1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // Author: kenton@google.com (Kenton Varda)
32 // Based on original Protocol Buffers design by
33 // Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // DynamicMessage is implemented by constructing a data structure which
36 // has roughly the same memory layout as a generated message would have.
37 // Then, we use GeneratedMessageReflection to implement our reflection
38 // interface. All the other operations we need to implement (e.g.
39 // parsing, copying, etc.) are already implemented in terms of
40 // Reflection, so the rest is easy.
41 //
42 // The up side of this strategy is that it's very efficient. We don't
43 // need to use hash_maps or generic representations of fields. The
44 // down side is that this is a low-level memory management hack which
45 // can be tricky to get right.
46 //
47 // As mentioned in the header, we only expose a DynamicMessageFactory
48 // publicly, not the DynamicMessage class itself. This is because
49 // GenericMessageReflection wants to have a pointer to a "default"
50 // copy of the class, with all fields initialized to their default
51 // values. We only want to construct one of these per message type,
52 // so DynamicMessageFactory stores a cache of default messages for
53 // each type it sees (each unique Descriptor pointer). The code
54 // refers to the "default" copy of the class as the "prototype".
55 //
56 // Note on memory allocation: This module often calls "operator new()"
57 // to allocate untyped memory, rather than calling something like
58 // "new uint8[]". This is because "operator new()" means "Give me some
59 // space which I can use as I please." while "new uint8[]" means "Give
60 // me an array of 8-bit integers.". In practice, the later may return
61 // a pointer that is not aligned correctly for general use. I believe
62 // Item 8 of "More Effective C++" discusses this in more detail, though
63 // I don't have the book on me right now so I'm not sure.
64
65 #include <algorithm>
66 #include <google/protobuf/stubs/hash.h>
67
68 #include <google/protobuf/stubs/common.h>
69
70 #include <google/protobuf/dynamic_message.h>
71 #include <google/protobuf/descriptor.h>
72 #include <google/protobuf/descriptor.pb.h>
73 #include <google/protobuf/generated_message_util.h>
74 #include <google/protobuf/generated_message_reflection.h>
75 #include <google/protobuf/reflection_ops.h>
76 #include <google/protobuf/repeated_field.h>
77 #include <google/protobuf/extension_set.h>
78 #include <google/protobuf/wire_format.h>
79
80 namespace google {
81 namespace protobuf {
82
83 using internal::WireFormat;
84 using internal::ExtensionSet;
85 using internal::GeneratedMessageReflection;
86
87
88 // ===================================================================
89 // Some helper tables and functions...
90
91 namespace {
92
93 // Compute the byte size of the in-memory representation of the field.
FieldSpaceUsed(const FieldDescriptor * field)94 int FieldSpaceUsed(const FieldDescriptor* field) {
95 typedef FieldDescriptor FD; // avoid line wrapping
96 if (field->label() == FD::LABEL_REPEATED) {
97 switch (field->cpp_type()) {
98 case FD::CPPTYPE_INT32 : return sizeof(RepeatedField<int32 >);
99 case FD::CPPTYPE_INT64 : return sizeof(RepeatedField<int64 >);
100 case FD::CPPTYPE_UINT32 : return sizeof(RepeatedField<uint32 >);
101 case FD::CPPTYPE_UINT64 : return sizeof(RepeatedField<uint64 >);
102 case FD::CPPTYPE_DOUBLE : return sizeof(RepeatedField<double >);
103 case FD::CPPTYPE_FLOAT : return sizeof(RepeatedField<float >);
104 case FD::CPPTYPE_BOOL : return sizeof(RepeatedField<bool >);
105 case FD::CPPTYPE_ENUM : return sizeof(RepeatedField<int >);
106 case FD::CPPTYPE_MESSAGE: return sizeof(RepeatedPtrField<Message>);
107
108 case FD::CPPTYPE_STRING:
109 switch (field->options().ctype()) {
110 default: // TODO(kenton): Support other string reps.
