }
663
664
Plug(bool flag) const665 void FullCodeGenerator::TestContext::Plug(bool flag) const {
666 codegen()->PrepareForBailoutBeforeSplit(condition(),
667 true,
668 true_label_,
669 false_label_);
670 if (flag) {
671 if (true_label_ != fall_through_) {
672 __ B(true_label_);
673 }
674 } else {
675 if (false_label_ != fall_through_) {
676 __ B(false_label_);
677 }
678 }
679 }
680
681
DoTest(Expression * condition,Label * if_true,Label * if_false,Label * fall_through)682 void FullCodeGenerator::DoTest(Expression* condition,
683 Label* if_true,
684 Label* if_false,
685 Label* fall_through) {
686 Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
687 CallIC(ic, condition->test_id());
688 __ CompareRoot(result_register(), Heap::kTrueValueRootIndex);
689 Split(eq, if_true, if_false, fall_through);
690 }
691
692
693 // If (cond), branch to if_true.
694 // If (!cond), branch to if_false.
695 // fall_through is used as an optimization in cases where only one branch
696 // instruction is necessary.
Split(Condition cond,Label * if_true,Label * if_false,Label * fall_through)697 void FullCodeGenerator::Split(Condition cond,
698 Label* if_true,
699 Label* if_false,
700 Label* fall_through) {
701 if (if_false == fall_through) {
702 __ B(cond, if_true);
703 } else if (if_true == fall_through) {
704 DCHECK(if_false != fall_through);
705 __ B(NegateCondition(cond), if_false);
706 } else {
707 __ B(cond, if_true);
708 __ B(if_false);
709 }
710 }
711
712
StackOperand(Variable * var)713 MemOperand FullCodeGenerator::StackOperand(Variable* var) {
714 // Offset is negative because higher indexes are at lower addresses.
715 int offset = -var->index() * kXRegSize;
716 // Adjust by a (parameter or local) base offset.
717 if (var->IsParameter()) {
718 offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
719 } else {
720 offset += JavaScriptFrameConstants::kLocal0Offset;
721 }
722 return MemOperand(fp, offset);
723 }
724
725
VarOperand(Variable * var,Register scratch)726 MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
727 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
728 if (var->IsContextSlot()) {
729 int context_chain_length = scope()->ContextChainLength(var->scope());
730 __ LoadContext(scratch, context_chain_length);
731 return ContextMemOperand(scratch, var->index());
732 } else {
733 return StackOperand(var);
734 }
735 }
736
737
GetVar(Register dest,Variable * var)738 void FullCodeGenerator::GetVar(Register dest, Variable* var) {
739 // Use destination as scratch.
740 MemOperand location = VarOperand(var, dest);
741 __ Ldr(dest, location);
742 }
743
744
SetVar(Variable * var,Register src,Register scratch0,Register scratch1)745 void FullCodeGenerator::SetVar(Variable* var,
746 Register src,
747 Register scratch0,
748 Register scratch1) {
749 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
750 DCHECK(!AreAliased(src, scratch0, scratch1));
751 MemOperand location = VarOperand(var, scratch0);
752 __ Str(src, location);
753
754 // Emit the write barrier code if the location is in the heap.
755 if (var->IsContextSlot()) {
756 // scratch0 contains the correct context.
757 __ RecordWriteContextSlot(scratch0, static_cast<int>(location.offset()),
758 src, scratch1, kLRHasBeenSaved, kDontSaveFPRegs);
759 }
760 }
761
762
PrepareForBailoutBeforeSplit(Expression * expr,bool should_normalize,Label * if_true,Label * if_false)763 void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
764 bool should_normalize,
765 Label* if_true,
766 Label* if_false) {
767 // Only prepare for bailouts before splits if we're in a test
768 // context. Otherwise, we let the Visit function deal with the
769 // preparation to avoid preparing with the same AST id twice.
770 if (!context()->IsTest()) return;
771
772 // TODO(all): Investigate to see if there is something to work on here.
773 Label skip;
774 if (should_normalize) {
775 __ B(&skip);
776 }
777 PrepareForBailout(expr, TOS_REG);
778 if (should_normalize) {
779 __ CompareRoot(x0, Heap::kTrueValueRootIndex);
780 Split(eq, if_true, if_false, NULL);
781 __ Bind(&skip);
782 }
783 }
784
785
EmitDebugCheckDeclarationContext(Variable * variable)786 void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
787 // The variable in the declaration always resides in the current function
788 // context.
789 DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
790 if (generate_debug_code_) {
791 // Check that we're not inside a with or catch context.
792 __ Ldr(x1, FieldMemOperand(cp, HeapObject::kMapOffset));
793 __ CompareRoot(x1, Heap::kWithContextMapRootIndex);
794 __ Check(ne, kDeclarationInWithContext);
795 __ CompareRoot(x1, Heap::kCatchContextMapRootIndex);
796 __ Check(ne, kDeclarationInCatchContext);
797 }
798 }
799
800
VisitVariableDeclaration(VariableDeclaration * declaration)801 void FullCodeGenerator::VisitVariableDeclaration(
802 VariableDeclaration* declaration) {
803 // If it was not possible to allocate the variable at compile time, we
804 // need to "declare" it at runtime to make sure it actually exists in the
805 // local context.
806 VariableProxy* proxy = declaration->proxy();
807 VariableMode mode = declaration->mode();
808 Variable* variable = proxy->var();
809 bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
810
811 switch (variable->location()) {
812 case VariableLocation::GLOBAL:
813 case VariableLocation::UNALLOCATED:
814 globals_->Add(variable->name(), zone());
815 globals_->Add(variable->binding_needs_init()
816 ? isolate()->factory()->the_hole_value()
817 : isolate()->factory()->undefined_value(),
818 zone());
819 break;
820
821 case VariableLocation::PARAMETER:
822 case VariableLocation::LOCAL:
823 if (hole_init) {
824 Comment cmnt(masm_, "[ VariableDeclaration");
825 __ LoadRoot(x10, Heap::kTheHoleValueRootIndex);
826 __ Str(x10, StackOperand(variable));
827 }
828 break;
829
830 case VariableLocation::CONTEXT:
831 if (hole_init) {
832 Comment cmnt(masm_, "[ VariableDeclaration");
833 EmitDebugCheckDeclarationContext(variable);
834 __ LoadRoot(x10, Heap::kTheHoleValueRootIndex);
835 __ Str(x10, ContextMemOperand(cp, variable->index()));
836 // No write barrier since the_hole_value is in old space.
837 PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
838 }
839 break;
840
841 case VariableLocation::LOOKUP: {
842 Comment cmnt(masm_, "[ VariableDeclaration");
843 __ Mov(x2, Operand(variable->name()));
844 // Declaration nodes are always introduced in one of four modes.
845 DCHECK(IsDeclaredVariableMode(mode));
846 // Push initial value, if any.
847 // Note: For variables we must not push an initial value (such as
848 // 'undefined') because we may have a (legal) redeclaration and we
849 // must not destroy the current value.
850 if (hole_init) {
851 __ LoadRoot(x0, Heap::kTheHoleValueRootIndex);
852 __ Push(x2, x0);
853 } else {
854 // Pushing 0 (xzr) indicates no initial value.
855 __ Push(x2, xzr);
856 }
857 __ Push(Smi::FromInt(variable->DeclarationPropertyAttributes()));
858 __ CallRuntime(Runtime::kDeclareLookupSlot);
859 break;
860 }
861 }
862 }
863
864
VisitFunctionDeclaration(FunctionDeclaration * declaration)865 void FullCodeGenerator::VisitFunctionDeclaration(
866 FunctionDeclaration* declaration) {
867 VariableProxy* proxy = declaration->proxy();
868 Variable* variable = proxy->var();
869 switch (variable->location()) {
870 case VariableLocation::GLOBAL:
871 case VariableLocation::UNALLOCATED: {
872 globals_->Add(variable->name(), zone());
873 Handle<SharedFunctionInfo> function =
874 Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_);
875 // Check for stack overflow exception.
876 if (function.is_null()) return SetStackOverflow();
877 globals_->Add(function, zone());
878 break;
879 }
880
881 case VariableLocation::PARAMETER:
882 case VariableLocation::LOCAL: {
883 Comment cmnt(masm_, "[ Function Declaration");
884 VisitForAccumulatorValue(declaration->fun());
885 __ Str(result_register(), StackOperand(variable));
886 break;
887 }
888
889 case VariableLocation::CONTEXT: {
890 Comment cmnt(masm_, "[ Function Declaration");
891 EmitDebugCheckDeclarationContext(variable);
892 VisitForAccumulatorValue(declaration->fun());
893 __ Str(result_register(), ContextMemOperand(cp, variable->index()));
894 int offset = Context::SlotOffset(variable->index());
895 // We know that we have written a function, which is not a smi.
896 __ RecordWriteContextSlot(cp,
897 offset,
898 result_register(),
899 x2,
900 kLRHasBeenSaved,
901 kDontSaveFPRegs,
902 EMIT_REMEMBERED_SET,
903 OMIT_SMI_CHECK);
904 PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
905 break;
906 }
907
908 case VariableLocation::LOOKUP: {
909 Comment cmnt(masm_, "[ Function Declaration");
910 __ Mov(x2, Operand(variable->name()));
911 __ Push(x2);
912 // Push initial value for function declaration.
913 VisitForStackValue(declaration->fun());
914 __ Push(Smi::FromInt(variable->DeclarationPropertyAttributes()));
915 __ CallRuntime(Runtime::kDeclareLookupSlot);
916 break;
917 }
918 }
919 }
920
921
DeclareGlobals(Handle<FixedArray> pairs)922 void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
923 // Call the runtime to declare the globals.
924 __ Mov(x11, Operand(pairs));
925 Register flags = xzr;
926 if (Smi::FromInt(DeclareGlobalsFlags())) {
927 flags = x10;
928 __ Mov(flags, Smi::FromInt(DeclareGlobalsFlags()));
929 }
930 __ Push(x11, flags);
931 __ CallRuntime(Runtime::kDeclareGlobals);
932 // Return value is ignored.
933 }
934
935
DeclareModules(Handle<FixedArray> descriptions)936 void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
937 // Call the runtime to declare the modules.
938 __ Push(descriptions);
939 __ CallRuntime(Runtime::kDeclareModules);
940 // Return value is ignored.
941 }
942
943
VisitSwitchStatement(SwitchStatement * stmt)944 void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
945 ASM_LOCATION("FullCodeGenerator::VisitSwitchStatement");
946 Comment cmnt(masm_, "[ SwitchStatement");
947 Breakable nested_statement(this, stmt);
948 SetStatementPosition(stmt);
949
950 // Keep the switch value on the stack until a case matches.
951 VisitForStackValue(stmt->tag());
952 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
953
954 ZoneList<CaseClause*>* clauses = stmt->cases();
955 CaseClause* default_clause = NULL; // Can occur anywhere in the list.
956
957 Label next_test; // Recycled for each test.
958 // Compile all the tests with branches to their bodies.
959 for (int i = 0; i < clauses->length(); i++) {
960 CaseClause* clause = clauses->at(i);
961 clause->body_target()->Unuse();
962
963 // The default is not a test, but remember it as final fall through.
964 if (clause->is_default()) {
965 default_clause = clause;
966 continue;
967 }
968
969 Comment cmnt(masm_, "[ Case comparison");
970 __ Bind(&next_test);
971 next_test.Unuse();
972
973 // Compile the label expression.
974 VisitForAccumulatorValue(clause->label());
975
976 // Perform the comparison as if via '==='.
977 __ Peek(x1, 0); // Switch value.
978
979 JumpPatchSite patch_site(masm_);
980 if (ShouldInlineSmiCase(Token::EQ_STRICT)) {
981 Label slow_case;
982 patch_site.EmitJumpIfEitherNotSmi(x0, x1, &slow_case);
983 __ Cmp(x1, x0);
984 __ B(ne, &next_test);
985 __ Drop(1); // Switch value is no longer needed.
986 __ B(clause->body_target());
987 __ Bind(&slow_case);
988 }
989
990 // Record position before stub call for type feedback.
991 SetExpressionPosition(clause);
992 Handle<Code> ic = CodeFactory::CompareIC(isolate(), Token::EQ_STRICT,
993 strength(language_mode())).code();
994 CallIC(ic, clause->CompareId());
995 patch_site.EmitPatchInfo();
996
997 Label skip;
998 __ B(&skip);
999 PrepareForBailout(clause, TOS_REG);
1000 __ JumpIfNotRoot(x0, Heap::kTrueValueRootIndex, &next_test);
1001 __ Drop(1);
1002 __ B(clause->body_target());
1003 __ Bind(&skip);
1004
1005 __ Cbnz(x0, &next_test);
1006 __ Drop(1); // Switch value is no longer needed.
1007 __ B(clause->body_target());
1008 }
1009
1010 // Discard the test value and jump to the default if present, otherwise to
1011 // the end of the statement.
1012 __ Bind(&next_test);
1013 __ Drop(1); // Switch value is no longer needed.
1014 if (default_clause == NULL) {
1015 __ B(nested_statement.break_label());
1016 } else {
1017 __ B(default_clause->body_target());
1018 }
1019
1020 // Compile all the case bodies.
1021 for (int i = 0; i < clauses->length(); i++) {
1022 Comment cmnt(masm_, "[ Case body");
1023 CaseClause* clause = clauses->at(i);
1024 __ Bind(clause->body_target());
1025 PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
1026 VisitStatements(clause->statements());
1027 }
1028
1029 __ Bind(nested_statement.break_label());
1030 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1031 }
1032
1033
VisitForInStatement(ForInStatement * stmt)1034 void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
1035 ASM_LOCATION("FullCodeGenerator::VisitForInStatement");
1036 Comment cmnt(masm_, "[ ForInStatement");
1037 SetStatementPosition(stmt, SKIP_BREAK);
1038
1039 FeedbackVectorSlot slot = stmt->ForInFeedbackSlot();
1040
1041 // TODO(all): This visitor probably needs better comments and a revisit.
1042
1043 Label loop, exit;
1044 ForIn loop_statement(this, stmt);
1045 increment_loop_depth();
1046
1047 // Get the object to enumerate over. If the object is null or undefined, skip
1048 // over the loop. See ECMA-262 version 5, section 12.6.4.
1049 SetExpressionAsStatementPosition(stmt->enumerable());
1050 VisitForAccumulatorValue(stmt->enumerable());
1051 __ JumpIfRoot(x0, Heap::kUndefinedValueRootIndex, &exit);
1052 Register null_value = x15;
1053 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
1054 __ Cmp(x0, null_value);
1055 __ B(eq, &exit);
1056
1057 PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
1058
1059 // Convert the object to a JS object.
1060 Label convert, done_convert;
1061 __ JumpIfSmi(x0, &convert);
1062 __ JumpIfObjectType(x0, x10, x11, FIRST_JS_RECEIVER_TYPE, &done_convert, ge);
1063 __ Bind(&convert);
1064 ToObjectStub stub(isolate());
1065 __ CallStub(&stub);
1066 __ Bind(&done_convert);
1067 PrepareForBailoutForId(stmt->ToObjectId(), TOS_REG);
1068 __ Push(x0);
1069
1070 // Check for proxies.
1071 Label call_runtime;
1072 __ JumpIfObjectType(x0, x10, x11, JS_PROXY_TYPE, &call_runtime, eq);
1073
1074 // Check cache validity in generated code. This is a fast case for
1075 // the JSObject::IsSimpleEnum cache validity checks. If we cannot
1076 // guarantee cache validity, call the runtime system to check cache
1077 // validity or get the property names in a fixed array.
1078 __ CheckEnumCache(x0, null_value, x10, x11, x12, x13, &call_runtime);
1079
1080 // The enum cache is valid. Load the map of the object being
1081 // iterated over and use the cache for the iteration.
1082 Label use_cache;
1083 __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
1084 __ B(&use_cache);
1085
1086 // Get the set of properties to enumerate.
1087 __ Bind(&call_runtime);
1088 __ Push(x0); // Duplicate the enumerable object on the stack.
1089 __ CallRuntime(Runtime::kGetPropertyNamesFast);
1090 PrepareForBailoutForId(stmt->EnumId(), TOS_REG);
1091
1092 // If we got a map from the runtime call, we can do a fast
1093 // modification check. Otherwise, we got a fixed array, and we have
1094 // to do a slow check.
1095 Label fixed_array, no_descriptors;
1096 __ Ldr(x2, FieldMemOperand(x0, HeapObject::kMapOffset));
1097 __ JumpIfNotRoot(x2, Heap::kMetaMapRootIndex, &fixed_array);
1098
1099 // We got a map in register x0. Get the enumeration cache from it.
1100 __ Bind(&use_cache);
1101
1102 __ EnumLengthUntagged(x1, x0);
1103 __ Cbz(x1, &no_descriptors);
1104
1105 __ LoadInstanceDescriptors(x0, x2);
1106 __ Ldr(x2, FieldMemOperand(x2, DescriptorArray::kEnumCacheOffset));
1107 __ Ldr(x2,
1108 FieldMemOperand(x2, DescriptorArray::kEnumCacheBridgeCacheOffset));
1109
1110 // Set up the four remaining stack slots.
1111 __ SmiTag(x1);
1112 // Map, enumeration cache, enum cache length, zero (both last as smis).
1113 __ Push(x0, x2, x1, xzr);
1114 __ B(&loop);
1115
1116 __ Bind(&no_descriptors);
1117 __ Drop(1);
1118 __ B(&exit);
1119
1120 // We got a fixed array in register x0. Iterate through that.
1121 __ Bind(&fixed_array);
1122
1123 __ EmitLoadTypeFeedbackVector(x1);
1124 __ Mov(x10, Operand(TypeFeedbackVector::MegamorphicSentinel(isolate())));
1125 int vector_index = SmiFromSlot(slot)->value();
1126 __ Str(x10, FieldMemOperand(x1, FixedArray::OffsetOfElementAt(vector_index)));
1127 __ Mov(x1, Smi::FromInt(1)); // Smi(1) indicates slow check.
1128 __ Ldr(x2, FieldMemOperand(x0, FixedArray::kLengthOffset));
1129 // Smi and array, fixed array length (as smi) and initial index.
1130 __ Push(x1, x0, x2, xzr);
1131
1132 // Generate code for doing the condition check.
1133 __ Bind(&loop);
1134 SetExpressionAsStatementPosition(stmt->each());
1135
1136 // Load the current count to x0, load the length to x1.
1137 __ PeekPair(x0, x1, 0);
1138 __ Cmp(x0, x1); // Compare to the array length.
1139 __ B(hs, loop_statement.break_label());
1140
1141 // Get the current entry of the array into register r3.
1142 __ Peek(x10, 2 * kXRegSize);
1143 __ Add(x10, x10, Operand::UntagSmiAndScale(x0, kPointerSizeLog2));
1144 __ Ldr(x3, MemOperand(x10, FixedArray::kHeaderSize - kHeapObjectTag));
1145
1146 // Get the expected map from the stack or a smi in the
1147 // permanent slow case into register x10.
1148 __ Peek(x2, 3 * kXRegSize);
1149
1150 // Check if the expected map still matches that of the enumerable.
1151 // If not, we may have to filter the key.
1152 Label update_each;
1153 __ Peek(x1, 4 * kXRegSize);
1154 __ Ldr(x11, FieldMemOperand(x1, HeapObject::kMapOffset));
1155 __ Cmp(x11, x2);
1156 __ B(eq, &update_each);
1157
1158 // Convert the entry to a string or (smi) 0 if it isn't a property
1159 // any more. If the property has been removed while iterating, we
1160 // just skip it.
1161 __ Push(x1, x3);
1162 __ CallRuntime(Runtime::kForInFilter);
1163 PrepareForBailoutForId(stmt->FilterId(), TOS_REG);
1164 __ Mov(x3, x0);
1165 __ JumpIfRoot(x0, Heap::kUndefinedValueRootIndex,
1166 loop_statement.continue_label());
1167
1168 // Update the 'each' property or variable from the possibly filtered
1169 // entry in register x3.
1170 __ Bind(&update_each);
1171 __ Mov(result_register(), x3);
1172 // Perform the assignment as if via '='.
1173 { EffectContext context(this);
1174 EmitAssignment(stmt->each(), stmt->EachFeedbackSlot());
1175 PrepareForBailoutForId(stmt->AssignmentId(), NO_REGISTERS);
1176 }
1177
1178 // Both Crankshaft and Turbofan expect BodyId to be right before stmt->body().
1179 PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1180 // Generate code for the body of the loop.
1181 Visit(stmt->body());
1182
1183 // Generate code for going to the next element by incrementing
1184 // the index (smi) stored on top of the stack.
1185 __ Bind(loop_statement.continue_label());
1186 // TODO(all): We could use a callee saved register to avoid popping.
1187 __ Pop(x0);
1188 __ Add(x0, x0, Smi::FromInt(1));
1189 __ Push(x0);
1190
1191 EmitBackEdgeBookkeeping(stmt, &loop);
1192 __ B(&loop);
1193
1194 // Remove the pointers stored on the stack.