111 case FieldOptions::STRING:
112 return sizeof(RepeatedPtrField<string>);
113 }
114 break;
115 }
116 } else {
117 switch (field->cpp_type()) {
118 case FD::CPPTYPE_INT32 : return sizeof(int32 );
119 case FD::CPPTYPE_INT64 : return sizeof(int64 );
120 case FD::CPPTYPE_UINT32 : return sizeof(uint32 );
121 case FD::CPPTYPE_UINT64 : return sizeof(uint64 );
122 case FD::CPPTYPE_DOUBLE : return sizeof(double );
123 case FD::CPPTYPE_FLOAT : return sizeof(float );
124 case FD::CPPTYPE_BOOL : return sizeof(bool );
125 case FD::CPPTYPE_ENUM : return sizeof(int );
126
127 case FD::CPPTYPE_MESSAGE:
128 return sizeof(Message*);
129
130 case FD::CPPTYPE_STRING:
131 switch (field->options().ctype()) {
132 default: // TODO(kenton): Support other string reps.
133 case FieldOptions::STRING:
134 return sizeof(string*);
135 }
136 break;
137 }
138 }
139
140 GOOGLE_LOG(DFATAL) << "Can't get here.";
141 return 0;
142 }
143
144 // Compute the byte size of in-memory representation of the oneof fields
145 // in default oneof instance.
OneofFieldSpaceUsed(const FieldDescriptor * field)146 int OneofFieldSpaceUsed(const FieldDescriptor* field) {
147 typedef FieldDescriptor FD; // avoid line wrapping
148 switch (field->cpp_type()) {
149 case FD::CPPTYPE_INT32 : return sizeof(int32 );
150 case FD::CPPTYPE_INT64 : return sizeof(int64 );
151 case FD::CPPTYPE_UINT32 : return sizeof(uint32 );
152 case FD::CPPTYPE_UINT64 : return sizeof(uint64 );
153 case FD::CPPTYPE_DOUBLE : return sizeof(double );
154 case FD::CPPTYPE_FLOAT : return sizeof(float );
155 case FD::CPPTYPE_BOOL : return sizeof(bool );
156 case FD::CPPTYPE_ENUM : return sizeof(int );
157
158 case FD::CPPTYPE_MESSAGE:
159 return sizeof(Message*);
160
161 case FD::CPPTYPE_STRING:
162 switch (field->options().ctype()) {
163 default:
164 case FieldOptions::STRING:
165 return sizeof(string*);
166 }
167 break;
168 }
169
170 GOOGLE_LOG(DFATAL) << "Can't get here.";
171 return 0;
172 }
173
DivideRoundingUp(int i,int j)174 inline int DivideRoundingUp(int i, int j) {
175 return (i + (j - 1)) / j;
176 }
177
178 static const int kSafeAlignment = sizeof(uint64);
179 static const int kMaxOneofUnionSize = sizeof(uint64);
180
AlignTo(int offset,int alignment)181 inline int AlignTo(int offset, int alignment) {
182 return DivideRoundingUp(offset, alignment) * alignment;
183 }
184
185 // Rounds the given byte offset up to the next offset aligned such that any
186 // type may be stored at it.
AlignOffset(int offset)187 inline int AlignOffset(int offset) {
188 return AlignTo(offset, kSafeAlignment);
189 }
190
191 #define bitsizeof(T) (sizeof(T) * 8)
192
193 } // namespace
194
195 // ===================================================================
196
197 class DynamicMessage : public Message {
198 public:
199 struct TypeInfo {
200 int size;
201 int has_bits_offset;
202 int oneof_case_offset;
203 int unknown_fields_offset;
204 int extensions_offset;
205
206 // Not owned by the TypeInfo.
207 DynamicMessageFactory* factory; // The factory that created this object.
208 const DescriptorPool* pool; // The factory's DescriptorPool.
209 const Descriptor* type; // Type of this DynamicMessage.
210
211 // Warning: The order in which the following pointers are defined is
212 // important (the prototype must be deleted *before* the offsets).
213 scoped_array<int> offsets;
214 scoped_ptr<const GeneratedMessageReflection> reflection;
215 // Don't use a scoped_ptr to hold the prototype: the destructor for
216 // DynamicMessage needs to know whether it is the prototype, and does so by
217 // looking back at this field. This would assume details about the
218 // implementation of scoped_ptr.
219 const DynamicMessage* prototype;
220 void* default_oneof_instance;
221
TypeInfogoogle::protobuf::DynamicMessage::TypeInfo222 TypeInfo() : prototype(NULL), default_oneof_instance(NULL) {}
223
~TypeInfogoogle::protobuf::DynamicMessage::TypeInfo224 ~TypeInfo() {
225 delete prototype;
226 operator delete(default_oneof_instance);
227 }
228 };
229
230 DynamicMessage(const TypeInfo* type_info);
231 ~DynamicMessage();
232
233 // Called on the prototype after construction to initialize message fields.
234 void CrossLinkPrototypes();
235
236 // implements Message ----------------------------------------------
237
238 Message* New() const;
239
240 int GetCachedSize() const;
241 void SetCachedSize(int size) const;
242
243 Metadata GetMetadata() const;
244
245
246 private:
247 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(DynamicMessage);
248
is_prototype() const249 inline bool is_prototype() const {
250 return type_info_->prototype == this ||
251 // If type_info_->prototype is NULL, then we must be constructing
252 // the prototype now, which means we must be the prototype.
253 type_info_->prototype == NULL;
254 }
255
OffsetToPointer(int offset)256 inline void* OffsetToPointer(int offset) {
257 return reinterpret_cast<uint8*>(this) + offset;
258 }
OffsetToPointer(int offset) const259 inline const void* OffsetToPointer(int offset) const {
260 return reinterpret_cast<const uint8*>(this) + offset;
261 }
262
263 const TypeInfo* type_info_;
264
265 // TODO(kenton): Make this an atomic<int> when C++ supports it.
266 mutable int cached_byte_size_;
267 };
268
DynamicMessage(const TypeInfo * type_info)269 DynamicMessage::DynamicMessage(const TypeInfo* type_info)
270 : type_info_(type_info),
271 cached_byte_size_(0) {
272 // We need to call constructors for various fields manually and set
273 // default values where appropriate. We use placement new to call
274 // constructors. If you haven't heard of placement new, I suggest Googling
275 // it now. We use placement new even for primitive types that don't have
276 // constructors for consistency. (In theory, placement new should be used
277 // any time you are trying to convert untyped memory to typed memory, though
278 // in practice that's not strictly necessary for types that don't have a
279 // constructor.)
280
281 const Descriptor* descriptor = type_info_->type;
282
283 // Initialize oneof cases.
284 for (int i = 0 ; i < descriptor->oneof_decl_count(); ++i) {
285 new(OffsetToPointer(type_info_->oneof_case_offset + sizeof(uint32) * i))
286 uint32(0);
287 }
288
289 new(OffsetToPointer(type_info_->unknown_fields_offset)) UnknownFieldSet;
290
291 if (type_info_->extensions_offset != -1) {
292 new(OffsetToPointer(type_info_->extensions_offset)) ExtensionSet;
293 }
294
295 for (int i = 0; i < descriptor->field_count(); i++) {
296 const FieldDescriptor* field = descriptor->field(i);
297 void* field_ptr = OffsetToPointer(type_info_->offsets[i]);
298 if (field->containing_oneof()) {
299 continue;
300 }
301 switch (field->cpp_type()) {
302 #define HANDLE_TYPE(CPPTYPE, TYPE) \
303 case FieldDescriptor::CPPTYPE_##CPPTYPE: \
304 if (!field->is_repeated()) { \
305 new(field_ptr) TYPE(field->default_value_##TYPE()); \
306 } else { \
307 new(field_ptr) RepeatedField<TYPE>(); \
308 } \
309 break;
310
311 HANDLE_TYPE(INT32 , int32 );
312 HANDLE_TYPE(INT64 , int64 );
313 HANDLE_TYPE(UINT32, uint32);
314 HANDLE_TYPE(UINT64, uint64);
315 HANDLE_TYPE(DOUBLE, double);
316 HANDLE_TYPE(FLOAT , float );
317 HANDLE_TYPE(BOOL , bool );
318 #undef HANDLE_TYPE
319
320 case FieldDescriptor::CPPTYPE_ENUM:
321 if (!field->is_repeated()) {
322 new(field_ptr) int(field->default_value_enum()->number());
323 } else {
324 new(field_ptr) RepeatedField<int>();
325 }
326 break;
327
328 case FieldDescriptor::CPPTYPE_STRING:
329 switch (field->options().ctype()) {
330 default: // TODO(kenton): Support other string reps.