1195 __ Bind(loop_statement.break_label());
1196 __ Drop(5);
1197
1198 // Exit and decrement the loop depth.
1199 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1200 __ Bind(&exit);
1201 decrement_loop_depth();
1202 }
1203
1204
EmitNewClosure(Handle<SharedFunctionInfo> info,bool pretenure)1205 void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
1206 bool pretenure) {
1207 // Use the fast case closure allocation code that allocates in new space for
1208 // nested functions that don't need literals cloning. If we're running with
1209 // the --always-opt or the --prepare-always-opt flag, we need to use the
1210 // runtime function so that the new function we are creating here gets a
1211 // chance to have its code optimized and doesn't just get a copy of the
1212 // existing unoptimized code.
1213 if (!FLAG_always_opt &&
1214 !FLAG_prepare_always_opt &&
1215 !pretenure &&
1216 scope()->is_function_scope() &&
1217 info->num_literals() == 0) {
1218 FastNewClosureStub stub(isolate(), info->language_mode(), info->kind());
1219 __ Mov(x2, Operand(info));
1220 __ CallStub(&stub);
1221 } else {
1222 __ Push(info);
1223 __ CallRuntime(pretenure ? Runtime::kNewClosure_Tenured
1224 : Runtime::kNewClosure);
1225 }
1226 context()->Plug(x0);
1227 }
1228
1229
EmitSetHomeObject(Expression * initializer,int offset,FeedbackVectorSlot slot)1230 void FullCodeGenerator::EmitSetHomeObject(Expression* initializer, int offset,
1231 FeedbackVectorSlot slot) {
1232 DCHECK(NeedsHomeObject(initializer));
1233 __ Peek(StoreDescriptor::ReceiverRegister(), 0);
1234 __ Mov(StoreDescriptor::NameRegister(),
1235 Operand(isolate()->factory()->home_object_symbol()));
1236 __ Peek(StoreDescriptor::ValueRegister(), offset * kPointerSize);
1237 EmitLoadStoreICSlot(slot);
1238 CallStoreIC();
1239 }
1240
1241
EmitSetHomeObjectAccumulator(Expression * initializer,int offset,FeedbackVectorSlot slot)1242 void FullCodeGenerator::EmitSetHomeObjectAccumulator(Expression* initializer,
1243 int offset,
1244 FeedbackVectorSlot slot) {
1245 DCHECK(NeedsHomeObject(initializer));
1246 __ Move(StoreDescriptor::ReceiverRegister(), x0);
1247 __ Mov(StoreDescriptor::NameRegister(),
1248 Operand(isolate()->factory()->home_object_symbol()));
1249 __ Peek(StoreDescriptor::ValueRegister(), offset * kPointerSize);
1250 EmitLoadStoreICSlot(slot);
1251 CallStoreIC();
1252 }
1253
1254
EmitLoadGlobalCheckExtensions(VariableProxy * proxy,TypeofMode typeof_mode,Label * slow)1255 void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
1256 TypeofMode typeof_mode,
1257 Label* slow) {
1258 Register current = cp;
1259 Register next = x10;
1260 Register temp = x11;
1261
1262 Scope* s = scope();
1263 while (s != NULL) {
1264 if (s->num_heap_slots() > 0) {
1265 if (s->calls_sloppy_eval()) {
1266 // Check that extension is "the hole".
1267 __ Ldr(temp, ContextMemOperand(current, Context::EXTENSION_INDEX));
1268 __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
1269 }
1270 // Load next context in chain.
1271 __ Ldr(next, ContextMemOperand(current, Context::PREVIOUS_INDEX));
1272 // Walk the rest of the chain without clobbering cp.
1273 current = next;
1274 }
1275 // If no outer scope calls eval, we do not need to check more
1276 // context extensions.
1277 if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
1278 s = s->outer_scope();
1279 }
1280
1281 if (s->is_eval_scope()) {
1282 Label loop, fast;
1283 __ Mov(next, current);
1284
1285 __ Bind(&loop);
1286 // Terminate at native context.
1287 __ Ldr(temp, FieldMemOperand(next, HeapObject::kMapOffset));
1288 __ JumpIfRoot(temp, Heap::kNativeContextMapRootIndex, &fast);
1289 // Check that extension is "the hole".
1290 __ Ldr(temp, ContextMemOperand(next, Context::EXTENSION_INDEX));
1291 __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
1292 // Load next context in chain.
1293 __ Ldr(next, ContextMemOperand(next, Context::PREVIOUS_INDEX));
1294 __ B(&loop);
1295 __ Bind(&fast);
1296 }
1297
1298 // All extension objects were empty and it is safe to use a normal global
1299 // load machinery.
1300 EmitGlobalVariableLoad(proxy, typeof_mode);
1301 }
1302
1303
ContextSlotOperandCheckExtensions(Variable * var,Label * slow)1304 MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
1305 Label* slow) {
1306 DCHECK(var->IsContextSlot());
1307 Register context = cp;
1308 Register next = x10;
1309 Register temp = x11;
1310
1311 for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
1312 if (s->num_heap_slots() > 0) {
1313 if (s->calls_sloppy_eval()) {
1314 // Check that extension is "the hole".
1315 __ Ldr(temp, ContextMemOperand(context, Context::EXTENSION_INDEX));
1316 __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
1317 }
1318 __ Ldr(next, ContextMemOperand(context, Context::PREVIOUS_INDEX));
1319 // Walk the rest of the chain without clobbering cp.
1320 context = next;
1321 }
1322 }
1323 // Check that last extension is "the hole".
1324 __ Ldr(temp, ContextMemOperand(context, Context::EXTENSION_INDEX));
1325 __ JumpIfNotRoot(temp, Heap::kTheHoleValueRootIndex, slow);
1326
1327 // This function is used only for loads, not stores, so it's safe to
1328 // return an cp-based operand (the write barrier cannot be allowed to
1329 // destroy the cp register).
1330 return ContextMemOperand(context, var->index());
1331 }
1332
1333
EmitDynamicLookupFastCase(VariableProxy * proxy,TypeofMode typeof_mode,Label * slow,Label * done)1334 void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
1335 TypeofMode typeof_mode,
1336 Label* slow, Label* done) {
1337 // Generate fast-case code for variables that might be shadowed by
1338 // eval-introduced variables. Eval is used a lot without
1339 // introducing variables. In those cases, we do not want to
1340 // perform a runtime call for all variables in the scope
1341 // containing the eval.
1342 Variable* var = proxy->var();
1343 if (var->mode() == DYNAMIC_GLOBAL) {
1344 EmitLoadGlobalCheckExtensions(proxy, typeof_mode, slow);
1345 __ B(done);
1346 } else if (var->mode() == DYNAMIC_LOCAL) {
1347 Variable* local = var->local_if_not_shadowed();
1348 __ Ldr(x0, ContextSlotOperandCheckExtensions(local, slow));
1349 if (local->mode() == LET || local->mode() == CONST ||
1350 local->mode() == CONST_LEGACY) {
1351 __ JumpIfNotRoot(x0, Heap::kTheHoleValueRootIndex, done);
1352 if (local->mode() == CONST_LEGACY) {
1353 __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
1354 } else { // LET || CONST
1355 __ Mov(x0, Operand(var->name()));
1356 __ Push(x0);
1357 __ CallRuntime(Runtime::kThrowReferenceError);
1358 }
1359 }
1360 __ B(done);
1361 }
1362 }
1363
1364
EmitGlobalVariableLoad(VariableProxy * proxy,TypeofMode typeof_mode)1365 void FullCodeGenerator::EmitGlobalVariableLoad(VariableProxy* proxy,
1366 TypeofMode typeof_mode) {
1367 Variable* var = proxy->var();
1368 DCHECK(var->IsUnallocatedOrGlobalSlot() ||
1369 (var->IsLookupSlot() && var->mode() == DYNAMIC_GLOBAL));
1370 __ LoadGlobalObject(LoadDescriptor::ReceiverRegister());
1371 __ Mov(LoadDescriptor::NameRegister(), Operand(var->name()));
1372 __ Mov(LoadDescriptor::SlotRegister(),
1373 SmiFromSlot(proxy->VariableFeedbackSlot()));
1374 CallLoadIC(typeof_mode);
1375 }
1376
1377
EmitVariableLoad(VariableProxy * proxy,TypeofMode typeof_mode)1378 void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy,
1379 TypeofMode typeof_mode) {
1380 // Record position before possible IC call.
1381 SetExpressionPosition(proxy);
1382 PrepareForBailoutForId(proxy->BeforeId(), NO_REGISTERS);
1383 Variable* var = proxy->var();
1384
1385 // Three cases: global variables, lookup variables, and all other types of
1386 // variables.
1387 switch (var->location()) {
1388 case VariableLocation::GLOBAL:
1389 case VariableLocation::UNALLOCATED: {
1390 Comment cmnt(masm_, "Global variable");
1391 EmitGlobalVariableLoad(proxy, typeof_mode);
1392 context()->Plug(x0);
1393 break;
1394 }
1395
1396 case VariableLocation::PARAMETER:
1397 case VariableLocation::LOCAL:
1398 case VariableLocation::CONTEXT: {
1399 DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode);
1400 Comment cmnt(masm_, var->IsContextSlot()
1401 ? "Context variable"
1402 : "Stack variable");
1403 if (NeedsHoleCheckForLoad(proxy)) {
1404 // Let and const need a read barrier.
1405 GetVar(x0, var);
1406 Label done;
1407 __ JumpIfNotRoot(x0, Heap::kTheHoleValueRootIndex, &done);
1408 if (var->mode() == LET || var->mode() == CONST) {
1409 // Throw a reference error when using an uninitialized let/const
1410 // binding in harmony mode.
1411 __ Mov(x0, Operand(var->name()));
1412 __ Push(x0);
1413 __ CallRuntime(Runtime::kThrowReferenceError);
1414 __ Bind(&done);
1415 } else {
1416 // Uninitialized legacy const bindings are unholed.
1417 DCHECK(var->mode() == CONST_LEGACY);
1418 __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
1419 __ Bind(&done);
1420 }
1421 context()->Plug(x0);
1422 break;
1423 }
1424 context()->Plug(var);
1425 break;
1426 }
1427
1428 case VariableLocation::LOOKUP: {
1429 Label done, slow;
1430 // Generate code for loading from variables potentially shadowed by
1431 // eval-introduced variables.
1432 EmitDynamicLookupFastCase(proxy, typeof_mode, &slow, &done);
1433 __ Bind(&slow);
1434 Comment cmnt(masm_, "Lookup variable");
1435 __ Mov(x1, Operand(var->name()));
1436 __ Push(cp, x1); // Context and name.
1437 Runtime::FunctionId function_id =
1438 typeof_mode == NOT_INSIDE_TYPEOF
1439 ? Runtime::kLoadLookupSlot
1440 : Runtime::kLoadLookupSlotNoReferenceError;
1441 __ CallRuntime(function_id);
1442 __ Bind(&done);
1443 context()->Plug(x0);
1444 break;
1445 }
1446 }
1447 }
1448
1449
VisitRegExpLiteral(RegExpLiteral * expr)1450 void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
1451 Comment cmnt(masm_, "[ RegExpLiteral");
1452 __ Ldr(x3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1453 __ Mov(x2, Smi::FromInt(expr->literal_index()));
1454 __ Mov(x1, Operand(expr->pattern()));
1455 __ Mov(x0, Smi::FromInt(expr->flags()));
1456 FastCloneRegExpStub stub(isolate());
1457 __ CallStub(&stub);
1458 context()->Plug(x0);
1459 }
1460
1461
EmitAccessor(ObjectLiteralProperty * property)1462 void FullCodeGenerator::EmitAccessor(ObjectLiteralProperty* property) {
1463 Expression* expression = (property == NULL) ? NULL : property->value();
1464 if (expression == NULL) {
1465 __ LoadRoot(x10, Heap::kNullValueRootIndex);
1466 __ Push(x10);
1467 } else {
1468 VisitForStackValue(expression);
1469 if (NeedsHomeObject(expression)) {
1470 DCHECK(property->kind() == ObjectLiteral::Property::GETTER ||
1471 property->kind() == ObjectLiteral::Property::SETTER);
1472 int offset = property->kind() == ObjectLiteral::Property::GETTER ? 2 : 3;
1473 EmitSetHomeObject(expression, offset, property->GetSlot());
1474 }
1475 }
1476 }
1477
1478
VisitObjectLiteral(ObjectLiteral * expr)1479 void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
1480 Comment cmnt(masm_, "[ ObjectLiteral");
1481
1482 Handle<FixedArray> constant_properties = expr->constant_properties();
1483 __ Ldr(x3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1484 __ Mov(x2, Smi::FromInt(expr->literal_index()));
1485 __ Mov(x1, Operand(constant_properties));
1486 int flags = expr->ComputeFlags();
1487 __ Mov(x0, Smi::FromInt(flags));
1488 if (MustCreateObjectLiteralWithRuntime(expr)) {
1489 __ Push(x3, x2, x1, x0);
1490 __ CallRuntime(Runtime::kCreateObjectLiteral);
1491 } else {
1492 FastCloneShallowObjectStub stub(isolate(), expr->properties_count());
1493 __ CallStub(&stub);
1494 }
1495 PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
1496
1497 // If result_saved is true the result is on top of the stack. If
1498 // result_saved is false the result is in x0.
1499 bool result_saved = false;
1500
1501 AccessorTable accessor_table(zone());
1502 int property_index = 0;
1503 for (; property_index < expr->properties()->length(); property_index++) {
1504 ObjectLiteral::Property* property = expr->properties()->at(property_index);
1505 if (property->is_computed_name()) break;
1506 if (property->IsCompileTimeValue()) continue;
1507
1508 Literal* key = property->key()->AsLiteral();
1509 Expression* value = property->value();
1510 if (!result_saved) {
1511 __ Push(x0); // Save result on stack
1512 result_saved = true;
1513 }
1514 switch (property->kind()) {
1515 case ObjectLiteral::Property::CONSTANT:
1516 UNREACHABLE();
1517 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1518 DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value()));
1519 // Fall through.
1520 case ObjectLiteral::Property::COMPUTED:
1521 // It is safe to use [[Put]] here because the boilerplate already
1522 // contains computed properties with an uninitialized value.
1523 if (key->value()->IsInternalizedString()) {
1524 if (property->emit_store()) {
1525 VisitForAccumulatorValue(value);
1526 DCHECK(StoreDescriptor::ValueRegister().is(x0));
1527 __ Mov(StoreDescriptor::NameRegister(), Operand(key->value()));
1528 __ Peek(StoreDescriptor::ReceiverRegister(), 0);
1529 EmitLoadStoreICSlot(property->GetSlot(0));
1530 CallStoreIC();
1531 PrepareForBailoutForId(key->id(), NO_REGISTERS);
1532
1533 if (NeedsHomeObject(value)) {
1534 EmitSetHomeObjectAccumulator(value, 0, property->GetSlot(1));
1535 }
1536 } else {
1537 VisitForEffect(value);
1538 }
1539 break;
1540 }
1541 __ Peek(x0, 0);
1542 __ Push(x0);
1543 VisitForStackValue(key);
1544 VisitForStackValue(value);
1545 if (property->emit_store()) {
1546 if (NeedsHomeObject(value)) {
1547 EmitSetHomeObject(value, 2, property->GetSlot());
1548 }
1549 __ Mov(x0, Smi::FromInt(SLOPPY)); // Language mode
1550 __ Push(x0);
1551 __ CallRuntime(Runtime::kSetProperty);
1552 } else {
1553 __ Drop(3);
1554 }
1555 break;
1556 case ObjectLiteral::Property::PROTOTYPE:
1557 DCHECK(property->emit_store());
1558 // Duplicate receiver on stack.
1559 __ Peek(x0, 0);
1560 __ Push(x0);
1561 VisitForStackValue(value);
1562 __ CallRuntime(Runtime::kInternalSetPrototype);
1563 PrepareForBailoutForId(expr->GetIdForPropertySet(property_index),
1564 NO_REGISTERS);
1565 break;
1566 case ObjectLiteral::Property::GETTER:
1567 if (property->emit_store()) {
1568 accessor_table.lookup(key)->second->getter = property;
1569 }
1570 break;
1571 case ObjectLiteral::Property::SETTER:
1572 if (property->emit_store()) {
1573 accessor_table.lookup(key)->second->setter = property;
1574 }
1575 break;
1576 }
1577 }
1578
1579 // Emit code to define accessors, using only a single call to the runtime for
1580 // each pair of corresponding getters and setters.
1581 for (AccessorTable::Iterator it = accessor_table.begin();
1582 it != accessor_table.end();
1583 ++it) {
1584 __ Peek(x10, 0); // Duplicate receiver.
1585 __ Push(x10);
1586 VisitForStackValue(it->first);
1587 EmitAccessor(it->second->getter);
1588 EmitAccessor(it->second->setter);
1589 __ Mov(x10, Smi::FromInt(NONE));
1590 __ Push(x10);
1591 __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked);
1592 }
1593
1594 // Object literals have two parts. The "static" part on the left contains no
1595 // computed property names, and so we can compute its map ahead of time; see
1596 // runtime.cc::CreateObjectLiteralBoilerplate. The second "dynamic" part
1597 // starts with the first computed property name, and continues with all
1598 // properties to its right. All the code from above initializes the static
1599 // component of the object literal, and arranges for the map of the result to
1600 // reflect the static order in which the keys appear. For the dynamic
1601 // properties, we compile them into a series of "SetOwnProperty" runtime
1602 // calls. This will preserve insertion order.
1603 for (; property_index < expr->properties()->length(); property_index++) {
1604 ObjectLiteral::Property* property = expr->properties()->at(property_index);
1605
1606 Expression* value = property->value();
1607 if (!result_saved) {
1608 __ Push(x0); // Save result on stack
1609 result_saved = true;
1610 }
1611
1612 __ Peek(x10, 0); // Duplicate receiver.
1613 __ Push(x10);
1614
1615 if (property->kind() == ObjectLiteral::Property::PROTOTYPE) {
1616 DCHECK(!property->is_computed_name());
1617 VisitForStackValue(value);
1618 DCHECK(property->emit_store());
1619 __ CallRuntime(Runtime::kInternalSetPrototype);
1620 PrepareForBailoutForId(expr->GetIdForPropertySet(property_index),
1621 NO_REGISTERS);
1622 } else {
1623 EmitPropertyKey(property, expr->GetIdForPropertyName(property_index));
1624 VisitForStackValue(value);
1625 if (NeedsHomeObject(value)) {
1626 EmitSetHomeObject(value, 2, property->GetSlot());
1627 }
1628
1629 switch (property->kind()) {
1630 case ObjectLiteral::Property::CONSTANT:
1631 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1632 case ObjectLiteral::Property::COMPUTED:
1633 if (property->emit_store()) {
1634 __ Mov(x0, Smi::FromInt(NONE));
1635 __ Push(x0);
1636 __ CallRuntime(Runtime::kDefineDataPropertyUnchecked);
1637 } else {
1638 __ Drop(3);
1639 }
1640 break;
1641
1642 case ObjectLiteral::Property::PROTOTYPE:
1643 UNREACHABLE();
1644 break;
1645
1646 case ObjectLiteral::Property::GETTER:
1647 __ Mov(x0, Smi::FromInt(NONE));
1648 __ Push(x0);
1649 __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked);
1650 break;
1651
1652 case ObjectLiteral::Property::SETTER:
1653 __ Mov(x0, Smi::FromInt(NONE));
1654 __ Push(x0);
1655 __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked);
1656 break;
1657 }
1658 }
1659 }
1660
1661 if (expr->has_function()) {
1662 DCHECK(result_saved);
1663 __ Peek(x0, 0);
1664 __ Push(x0);
1665 __ CallRuntime(Runtime::kToFastProperties);
1666 }
1667
1668 if (result_saved) {
1669 context()->PlugTOS();
1670 } else {
1671 context()->Plug(x0);
1672 }
1673 }
1674
1675
VisitArrayLiteral(ArrayLiteral * expr)1676 void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
1677 Comment cmnt(masm_, "[ ArrayLiteral");
1678
1679 Handle<FixedArray> constant_elements = expr->constant_elements();
1680 bool has_fast_elements =
1681 IsFastObjectElementsKind(expr->constant_elements_kind());
1682
1683 AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
1684 if (has_fast_elements && !FLAG_allocation_site_pretenuring) {
1685 // If the only customer of allocation sites is transitioning, then
1686 // we can turn it off if we don't have anywhere else to transition to.
1687 allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
1688 }
1689
1690 __ Ldr(x3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1691 __ Mov(x2, Smi::FromInt(expr->literal_index()));
1692 __ Mov(x1, Operand(constant_elements));
1693 if (MustCreateArrayLiteralWithRuntime(expr)) {
1694 __ Mov(x0, Smi::FromInt(expr->ComputeFlags()));
1695 __ Push(x3, x2, x1, x0);
1696 __ CallRuntime(Runtime::kCreateArrayLiteral);
1697 } else {
1698 FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
1699 __ CallStub(&stub);
1700 }
1701 PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
1702
1703 bool result_saved = false; // Is the result saved to the stack?
1704 ZoneList<Expression*>* subexprs = expr->values();
1705 int length = subexprs->length();
1706
1707 // Emit code to evaluate all the non-constant subexpressions and to store
1708 // them into the newly cloned array.
1709 int array_index = 0;
1710 for (; array_index < length; array_index++) {
1711 Expression* subexpr = subexprs->at(array_index);
1712 if (subexpr->IsSpread()) break;
1713
1714 // If the subexpression is a literal or a simple materialized literal it
1715 // is already set in the cloned array.
1716 if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
1717
1718 if (!result_saved) {
1719 __ Push(x0);
1720 result_saved = true;
1721 }
1722 VisitForAccumulatorValue(subexpr);
1723
1724 __ Mov(StoreDescriptor::NameRegister(), Smi::FromInt(array_index));
1725 __ Peek(StoreDescriptor::ReceiverRegister(), 0);
1726 EmitLoadStoreICSlot(expr->LiteralFeedbackSlot());
1727 Handle<Code> ic =
1728 CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
1729 CallIC(ic);
1730
1731 PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS);
1732 }
1733
1734 // In case the array literal contains spread expressions it has two parts. The
1735 // first part is the "static" array which has a literal index is handled
1736 // above. The second part is the part after the first spread expression
1737 // (inclusive) and these elements gets appended to the array. Note that the
1738 // number elements an iterable produces is unknown ahead of time.
1739 if (array_index < length && result_saved) {
1740 __ Pop(x0);
1741 result_saved = false;
1742 }
1743 for (; array_index < length; array_index++) {
1744 Expression* subexpr = subexprs->at(array_index);
1745
1746 __ Push(x0);
1747 if (subexpr->IsSpread()) {
1748 VisitForStackValue(subexpr->AsSpread()->expression());
1749 __ InvokeBuiltin(Context::CONCAT_ITERABLE_TO_ARRAY_BUILTIN_INDEX,
1750 CALL_FUNCTION);
1751 } else {
1752 VisitForStackValue(subexpr);
1753 __ CallRuntime(Runtime::kAppendElement);
1754 }
1755
1756 PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS);
1757 }
1758
1759 if (result_saved) {
1760 context()->PlugTOS();
1761 } else {
1762 context()->Plug(x0);
1763 }
1764 }
1765
1766
VisitAssignment(Assignment * expr)1767 void FullCodeGenerator::VisitAssignment(Assignment* expr) {
1768 DCHECK(expr->target()->IsValidReferenceExpressionOrThis());
1769
1770 Comment cmnt(masm_, "[ Assignment");
1771 SetExpressionPosition(expr, INSERT_BREAK);
1772
1773 Property* property = expr->target()->AsProperty();
1774 LhsKind assign_type = Property::GetAssignType(property);
1775
1776 // Evaluate LHS expression.
1777 switch (assign_type) {
1778 case VARIABLE:
1779 // Nothing to do here.
1780 break;
1781 case NAMED_PROPERTY:
1782 if (expr->is_compound()) {
1783 // We need the receiver both on the stack and in the register.
1784 VisitForStackValue(property->obj());
1785 __ Peek(LoadDescriptor::ReceiverRegister(), 0);
1786 } else {
1787 VisitForStackValue(property->obj());
1788 }
1789 break;
1790 case NAMED_SUPER_PROPERTY:
1791 VisitForStackValue(
1792 property->obj()->AsSuperPropertyReference()->this_var());
1793 VisitForAccumulatorValue(
1794 property->obj()->AsSuperPropertyReference()->home_object());
1795 __ Push(result_register());
1796 if (expr->is_compound()) {
1797 const Register scratch = x10;
1798 __ Peek(scratch, kPointerSize);
1799 __ Push(scratch, result_register());
1800 }
1801 break;
1802 case KEYED_SUPER_PROPERTY:
1803 VisitForStackValue(
1804 property->obj()->AsSuperPropertyReference()->this_var());
1805 VisitForStackValue(
1806 property->obj()->AsSuperPropertyReference()->home_object());
1807 VisitForAccumulatorValue(property->key());
1808 __ Push(result_register());
1809 if (expr->is_compound()) {
1810 const Register scratch1 = x10;
1811 const Register scratch2 = x11;
1812 __ Peek(scratch1, 2 * kPointerSize);
1813 __ Peek(scratch2, kPointerSize);
1814 __ Push(scratch1, scratch2, result_register());
1815 }
1816 break;
1817 case KEYED_PROPERTY:
1818 if (expr->is_compound()) {
1819 VisitForStackValue(property->obj());
1820 VisitForStackValue(property->key());
1821 __ Peek(LoadDescriptor::ReceiverRegister(), 1 * kPointerSize);
1822 __ Peek(LoadDescriptor::NameRegister(), 0);
1823 } else {
1824 VisitForStackValue(property->obj());
1825 VisitForStackValue(property->key());
1826 }
1827 break;
1828 }
1829
1830 // For compound assignments we need another deoptimization point after the
1831 // variable/property load.
1832 if (expr->is_compound()) {
1833 { AccumulatorValueContext context(this);
1834 switch (assign_type) {
1835 case VARIABLE:
1836 EmitVariableLoad(expr->target()->AsVariableProxy());
1837 PrepareForBailout(expr->target(), TOS_REG);
1838 break;
1839 case NAMED_PROPERTY:
1840 EmitNamedPropertyLoad(property);
1841 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1842 break;
1843 case NAMED_SUPER_PROPERTY:
1844 EmitNamedSuperPropertyLoad(property);
1845 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1846 break;
1847 case KEYED_SUPER_PROPERTY:
1848 EmitKeyedSuperPropertyLoad(property);
1849 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1850 break;
1851 case KEYED_PROPERTY:
1852 EmitKeyedPropertyLoad(property);
1853 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1854 break;
1855 }
1856 }
1857
1858 Token::Value op = expr->binary_op();
1859 __ Push(x0); // Left operand goes on the stack.
1860 VisitForAccumulatorValue(expr->value());
1861
1862 AccumulatorValueContext context(this);
1863 if (ShouldInlineSmiCase(op)) {
1864 EmitInlineSmiBinaryOp(expr->binary_operation(),
1865 op,
1866 expr->target(),
1867 expr->value());
1868 } else {
1869 EmitBinaryOp(expr->binary_operation(), op);
1870 }
1871
1872 // Deoptimization point in case the binary operation may have side effects.
1873 PrepareForBailout(expr->binary_operation(), TOS_REG);
1874 } else {
1875 VisitForAccumulatorValue(expr->value());
1876 }
1877
1878 SetExpressionPosition(expr);
1879
1880 // Store the value.
1881 switch (assign_type) {
1882 case VARIABLE:
1883 EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
1884 expr->op(), expr->AssignmentSlot());
1885 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
1886 context()->Plug(x0);
1887 break;
1888 case NAMED_PROPERTY:
1889 EmitNamedPropertyAssignment(expr);
1890 break;
1891 case NAMED_SUPER_PROPERTY:
1892 EmitNamedSuperPropertyStore(property);
1893 context()->Plug(x0);
1894 break;
1895 case KEYED_SUPER_PROPERTY:
1896 EmitKeyedSuperPropertyStore(property);
1897 context()->Plug(x0);
1898 break;
1899 case KEYED_PROPERTY:
1900 EmitKeyedPropertyAssignment(expr);
1901 break;
1902 }
1903 }
1904
1905
EmitNamedPropertyLoad(Property * prop)1906 void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
1907 SetExpressionPosition(prop);
1908 Literal* key = prop->key()->AsLiteral();
1909 DCHECK(!prop->IsSuperAccess());
1910
1911 __ Mov(LoadDescriptor::NameRegister(), Operand(key->value()));
1912 __ Mov(LoadDescriptor::SlotRegister(),
1913 SmiFromSlot(prop->PropertyFeedbackSlot()));
1914 CallLoadIC(NOT_INSIDE_TYPEOF, language_mode());
1915 }
1916
1917
EmitNamedSuperPropertyLoad(Property * prop)1918 void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) {
1919 // Stack: receiver, home_object.
1920 SetExpressionPosition(prop);
1921 Literal* key = prop->key()->AsLiteral();
1922 DCHECK(!key->value()->IsSmi());
1923 DCHECK(prop->IsSuperAccess());
1924
1925 __ Push(key->value());
1926 __ Push(Smi::FromInt(language_mode()));
1927 __ CallRuntime(Runtime::kLoadFromSuper);
1928 }
1929
1930
EmitKeyedPropertyLoad(Property * prop)1931 void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
1932 SetExpressionPosition(prop);
1933 // Call keyed load IC. It has arguments key and receiver in x0 and x1.
1934 Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate(), language_mode()).code();
1935 __ Mov(LoadDescriptor::SlotRegister(),
1936 SmiFromSlot(prop->PropertyFeedbackSlot()));
1937 CallIC(ic);
1938 }
1939
1940
EmitKeyedSuperPropertyLoad(Property * prop)1941 void FullCodeGenerator::EmitKeyedSuperPropertyLoad(Property* prop) {
1942 // Stack: receiver, home_object, key.
1943 SetExpressionPosition(prop);
1944 __ Push(Smi::FromInt(language_mode()));
1945 __ CallRuntime(Runtime::kLoadKeyedFromSuper);
1946 }
1947
1948
EmitInlineSmiBinaryOp(BinaryOperation * expr,Token::Value op,Expression * left_expr,Expression * right_expr)1949 void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
1950 Token::Value op,
1951 Expression* left_expr,
1952 Expression* right_expr) {
1953 Label done, both_smis, stub_call;
1954
1955 // Get the arguments.
1956 Register left = x1;
1957 Register right = x0;
1958 Register result = x0;
1959 __ Pop(left);
1960
1961 // Perform combined smi check on both operands.
1962 __ Orr(x10, left, right);
1963 JumpPatchSite patch_site(masm_);
1964 patch_site.EmitJumpIfSmi(x10, &both_smis);
1965
1966 __ Bind(&stub_call);
1967
1968 Handle<Code> code =
1969 CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code();
1970 {
1971 Assembler::BlockPoolsScope scope(masm_);
1972 CallIC(code, expr->BinaryOperationFeedbackId());
1973 patch_site.EmitPatchInfo();
1974 }
1975 __ B(&done);
1976
1977 __ Bind(&both_smis);
1978 // Smi case. This code works in the same way as the smi-smi case in the type
1979 // recording binary operation stub, see
1980 // BinaryOpStub::GenerateSmiSmiOperation for comments.
1981 // TODO(all): That doesn't exist any more. Where are the comments?
1982 //
1983 // The set of operations that needs to be supported here is controlled by
1984 // FullCodeGenerator::ShouldInlineSmiCase().
1985 switch (op) {
1986 case Token::SAR:
1987 __ Ubfx(right, right, kSmiShift, 5);
1988 __ Asr(result, left, right);
1989 __ Bic(result, result, kSmiShiftMask);
1990 break;
1991 case Token::SHL:
1992 __ Ubfx(right, right, kSmiShift, 5);
1993 __ Lsl(result, left, right);
1994 break;
1995 case Token::SHR:
1996 // If `left >>> right` >= 0x80000000, the result is not representable in a
1997 // signed 32-bit smi.
1998 __ Ubfx(right, right, kSmiShift, 5);
1999 __ Lsr(x10, left, right);
2000 __ Tbnz(x10, kXSignBit, &stub_call);
2001 __ Bic(result, x10, kSmiShiftMask);
2002 break;
2003 case Token::ADD:
2004 __ Adds(x10, left, right);
2005 __ B(vs, &stub_call);
2006 __ Mov(result, x10);
2007 break;
2008 case Token::SUB:
2009 __ Subs(x10, left, right);
2010 __ B(vs, &stub_call);
2011 __ Mov(result, x10);
2012 break;
2013 case Token::MUL: {
2014 Label not_minus_zero, done;
2015 STATIC_ASSERT(static_cast<unsigned>(kSmiShift) == (kXRegSizeInBits / 2));
2016 STATIC_ASSERT(kSmiTag == 0);
2017 __ Smulh(x10, left, right);
2018 __ Cbnz(x10, ¬_minus_zero);
2019 __ Eor(x11, left, right);
2020 __ Tbnz(x11, kXSignBit, &stub_call);
2021 __ Mov(result, x10);
2022 __ B(&done);
2023 __ Bind(¬_minus_zero);
2024 __ Cls(x11, x10);
2025 __ Cmp(x11, kXRegSizeInBits - kSmiShift);
2026 __ B(lt, &stub_call);
2027 __ SmiTag(result, x10);
2028 __ Bind(&done);
2029 break;
2030 }
2031 case Token::BIT_OR:
2032 __ Orr(result, left, right);
2033 break;
2034 case Token::BIT_AND:
2035 __ And(result, left, right);
2036 break;
2037 case Token::BIT_XOR:
2038 __ Eor(result, left, right);
2039 break;
2040 default:
2041 UNREACHABLE();
2042 }
2043
2044 __ Bind(&done);
2045 context()->Plug(x0);
2046 }
2047
2048
EmitBinaryOp(BinaryOperation * expr,Token::Value op)2049 void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) {
2050 __ Pop(x1);
2051 Handle<Code> code =
2052 CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code();
2053 JumpPatchSite patch_site(masm_); // Unbound, signals no inlined smi code.
2054 {
2055 Assembler::BlockPoolsScope scope(masm_);
2056 CallIC(code, expr->BinaryOperationFeedbackId());
2057 patch_site.EmitPatchInfo();
2058 }
2059 context()->Plug(x0);
2060 }
2061
2062
EmitClassDefineProperties(ClassLiteral * lit)2063 void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit) {
2064 // Constructor is in x0.
2065 DCHECK(lit != NULL);
2066 __ push(x0);
2067
2068 // No access check is needed here since the constructor is created by the
2069 // class literal.
2070 Register scratch = x1;
2071 __ Ldr(scratch,
2072 FieldMemOperand(x0, JSFunction::kPrototypeOrInitialMapOffset));
2073 __ Push(scratch);
2074
2075 for (int i = 0; i < lit->properties()->length(); i++) {
2076 ObjectLiteral::Property* property = lit->properties()->at(i);
2077 Expression* value = property->value();
2078
2079 if (property->is_static()) {
2080 __ Peek(scratch, kPointerSize); // constructor
2081 } else {
2082 __ Peek(scratch, 0); // prototype
2083 }
2084 __ Push(scratch);
2085 EmitPropertyKey(property, lit->GetIdForProperty(i));
2086
2087 // The static prototype property is read only. We handle the non computed
2088 // property name case in the parser. Since this is the only case where we
2089 // need to check for an own read only property we special case this so we do
2090 // not need to do this for every property.
2091 if (property->is_static() && property->is_computed_name()) {
2092 __ CallRuntime(Runtime::kThrowIfStaticPrototype);
2093 __ Push(x0);
2094 }
2095
2096 VisitForStackValue(value);
2097 if (NeedsHomeObject(value)) {
2098 EmitSetHomeObject(value, 2, property->GetSlot());
2099 }
2100
2101 switch (property->kind()) {
2102 case ObjectLiteral::Property::CONSTANT:
2103 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
2104 case ObjectLiteral::Property::PROTOTYPE:
2105 UNREACHABLE();
2106 case ObjectLiteral::Property::COMPUTED:
2107 __ CallRuntime(Runtime::kDefineClassMethod);
2108 break;
2109
2110 case ObjectLiteral::Property::GETTER:
2111 __ Mov(x0, Smi::FromInt(DONT_ENUM));
2112 __ Push(x0);
2113 __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked);
2114 break;
2115
2116 case ObjectLiteral::Property::SETTER:
2117 __ Mov(x0, Smi::FromInt(DONT_ENUM));
2118 __ Push(x0);
2119 __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked);
2120 break;
2121
2122 default:
2123 UNREACHABLE();
2124 }
2125 }
2126
2127 // Set both the prototype and constructor to have fast properties, and also
2128 // freeze them in strong mode.
2129 __ CallRuntime(Runtime::kFinalizeClassDefinition);
2130 }
2131
2132
EmitAssignment(Expression * expr,FeedbackVectorSlot slot)2133 void FullCodeGenerator::EmitAssignment(Expression* expr,
2134 FeedbackVectorSlot slot) {
2135 DCHECK(expr->IsValidReferenceExpressionOrThis());
2136
2137 Property* prop = expr->AsProperty();
2138 LhsKind assign_type = Property::GetAssignType(prop);
2139
2140 switch (assign_type) {
2141 case VARIABLE: {
2142 Variable* var = expr->AsVariableProxy()->var();
2143 EffectContext context(this);
2144 EmitVariableAssignment(var, Token::ASSIGN, slot);
2145 break;
2146 }
2147 case NAMED_PROPERTY: {
2148 __ Push(x0); // Preserve value.
2149 VisitForAccumulatorValue(prop->obj());
2150 // TODO(all): We could introduce a VisitForRegValue(reg, expr) to avoid
2151 // this copy.
2152 __ Mov(StoreDescriptor::ReceiverRegister(), x0);
2153 __ Pop(StoreDescriptor::ValueRegister()); // Restore value.
2154 __ Mov(StoreDescriptor::NameRegister(),
2155 Operand(prop->key()->AsLiteral()->value()));
2156 EmitLoadStoreICSlot(slot);
2157 CallStoreIC();
2158 break;
2159 }
2160 case NAMED_SUPER_PROPERTY: {
2161 __ Push(x0);
2162 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
2163 VisitForAccumulatorValue(
2164 prop->obj()->AsSuperPropertyReference()->home_object());
2165 // stack: value, this; x0: home_object
2166 Register scratch = x10;
2167 Register scratch2 = x11;
2168 __ mov(scratch, result_register()); // home_object
2169 __ Peek(x0, kPointerSize); // value
2170 __ Peek(scratch2, 0); // this
2171 __ Poke(scratch2, kPointerSize); // this
2172 __ Poke(scratch, 0); // home_object
2173 // stack: this, home_object; x0: value
2174 EmitNamedSuperPropertyStore(prop);
2175 break;
2176 }
2177 case KEYED_SUPER_PROPERTY: {
2178 __ Push(x0);
2179 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
2180 VisitForStackValue(
2181 prop->obj()->AsSuperPropertyReference()->home_object());
2182 VisitForAccumulatorValue(prop->key());
2183 Register scratch = x10;
2184 Register scratch2 = x11;
2185 __ Peek(scratch2, 2 * kPointerSize); // value
2186 // stack: value, this, home_object; x0: key, x11: value
2187 __ Peek(scratch, kPointerSize); // this
2188 __ Poke(scratch, 2 * kPointerSize);
2189 __ Peek(scratch, 0); // home_object
2190 __ Poke(scratch, kPointerSize);
2191 __ Poke(x0, 0);
2192 __ Move(x0, scratch2);
2193 // stack: this, home_object, key; x0: value.
2194 EmitKeyedSuperPropertyStore(prop);
2195 break;
2196 }
2197 case KEYED_PROPERTY: {
2198 __ Push(x0); // Preserve value.
2199 VisitForStackValue(prop->obj());
2200 VisitForAccumulatorValue(prop->key());
2201 __ Mov(StoreDescriptor::NameRegister(), x0);
2202 __ Pop(StoreDescriptor::ReceiverRegister(),
2203 StoreDescriptor::ValueRegister());
2204 EmitLoadStoreICSlot(slot);
2205 Handle<Code> ic =
2206 CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
2207 CallIC(ic);
2208 break;
2209 }
2210 }
2211 context()->Plug(x0);
2212 }
2213
2214
EmitStoreToStackLocalOrContextSlot(Variable * var,MemOperand location)2215 void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
2216 Variable* var, MemOperand location) {
2217 __ Str(result_register(), location);
2218 if (var->IsContextSlot()) {
2219 // RecordWrite may destroy all its register arguments.
2220 __ Mov(x10, result_register());
2221 int offset = Context::SlotOffset(var->index());
2222 __ RecordWriteContextSlot(
2223 x1, offset, x10, x11, kLRHasBeenSaved, kDontSaveFPRegs);
2224 }
2225 }
2226
2227
EmitVariableAssignment(Variable * var,Token::Value op,FeedbackVectorSlot slot)2228 void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op,
2229 FeedbackVectorSlot slot) {
2230 ASM_LOCATION("FullCodeGenerator::EmitVariableAssignment");
2231 if (var->IsUnallocated()) {
2232 // Global var, const, or let.
2233 __ Mov(StoreDescriptor::NameRegister(), Operand(var->name()));
2234 __ LoadGlobalObject(StoreDescriptor::ReceiverRegister());
2235 EmitLoadStoreICSlot(slot);
2236 CallStoreIC();
2237
2238 } else if (var->mode() == LET && op != Token::INIT) {
2239 // Non-initializing assignment to let variable needs a write barrier.