331 case FieldOptions::STRING:
332 if (!field->is_repeated()) {
333 if (is_prototype()) {
334 new(field_ptr) const string*(&field->default_value_string());
335 } else {
336 string* default_value =
337 *reinterpret_cast<string* const*>(
338 type_info_->prototype->OffsetToPointer(
339 type_info_->offsets[i]));
340 new(field_ptr) string*(default_value);
341 }
342 } else {
343 new(field_ptr) RepeatedPtrField<string>();
344 }
345 break;
346 }
347 break;
348
349 case FieldDescriptor::CPPTYPE_MESSAGE: {
350 if (!field->is_repeated()) {
351 new(field_ptr) Message*(NULL);
352 } else {
353 new(field_ptr) RepeatedPtrField<Message>();
354 }
355 break;
356 }
357 }
358 }
359 }
360
~DynamicMessage()361 DynamicMessage::~DynamicMessage() {
362 const Descriptor* descriptor = type_info_->type;
363
364 reinterpret_cast<UnknownFieldSet*>(
365 OffsetToPointer(type_info_->unknown_fields_offset))->~UnknownFieldSet();
366
367 if (type_info_->extensions_offset != -1) {
368 reinterpret_cast<ExtensionSet*>(
369 OffsetToPointer(type_info_->extensions_offset))->~ExtensionSet();
370 }
371
372 // We need to manually run the destructors for repeated fields and strings,
373 // just as we ran their constructors in the the DynamicMessage constructor.
374 // We also need to manually delete oneof fields if it is set and is string
375 // or message.
376 // Additionally, if any singular embedded messages have been allocated, we
377 // need to delete them, UNLESS we are the prototype message of this type,
378 // in which case any embedded messages are other prototypes and shouldn't
379 // be touched.
380 for (int i = 0; i < descriptor->field_count(); i++) {
381 const FieldDescriptor* field = descriptor->field(i);
382 if (field->containing_oneof()) {
383 void* field_ptr = OffsetToPointer(
384 type_info_->oneof_case_offset
385 + sizeof(uint32) * field->containing_oneof()->index());
386 if (*(reinterpret_cast<const uint32*>(field_ptr)) ==
387 field->number()) {
388 field_ptr = OffsetToPointer(type_info_->offsets[
389 descriptor->field_count() + field->containing_oneof()->index()]);
390 if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
391 switch (field->options().ctype()) {
392 default:
393 case FieldOptions::STRING:
394 delete *reinterpret_cast<string**>(field_ptr);
395 break;
396 }
397 } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
398 delete *reinterpret_cast<Message**>(field_ptr);
399 }
400 }
401 continue;
402 }
403 void* field_ptr = OffsetToPointer(type_info_->offsets[i]);
404
405 if (field->is_repeated()) {
406 switch (field->cpp_type()) {
407 #define HANDLE_TYPE(UPPERCASE, LOWERCASE) \
408 case FieldDescriptor::CPPTYPE_##UPPERCASE : \
409 reinterpret_cast<RepeatedField<LOWERCASE>*>(field_ptr) \
410 ->~RepeatedField<LOWERCASE>(); \
411 break
412
413 HANDLE_TYPE( INT32, int32);
414 HANDLE_TYPE( INT64, int64);
415 HANDLE_TYPE(UINT32, uint32);
416 HANDLE_TYPE(UINT64, uint64);
417 HANDLE_TYPE(DOUBLE, double);
418 HANDLE_TYPE( FLOAT, float);
419 HANDLE_TYPE( BOOL, bool);
420 HANDLE_TYPE( ENUM, int);
421 #undef HANDLE_TYPE
422
423 case FieldDescriptor::CPPTYPE_STRING:
424 switch (field->options().ctype()) {
425 default: // TODO(kenton): Support other string reps.
426 case FieldOptions::STRING:
427 reinterpret_cast<RepeatedPtrField<string>*>(field_ptr)
428 ->~RepeatedPtrField<string>();
429 break;
430 }
431 break;
432
433 case FieldDescriptor::CPPTYPE_MESSAGE:
434 reinterpret_cast<RepeatedPtrField<Message>*>(field_ptr)
435 ->~RepeatedPtrField<Message>();
436 break;
437 }
438
439 } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
440 switch (field->options().ctype()) {
441 default: // TODO(kenton): Support other string reps.
442 case FieldOptions::STRING: {
443 string* ptr = *reinterpret_cast<string**>(field_ptr);
444 if (ptr != &field->default_value_string()) {
445 delete ptr;
446 }
447 break;
448 }
449 }
450 } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
451 if (!is_prototype()) {
452 Message* message = *reinterpret_cast<Message**>(field_ptr);
453 if (message != NULL) {
454 delete message;
455 }
456 }
457 }
458 }
459 }
460
CrossLinkPrototypes()461 void DynamicMessage::CrossLinkPrototypes() {
462 // This should only be called on the prototype message.
463 GOOGLE_CHECK(is_prototype());
464
465 DynamicMessageFactory* factory = type_info_->factory;
466 const Descriptor* descriptor = type_info_->type;
467
468 // Cross-link default messages.
469 for (int i = 0; i < descriptor->field_count(); i++) {
470 const FieldDescriptor* field = descriptor->field(i);
471 void* field_ptr = OffsetToPointer(type_info_->offsets[i]);
472 if (field->containing_oneof()) {
473 field_ptr = reinterpret_cast<uint8*>(
474 type_info_->default_oneof_instance) + type_info_->offsets[i];
475 }
476
477 if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
478 !field->is_repeated()) {
479 // For fields with message types, we need to cross-link with the
480 // prototype for the field's type.
481 // For singular fields, the field is just a pointer which should
482 // point to the prototype.
483 *reinterpret_cast<const Message**>(field_ptr) =
484 factory->GetPrototypeNoLock(field->message_type());
485 }
486 }
487 }
488
New() const489 Message* DynamicMessage::New() const {
490 void* new_base = operator new(type_info_->size);
491 memset(new_base, 0, type_info_->size);
492 return new(new_base) DynamicMessage(type_info_);
493 }
494
GetCachedSize() const495 int DynamicMessage::GetCachedSize() const {
496 return cached_byte_size_;
497 }
498
SetCachedSize(int size) const499 void DynamicMessage::SetCachedSize(int size) const {
500 // This is theoretically not thread-compatible, but in practice it works
501 // because if multiple threads write this simultaneously, they will be
502 // writing the exact same value.
503 GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();
504 cached_byte_size_ = size;
505 GOOGLE_SAFE_CONCURRENT_WRITES_END();
506 }
507
GetMetadata() const508 Metadata DynamicMessage::GetMetadata() const {
509 Metadata metadata;
510 metadata.descriptor = type_info_->type;
511 metadata.reflection = type_info_->reflection.get();
512 return metadata;
513 }
514
515 // ===================================================================
516
517 struct DynamicMessageFactory::PrototypeMap {
518 typedef hash_map<const Descriptor*, const DynamicMessage::TypeInfo*> Map;
519 Map map_;
520 };
521
DynamicMessageFactory()522 DynamicMessageFactory::DynamicMessageFactory()
523 : pool_(NULL), delegate_to_generated_factory_(false),
524 prototypes_(new PrototypeMap) {
525 }
526
DynamicMessageFactory(const DescriptorPool * pool)527 DynamicMessageFactory::DynamicMessageFactory(const DescriptorPool* pool)
528 : pool_(pool), delegate_to_generated_factory_(false),
529 prototypes_(new PrototypeMap) {
530 }
531
~DynamicMessageFactory()532 DynamicMessageFactory::~DynamicMessageFactory() {
533 for (PrototypeMap::Map::iterator iter = prototypes_->map_.begin();
534 iter != prototypes_->map_.end(); ++iter) {
535 DeleteDefaultOneofInstance(iter->second->type,
536 iter->second->offsets.get(),
537 iter->second->default_oneof_instance);
538 delete iter->second;
539 }
540 }
541
GetPrototype(const Descriptor * type)542 const Message* DynamicMessageFactory::GetPrototype(const Descriptor* type) {
543 MutexLock lock(&prototypes_mutex_);
544 return GetPrototypeNoLock(type);
545 }
546
GetPrototypeNoLock(const Descriptor * type)547 const Message* DynamicMessageFactory::GetPrototypeNoLock(
548 const Descriptor* type) {
549 if (delegate_to_generated_factory_ &&
550 type->file()->pool() == DescriptorPool::generated_pool()) {
551 return MessageFactory::generated_factory()->GetPrototype(type);
552 }
553
554 const DynamicMessage::TypeInfo** target = &prototypes_->map_[type];
555 if (*target != NULL) {
556 // Already exists.