2240 DCHECK(!var->IsLookupSlot());
2241 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2242 Label assign;
2243 MemOperand location = VarOperand(var, x1);
2244 __ Ldr(x10, location);
2245 __ JumpIfNotRoot(x10, Heap::kTheHoleValueRootIndex, &assign);
2246 __ Mov(x10, Operand(var->name()));
2247 __ Push(x10);
2248 __ CallRuntime(Runtime::kThrowReferenceError);
2249 // Perform the assignment.
2250 __ Bind(&assign);
2251 EmitStoreToStackLocalOrContextSlot(var, location);
2252
2253 } else if (var->mode() == CONST && op != Token::INIT) {
2254 // Assignment to const variable needs a write barrier.
2255 DCHECK(!var->IsLookupSlot());
2256 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2257 Label const_error;
2258 MemOperand location = VarOperand(var, x1);
2259 __ Ldr(x10, location);
2260 __ JumpIfNotRoot(x10, Heap::kTheHoleValueRootIndex, &const_error);
2261 __ Mov(x10, Operand(var->name()));
2262 __ Push(x10);
2263 __ CallRuntime(Runtime::kThrowReferenceError);
2264 __ Bind(&const_error);
2265 __ CallRuntime(Runtime::kThrowConstAssignError);
2266
2267 } else if (var->is_this() && var->mode() == CONST && op == Token::INIT) {
2268 // Initializing assignment to const {this} needs a write barrier.
2269 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2270 Label uninitialized_this;
2271 MemOperand location = VarOperand(var, x1);
2272 __ Ldr(x10, location);
2273 __ JumpIfRoot(x10, Heap::kTheHoleValueRootIndex, &uninitialized_this);
2274 __ Mov(x0, Operand(var->name()));
2275 __ Push(x0);
2276 __ CallRuntime(Runtime::kThrowReferenceError);
2277 __ bind(&uninitialized_this);
2278 EmitStoreToStackLocalOrContextSlot(var, location);
2279
2280 } else if (!var->is_const_mode() ||
2281 (var->mode() == CONST && op == Token::INIT)) {
2282 if (var->IsLookupSlot()) {
2283 // Assignment to var.
2284 __ Mov(x11, Operand(var->name()));
2285 __ Mov(x10, Smi::FromInt(language_mode()));
2286 // jssp[0] : mode.
2287 // jssp[8] : name.
2288 // jssp[16] : context.
2289 // jssp[24] : value.
2290 __ Push(x0, cp, x11, x10);
2291 __ CallRuntime(Runtime::kStoreLookupSlot);
2292 } else {
2293 // Assignment to var or initializing assignment to let/const in harmony
2294 // mode.
2295 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2296 MemOperand location = VarOperand(var, x1);
2297 if (FLAG_debug_code && var->mode() == LET && op == Token::INIT) {
2298 __ Ldr(x10, location);
2299 __ CompareRoot(x10, Heap::kTheHoleValueRootIndex);
2300 __ Check(eq, kLetBindingReInitialization);
2301 }
2302 EmitStoreToStackLocalOrContextSlot(var, location);
2303 }
2304
2305 } else if (var->mode() == CONST_LEGACY && op == Token::INIT) {
2306 // Const initializers need a write barrier.
2307 DCHECK(!var->IsParameter()); // No const parameters.
2308 if (var->IsLookupSlot()) {
2309 __ Mov(x1, Operand(var->name()));
2310 __ Push(x0, cp, x1);
2311 __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot);
2312 } else {
2313 DCHECK(var->IsStackLocal() || var->IsContextSlot());
2314 Label skip;
2315 MemOperand location = VarOperand(var, x1);
2316 __ Ldr(x10, location);
2317 __ JumpIfNotRoot(x10, Heap::kTheHoleValueRootIndex, &skip);
2318 EmitStoreToStackLocalOrContextSlot(var, location);
2319 __ Bind(&skip);
2320 }
2321
2322 } else {
2323 DCHECK(var->mode() == CONST_LEGACY && op != Token::INIT);
2324 if (is_strict(language_mode())) {
2325 __ CallRuntime(Runtime::kThrowConstAssignError);
2326 }
2327 // Silently ignore store in sloppy mode.
2328 }
2329 }
2330
2331
EmitNamedPropertyAssignment(Assignment * expr)2332 void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
2333 ASM_LOCATION("FullCodeGenerator::EmitNamedPropertyAssignment");
2334 // Assignment to a property, using a named store IC.
2335 Property* prop = expr->target()->AsProperty();
2336 DCHECK(prop != NULL);
2337 DCHECK(prop->key()->IsLiteral());
2338
2339 __ Mov(StoreDescriptor::NameRegister(),
2340 Operand(prop->key()->AsLiteral()->value()));
2341 __ Pop(StoreDescriptor::ReceiverRegister());
2342 EmitLoadStoreICSlot(expr->AssignmentSlot());
2343 CallStoreIC();
2344
2345 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2346 context()->Plug(x0);
2347 }
2348
2349
EmitNamedSuperPropertyStore(Property * prop)2350 void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) {
2351 // Assignment to named property of super.
2352 // x0 : value
2353 // stack : receiver ('this'), home_object
2354 DCHECK(prop != NULL);
2355 Literal* key = prop->key()->AsLiteral();
2356 DCHECK(key != NULL);
2357
2358 __ Push(key->value());
2359 __ Push(x0);
2360 __ CallRuntime((is_strict(language_mode()) ? Runtime::kStoreToSuper_Strict
2361 : Runtime::kStoreToSuper_Sloppy));
2362 }
2363
2364
EmitKeyedSuperPropertyStore(Property * prop)2365 void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) {
2366 // Assignment to named property of super.
2367 // x0 : value
2368 // stack : receiver ('this'), home_object, key
2369 DCHECK(prop != NULL);
2370
2371 __ Push(x0);
2372 __ CallRuntime((is_strict(language_mode())
2373 ? Runtime::kStoreKeyedToSuper_Strict
2374 : Runtime::kStoreKeyedToSuper_Sloppy));
2375 }
2376
2377
EmitKeyedPropertyAssignment(Assignment * expr)2378 void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
2379 ASM_LOCATION("FullCodeGenerator::EmitKeyedPropertyAssignment");
2380 // Assignment to a property, using a keyed store IC.
2381
2382 // TODO(all): Could we pass this in registers rather than on the stack?
2383 __ Pop(StoreDescriptor::NameRegister(), StoreDescriptor::ReceiverRegister());
2384 DCHECK(StoreDescriptor::ValueRegister().is(x0));
2385
2386 Handle<Code> ic =
2387 CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
2388 EmitLoadStoreICSlot(expr->AssignmentSlot());
2389 CallIC(ic);
2390
2391 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2392 context()->Plug(x0);
2393 }
2394
2395
VisitProperty(Property * expr)2396 void FullCodeGenerator::VisitProperty(Property* expr) {
2397 Comment cmnt(masm_, "[ Property");
2398 SetExpressionPosition(expr);
2399 Expression* key = expr->key();
2400
2401 if (key->IsPropertyName()) {
2402 if (!expr->IsSuperAccess()) {
2403 VisitForAccumulatorValue(expr->obj());
2404 __ Move(LoadDescriptor::ReceiverRegister(), x0);
2405 EmitNamedPropertyLoad(expr);
2406 } else {
2407 VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var());
2408 VisitForStackValue(
2409 expr->obj()->AsSuperPropertyReference()->home_object());
2410 EmitNamedSuperPropertyLoad(expr);
2411 }
2412 } else {
2413 if (!expr->IsSuperAccess()) {
2414 VisitForStackValue(expr->obj());
2415 VisitForAccumulatorValue(expr->key());
2416 __ Move(LoadDescriptor::NameRegister(), x0);
2417 __ Pop(LoadDescriptor::ReceiverRegister());
2418 EmitKeyedPropertyLoad(expr);
2419 } else {
2420 VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var());
2421 VisitForStackValue(
2422 expr->obj()->AsSuperPropertyReference()->home_object());
2423 VisitForStackValue(expr->key());
2424 EmitKeyedSuperPropertyLoad(expr);
2425 }
2426 }
2427 PrepareForBailoutForId(expr->LoadId(), TOS_REG);
2428 context()->Plug(x0);
2429 }
2430
2431
CallIC(Handle<Code> code,TypeFeedbackId ast_id)2432 void FullCodeGenerator::CallIC(Handle<Code> code,
2433 TypeFeedbackId ast_id) {
2434 ic_total_count_++;
2435 // All calls must have a predictable size in full-codegen code to ensure that
2436 // the debugger can patch them correctly.
2437 __ Call(code, RelocInfo::CODE_TARGET, ast_id);
2438 }
2439
2440
2441 // Code common for calls using the IC.
EmitCallWithLoadIC(Call * expr)2442 void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
2443 ASM_LOCATION("FullCodeGenerator::EmitCallWithLoadIC");
2444 Expression* callee = expr->expression();
2445
2446 // Get the target function.
2447 ConvertReceiverMode convert_mode;
2448 if (callee->IsVariableProxy()) {
2449 { StackValueContext context(this);
2450 EmitVariableLoad(callee->AsVariableProxy());
2451 PrepareForBailout(callee, NO_REGISTERS);
2452 }
2453 // Push undefined as receiver. This is patched in the method prologue if it
2454 // is a sloppy mode method.
2455 {
2456 UseScratchRegisterScope temps(masm_);
2457 Register temp = temps.AcquireX();
2458 __ LoadRoot(temp, Heap::kUndefinedValueRootIndex);
2459 __ Push(temp);
2460 }
2461 convert_mode = ConvertReceiverMode::kNullOrUndefined;
2462 } else {
2463 // Load the function from the receiver.
2464 DCHECK(callee->IsProperty());
2465 DCHECK(!callee->AsProperty()->IsSuperAccess());
2466 __ Peek(LoadDescriptor::ReceiverRegister(), 0);
2467 EmitNamedPropertyLoad(callee->AsProperty());
2468 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2469 // Push the target function under the receiver.
2470 __ Pop(x10);
2471 __ Push(x0, x10);
2472 convert_mode = ConvertReceiverMode::kNotNullOrUndefined;
2473 }
2474
2475 EmitCall(expr, convert_mode);
2476 }
2477
2478
EmitSuperCallWithLoadIC(Call * expr)2479 void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) {
2480 ASM_LOCATION("FullCodeGenerator::EmitSuperCallWithLoadIC");
2481 Expression* callee = expr->expression();
2482 DCHECK(callee->IsProperty());
2483 Property* prop = callee->AsProperty();
2484 DCHECK(prop->IsSuperAccess());
2485 SetExpressionPosition(prop);
2486
2487 Literal* key = prop->key()->AsLiteral();
2488 DCHECK(!key->value()->IsSmi());
2489
2490 // Load the function from the receiver.
2491 const Register scratch = x10;
2492 SuperPropertyReference* super_ref =
2493 callee->AsProperty()->obj()->AsSuperPropertyReference();
2494 VisitForStackValue(super_ref->home_object());
2495 VisitForAccumulatorValue(super_ref->this_var());
2496 __ Push(x0);
2497 __ Peek(scratch, kPointerSize);
2498 __ Push(x0, scratch);
2499 __ Push(key->value());
2500 __ Push(Smi::FromInt(language_mode()));
2501
2502 // Stack here:
2503 // - home_object
2504 // - this (receiver)
2505 // - this (receiver) <-- LoadFromSuper will pop here and below.
2506 // - home_object
2507 // - language_mode
2508 __ CallRuntime(Runtime::kLoadFromSuper);
2509
2510 // Replace home_object with target function.
2511 __ Poke(x0, kPointerSize);
2512
2513 // Stack here:
2514 // - target function
2515 // - this (receiver)
2516 EmitCall(expr);
2517 }
2518
2519
2520 // Code common for calls using the IC.
EmitKeyedCallWithLoadIC(Call * expr,Expression * key)2521 void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr,
2522 Expression* key) {
2523 ASM_LOCATION("FullCodeGenerator::EmitKeyedCallWithLoadIC");
2524 // Load the key.
2525 VisitForAccumulatorValue(key);
2526
2527 Expression* callee = expr->expression();
2528
2529 // Load the function from the receiver.
2530 DCHECK(callee->IsProperty());
2531 __ Peek(LoadDescriptor::ReceiverRegister(), 0);
2532 __ Move(LoadDescriptor::NameRegister(), x0);
2533 EmitKeyedPropertyLoad(callee->AsProperty());
2534 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2535
2536 // Push the target function under the receiver.
2537 __ Pop(x10);
2538 __ Push(x0, x10);
2539
2540 EmitCall(expr, ConvertReceiverMode::kNotNullOrUndefined);
2541 }
2542
2543
EmitKeyedSuperCallWithLoadIC(Call * expr)2544 void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) {
2545 ASM_LOCATION("FullCodeGenerator::EmitKeyedSuperCallWithLoadIC");
2546 Expression* callee = expr->expression();
2547 DCHECK(callee->IsProperty());
2548 Property* prop = callee->AsProperty();
2549 DCHECK(prop->IsSuperAccess());
2550 SetExpressionPosition(prop);
2551
2552 // Load the function from the receiver.
2553 const Register scratch = x10;
2554 SuperPropertyReference* super_ref =
2555 callee->AsProperty()->obj()->AsSuperPropertyReference();
2556 VisitForStackValue(super_ref->home_object());
2557 VisitForAccumulatorValue(super_ref->this_var());
2558 __ Push(x0);
2559 __ Peek(scratch, kPointerSize);
2560 __ Push(x0, scratch);
2561 VisitForStackValue(prop->key());
2562 __ Push(Smi::FromInt(language_mode()));
2563
2564 // Stack here:
2565 // - home_object
2566 // - this (receiver)
2567 // - this (receiver) <-- LoadKeyedFromSuper will pop here and below.
2568 // - home_object
2569 // - key
2570 // - language_mode
2571 __ CallRuntime(Runtime::kLoadKeyedFromSuper);
2572
2573 // Replace home_object with target function.
2574 __ Poke(x0, kPointerSize);
2575
2576 // Stack here:
2577 // - target function
2578 // - this (receiver)
2579 EmitCall(expr);
2580 }
2581
2582
EmitCall(Call * expr,ConvertReceiverMode mode)2583 void FullCodeGenerator::EmitCall(Call* expr, ConvertReceiverMode mode) {
2584 ASM_LOCATION("FullCodeGenerator::EmitCall");
2585 // Load the arguments.
2586 ZoneList<Expression*>* args = expr->arguments();
2587 int arg_count = args->length();
2588 for (int i = 0; i < arg_count; i++) {
2589 VisitForStackValue(args->at(i));
2590 }
2591
2592 PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
2593 SetCallPosition(expr);
2594
2595 Handle<Code> ic = CodeFactory::CallIC(isolate(), arg_count, mode).code();
2596 __ Mov(x3, SmiFromSlot(expr->CallFeedbackICSlot()));
2597 __ Peek(x1, (arg_count + 1) * kXRegSize);
2598 // Don't assign a type feedback id to the IC, since type feedback is provided
2599 // by the vector above.
2600 CallIC(ic);
2601
2602 RecordJSReturnSite(expr);
2603 // Restore context register.
2604 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2605 context()->DropAndPlug(1, x0);
2606 }
2607
2608
EmitResolvePossiblyDirectEval(int arg_count)2609 void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
2610 ASM_LOCATION("FullCodeGenerator::EmitResolvePossiblyDirectEval");
2611 // Prepare to push a copy of the first argument or undefined if it doesn't
2612 // exist.
2613 if (arg_count > 0) {
2614 __ Peek(x9, arg_count * kXRegSize);
2615 } else {
2616 __ LoadRoot(x9, Heap::kUndefinedValueRootIndex);
2617 }
2618
2619 __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2620
2621 // Prepare to push the language mode.
2622 __ Mov(x11, Smi::FromInt(language_mode()));
2623 // Prepare to push the start position of the scope the calls resides in.
2624 __ Mov(x12, Smi::FromInt(scope()->start_position()));
2625
2626 // Push.
2627 __ Push(x9, x10, x11, x12);
2628
2629 // Do the runtime call.
2630 __ CallRuntime(Runtime::kResolvePossiblyDirectEval);
2631 }
2632
2633
2634 // See http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls.
PushCalleeAndWithBaseObject(Call * expr)2635 void FullCodeGenerator::PushCalleeAndWithBaseObject(Call* expr) {
2636 VariableProxy* callee = expr->expression()->AsVariableProxy();
2637 if (callee->var()->IsLookupSlot()) {
2638 Label slow, done;
2639 SetExpressionPosition(callee);
2640 // Generate code for loading from variables potentially shadowed
2641 // by eval-introduced variables.
2642 EmitDynamicLookupFastCase(callee, NOT_INSIDE_TYPEOF, &slow, &done);
2643
2644 __ Bind(&slow);
2645 // Call the runtime to find the function to call (returned in x0)
2646 // and the object holding it (returned in x1).
2647 __ Mov(x10, Operand(callee->name()));
2648 __ Push(context_register(), x10);
2649 __ CallRuntime(Runtime::kLoadLookupSlot);
2650 __ Push(x0, x1); // Receiver, function.
2651 PrepareForBailoutForId(expr->LookupId(), NO_REGISTERS);
2652
2653 // If fast case code has been generated, emit code to push the
2654 // function and receiver and have the slow path jump around this
2655 // code.
2656 if (done.is_linked()) {
2657 Label call;
2658 __ B(&call);
2659 __ Bind(&done);
2660 // Push function.
2661 // The receiver is implicitly the global receiver. Indicate this
2662 // by passing the undefined to the call function stub.
2663 __ LoadRoot(x1, Heap::kUndefinedValueRootIndex);
2664 __ Push(x0, x1);
2665 __ Bind(&call);
2666 }
2667 } else {
2668 VisitForStackValue(callee);
2669 // refEnv.WithBaseObject()
2670 __ LoadRoot(x10, Heap::kUndefinedValueRootIndex);
2671 __ Push(x10); // Reserved receiver slot.
2672 }
2673 }
2674
2675
EmitPossiblyEvalCall(Call * expr)2676 void FullCodeGenerator::EmitPossiblyEvalCall(Call* expr) {
2677 ASM_LOCATION("FullCodeGenerator::EmitPossiblyEvalCall");
2678 // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
2679 // to resolve the function we need to call. Then we call the resolved
2680 // function using the given arguments.
2681 ZoneList<Expression*>* args = expr->arguments();
2682 int arg_count = args->length();
2683
2684 PushCalleeAndWithBaseObject(expr);
2685
2686 // Push the arguments.
2687 for (int i = 0; i < arg_count; i++) {
2688 VisitForStackValue(args->at(i));
2689 }
2690
2691 // Push a copy of the function (found below the arguments) and
2692 // resolve eval.
2693 __ Peek(x10, (arg_count + 1) * kPointerSize);
2694 __ Push(x10);
2695 EmitResolvePossiblyDirectEval(arg_count);
2696
2697 // Touch up the stack with the resolved function.
2698 __ Poke(x0, (arg_count + 1) * kPointerSize);
2699
2700 PrepareForBailoutForId(expr->EvalId(), NO_REGISTERS);
2701
2702 // Record source position for debugger.
2703 SetCallPosition(expr);
2704
2705 // Call the evaluated function.
2706 __ Peek(x1, (arg_count + 1) * kXRegSize);
2707 __ Mov(x0, arg_count);
2708 __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
2709 RecordJSReturnSite(expr);
2710 // Restore context register.
2711 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2712 context()->DropAndPlug(1, x0);
2713 }
2714
2715
VisitCallNew(CallNew * expr)2716 void FullCodeGenerator::VisitCallNew(CallNew* expr) {
2717 Comment cmnt(masm_, "[ CallNew");
2718 // According to ECMA-262, section 11.2.2, page 44, the function
2719 // expression in new calls must be evaluated before the
2720 // arguments.
2721
2722 // Push constructor on the stack. If it's not a function it's used as
2723 // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
2724 // ignored.
2725 DCHECK(!expr->expression()->IsSuperPropertyReference());
2726 VisitForStackValue(expr->expression());
2727
2728 // Push the arguments ("left-to-right") on the stack.
2729 ZoneList<Expression*>* args = expr->arguments();
2730 int arg_count = args->length();
2731 for (int i = 0; i < arg_count; i++) {
2732 VisitForStackValue(args->at(i));
2733 }
2734
2735 // Call the construct call builtin that handles allocation and
2736 // constructor invocation.
2737 SetConstructCallPosition(expr);
2738
2739 // Load function and argument count into x1 and x0.
2740 __ Mov(x0, arg_count);
2741 __ Peek(x1, arg_count * kXRegSize);
2742
2743 // Record call targets in unoptimized code.
2744 __ EmitLoadTypeFeedbackVector(x2);
2745 __ Mov(x3, SmiFromSlot(expr->CallNewFeedbackSlot()));
2746
2747 CallConstructStub stub(isolate());
2748 __ Call(stub.GetCode(), RelocInfo::CODE_TARGET);
2749 PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
2750 // Restore context register.
2751 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2752 context()->Plug(x0);
2753 }
2754
2755
EmitSuperConstructorCall(Call * expr)2756 void FullCodeGenerator::EmitSuperConstructorCall(Call* expr) {
2757 ASM_LOCATION("FullCodeGenerator::EmitSuperConstructorCall");
2758 SuperCallReference* super_call_ref =
2759 expr->expression()->AsSuperCallReference();
2760 DCHECK_NOT_NULL(super_call_ref);
2761
2762 // Push the super constructor target on the stack (may be null,
2763 // but the Construct builtin can deal with that properly).
2764 VisitForAccumulatorValue(super_call_ref->this_function_var());
2765 __ AssertFunction(result_register());
2766 __ Ldr(result_register(),
2767 FieldMemOperand(result_register(), HeapObject::kMapOffset));
2768 __ Ldr(result_register(),
2769 FieldMemOperand(result_register(), Map::kPrototypeOffset));
2770 __ Push(result_register());
2771
2772 // Push the arguments ("left-to-right") on the stack.
2773 ZoneList<Expression*>* args = expr->arguments();
2774 int arg_count = args->length();
2775 for (int i = 0; i < arg_count; i++) {
2776 VisitForStackValue(args->at(i));
2777 }
2778
2779 // Call the construct call builtin that handles allocation and
2780 // constructor invocation.
2781 SetConstructCallPosition(expr);
2782
2783 // Load new target into x3.
2784 VisitForAccumulatorValue(super_call_ref->new_target_var());
2785 __ Mov(x3, result_register());
2786
2787 // Load function and argument count into x1 and x0.
2788 __ Mov(x0, arg_count);
2789 __ Peek(x1, arg_count * kXRegSize);
2790
2791 __ Call(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
2792
2793 RecordJSReturnSite(expr);
2794
2795 // Restore context register.
2796 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2797 context()->Plug(x0);
2798 }
2799
2800
EmitIsSmi(CallRuntime * expr)2801 void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
2802 ZoneList<Expression*>* args = expr->arguments();
2803 DCHECK(args->length() == 1);
2804
2805 VisitForAccumulatorValue(args->at(0));
2806
2807 Label materialize_true, materialize_false;
2808 Label* if_true = NULL;
2809 Label* if_false = NULL;
2810 Label* fall_through = NULL;
2811 context()->PrepareTest(&materialize_true, &materialize_false,
2812 &if_true, &if_false, &fall_through);
2813
2814 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2815 __ TestAndSplit(x0, kSmiTagMask, if_true, if_false, fall_through);
2816
2817 context()->Plug(if_true, if_false);
2818 }
2819
2820
EmitIsJSReceiver(CallRuntime * expr)2821 void FullCodeGenerator::EmitIsJSReceiver(CallRuntime* expr) {
2822 ZoneList<Expression*>* args = expr->arguments();
2823 DCHECK(args->length() == 1);
2824
2825 VisitForAccumulatorValue(args->at(0));
2826
2827 Label materialize_true, materialize_false;
2828 Label* if_true = NULL;
2829 Label* if_false = NULL;
2830 Label* fall_through = NULL;
2831 context()->PrepareTest(&materialize_true, &materialize_false,
2832 &if_true, &if_false, &fall_through);
2833
2834 __ JumpIfSmi(x0, if_false);
2835 __ CompareObjectType(x0, x10, x11, FIRST_JS_RECEIVER_TYPE);
2836 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2837 Split(ge, if_true, if_false, fall_through);
2838
2839 context()->Plug(if_true, if_false);
2840 }
2841
2842
EmitIsSimdValue(CallRuntime * expr)2843 void FullCodeGenerator::EmitIsSimdValue(CallRuntime* expr) {
2844 ZoneList<Expression*>* args = expr->arguments();
2845 DCHECK(args->length() == 1);
2846
2847 VisitForAccumulatorValue(args->at(0));
2848
2849 Label materialize_true, materialize_false;
2850 Label* if_true = NULL;
2851 Label* if_false = NULL;
2852 Label* fall_through = NULL;
2853 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2854 &if_false, &fall_through);
2855
2856 __ JumpIfSmi(x0, if_false);
2857 __ CompareObjectType(x0, x10, x11, SIMD128_VALUE_TYPE);
2858 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2859 Split(eq, if_true, if_false, fall_through);
2860
2861 context()->Plug(if_true, if_false);
2862 }
2863
2864
EmitIsFunction(CallRuntime * expr)2865 void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
2866 ZoneList<Expression*>* args = expr->arguments();
2867 DCHECK(args->length() == 1);
2868
2869 VisitForAccumulatorValue(args->at(0));
2870
2871 Label materialize_true, materialize_false;
2872 Label* if_true = NULL;
2873 Label* if_false = NULL;
2874 Label* fall_through = NULL;
2875 context()->PrepareTest(&materialize_true, &materialize_false,
2876 &if_true, &if_false, &fall_through);
2877
2878 __ JumpIfSmi(x0, if_false);
2879 __ CompareObjectType(x0, x10, x11, FIRST_FUNCTION_TYPE);
2880 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2881 Split(hs, if_true, if_false, fall_through);
2882
2883 context()->Plug(if_true, if_false);
2884 }
2885
2886
EmitIsMinusZero(CallRuntime * expr)2887 void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
2888 ZoneList<Expression*>* args = expr->arguments();
2889 DCHECK(args->length() == 1);
2890
2891 VisitForAccumulatorValue(args->at(0));
2892
2893 Label materialize_true, materialize_false;
2894 Label* if_true = NULL;
2895 Label* if_false = NULL;
2896 Label* fall_through = NULL;
2897 context()->PrepareTest(&materialize_true, &materialize_false,
2898 &if_true, &if_false, &fall_through);
2899
2900 // Only a HeapNumber can be -0.0, so return false if we have something else.
2901 __ JumpIfNotHeapNumber(x0, if_false, DO_SMI_CHECK);
2902
2903 // Test the bit pattern.
2904 __ Ldr(x10, FieldMemOperand(x0, HeapNumber::kValueOffset));
2905 __ Cmp(x10, 1); // Set V on 0x8000000000000000.
2906
2907 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2908 Split(vs, if_true, if_false, fall_through);
2909
2910 context()->Plug(if_true, if_false);
2911 }
2912
2913
EmitIsArray(CallRuntime * expr)2914 void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
2915 ZoneList<Expression*>* args = expr->arguments();
2916 DCHECK(args->length() == 1);
2917
2918 VisitForAccumulatorValue(args->at(0));
2919
2920 Label materialize_true, materialize_false;
2921 Label* if_true = NULL;
2922 Label* if_false = NULL;
2923 Label* fall_through = NULL;
2924 context()->PrepareTest(&materialize_true, &materialize_false,
2925 &if_true, &if_false, &fall_through);
2926
2927 __ JumpIfSmi(x0, if_false);
2928 __ CompareObjectType(x0, x10, x11, JS_ARRAY_TYPE);
2929 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2930 Split(eq, if_true, if_false, fall_through);
2931
2932 context()->Plug(if_true, if_false);
2933 }
2934
2935
EmitIsTypedArray(CallRuntime * expr)2936 void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) {
2937 ZoneList<Expression*>* args = expr->arguments();
2938 DCHECK(args->length() == 1);
2939
2940 VisitForAccumulatorValue(args->at(0));
2941
2942 Label materialize_true, materialize_false;
2943 Label* if_true = NULL;
2944 Label* if_false = NULL;
2945 Label* fall_through = NULL;
2946 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2947 &if_false, &fall_through);
2948
2949 __ JumpIfSmi(x0, if_false);
2950 __ CompareObjectType(x0, x10, x11, JS_TYPED_ARRAY_TYPE);
2951 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2952 Split(eq, if_true, if_false, fall_through);
2953
2954 context()->Plug(if_true, if_false);
2955 }
2956
2957
EmitIsRegExp(CallRuntime * expr)2958 void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
2959 ZoneList<Expression*>* args = expr->arguments();
2960 DCHECK(args->length() == 1);
2961
2962 VisitForAccumulatorValue(args->at(0));
2963
2964 Label materialize_true, materialize_false;
2965 Label* if_true = NULL;
2966 Label* if_false = NULL;
2967 Label* fall_through = NULL;
2968 context()->PrepareTest(&materialize_true, &materialize_false,
2969 &if_true, &if_false, &fall_through);
2970
2971 __ JumpIfSmi(x0, if_false);
2972 __ CompareObjectType(x0, x10, x11, JS_REGEXP_TYPE);
2973 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2974 Split(eq, if_true, if_false, fall_through);
2975
2976 context()->Plug(if_true, if_false);
2977 }
2978
2979
EmitIsJSProxy(CallRuntime * expr)2980 void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) {
2981 ZoneList<Expression*>* args = expr->arguments();
2982 DCHECK(args->length() == 1);
2983
2984 VisitForAccumulatorValue(args->at(0));
2985
2986 Label materialize_true, materialize_false;
2987 Label* if_true = NULL;
2988 Label* if_false = NULL;
2989 Label* fall_through = NULL;
2990 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2991 &if_false, &fall_through);
2992
2993 __ JumpIfSmi(x0, if_false);
2994 __ CompareObjectType(x0, x10, x11, JS_PROXY_TYPE);
2995 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2996 Split(eq, if_true, if_false, fall_through);
2997
2998 context()->Plug(if_true, if_false);
2999 }
3000
3001
EmitObjectEquals(CallRuntime * expr)3002 void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
3003 ZoneList<Expression*>* args = expr->arguments();
3004 DCHECK(args->length() == 2);
3005
3006 // Load the two objects into registers and perform the comparison.
3007 VisitForStackValue(args->at(0));
3008 VisitForAccumulatorValue(args->at(1));
3009
3010 Label materialize_true, materialize_false;
3011 Label* if_true = NULL;
3012 Label* if_false = NULL;
3013 Label* fall_through = NULL;
3014 context()->PrepareTest(&materialize_true, &materialize_false,
3015 &if_true, &if_false, &fall_through);
3016
3017 __ Pop(x1);
3018 __ Cmp(x0, x1);
3019 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3020 Split(eq, if_true, if_false, fall_through);
3021
3022 context()->Plug(if_true, if_false);
3023 }
3024
3025
EmitArguments(CallRuntime * expr)3026 void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
3027 ZoneList<Expression*>* args = expr->arguments();
3028 DCHECK(args->length() == 1);
3029
3030 // ArgumentsAccessStub expects the key in x1.
3031 VisitForAccumulatorValue(args->at(0));
3032 __ Mov(x1, x0);
3033 __ Mov(x0, Smi::FromInt(info_->scope()->num_parameters()));
3034 ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT);
3035 __ CallStub(&stub);
3036 context()->Plug(x0);
3037 }
3038
3039
EmitArgumentsLength(CallRuntime * expr)3040 void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
3041 DCHECK(expr->arguments()->length() == 0);
3042 Label exit;
3043 // Get the number of formal parameters.
3044 __ Mov(x0, Smi::FromInt(info_->scope()->num_parameters()));
3045
3046 // Check if the calling frame is an arguments adaptor frame.
3047 __ Ldr(x12, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3048 __ Ldr(x13, MemOperand(x12, StandardFrameConstants::kContextOffset));
3049 __ Cmp(x13, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3050 __ B(ne, &exit);
3051
3052 // Arguments adaptor case: Read the arguments length from the
3053 // adaptor frame.
3054 __ Ldr(x0, MemOperand(x12, ArgumentsAdaptorFrameConstants::kLengthOffset));
3055
3056 __ Bind(&exit);
3057 context()->Plug(x0);
3058 }
3059
3060
EmitClassOf(CallRuntime * expr)3061 void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
3062 ASM_LOCATION("FullCodeGenerator::EmitClassOf");
3063 ZoneList<Expression*>* args = expr->arguments();
3064 DCHECK(args->length() == 1);
3065 Label done, null, function, non_function_constructor;
3066
3067 VisitForAccumulatorValue(args->at(0));
3068
3069 // If the object is not a JSReceiver, we return null.
3070 __ JumpIfSmi(x0, &null);
3071 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
3072 __ CompareObjectType(x0, x10, x11, FIRST_JS_RECEIVER_TYPE);
3073 // x10: object's map.
3074 // x11: object's type.
3075 __ B(lt, &null);
3076
3077 // Return 'Function' for JSFunction objects.
3078 __ Cmp(x11, JS_FUNCTION_TYPE);
3079 __ B(eq, &function);
3080
3081 // Check if the constructor in the map is a JS function.
3082 Register instance_type = x14;
3083 __ GetMapConstructor(x12, x10, x13, instance_type);
3084 __ Cmp(instance_type, JS_FUNCTION_TYPE);
3085 __ B(ne, &non_function_constructor);
3086
3087 // x12 now contains the constructor function. Grab the
3088 // instance class name from there.
3089 __ Ldr(x13, FieldMemOperand(x12, JSFunction::kSharedFunctionInfoOffset));
3090 __ Ldr(x0,
3091 FieldMemOperand(x13, SharedFunctionInfo::kInstanceClassNameOffset));
3092 __ B(&done);
3093
3094 // Functions have class 'Function'.
3095 __ Bind(&function);
3096 __ LoadRoot(x0, Heap::kFunction_stringRootIndex);
3097 __ B(&done);
3098
3099 // Objects with a non-function constructor have class 'Object'.
3100 __ Bind(&non_function_constructor);
3101 __ LoadRoot(x0, Heap::kObject_stringRootIndex);
3102 __ B(&done);
3103
3104 // Non-JS objects have class null.
3105 __ Bind(&null);
3106 __ LoadRoot(x0, Heap::kNullValueRootIndex);
3107
3108 // All done.
3109 __ Bind(&done);
3110
3111 context()->Plug(x0);
3112 }
3113
3114
EmitValueOf(CallRuntime * expr)3115 void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
3116 ASM_LOCATION("FullCodeGenerator::EmitValueOf");
3117 ZoneList<Expression*>* args = expr->arguments();
3118 DCHECK(args->length() == 1);
3119 VisitForAccumulatorValue(args->at(0)); // Load the object.
3120
3121 Label done;
3122 // If the object is a smi return the object.
3123 __ JumpIfSmi(x0, &done);
3124 // If the object is not a value type, return the object.
3125 __ JumpIfNotObjectType(x0, x10, x11, JS_VALUE_TYPE, &done);
3126 __ Ldr(x0, FieldMemOperand(x0, JSValue::kValueOffset));
3127
3128 __ Bind(&done);
3129 context()->Plug(x0);
3130 }
3131
3132
EmitIsDate(CallRuntime * expr)3133 void FullCodeGenerator::EmitIsDate(CallRuntime* expr) {
3134 ZoneList<Expression*>* args = expr->arguments();
3135 DCHECK_EQ(1, args->length());
3136
3137 VisitForAccumulatorValue(args->at(0));
3138
3139 Label materialize_true, materialize_false;
3140 Label* if_true = nullptr;
3141 Label* if_false = nullptr;
3142 Label* fall_through = nullptr;
3143 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3144 &if_false, &fall_through);
3145
3146 __ JumpIfSmi(x0, if_false);
3147 __ CompareObjectType(x0, x10, x11, JS_DATE_TYPE);
3148 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3149 Split(eq, if_true, if_false, fall_through);
3150
3151 context()->Plug(if_true, if_false);
3152 }
3153
3154
EmitOneByteSeqStringSetChar(CallRuntime * expr)3155 void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
3156 ZoneList<Expression*>* args = expr->arguments();
3157 DCHECK_EQ(3, args->length());
3158
3159 Register string = x0;
3160 Register index = x1;
3161 Register value = x2;
3162 Register scratch = x10;
3163
3164 VisitForStackValue(args->at(0)); // index
3165 VisitForStackValue(args->at(1)); // value
3166 VisitForAccumulatorValue(args->at(2)); // string
3167 __ Pop(value, index);
3168
3169 if (FLAG_debug_code) {
3170 __ AssertSmi(value, kNonSmiValue);
3171 __ AssertSmi(index, kNonSmiIndex);
3172 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
3173 __ EmitSeqStringSetCharCheck(string, index, kIndexIsSmi, scratch,
3174 one_byte_seq_type);
3175 }
3176
3177 __ Add(scratch, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3178 __ SmiUntag(value);
3179 __ SmiUntag(index);
3180 __ Strb(value, MemOperand(scratch, index));
3181 context()->Plug(string);
3182 }
3183
3184
EmitTwoByteSeqStringSetChar(CallRuntime * expr)3185 void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
3186 ZoneList<Expression*>* args = expr->arguments();
3187 DCHECK_EQ(3, args->length());
3188
3189 Register string = x0;
3190 Register index = x1;
3191 Register value = x2;
3192 Register scratch = x10;
3193
3194 VisitForStackValue(args->at(0)); // index
3195 VisitForStackValue(args->at(1)); // value
3196 VisitForAccumulatorValue(args->at(2)); // string
3197 __ Pop(value, index);
3198
3199 if (FLAG_debug_code) {
3200 __ AssertSmi(value, kNonSmiValue);
3201 __ AssertSmi(index, kNonSmiIndex);
3202 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
3203 __ EmitSeqStringSetCharCheck(string, index, kIndexIsSmi, scratch,
3204 two_byte_seq_type);
3205 }
3206
3207 __ Add(scratch, string, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
3208 __ SmiUntag(value);
3209 __ SmiUntag(index);
3210 __ Strh(value, MemOperand(scratch, index, LSL, 1));
3211 context()->Plug(string);
3212 }
3213
3214
EmitSetValueOf(CallRuntime * expr)3215 void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
3216 ZoneList<Expression*>* args = expr->arguments();
3217 DCHECK(args->length() == 2);
3218 VisitForStackValue(args->at(0)); // Load the object.
3219 VisitForAccumulatorValue(args->at(1)); // Load the value.
3220 __ Pop(x1);
3221 // x0 = value.
3222 // x1 = object.
3223
3224 Label done;
3225 // If the object is a smi, return the value.
3226 __ JumpIfSmi(x1, &done);
3227
3228 // If the object is not a value type, return the value.
3229 __ JumpIfNotObjectType(x1, x10, x11, JS_VALUE_TYPE, &done);
3230
3231 // Store the value.
3232 __ Str(x0, FieldMemOperand(x1, JSValue::kValueOffset));
3233 // Update the write barrier. Save the value as it will be
3234 // overwritten by the write barrier code and is needed afterward.
3235 __ Mov(x10, x0);
3236 __ RecordWriteField(
3237 x1, JSValue::kValueOffset, x10, x11, kLRHasBeenSaved, kDontSaveFPRegs);
3238
3239 __ Bind(&done);
3240 context()->Plug(x0);
3241 }
3242
3243
EmitToInteger(CallRuntime * expr)3244 void FullCodeGenerator::EmitToInteger(CallRuntime* expr) {
3245 ZoneList<Expression*>* args = expr->arguments();
3246 DCHECK_EQ(1, args->length());
3247
3248 // Load the argument into x0 and convert it.
3249 VisitForAccumulatorValue(args->at(0));
3250
3251 // Convert the object to an integer.
3252 Label done_convert;
3253 __ JumpIfSmi(x0, &done_convert);
3254 __ Push(x0);
3255 __ CallRuntime(Runtime::kToInteger);
3256 __ bind(&done_convert);
3257 context()->Plug(x0);
3258 }
3259
3260
EmitToName(CallRuntime * expr)3261 void FullCodeGenerator::EmitToName(CallRuntime* expr) {
3262 ZoneList<Expression*>* args = expr->arguments();
3263 DCHECK_EQ(1, args->length());
3264
3265 // Load the argument into x0 and convert it.
3266 VisitForAccumulatorValue(args->at(0));
3267
3268 Label convert, done_convert;
3269 __ JumpIfSmi(x0, &convert);
3270 STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
3271 __ JumpIfObjectType(x0, x1, x1, LAST_NAME_TYPE, &done_convert, ls);
3272 __ Bind(&convert);
3273 __ Push(x0);
3274 __ CallRuntime(Runtime::kToName);
3275 __ Bind(&done_convert);
3276 context()->Plug(x0);
3277 }
3278
3279
EmitStringCharFromCode(CallRuntime * expr)3280 void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
3281 ZoneList<Expression*>* args = expr->arguments();
3282 DCHECK(args->length() == 1);
3283
3284 VisitForAccumulatorValue(args->at(0));
3285
3286 Label done;
3287 Register code = x0;
3288 Register result = x1;
3289
3290 StringCharFromCodeGenerator generator(code, result);
3291 generator.GenerateFast(masm_);
3292 __ B(&done);
3293
3294 NopRuntimeCallHelper call_helper;
3295 generator.GenerateSlow(masm_, call_helper);
3296
3297 __ Bind(&done);
3298 context()->Plug(result);
3299 }
3300
3301
EmitStringCharCodeAt(CallRuntime * expr)3302 void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
3303 ZoneList<Expression*>* args = expr->arguments();
3304 DCHECK(args->length() == 2);
3305
3306 VisitForStackValue(args->at(0));
3307 VisitForAccumulatorValue(args->at(1));
3308
3309 Register object = x1;
3310 Register index = x0;
3311 Register result = x3;
3312
3313 __ Pop(object);
3314
3315 Label need_conversion;
3316 Label index_out_of_range;
3317 Label done;
3318 StringCharCodeAtGenerator generator(object,
3319 index,
3320 result,
3321 &need_conversion,
3322 &need_conversion,
3323 &index_out_of_range,
3324 STRING_INDEX_IS_NUMBER);
3325 generator.GenerateFast(masm_);
3326 __ B(&done);
3327
3328 __ Bind(&index_out_of_range);
3329 // When the index is out of range, the spec requires us to return NaN.