557 return (*target)->prototype;
558 }
559
560 DynamicMessage::TypeInfo* type_info = new DynamicMessage::TypeInfo;
561 *target = type_info;
562
563 type_info->type = type;
564 type_info->pool = (pool_ == NULL) ? type->file()->pool() : pool_;
565 type_info->factory = this;
566
567 // We need to construct all the structures passed to
568 // GeneratedMessageReflection's constructor. This includes:
569 // - A block of memory that contains space for all the message's fields.
570 // - An array of integers indicating the byte offset of each field within
571 // this block.
572 // - A big bitfield containing a bit for each field indicating whether
573 // or not that field is set.
574
575 // Compute size and offsets.
576 int* offsets = new int[type->field_count() + type->oneof_decl_count()];
577 type_info->offsets.reset(offsets);
578
579 // Decide all field offsets by packing in order.
580 // We place the DynamicMessage object itself at the beginning of the allocated
581 // space.
582 int size = sizeof(DynamicMessage);
583 size = AlignOffset(size);
584
585 // Next the has_bits, which is an array of uint32s.
586 type_info->has_bits_offset = size;
587 int has_bits_array_size =
588 DivideRoundingUp(type->field_count(), bitsizeof(uint32));
589 size += has_bits_array_size * sizeof(uint32);
590 size = AlignOffset(size);
591
592 // The oneof_case, if any. It is an array of uint32s.
593 if (type->oneof_decl_count() > 0) {
594 type_info->oneof_case_offset = size;
595 size += type->oneof_decl_count() * sizeof(uint32);
596 size = AlignOffset(size);
597 }
598
599 // The ExtensionSet, if any.
600 if (type->extension_range_count() > 0) {
601 type_info->extensions_offset = size;
602 size += sizeof(ExtensionSet);
603 size = AlignOffset(size);
604 } else {
605 // No extensions.
606 type_info->extensions_offset = -1;
607 }
608
609 // All the fields.
610 for (int i = 0; i < type->field_count(); i++) {
611 // Make sure field is aligned to avoid bus errors.
612 // Oneof fields do not use any space.
613 if (!type->field(i)->containing_oneof()) {
614 int field_size = FieldSpaceUsed(type->field(i));
615 size = AlignTo(size, min(kSafeAlignment, field_size));
616 offsets[i] = size;
617 size += field_size;
618 }
619 }
620
621 // The oneofs.
622 for (int i = 0; i < type->oneof_decl_count(); i++) {
623 size = AlignTo(size, kSafeAlignment);
624 offsets[type->field_count() + i] = size;
625 size += kMaxOneofUnionSize;
626 }
627
628 // Add the UnknownFieldSet to the end.
629 size = AlignOffset(size);
630 type_info->unknown_fields_offset = size;
631 size += sizeof(UnknownFieldSet);
632
633 // Align the final size to make sure no clever allocators think that
634 // alignment is not necessary.
635 size = AlignOffset(size);
636 type_info->size = size;
637
638 // Allocate the prototype.
639 void* base = operator new(size);
640 memset(base, 0, size);
641 DynamicMessage* prototype = new(base) DynamicMessage(type_info);
642 type_info->prototype = prototype;
643
644 // Construct the reflection object.
645 if (type->oneof_decl_count() > 0) {
646 // Compute the size of default oneof instance and offsets of default
647 // oneof fields.
648 int oneof_size = 0;
649 for (int i = 0; i < type->oneof_decl_count(); i++) {
650 for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) {
651 const FieldDescriptor* field = type->oneof_decl(i)->field(j);
652 int field_size = OneofFieldSpaceUsed(field);
653 oneof_size = AlignTo(oneof_size, min(kSafeAlignment, field_size));
654 offsets[field->index()] = oneof_size;
655 oneof_size += field_size;
656 }
657 }
658 // Construct default oneof instance.
659 type_info->default_oneof_instance = ::operator new(oneof_size);
660 ConstructDefaultOneofInstance(type_info->type,
661 type_info->offsets.get(),
662 type_info->default_oneof_instance);
663 type_info->reflection.reset(
664 new GeneratedMessageReflection(
665 type_info->type,
666 type_info->prototype,
667 type_info->offsets.get(),
668 type_info->has_bits_offset,
669 type_info->unknown_fields_offset,
670 type_info->extensions_offset,
671 type_info->default_oneof_instance,
672 type_info->oneof_case_offset,
673 type_info->pool,
674 this,
675 type_info->size));
676 } else {
677 type_info->reflection.reset(
678 new GeneratedMessageReflection(
679 type_info->type,
680 type_info->prototype,
681 type_info->offsets.get(),
682 type_info->has_bits_offset,
683 type_info->unknown_fields_offset,
684 type_info->extensions_offset,
685 type_info->pool,
686 this,
687 type_info->size));
688 }
689 // Cross link prototypes.
690 prototype->CrossLinkPrototypes();
691
692 return prototype;
693 }
694
ConstructDefaultOneofInstance(const Descriptor * type,const int offsets[],void * default_oneof_instance)695 void DynamicMessageFactory::ConstructDefaultOneofInstance(
696 const Descriptor* type,
697 const int offsets[],
698 void* default_oneof_instance) {
699 for (int i = 0; i < type->oneof_decl_count(); i++) {
700 for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) {
701 const FieldDescriptor* field = type->oneof_decl(i)->field(j);
702 void* field_ptr = reinterpret_cast<uint8*>(
703 default_oneof_instance) + offsets[field->index()];
704 switch (field->cpp_type()) {
705 #define HANDLE_TYPE(CPPTYPE, TYPE) \
706 case FieldDescriptor::CPPTYPE_##CPPTYPE: \
707 new(field_ptr) TYPE(field->default_value_##TYPE()); \
708 break;
709
710 HANDLE_TYPE(INT32 , int32 );
711 HANDLE_TYPE(INT64 , int64 );
712 HANDLE_TYPE(UINT32, uint32);
713 HANDLE_TYPE(UINT64, uint64);
714 HANDLE_TYPE(DOUBLE, double);
715 HANDLE_TYPE(FLOAT , float );
716 HANDLE_TYPE(BOOL , bool );
717 #undef HANDLE_TYPE
718
719 case FieldDescriptor::CPPTYPE_ENUM:
720 new(field_ptr) int(field->default_value_enum()->number());
721 break;
722 case FieldDescriptor::CPPTYPE_STRING:
723 switch (field->options().ctype()) {
724 default:
725 case FieldOptions::STRING:
726 if (field->has_default_value()) {
727 new(field_ptr) const string*(&field->default_value_string());
728 } else {
729 new(field_ptr) string*(
730 const_cast<string*>(&internal::GetEmptyString()));
731 }
732 break;
733 }
734 break;
735
736 case FieldDescriptor::CPPTYPE_MESSAGE: {
737 new(field_ptr) Message*(NULL);
738 break;
739 }
740 }
741 }
742 }
743 }
744
DeleteDefaultOneofInstance(const Descriptor * type,const int offsets[],void * default_oneof_instance)745 void DynamicMessageFactory::DeleteDefaultOneofInstance(
746 const Descriptor* type,
747 const int offsets[],
748 void* default_oneof_instance) {
749 for (int i = 0; i < type->oneof_decl_count(); i++) {
750 for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) {
751 const FieldDescriptor* field = type->oneof_decl(i)->field(j);
752 if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
753 switch (field->options().ctype()) {
754 default:
755 case FieldOptions::STRING:
756 break;
757 }
758 }
759 }
760 }
761 }
762
763 } // namespace protobuf
764 } // namespace google
765