3330 __ LoadRoot(result, Heap::kNanValueRootIndex);
3331 __ B(&done);
3332
3333 __ Bind(&need_conversion);
3334 // Load the undefined value into the result register, which will
3335 // trigger conversion.
3336 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3337 __ B(&done);
3338
3339 NopRuntimeCallHelper call_helper;
3340 generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
3341
3342 __ Bind(&done);
3343 context()->Plug(result);
3344 }
3345
3346
EmitStringCharAt(CallRuntime * expr)3347 void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
3348 ZoneList<Expression*>* args = expr->arguments();
3349 DCHECK(args->length() == 2);
3350
3351 VisitForStackValue(args->at(0));
3352 VisitForAccumulatorValue(args->at(1));
3353
3354 Register object = x1;
3355 Register index = x0;
3356 Register result = x0;
3357
3358 __ Pop(object);
3359
3360 Label need_conversion;
3361 Label index_out_of_range;
3362 Label done;
3363 StringCharAtGenerator generator(object,
3364 index,
3365 x3,
3366 result,
3367 &need_conversion,
3368 &need_conversion,
3369 &index_out_of_range,
3370 STRING_INDEX_IS_NUMBER);
3371 generator.GenerateFast(masm_);
3372 __ B(&done);
3373
3374 __ Bind(&index_out_of_range);
3375 // When the index is out of range, the spec requires us to return
3376 // the empty string.
3377 __ LoadRoot(result, Heap::kempty_stringRootIndex);
3378 __ B(&done);
3379
3380 __ Bind(&need_conversion);
3381 // Move smi zero into the result register, which will trigger conversion.
3382 __ Mov(result, Smi::FromInt(0));
3383 __ B(&done);
3384
3385 NopRuntimeCallHelper call_helper;
3386 generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
3387
3388 __ Bind(&done);
3389 context()->Plug(result);
3390 }
3391
3392
EmitCall(CallRuntime * expr)3393 void FullCodeGenerator::EmitCall(CallRuntime* expr) {
3394 ASM_LOCATION("FullCodeGenerator::EmitCall");
3395 ZoneList<Expression*>* args = expr->arguments();
3396 DCHECK_LE(2, args->length());
3397 // Push target, receiver and arguments onto the stack.
3398 for (Expression* const arg : *args) {
3399 VisitForStackValue(arg);
3400 }
3401 PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
3402 // Move target to x1.
3403 int const argc = args->length() - 2;
3404 __ Peek(x1, (argc + 1) * kXRegSize);
3405 // Call the target.
3406 __ Mov(x0, argc);
3407 __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
3408 // Restore context register.
3409 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3410 // Discard the function left on TOS.
3411 context()->DropAndPlug(1, x0);
3412 }
3413
3414
EmitHasCachedArrayIndex(CallRuntime * expr)3415 void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
3416 ZoneList<Expression*>* args = expr->arguments();
3417 VisitForAccumulatorValue(args->at(0));
3418
3419 Label materialize_true, materialize_false;
3420 Label* if_true = NULL;
3421 Label* if_false = NULL;
3422 Label* fall_through = NULL;
3423 context()->PrepareTest(&materialize_true, &materialize_false,
3424 &if_true, &if_false, &fall_through);
3425
3426 __ Ldr(x10, FieldMemOperand(x0, String::kHashFieldOffset));
3427 __ Tst(x10, String::kContainsCachedArrayIndexMask);
3428 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3429 Split(eq, if_true, if_false, fall_through);
3430
3431 context()->Plug(if_true, if_false);
3432 }
3433
3434
EmitGetCachedArrayIndex(CallRuntime * expr)3435 void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
3436 ZoneList<Expression*>* args = expr->arguments();
3437 DCHECK(args->length() == 1);
3438 VisitForAccumulatorValue(args->at(0));
3439
3440 __ AssertString(x0);
3441
3442 __ Ldr(x10, FieldMemOperand(x0, String::kHashFieldOffset));
3443 __ IndexFromHash(x10, x0);
3444
3445 context()->Plug(x0);
3446 }
3447
3448
EmitGetSuperConstructor(CallRuntime * expr)3449 void FullCodeGenerator::EmitGetSuperConstructor(CallRuntime* expr) {
3450 ZoneList<Expression*>* args = expr->arguments();
3451 DCHECK_EQ(1, args->length());
3452 VisitForAccumulatorValue(args->at(0));
3453 __ AssertFunction(x0);
3454 __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
3455 __ Ldr(x0, FieldMemOperand(x0, Map::kPrototypeOffset));
3456 context()->Plug(x0);
3457 }
3458
3459
EmitFastOneByteArrayJoin(CallRuntime * expr)3460 void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) {
3461 ASM_LOCATION("FullCodeGenerator::EmitFastOneByteArrayJoin");
3462
3463 ZoneList<Expression*>* args = expr->arguments();
3464 DCHECK(args->length() == 2);
3465 VisitForStackValue(args->at(1));
3466 VisitForAccumulatorValue(args->at(0));
3467
3468 Register array = x0;
3469 Register result = x0;
3470 Register elements = x1;
3471 Register element = x2;
3472 Register separator = x3;
3473 Register array_length = x4;
3474 Register result_pos = x5;
3475 Register map = x6;
3476 Register string_length = x10;
3477 Register elements_end = x11;
3478 Register string = x12;
3479 Register scratch1 = x13;
3480 Register scratch2 = x14;
3481 Register scratch3 = x7;
3482 Register separator_length = x15;
3483
3484 Label bailout, done, one_char_separator, long_separator,
3485 non_trivial_array, not_size_one_array, loop,
3486 empty_separator_loop, one_char_separator_loop,
3487 one_char_separator_loop_entry, long_separator_loop;
3488
3489 // The separator operand is on the stack.
3490 __ Pop(separator);
3491
3492 // Check that the array is a JSArray.
3493 __ JumpIfSmi(array, &bailout);
3494 __ JumpIfNotObjectType(array, map, scratch1, JS_ARRAY_TYPE, &bailout);
3495
3496 // Check that the array has fast elements.
3497 __ CheckFastElements(map, scratch1, &bailout);
3498
3499 // If the array has length zero, return the empty string.
3500 // Load and untag the length of the array.
3501 // It is an unsigned value, so we can skip sign extension.
3502 // We assume little endianness.
3503 __ Ldrsw(array_length,
3504 UntagSmiFieldMemOperand(array, JSArray::kLengthOffset));
3505 __ Cbnz(array_length, &non_trivial_array);
3506 __ LoadRoot(result, Heap::kempty_stringRootIndex);
3507 __ B(&done);
3508
3509 __ Bind(&non_trivial_array);
3510 // Get the FixedArray containing array's elements.
3511 __ Ldr(elements, FieldMemOperand(array, JSArray::kElementsOffset));
3512
3513 // Check that all array elements are sequential one-byte strings, and
3514 // accumulate the sum of their lengths.
3515 __ Mov(string_length, 0);
3516 __ Add(element, elements, FixedArray::kHeaderSize - kHeapObjectTag);
3517 __ Add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2));
3518 // Loop condition: while (element < elements_end).
3519 // Live values in registers:
3520 // elements: Fixed array of strings.
3521 // array_length: Length of the fixed array of strings (not smi)
3522 // separator: Separator string
3523 // string_length: Accumulated sum of string lengths (not smi).
3524 // element: Current array element.
3525 // elements_end: Array end.
3526 if (FLAG_debug_code) {
3527 __ Cmp(array_length, 0);
3528 __ Assert(gt, kNoEmptyArraysHereInEmitFastOneByteArrayJoin);
3529 }
3530 __ Bind(&loop);
3531 __ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
3532 __ JumpIfSmi(string, &bailout);
3533 __ Ldr(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
3534 __ Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
3535 __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout);
3536 __ Ldrsw(scratch1,
3537 UntagSmiFieldMemOperand(string, SeqOneByteString::kLengthOffset));
3538 __ Adds(string_length, string_length, scratch1);
3539 __ B(vs, &bailout);
3540 __ Cmp(element, elements_end);
3541 __ B(lt, &loop);
3542
3543 // If array_length is 1, return elements[0], a string.
3544 __ Cmp(array_length, 1);
3545 __ B(ne, ¬_size_one_array);
3546 __ Ldr(result, FieldMemOperand(elements, FixedArray::kHeaderSize));
3547 __ B(&done);
3548
3549 __ Bind(¬_size_one_array);
3550
3551 // Live values in registers:
3552 // separator: Separator string
3553 // array_length: Length of the array (not smi).
3554 // string_length: Sum of string lengths (not smi).
3555 // elements: FixedArray of strings.
3556
3557 // Check that the separator is a flat one-byte string.
3558 __ JumpIfSmi(separator, &bailout);
3559 __ Ldr(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
3560 __ Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
3561 __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout);
3562
3563 // Add (separator length times array_length) - separator length to the
3564 // string_length to get the length of the result string.
3565 // Load the separator length as untagged.
3566 // We assume little endianness, and that the length is positive.
3567 __ Ldrsw(separator_length,
3568 UntagSmiFieldMemOperand(separator,
3569 SeqOneByteString::kLengthOffset));
3570 __ Sub(string_length, string_length, separator_length);
3571 __ Umaddl(string_length, array_length.W(), separator_length.W(),
3572 string_length);
3573
3574 // Bailout for large object allocations.
3575 __ Cmp(string_length, Page::kMaxRegularHeapObjectSize);
3576 __ B(gt, &bailout);
3577
3578 // Get first element in the array.
3579 __ Add(element, elements, FixedArray::kHeaderSize - kHeapObjectTag);
3580 // Live values in registers:
3581 // element: First array element
3582 // separator: Separator string
3583 // string_length: Length of result string (not smi)
3584 // array_length: Length of the array (not smi).
3585 __ AllocateOneByteString(result, string_length, scratch1, scratch2, scratch3,
3586 &bailout);
3587
3588 // Prepare for looping. Set up elements_end to end of the array. Set
3589 // result_pos to the position of the result where to write the first
3590 // character.
3591 // TODO(all): useless unless AllocateOneByteString trashes the register.
3592 __ Add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2));
3593 __ Add(result_pos, result, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3594
3595 // Check the length of the separator.
3596 __ Cmp(separator_length, 1);
3597 __ B(eq, &one_char_separator);
3598 __ B(gt, &long_separator);
3599
3600 // Empty separator case
3601 __ Bind(&empty_separator_loop);
3602 // Live values in registers:
3603 // result_pos: the position to which we are currently copying characters.
3604 // element: Current array element.
3605 // elements_end: Array end.
3606
3607 // Copy next array element to the result.
3608 __ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
3609 __ Ldrsw(string_length,
3610 UntagSmiFieldMemOperand(string, String::kLengthOffset));
3611 __ Add(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3612 __ CopyBytes(result_pos, string, string_length, scratch1);
3613 __ Cmp(element, elements_end);
3614 __ B(lt, &empty_separator_loop); // End while (element < elements_end).
3615 __ B(&done);
3616
3617 // One-character separator case
3618 __ Bind(&one_char_separator);
3619 // Replace separator with its one-byte character value.
3620 __ Ldrb(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize));
3621 // Jump into the loop after the code that copies the separator, so the first
3622 // element is not preceded by a separator
3623 __ B(&one_char_separator_loop_entry);
3624
3625 __ Bind(&one_char_separator_loop);
3626 // Live values in registers:
3627 // result_pos: the position to which we are currently copying characters.
3628 // element: Current array element.
3629 // elements_end: Array end.
3630 // separator: Single separator one-byte char (in lower byte).
3631
3632 // Copy the separator character to the result.
3633 __ Strb(separator, MemOperand(result_pos, 1, PostIndex));
3634
3635 // Copy next array element to the result.
3636 __ Bind(&one_char_separator_loop_entry);
3637 __ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
3638 __ Ldrsw(string_length,
3639 UntagSmiFieldMemOperand(string, String::kLengthOffset));
3640 __ Add(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3641 __ CopyBytes(result_pos, string, string_length, scratch1);
3642 __ Cmp(element, elements_end);
3643 __ B(lt, &one_char_separator_loop); // End while (element < elements_end).
3644 __ B(&done);
3645
3646 // Long separator case (separator is more than one character). Entry is at the
3647 // label long_separator below.
3648 __ Bind(&long_separator_loop);
3649 // Live values in registers:
3650 // result_pos: the position to which we are currently copying characters.
3651 // element: Current array element.
3652 // elements_end: Array end.
3653 // separator: Separator string.
3654
3655 // Copy the separator to the result.
3656 // TODO(all): hoist next two instructions.
3657 __ Ldrsw(string_length,
3658 UntagSmiFieldMemOperand(separator, String::kLengthOffset));
3659 __ Add(string, separator, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3660 __ CopyBytes(result_pos, string, string_length, scratch1);
3661
3662 __ Bind(&long_separator);
3663 __ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
3664 __ Ldrsw(string_length,
3665 UntagSmiFieldMemOperand(string, String::kLengthOffset));
3666 __ Add(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3667 __ CopyBytes(result_pos, string, string_length, scratch1);
3668 __ Cmp(element, elements_end);
3669 __ B(lt, &long_separator_loop); // End while (element < elements_end).
3670 __ B(&done);
3671
3672 __ Bind(&bailout);
3673 // Returning undefined will force slower code to handle it.
3674 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3675 __ Bind(&done);
3676 context()->Plug(result);
3677 }
3678
3679
EmitDebugIsActive(CallRuntime * expr)3680 void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
3681 DCHECK(expr->arguments()->length() == 0);
3682 ExternalReference debug_is_active =
3683 ExternalReference::debug_is_active_address(isolate());
3684 __ Mov(x10, debug_is_active);
3685 __ Ldrb(x0, MemOperand(x10));
3686 __ SmiTag(x0);
3687 context()->Plug(x0);
3688 }
3689
3690
EmitCreateIterResultObject(CallRuntime * expr)3691 void FullCodeGenerator::EmitCreateIterResultObject(CallRuntime* expr) {
3692 ZoneList<Expression*>* args = expr->arguments();
3693 DCHECK_EQ(2, args->length());
3694 VisitForStackValue(args->at(0));
3695 VisitForStackValue(args->at(1));
3696
3697 Label runtime, done;
3698
3699 Register result = x0;
3700 __ Allocate(JSIteratorResult::kSize, result, x10, x11, &runtime, TAG_OBJECT);
3701 Register map_reg = x1;
3702 Register result_value = x2;
3703 Register boolean_done = x3;
3704 Register empty_fixed_array = x4;
3705 Register untagged_result = x5;
3706 __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, map_reg);
3707 __ Pop(boolean_done);
3708 __ Pop(result_value);
3709 __ LoadRoot(empty_fixed_array, Heap::kEmptyFixedArrayRootIndex);
3710 STATIC_ASSERT(JSObject::kPropertiesOffset + kPointerSize ==
3711 JSObject::kElementsOffset);
3712 STATIC_ASSERT(JSIteratorResult::kValueOffset + kPointerSize ==
3713 JSIteratorResult::kDoneOffset);
3714 __ ObjectUntag(untagged_result, result);
3715 __ Str(map_reg, MemOperand(untagged_result, HeapObject::kMapOffset));
3716 __ Stp(empty_fixed_array, empty_fixed_array,
3717 MemOperand(untagged_result, JSObject::kPropertiesOffset));
3718 __ Stp(result_value, boolean_done,
3719 MemOperand(untagged_result, JSIteratorResult::kValueOffset));
3720 STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize);
3721 __ B(&done);
3722
3723 __ Bind(&runtime);
3724 __ CallRuntime(Runtime::kCreateIterResultObject);
3725
3726 __ Bind(&done);
3727 context()->Plug(x0);
3728 }
3729
3730
EmitLoadJSRuntimeFunction(CallRuntime * expr)3731 void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) {
3732 // Push undefined as the receiver.
3733 __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
3734 __ Push(x0);
3735
3736 __ LoadNativeContextSlot(expr->context_index(), x0);
3737 }
3738
3739
EmitCallJSRuntimeFunction(CallRuntime * expr)3740 void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) {
3741 ZoneList<Expression*>* args = expr->arguments();
3742 int arg_count = args->length();
3743
3744 SetCallPosition(expr);
3745 __ Peek(x1, (arg_count + 1) * kPointerSize);
3746 __ Mov(x0, arg_count);
3747 __ Call(isolate()->builtins()->Call(ConvertReceiverMode::kNullOrUndefined),
3748 RelocInfo::CODE_TARGET);
3749 }
3750
3751
VisitCallRuntime(CallRuntime * expr)3752 void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
3753 ZoneList<Expression*>* args = expr->arguments();
3754 int arg_count = args->length();
3755
3756 if (expr->is_jsruntime()) {
3757 Comment cmnt(masm_, "[ CallRunTime");
3758 EmitLoadJSRuntimeFunction(expr);
3759
3760 // Push the target function under the receiver.
3761 __ Pop(x10);
3762 __ Push(x0, x10);
3763
3764 for (int i = 0; i < arg_count; i++) {
3765 VisitForStackValue(args->at(i));
3766 }
3767
3768 PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
3769 EmitCallJSRuntimeFunction(expr);
3770
3771 // Restore context register.
3772 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3773
3774 context()->DropAndPlug(1, x0);
3775
3776 } else {
3777 const Runtime::Function* function = expr->function();
3778 switch (function->function_id) {
3779 #define CALL_INTRINSIC_GENERATOR(Name) \
3780 case Runtime::kInline##Name: { \
3781 Comment cmnt(masm_, "[ Inline" #Name); \
3782 return Emit##Name(expr); \
3783 }
3784 FOR_EACH_FULL_CODE_INTRINSIC(CALL_INTRINSIC_GENERATOR)
3785 #undef CALL_INTRINSIC_GENERATOR
3786 default: {
3787 Comment cmnt(masm_, "[ CallRuntime for unhandled intrinsic");
3788 // Push the arguments ("left-to-right").
3789 for (int i = 0; i < arg_count; i++) {
3790 VisitForStackValue(args->at(i));
3791 }
3792
3793 // Call the C runtime function.
3794 PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
3795 __ CallRuntime(expr->function(), arg_count);
3796 context()->Plug(x0);
3797 }
3798 }
3799 }
3800 }
3801
3802
VisitUnaryOperation(UnaryOperation * expr)3803 void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
3804 switch (expr->op()) {
3805 case Token::DELETE: {
3806 Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
3807 Property* property = expr->expression()->AsProperty();
3808 VariableProxy* proxy = expr->expression()->AsVariableProxy();
3809
3810 if (property != NULL) {
3811 VisitForStackValue(property->obj());
3812 VisitForStackValue(property->key());
3813 __ CallRuntime(is_strict(language_mode())
3814 ? Runtime::kDeleteProperty_Strict
3815 : Runtime::kDeleteProperty_Sloppy);
3816 context()->Plug(x0);
3817 } else if (proxy != NULL) {
3818 Variable* var = proxy->var();
3819 // Delete of an unqualified identifier is disallowed in strict mode but
3820 // "delete this" is allowed.
3821 bool is_this = var->HasThisName(isolate());
3822 DCHECK(is_sloppy(language_mode()) || is_this);
3823 if (var->IsUnallocatedOrGlobalSlot()) {
3824 __ LoadGlobalObject(x12);
3825 __ Mov(x11, Operand(var->name()));
3826 __ Push(x12, x11);
3827 __ CallRuntime(Runtime::kDeleteProperty_Sloppy);
3828 context()->Plug(x0);
3829 } else if (var->IsStackAllocated() || var->IsContextSlot()) {
3830 // Result of deleting non-global, non-dynamic variables is false.
3831 // The subexpression does not have side effects.
3832 context()->Plug(is_this);
3833 } else {
3834 // Non-global variable. Call the runtime to try to delete from the
3835 // context where the variable was introduced.
3836 __ Mov(x2, Operand(var->name()));
3837 __ Push(context_register(), x2);
3838 __ CallRuntime(Runtime::kDeleteLookupSlot);
3839 context()->Plug(x0);
3840 }
3841 } else {
3842 // Result of deleting non-property, non-variable reference is true.
3843 // The subexpression may have side effects.
3844 VisitForEffect(expr->expression());
3845 context()->Plug(true);
3846 }
3847 break;
3848 break;
3849 }
3850 case Token::VOID: {
3851 Comment cmnt(masm_, "[ UnaryOperation (VOID)");
3852 VisitForEffect(expr->expression());
3853 context()->Plug(Heap::kUndefinedValueRootIndex);
3854 break;
3855 }
3856 case Token::NOT: {
3857 Comment cmnt(masm_, "[ UnaryOperation (NOT)");
3858 if (context()->IsEffect()) {
3859 // Unary NOT has no side effects so it's only necessary to visit the
3860 // subexpression. Match the optimizing compiler by not branching.
3861 VisitForEffect(expr->expression());
3862 } else if (context()->IsTest()) {
3863 const TestContext* test = TestContext::cast(context());
3864 // The labels are swapped for the recursive call.
3865 VisitForControl(expr->expression(),
3866 test->false_label(),
3867 test->true_label(),
3868 test->fall_through());
3869 context()->Plug(test->true_label(), test->false_label());
3870 } else {
3871 DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
3872 // TODO(jbramley): This could be much more efficient using (for
3873 // example) the CSEL instruction.
3874 Label materialize_true, materialize_false, done;
3875 VisitForControl(expr->expression(),
3876 &materialize_false,
3877 &materialize_true,
3878 &materialize_true);
3879
3880 __ Bind(&materialize_true);
3881 PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
3882 __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
3883 __ B(&done);
3884
3885 __ Bind(&materialize_false);
3886 PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
3887 __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
3888 __ B(&done);
3889
3890 __ Bind(&done);
3891 if (context()->IsStackValue()) {
3892 __ Push(result_register());
3893 }
3894 }
3895 break;
3896 }
3897 case Token::TYPEOF: {
3898 Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
3899 {
3900 AccumulatorValueContext context(this);
3901 VisitForTypeofValue(expr->expression());
3902 }
3903 __ Mov(x3, x0);
3904 TypeofStub typeof_stub(isolate());
3905 __ CallStub(&typeof_stub);
3906 context()->Plug(x0);
3907 break;
3908 }
3909 default:
3910 UNREACHABLE();
3911 }
3912 }
3913
3914
VisitCountOperation(CountOperation * expr)3915 void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
3916 DCHECK(expr->expression()->IsValidReferenceExpressionOrThis());
3917
3918 Comment cmnt(masm_, "[ CountOperation");
3919
3920 Property* prop = expr->expression()->AsProperty();
3921 LhsKind assign_type = Property::GetAssignType(prop);
3922
3923 // Evaluate expression and get value.
3924 if (assign_type == VARIABLE) {
3925 DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
3926 AccumulatorValueContext context(this);
3927 EmitVariableLoad(expr->expression()->AsVariableProxy());
3928 } else {
3929 // Reserve space for result of postfix operation.
3930 if (expr->is_postfix() && !context()->IsEffect()) {
3931 __ Push(xzr);
3932 }
3933 switch (assign_type) {
3934 case NAMED_PROPERTY: {
3935 // Put the object both on the stack and in the register.
3936 VisitForStackValue(prop->obj());
3937 __ Peek(LoadDescriptor::ReceiverRegister(), 0);
3938 EmitNamedPropertyLoad(prop);
3939 break;
3940 }
3941
3942 case NAMED_SUPER_PROPERTY: {
3943 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
3944 VisitForAccumulatorValue(
3945 prop->obj()->AsSuperPropertyReference()->home_object());
3946 __ Push(result_register());
3947 const Register scratch = x10;
3948 __ Peek(scratch, kPointerSize);
3949 __ Push(scratch, result_register());
3950 EmitNamedSuperPropertyLoad(prop);
3951 break;
3952 }
3953
3954 case KEYED_SUPER_PROPERTY: {
3955 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
3956 VisitForStackValue(
3957 prop->obj()->AsSuperPropertyReference()->home_object());
3958 VisitForAccumulatorValue(prop->key());
3959 __ Push(result_register());
3960 const Register scratch1 = x10;
3961 const Register scratch2 = x11;
3962 __ Peek(scratch1, 2 * kPointerSize);
3963 __ Peek(scratch2, kPointerSize);
3964 __ Push(scratch1, scratch2, result_register());
3965 EmitKeyedSuperPropertyLoad(prop);
3966 break;
3967 }
3968
3969 case KEYED_PROPERTY: {
3970 VisitForStackValue(prop->obj());
3971 VisitForStackValue(prop->key());
3972 __ Peek(LoadDescriptor::ReceiverRegister(), 1 * kPointerSize);
3973 __ Peek(LoadDescriptor::NameRegister(), 0);
3974 EmitKeyedPropertyLoad(prop);
3975 break;
3976 }
3977
3978 case VARIABLE:
3979 UNREACHABLE();
3980 }
3981 }
3982
3983 // We need a second deoptimization point after loading the value
3984 // in case evaluating the property load my have a side effect.
3985 if (assign_type == VARIABLE) {
3986 PrepareForBailout(expr->expression(), TOS_REG);
3987 } else {
3988 PrepareForBailoutForId(prop->LoadId(), TOS_REG);
3989 }
3990
3991 // Inline smi case if we are in a loop.
3992 Label stub_call, done;
3993 JumpPatchSite patch_site(masm_);
3994
3995 int count_value = expr->op() == Token::INC ? 1 : -1;
3996 if (ShouldInlineSmiCase(expr->op())) {
3997 Label slow;
3998 patch_site.EmitJumpIfNotSmi(x0, &slow);
3999
4000 // Save result for postfix expressions.
4001 if (expr->is_postfix()) {
4002 if (!context()->IsEffect()) {
4003 // Save the result on the stack. If we have a named or keyed property we
4004 // store the result under the receiver that is currently on top of the
4005 // stack.
4006 switch (assign_type) {
4007 case VARIABLE:
4008 __ Push(x0);
4009 break;
4010 case NAMED_PROPERTY:
4011 __ Poke(x0, kPointerSize);
4012 break;
4013 case NAMED_SUPER_PROPERTY:
4014 __ Poke(x0, kPointerSize * 2);
4015 break;
4016 case KEYED_PROPERTY:
4017 __ Poke(x0, kPointerSize * 2);
4018 break;
4019 case KEYED_SUPER_PROPERTY:
4020 __ Poke(x0, kPointerSize * 3);
4021 break;
4022 }
4023 }
4024 }
4025
4026 __ Adds(x0, x0, Smi::FromInt(count_value));
4027 __ B(vc, &done);
4028 // Call stub. Undo operation first.
4029 __ Sub(x0, x0, Smi::FromInt(count_value));
4030 __ B(&stub_call);
4031 __ Bind(&slow);
4032 }
4033 if (!is_strong(language_mode())) {
4034 ToNumberStub convert_stub(isolate());
4035 __ CallStub(&convert_stub);
4036 PrepareForBailoutForId(expr->ToNumberId(), TOS_REG);
4037 }
4038
4039 // Save result for postfix expressions.
4040 if (expr->is_postfix()) {
4041 if (!context()->IsEffect()) {
4042 // Save the result on the stack. If we have a named or keyed property
4043 // we store the result under the receiver that is currently on top
4044 // of the stack.
4045 switch (assign_type) {
4046 case VARIABLE:
4047 __ Push(x0);
4048 break;
4049 case NAMED_PROPERTY:
4050 __ Poke(x0, kXRegSize);
4051 break;
4052 case NAMED_SUPER_PROPERTY:
4053 __ Poke(x0, 2 * kXRegSize);
4054 break;
4055 case KEYED_PROPERTY:
4056 __ Poke(x0, 2 * kXRegSize);
4057 break;
4058 case KEYED_SUPER_PROPERTY:
4059 __ Poke(x0, 3 * kXRegSize);
4060 break;
4061 }
4062 }
4063 }
4064
4065 __ Bind(&stub_call);
4066 __ Mov(x1, x0);
4067 __ Mov(x0, Smi::FromInt(count_value));
4068
4069 SetExpressionPosition(expr);
4070
4071 {
4072 Assembler::BlockPoolsScope scope(masm_);
4073 Handle<Code> code =
4074 CodeFactory::BinaryOpIC(isolate(), Token::ADD,
4075 strength(language_mode())).code();
4076 CallIC(code, expr->CountBinOpFeedbackId());
4077 patch_site.EmitPatchInfo();
4078 }
4079 __ Bind(&done);
4080
4081 if (is_strong(language_mode())) {
4082 PrepareForBailoutForId(expr->ToNumberId(), TOS_REG);
4083 }
4084 // Store the value returned in x0.
4085 switch (assign_type) {
4086 case VARIABLE:
4087 if (expr->is_postfix()) {
4088 { EffectContext context(this);
4089 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4090 Token::ASSIGN, expr->CountSlot());
4091 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4092 context.Plug(x0);
4093 }
4094 // For all contexts except EffectConstant We have the result on
4095 // top of the stack.
4096 if (!context()->IsEffect()) {
4097 context()->PlugTOS();
4098 }
4099 } else {
4100 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4101 Token::ASSIGN, expr->CountSlot());
4102 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4103 context()->Plug(x0);
4104 }
4105 break;
4106 case NAMED_PROPERTY: {
4107 __ Mov(StoreDescriptor::NameRegister(),
4108 Operand(prop->key()->AsLiteral()->value()));
4109 __ Pop(StoreDescriptor::ReceiverRegister());
4110 EmitLoadStoreICSlot(expr->CountSlot());
4111 CallStoreIC();
4112 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4113 if (expr->is_postfix()) {
4114 if (!context()->IsEffect()) {
4115 context()->PlugTOS();
4116 }
4117 } else {
4118 context()->Plug(x0);
4119 }
4120 break;
4121 }
4122 case NAMED_SUPER_PROPERTY: {
4123 EmitNamedSuperPropertyStore(prop);
4124 if (expr->is_postfix()) {
4125 if (!context()->IsEffect()) {
4126 context()->PlugTOS();
4127 }
4128 } else {
4129 context()->Plug(x0);
4130 }
4131 break;
4132 }
4133 case KEYED_SUPER_PROPERTY: {
4134 EmitKeyedSuperPropertyStore(prop);
4135 if (expr->is_postfix()) {
4136 if (!context()->IsEffect()) {
4137 context()->PlugTOS();
4138 }
4139 } else {
4140 context()->Plug(x0);
4141 }
4142 break;
4143 }
4144 case KEYED_PROPERTY: {
4145 __ Pop(StoreDescriptor::NameRegister());
4146 __ Pop(StoreDescriptor::ReceiverRegister());
4147 Handle<Code> ic =
4148 CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
4149 EmitLoadStoreICSlot(expr->CountSlot());
4150 CallIC(ic);
4151 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4152 if (expr->is_postfix()) {
4153 if (!context()->IsEffect()) {
4154 context()->PlugTOS();
4155 }
4156 } else {
4157 context()->Plug(x0);
4158 }
4159 break;
4160 }
4161 }
4162 }
4163
4164
EmitLiteralCompareTypeof(Expression * expr,Expression * sub_expr,Handle<String> check)4165 void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
4166 Expression* sub_expr,
4167 Handle<String> check) {
4168 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof");
4169 Comment cmnt(masm_, "[ EmitLiteralCompareTypeof");
4170 Label materialize_true, materialize_false;
4171 Label* if_true = NULL;
4172 Label* if_false = NULL;
4173 Label* fall_through = NULL;
4174 context()->PrepareTest(&materialize_true, &materialize_false,
4175 &if_true, &if_false, &fall_through);
4176
4177 { AccumulatorValueContext context(this);
4178 VisitForTypeofValue(sub_expr);
4179 }
4180 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4181
4182 Factory* factory = isolate()->factory();
4183 if (String::Equals(check, factory->number_string())) {
4184 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof number_string");
4185 __ JumpIfSmi(x0, if_true);
4186 __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
4187 __ CompareRoot(x0, Heap::kHeapNumberMapRootIndex);
4188 Split(eq, if_true, if_false, fall_through);
4189 } else if (String::Equals(check, factory->string_string())) {
4190 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof string_string");
4191 __ JumpIfSmi(x0, if_false);
4192 __ CompareObjectType(x0, x0, x1, FIRST_NONSTRING_TYPE);
4193 Split(lt, if_true, if_false, fall_through);
4194 } else if (String::Equals(check, factory->symbol_string())) {
4195 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof symbol_string");
4196 __ JumpIfSmi(x0, if_false);
4197 __ CompareObjectType(x0, x0, x1, SYMBOL_TYPE);
4198 Split(eq, if_true, if_false, fall_through);
4199 } else if (String::Equals(check, factory->boolean_string())) {
4200 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof boolean_string");
4201 __ JumpIfRoot(x0, Heap::kTrueValueRootIndex, if_true);
4202 __ CompareRoot(x0, Heap::kFalseValueRootIndex);
4203 Split(eq, if_true, if_false, fall_through);
4204 } else if (String::Equals(check, factory->undefined_string())) {
4205 ASM_LOCATION(
4206 "FullCodeGenerator::EmitLiteralCompareTypeof undefined_string");
4207 __ JumpIfRoot(x0, Heap::kUndefinedValueRootIndex, if_true);
4208 __ JumpIfSmi(x0, if_false);
4209 // Check for undetectable objects => true.
4210 __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
4211 __ Ldrb(x1, FieldMemOperand(x0, Map::kBitFieldOffset));
4212 __ TestAndSplit(x1, 1 << Map::kIsUndetectable, if_false, if_true,
4213 fall_through);
4214 } else if (String::Equals(check, factory->function_string())) {
4215 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof function_string");
4216 __ JumpIfSmi(x0, if_false);
4217 __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
4218 __ Ldrb(x1, FieldMemOperand(x0, Map::kBitFieldOffset));
4219 __ And(x1, x1, (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
4220 __ CompareAndSplit(x1, Operand(1 << Map::kIsCallable), eq, if_true,
4221 if_false, fall_through);
4222 } else if (String::Equals(check, factory->object_string())) {
4223 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof object_string");
4224 __ JumpIfSmi(x0, if_false);
4225 __ JumpIfRoot(x0, Heap::kNullValueRootIndex, if_true);
4226 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
4227 __ JumpIfObjectType(x0, x10, x11, FIRST_JS_RECEIVER_TYPE, if_false, lt);
4228 // Check for callable or undetectable objects => false.
4229 __ Ldrb(x10, FieldMemOperand(x10, Map::kBitFieldOffset));
4230 __ TestAndSplit(x10, (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable),
4231 if_true, if_false, fall_through);
4232 // clang-format off
4233 #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
4234 } else if (String::Equals(check, factory->type##_string())) { \
4235 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof " \
4236 #type "_string"); \
4237 __ JumpIfSmi(x0, if_true); \
4238 __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset)); \
4239 __ CompareRoot(x0, Heap::k##Type##MapRootIndex); \
4240 Split(eq, if_true, if_false, fall_through);
4241 SIMD128_TYPES(SIMD128_TYPE)
4242 #undef SIMD128_TYPE
4243 // clang-format on
4244 } else {
4245 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof other");
4246 if (if_false != fall_through) __ B(if_false);
4247 }
4248 context()->Plug(if_true, if_false);
4249 }
4250
4251
VisitCompareOperation(CompareOperation * expr)4252 void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
4253 Comment cmnt(masm_, "[ CompareOperation");
4254 SetExpressionPosition(expr);
4255
4256 // Try to generate an optimized comparison with a literal value.
4257 // TODO(jbramley): This only checks common values like NaN or undefined.
4258 // Should it also handle ARM64 immediate operands?
4259 if (TryLiteralCompare(expr)) {
4260 return;
4261 }
4262
4263 // Assign labels according to context()->PrepareTest.
4264 Label materialize_true;
4265 Label materialize_false;
4266 Label* if_true = NULL;
4267 Label* if_false = NULL;
4268 Label* fall_through = NULL;
4269 context()->PrepareTest(&materialize_true, &materialize_false,
4270 &if_true, &if_false, &fall_through);
4271
4272 Token::Value op = expr->op();
4273 VisitForStackValue(expr->left());
4274 switch (op) {
4275 case Token::IN:
4276 VisitForStackValue(expr->right());
4277 __ CallRuntime(Runtime::kHasProperty);
4278 PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
4279 __ CompareRoot(x0, Heap::kTrueValueRootIndex);
4280 Split(eq, if_true, if_false, fall_through);
4281 break;
4282
4283 case Token::INSTANCEOF: {
4284 VisitForAccumulatorValue(expr->right());
4285 __ Pop(x1);
4286 InstanceOfStub stub(isolate());
4287 __ CallStub(&stub);
4288 PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
4289 __ CompareRoot(x0, Heap::kTrueValueRootIndex);
4290 Split(eq, if_true, if_false, fall_through);
4291 break;
4292 }
4293
4294 default: {
4295 VisitForAccumulatorValue(expr->right());
4296 Condition cond = CompareIC::ComputeCondition(op);
4297
4298 // Pop the stack value.
4299 __ Pop(x1);
4300
4301 JumpPatchSite patch_site(masm_);
4302 if (ShouldInlineSmiCase(op)) {
4303 Label slow_case;
4304 patch_site.EmitJumpIfEitherNotSmi(x0, x1, &slow_case);
4305 __ Cmp(x1, x0);
4306 Split(cond, if_true, if_false, NULL);
4307 __ Bind(&slow_case);
4308 }
4309
4310 Handle<Code> ic = CodeFactory::CompareIC(
4311 isolate(), op, strength(language_mode())).code();
4312 CallIC(ic, expr->CompareOperationFeedbackId());
4313 patch_site.EmitPatchInfo();
4314 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4315 __ CompareAndSplit(x0, 0, cond, if_true, if_false, fall_through);
4316 }
4317 }
4318
4319 // Convert the result of the comparison into one expected for this
4320 // expression's context.
4321 context()->Plug(if_true, if_false);
4322 }
4323
4324
EmitLiteralCompareNil(CompareOperation * expr,Expression * sub_expr,NilValue nil)4325 void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
4326 Expression* sub_expr,
4327 NilValue nil) {
4328 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareNil");
4329 Label materialize_true, materialize_false;
4330 Label* if_true = NULL;
4331 Label* if_false = NULL;
4332 Label* fall_through = NULL;
4333 context()->PrepareTest(&materialize_true, &materialize_false,
4334 &if_true, &if_false, &fall_through);
4335
4336 VisitForAccumulatorValue(sub_expr);
4337 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4338
4339 if (expr->op() == Token::EQ_STRICT) {
4340 Heap::RootListIndex nil_value = nil == kNullValue ?
4341 Heap::kNullValueRootIndex :
4342 Heap::kUndefinedValueRootIndex;
4343 __ CompareRoot(x0, nil_value);
4344 Split(eq, if_true, if_false, fall_through);
4345 } else {
4346 Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
4347 CallIC(ic, expr->CompareOperationFeedbackId());
4348 __ CompareRoot(x0, Heap::kTrueValueRootIndex);
4349 Split(eq, if_true, if_false, fall_through);
4350 }
4351
4352 context()->Plug(if_true, if_false);
4353 }
4354
4355
VisitThisFunction(ThisFunction * expr)4356 void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
4357 __ Ldr(x0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4358 context()->Plug(x0);
4359 }
4360
4361
VisitYield(Yield * expr)4362 void FullCodeGenerator::VisitYield(Yield* expr) {
4363 Comment cmnt(masm_, "[ Yield");
4364 SetExpressionPosition(expr);
4365
4366 // Evaluate yielded value first; the initial iterator definition depends on
4367 // this. It stays on the stack while we update the iterator.
4368 VisitForStackValue(expr->expression());
4369
4370 // TODO(jbramley): Tidy this up once the merge is done, using named registers
4371 // and suchlike. The implementation changes a little by bleeding_edge so I
4372 // don't want to spend too much time on it now.
4373
4374 switch (expr->yield_kind()) {
4375 case Yield::kSuspend:
4376 // Pop value from top-of-stack slot; box result into result register.
4377 EmitCreateIteratorResult(false);
4378 __ Push(result_register());
4379 // Fall through.
4380 case Yield::kInitial: {
4381 Label suspend, continuation, post_runtime, resume;
4382
4383 __ B(&suspend);
4384 // TODO(jbramley): This label is bound here because the following code
4385 // looks at its pos(). Is it possible to do something more efficient here,
4386 // perhaps using Adr?
4387 __ Bind(&continuation);
4388 __ RecordGeneratorContinuation();
4389 __ B(&resume);
4390
4391 __ Bind(&suspend);
4392 VisitForAccumulatorValue(expr->generator_object());
4393 DCHECK((continuation.pos() > 0) && Smi::IsValid(continuation.pos()));
4394 __ Mov(x1, Smi::FromInt(continuation.pos()));
4395 __ Str(x1, FieldMemOperand(x0, JSGeneratorObject::kContinuationOffset));
4396 __ Str(cp, FieldMemOperand(x0, JSGeneratorObject::kContextOffset));
4397 __ Mov(x1, cp);
4398 __ RecordWriteField(x0, JSGeneratorObject::kContextOffset, x1, x2,
4399 kLRHasBeenSaved, kDontSaveFPRegs);
4400 __ Add(x1, fp, StandardFrameConstants::kExpressionsOffset);
4401 __ Cmp(__ StackPointer(), x1);
4402 __ B(eq, &post_runtime);
4403 __ Push(x0); // generator object
4404 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
4405 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4406 __ Bind(&post_runtime);
4407 __ Pop(result_register());
4408 EmitReturnSequence();
4409
4410 __ Bind(&resume);
4411 context()->Plug(result_register());
4412 break;
4413 }
4414
4415 case Yield::kFinal: {
4416 VisitForAccumulatorValue(expr->generator_object());
4417 __ Mov(x1, Smi::FromInt(JSGeneratorObject::kGeneratorClosed));
4418 __ Str(x1, FieldMemOperand(result_register(),
4419 JSGeneratorObject::kContinuationOffset));
4420 // Pop value from top-of-stack slot, box result into result register.
4421 EmitCreateIteratorResult(true);
4422 EmitUnwindBeforeReturn();
4423 EmitReturnSequence();
4424 break;
4425 }
4426
4427 case Yield::kDelegating: {
4428 VisitForStackValue(expr->generator_object());
4429
4430 // Initial stack layout is as follows:
4431 // [sp + 1 * kPointerSize] iter
4432 // [sp + 0 * kPointerSize] g
4433
4434 Label l_catch, l_try, l_suspend, l_continuation, l_resume;
4435 Label l_next, l_call, l_loop;
4436 Register load_receiver = LoadDescriptor::ReceiverRegister();
4437 Register load_name = LoadDescriptor::NameRegister();
4438
4439 // Initial send value is undefined.
4440 __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
4441 __ B(&l_next);
4442
4443 // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
4444 __ Bind(&l_catch);
4445 __ LoadRoot(load_name, Heap::kthrow_stringRootIndex); // "throw"
4446 __ Peek(x3, 1 * kPointerSize); // iter
4447 __ Push(load_name, x3, x0); // "throw", iter, except
4448 __ B(&l_call);
4449
4450 // try { received = %yield result }
4451 // Shuffle the received result above a try handler and yield it without
4452 // re-boxing.
4453 __ Bind(&l_try);
4454 __ Pop(x0); // result
4455 int handler_index = NewHandlerTableEntry();
4456 EnterTryBlock(handler_index, &l_catch);
4457 const int try_block_size = TryCatch::kElementCount * kPointerSize;
4458 __ Push(x0); // result
4459
4460 __ B(&l_suspend);
4461 // TODO(jbramley): This label is bound here because the following code
4462 // looks at its pos(). Is it possible to do something more efficient here,
4463 // perhaps using Adr?
4464 __ Bind(&l_continuation);
4465 __ RecordGeneratorContinuation();
4466 __ B(&l_resume);
4467
4468 __ Bind(&l_suspend);
4469 const int generator_object_depth = kPointerSize + try_block_size;
4470 __ Peek(x0, generator_object_depth);
4471 __ Push(x0); // g
4472 __ Push(Smi::FromInt(handler_index)); // handler-index
4473 DCHECK((l_continuation.pos() > 0) && Smi::IsValid(l_continuation.pos()));
4474 __ Mov(x1, Smi::FromInt(l_continuation.pos()));
4475 __ Str(x1, FieldMemOperand(x0, JSGeneratorObject::kContinuationOffset));
4476 __ Str(cp, FieldMemOperand(x0, JSGeneratorObject::kContextOffset));
4477 __ Mov(x1, cp);
4478 __ RecordWriteField(x0, JSGeneratorObject::kContextOffset, x1, x2,
4479 kLRHasBeenSaved, kDontSaveFPRegs);
4480 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 2);
4481 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4482 __ Pop(x0); // result
4483 EmitReturnSequence();
4484 __ Bind(&l_resume); // received in x0
4485 ExitTryBlock(handler_index);
4486
4487 // receiver = iter; f = 'next'; arg = received;
4488 __ Bind(&l_next);
4489
4490 __ LoadRoot(load_name, Heap::knext_stringRootIndex); // "next"
4491 __ Peek(x3, 1 * kPointerSize); // iter
4492 __ Push(load_name, x3, x0); // "next", iter, received
4493
4494 // result = receiver[f](arg);
4495 __ Bind(&l_call);
4496 __ Peek(load_receiver, 1 * kPointerSize);
4497 __ Peek(load_name, 2 * kPointerSize);
4498 __ Mov(LoadDescriptor::SlotRegister(),
4499 SmiFromSlot(expr->KeyedLoadFeedbackSlot()));
4500 Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate(), SLOPPY).code();
4501 CallIC(ic, TypeFeedbackId::None());
4502 __ Mov(x1, x0);
4503 __ Poke(x1, 2 * kPointerSize);
4504 SetCallPosition(expr);
4505 __ Mov(x0, 1);
4506 __ Call(
4507 isolate()->builtins()->Call(ConvertReceiverMode::kNotNullOrUndefined),
4508 RelocInfo::CODE_TARGET);
4509
4510 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4511 __ Drop(1); // The function is still on the stack; drop it.
4512
4513 // if (!result.done) goto l_try;
4514 __ Bind(&l_loop);
4515 __ Move(load_receiver, x0);
4516
4517 __ Push(load_receiver); // save result
4518 __ LoadRoot(load_name, Heap::kdone_stringRootIndex); // "done"
4519 __ Mov(LoadDescriptor::SlotRegister(),
4520 SmiFromSlot(expr->DoneFeedbackSlot()));
4521 CallLoadIC(NOT_INSIDE_TYPEOF); // x0=result.done
4522 // The ToBooleanStub argument (result.done) is in x0.
4523 Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
4524 CallIC(bool_ic);
4525 __ CompareRoot(result_register(), Heap::kTrueValueRootIndex);
4526 __ B(ne, &l_try);
4527
4528 // result.value
4529 __ Pop(load_receiver); // result
4530 __ LoadRoot(load_name, Heap::kvalue_stringRootIndex); // "value"
4531 __ Mov(LoadDescriptor::SlotRegister(),
4532 SmiFromSlot(expr->ValueFeedbackSlot()));
4533 CallLoadIC(NOT_INSIDE_TYPEOF); // x0=result.value
4534 context()->DropAndPlug(2, x0); // drop iter and g
4535 break;
4536 }
4537 }
4538 }
4539
4540
EmitGeneratorResume(Expression * generator,Expression * value,JSGeneratorObject::ResumeMode resume_mode)4541 void FullCodeGenerator::EmitGeneratorResume(Expression *generator,
4542 Expression *value,
4543 JSGeneratorObject::ResumeMode resume_mode) {
4544 ASM_LOCATION("FullCodeGenerator::EmitGeneratorResume");
4545 Register generator_object = x1;
4546 Register the_hole = x2;
4547 Register operand_stack_size = w3;
4548 Register function = x4;
4549
4550 // The value stays in x0, and is ultimately read by the resumed generator, as
4551 // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it
4552 // is read to throw the value when the resumed generator is already closed. x1
4553 // will hold the generator object until the activation has been resumed.
4554 VisitForStackValue(generator);
4555 VisitForAccumulatorValue(value);
4556 __ Pop(generator_object);
4557
4558 // Load suspended function and context.
4559 __ Ldr(cp, FieldMemOperand(generator_object,
4560 JSGeneratorObject::kContextOffset));
4561 __ Ldr(function, FieldMemOperand(generator_object,
4562 JSGeneratorObject::kFunctionOffset));
4563
4564 // Load receiver and store as the first argument.
4565 __ Ldr(x10, FieldMemOperand(generator_object,
4566 JSGeneratorObject::kReceiverOffset));
4567 __ Push(x10);
4568
4569 // Push holes for the rest of the arguments to the generator function.
4570 __ Ldr(x10, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
4571
4572 // The number of arguments is stored as an int32_t, and -1 is a marker
4573 // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
4574 // extension to correctly handle it. However, in this case, we operate on
4575 // 32-bit W registers, so extension isn't required.
4576 __ Ldr(w10, FieldMemOperand(x10,
4577 SharedFunctionInfo::kFormalParameterCountOffset));
4578 __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
4579 __ PushMultipleTimes(the_hole, w10);
4580
4581 // Enter a new JavaScript frame, and initialize its slots as they were when
4582 // the generator was suspended.
4583 Label resume_frame, done;
4584 __ Bl(&resume_frame);
4585 __ B(&done);
4586
4587 __ Bind(&resume_frame);
4588 __ Push(lr, // Return address.
4589 fp, // Caller's frame pointer.
4590 cp, // Callee's context.
4591 function); // Callee's JS Function.
4592 __ Add(fp, __ StackPointer(), kPointerSize * 2);
4593
4594 // Load and untag the operand stack size.
4595 __ Ldr(x10, FieldMemOperand(generator_object,
4596 JSGeneratorObject::kOperandStackOffset));
4597 __ Ldr(operand_stack_size,
4598 UntagSmiFieldMemOperand(x10, FixedArray::kLengthOffset));
4599
4600 // If we are sending a value and there is no operand stack, we can jump back
4601 // in directly.
4602 if (resume_mode == JSGeneratorObject::NEXT) {
4603 Label slow_resume;
4604 __ Cbnz(operand_stack_size, &slow_resume);
4605 __ Ldr(x10, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
4606 __ Ldrsw(x11,
4607 UntagSmiFieldMemOperand(generator_object,
4608 JSGeneratorObject::kContinuationOffset));
4609 __ Add(x10, x10, x11);
4610 __ Mov(x12, Smi::FromInt(JSGeneratorObject::kGeneratorExecuting));
4611 __ Str(x12, FieldMemOperand(generator_object,
4612 JSGeneratorObject::kContinuationOffset));
4613 __ Br(x10);
4614
4615 __ Bind(&slow_resume);
4616 }
4617
4618 // Otherwise, we push holes for the operand stack and call the runtime to fix
4619 // up the stack and the handlers.
4620 __ PushMultipleTimes(the_hole, operand_stack_size);
4621
4622 __ Mov(x10, Smi::FromInt(resume_mode));
4623 __ Push(generator_object, result_register(), x10);
4624 __ CallRuntime(Runtime::kResumeJSGeneratorObject);
4625 // Not reached: the runtime call returns elsewhere.
4626 __ Unreachable();
4627
4628 __ Bind(&done);
4629 context()->Plug(result_register());
4630 }
4631
4632
EmitCreateIteratorResult(bool done)4633 void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
4634 Label allocate, done_allocate;
4635
4636 // Allocate and populate an object with this form: { value: VAL, done: DONE }
4637
4638 Register result = x0;
4639 __ Allocate(JSIteratorResult::kSize, result, x10, x11, &allocate, TAG_OBJECT);
4640 __ B(&done_allocate);
4641
4642 __ Bind(&allocate);
4643 __ Push(Smi::FromInt(JSIteratorResult::kSize));
4644 __ CallRuntime(Runtime::kAllocateInNewSpace);
4645
4646 __ Bind(&done_allocate);
4647 Register map_reg = x1;
4648 Register result_value = x2;
4649 Register boolean_done = x3;
4650 Register empty_fixed_array = x4;
4651 Register untagged_result = x5;
4652 __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, map_reg);
4653 __ Pop(result_value);
4654 __ LoadRoot(boolean_done,
4655 done ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex);
4656 __ LoadRoot(empty_fixed_array, Heap::kEmptyFixedArrayRootIndex);
4657 STATIC_ASSERT(JSObject::kPropertiesOffset + kPointerSize ==
4658 JSObject::kElementsOffset);
4659 STATIC_ASSERT(JSIteratorResult::kValueOffset + kPointerSize ==
4660 JSIteratorResult::kDoneOffset);
4661 __ ObjectUntag(untagged_result, result);
4662 __ Str(map_reg, MemOperand(untagged_result, HeapObject::kMapOffset));
4663 __ Stp(empty_fixed_array, empty_fixed_array,
4664 MemOperand(untagged_result, JSObject::kPropertiesOffset));
4665 __ Stp(result_value, boolean_done,
4666 MemOperand(untagged_result, JSIteratorResult::kValueOffset));
4667 STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize);
4668 }
4669
4670
4671 // TODO(all): I don't like this method.
4672 // It seems to me that in too many places x0 is used in place of this.
4673 // Also, this function is not suitable for all places where x0 should be
4674 // abstracted (eg. when used as an argument). But some places assume that the
4675 // first argument register is x0, and use this function instead.
4676 // Considering that most of the register allocation is hard-coded in the
4677 // FullCodeGen, that it is unlikely we will need to change it extensively, and
4678 // that abstracting the allocation through functions would not yield any
4679 // performance benefit, I think the existence of this function is debatable.
result_register()4680 Register FullCodeGenerator::result_register() {
4681 return x0;
4682 }
4683
4684
context_register()4685 Register FullCodeGenerator::context_register() {
4686 return cp;
4687 }
4688
4689
StoreToFrameField(int frame_offset,Register value)4690 void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
4691 DCHECK(POINTER_SIZE_ALIGN(frame_offset) == frame_offset);
4692 __ Str(value, MemOperand(fp, frame_offset));
4693 }
4694
4695
LoadContextField(Register dst,int context_index)4696 void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
4697 __ Ldr(dst, ContextMemOperand(cp, context_index));
4698 }
4699
4700
PushFunctionArgumentForContextAllocation()4701 void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
4702 Scope* closure_scope = scope()->ClosureScope();
4703 if (closure_scope->is_script_scope() ||
4704 closure_scope->is_module_scope()) {
4705 // Contexts nested in the native context have a canonical empty function
4706 // as their closure, not the anonymous closure containing the global
4707 // code.
4708 DCHECK(kSmiTag == 0);
4709 __ LoadNativeContextSlot(Context::CLOSURE_INDEX, x10);
4710 } else if (closure_scope->is_eval_scope()) {
4711 // Contexts created by a call to eval have the same closure as the
4712 // context calling eval, not the anonymous closure containing the eval
4713 // code. Fetch it from the context.
4714 __ Ldr(x10, ContextMemOperand(cp, Context::CLOSURE_INDEX));
4715 } else {
4716 DCHECK(closure_scope->is_function_scope());
4717 __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4718 }
4719 __ Push(x10);
4720 }
4721
4722
EnterFinallyBlock()4723 void FullCodeGenerator::EnterFinallyBlock() {
4724 ASM_LOCATION("FullCodeGenerator::EnterFinallyBlock");
4725 DCHECK(!result_register().is(x10));
4726 // Preserve the result register while executing finally block.
4727 // Also cook the return address in lr to the stack (smi encoded Code* delta).
4728 __ Sub(x10, lr, Operand(masm_->CodeObject()));
4729 __ SmiTag(x10);
4730 __ Push(result_register(), x10);
4731
4732 // Store pending message while executing finally block.
4733 ExternalReference pending_message_obj =
4734 ExternalReference::address_of_pending_message_obj(isolate());
4735 __ Mov(x10, pending_message_obj);
4736 __ Ldr(x10, MemOperand(x10));
4737 __ Push(x10);
4738
4739 ClearPendingMessage();
4740 }
4741
4742
ExitFinallyBlock()4743 void FullCodeGenerator::ExitFinallyBlock() {
4744 ASM_LOCATION("FullCodeGenerator::ExitFinallyBlock");
4745 DCHECK(!result_register().is(x10));
4746
4747 // Restore pending message from stack.
4748 __ Pop(x10);
4749 ExternalReference pending_message_obj =
4750 ExternalReference::address_of_pending_message_obj(isolate());
4751 __ Mov(x13, pending_message_obj);
4752 __ Str(x10, MemOperand(x13));
4753
4754 // Restore result register and cooked return address from the stack.
4755 __ Pop(x10, result_register());
4756
4757 // Uncook the return address (see EnterFinallyBlock).
4758 __ SmiUntag(x10);
4759 __ Add(x11, x10, Operand(masm_->CodeObject()));
4760 __ Br(x11);
4761 }
4762
4763
ClearPendingMessage()4764 void FullCodeGenerator::ClearPendingMessage() {
4765 DCHECK(!result_register().is(x10));
4766 ExternalReference pending_message_obj =
4767 ExternalReference::address_of_pending_message_obj(isolate());
4768 __ LoadRoot(x10, Heap::kTheHoleValueRootIndex);
4769 __ Mov(x13, pending_message_obj);
4770 __ Str(x10, MemOperand(x13));
4771 }
4772
4773
EmitLoadStoreICSlot(FeedbackVectorSlot slot)4774 void FullCodeGenerator::EmitLoadStoreICSlot(FeedbackVectorSlot slot) {
4775 DCHECK(!slot.IsInvalid());
4776 __ Mov(VectorStoreICTrampolineDescriptor::SlotRegister(), SmiFromSlot(slot));
4777 }
4778
4779
4780 #undef __
4781
4782
PatchAt(Code * unoptimized_code,Address pc,BackEdgeState target_state,Code * replacement_code)4783 void BackEdgeTable::PatchAt(Code* unoptimized_code,
4784 Address pc,
4785 BackEdgeState target_state,
4786 Code* replacement_code) {
4787 // Turn the jump into a nop.
4788 Address branch_address = pc - 3 * kInstructionSize;
4789 Isolate* isolate = unoptimized_code->GetIsolate();
4790 PatchingAssembler patcher(isolate, branch_address, 1);
4791
4792 DCHECK(Instruction::Cast(branch_address)
4793 ->IsNop(Assembler::INTERRUPT_CODE_NOP) ||
4794 (Instruction::Cast(branch_address)->IsCondBranchImm() &&
4795 Instruction::Cast(branch_address)->ImmPCOffset() ==
4796 6 * kInstructionSize));
4797
4798 switch (target_state) {
4799 case INTERRUPT:
4800 // <decrement profiling counter>
4801 // .. .. .. .. b.pl ok
4802 // .. .. .. .. ldr x16, pc+<interrupt stub address>
4803 // .. .. .. .. blr x16
4804 // ... more instructions.
4805 // ok-label
4806 // Jump offset is 6 instructions.
4807 patcher.b(6, pl);
4808 break;
4809 case ON_STACK_REPLACEMENT:
4810 case OSR_AFTER_STACK_CHECK:
4811 // <decrement profiling counter>
4812 // .. .. .. .. mov x0, x0 (NOP)
4813 // .. .. .. .. ldr x16, pc+<on-stack replacement address>
4814 // .. .. .. .. blr x16
4815 patcher.nop(Assembler::INTERRUPT_CODE_NOP);
4816 break;
4817 }
4818
4819 // Replace the call address.
4820 Instruction* load = Instruction::Cast(pc)->preceding(2);
4821 Address interrupt_address_pointer =
4822 reinterpret_cast<Address>(load) + load->ImmPCOffset();
4823 DCHECK((Memory::uint64_at(interrupt_address_pointer) ==
4824 reinterpret_cast<uint64_t>(
4825 isolate->builtins()->OnStackReplacement()->entry())) ||
4826 (Memory::uint64_at(interrupt_address_pointer) ==
4827 reinterpret_cast<uint64_t>(
4828 isolate->builtins()->InterruptCheck()->entry())) ||
4829 (Memory::uint64_at(interrupt_address_pointer) ==
4830 reinterpret_cast<uint64_t>(
4831 isolate->builtins()->OsrAfterStackCheck()->entry())) ||
4832 (Memory::uint64_at(interrupt_address_pointer) ==
4833 reinterpret_cast<uint64_t>(
4834 isolate->builtins()->OnStackReplacement()->entry())));
4835 Memory::uint64_at(interrupt_address_pointer) =
4836 reinterpret_cast<uint64_t>(replacement_code->entry());
4837
4838 unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
4839 unoptimized_code, reinterpret_cast<Address>(load), replacement_code);
4840 }
4841
4842
GetBackEdgeState(Isolate * isolate,Code * unoptimized_code,Address pc)4843 BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
4844 Isolate* isolate,
4845 Code* unoptimized_code,
4846 Address pc) {
4847 // TODO(jbramley): There should be some extra assertions here (as in the ARM
4848 // back-end), but this function is gone in bleeding_edge so it might not
4849 // matter anyway.
4850 Instruction* jump_or_nop = Instruction::Cast(pc)->preceding(3);
4851
4852 if (jump_or_nop->IsNop(Assembler::INTERRUPT_CODE_NOP)) {
4853 Instruction* load = Instruction::Cast(pc)->preceding(2);
4854 uint64_t entry = Memory::uint64_at(reinterpret_cast<Address>(load) +
4855 load->ImmPCOffset());
4856 if (entry == reinterpret_cast<uint64_t>(
4857 isolate->builtins()->OnStackReplacement()->entry())) {
4858 return ON_STACK_REPLACEMENT;
4859 } else if (entry == reinterpret_cast<uint64_t>(
4860 isolate->builtins()->OsrAfterStackCheck()->entry())) {
4861 return OSR_AFTER_STACK_CHECK;
4862 } else {
4863 UNREACHABLE();
4864 }
4865 }
4866
4867 return INTERRUPT;
4868 }
4869
4870
4871 } // namespace internal
4872 } // namespace v8
4873
4874 #endif // V8_TARGET_ARCH_ARM64
4875