1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_PPC_MACRO_ASSEMBLER_PPC_H_
6 #define V8_PPC_MACRO_ASSEMBLER_PPC_H_
7 
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 // Give alias names to registers for calling conventions.
17 const Register kReturnRegister0 = {Register::kCode_r3};
18 const Register kReturnRegister1 = {Register::kCode_r4};
19 const Register kJSFunctionRegister = {Register::kCode_r4};
20 const Register kContextRegister = {Register::kCode_r30};
21 const Register kInterpreterAccumulatorRegister = {Register::kCode_r3};
22 const Register kInterpreterRegisterFileRegister = {Register::kCode_r14};
23 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r15};
24 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r16};
25 const Register kInterpreterDispatchTableRegister = {Register::kCode_r17};
26 const Register kJavaScriptCallArgCountRegister = {Register::kCode_r3};
27 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r6};
28 const Register kRuntimeCallFunctionRegister = {Register::kCode_r4};
29 const Register kRuntimeCallArgCountRegister = {Register::kCode_r3};
30 
31 // ----------------------------------------------------------------------------
32 // Static helper functions
33 
34 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)35 inline MemOperand FieldMemOperand(Register object, int offset) {
36   return MemOperand(object, offset - kHeapObjectTag);
37 }
38 
39 
40 // Flags used for AllocateHeapNumber
41 enum TaggingMode {
42   // Tag the result.
43   TAG_RESULT,
44   // Don't tag
45   DONT_TAG_RESULT
46 };
47 
48 
49 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
50 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
51 enum PointersToHereCheck {
52   kPointersToHereMaybeInteresting,
53   kPointersToHereAreAlwaysInteresting
54 };
55 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
56 
57 
58 Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
59                                    Register reg3 = no_reg,
60                                    Register reg4 = no_reg,
61                                    Register reg5 = no_reg,
62                                    Register reg6 = no_reg);
63 
64 
65 #ifdef DEBUG
66 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
67                 Register reg4 = no_reg, Register reg5 = no_reg,
68                 Register reg6 = no_reg, Register reg7 = no_reg,
69                 Register reg8 = no_reg, Register reg9 = no_reg,
70                 Register reg10 = no_reg);
71 #endif
72 
73 // These exist to provide portability between 32 and 64bit
74 #if V8_TARGET_ARCH_PPC64
75 #define LoadPU ldu
76 #define LoadPX ldx
77 #define LoadPUX ldux
78 #define StorePU stdu
79 #define StorePX stdx
80 #define StorePUX stdux
81 #define ShiftLeftImm sldi
82 #define ShiftRightImm srdi
83 #define ClearLeftImm clrldi
84 #define ClearRightImm clrrdi
85 #define ShiftRightArithImm sradi
86 #define ShiftLeft_ sld
87 #define ShiftRight_ srd
88 #define ShiftRightArith srad
89 #define Mul mulld
90 #define Div divd
91 #else
92 #define LoadPU lwzu
93 #define LoadPX lwzx
94 #define LoadPUX lwzux
95 #define StorePU stwu
96 #define StorePX stwx
97 #define StorePUX stwux
98 #define ShiftLeftImm slwi
99 #define ShiftRightImm srwi
100 #define ClearLeftImm clrlwi
101 #define ClearRightImm clrrwi
102 #define ShiftRightArithImm srawi
103 #define ShiftLeft_ slw
104 #define ShiftRight_ srw
105 #define ShiftRightArith sraw
106 #define Mul mullw
107 #define Div divw
108 #endif
109 
110 
111 // MacroAssembler implements a collection of frequently used macros.
112 class MacroAssembler : public Assembler {
113  public:
114   MacroAssembler(Isolate* isolate, void* buffer, int size,
115                  CodeObjectRequired create_code_object);
116 
117 
118   // Returns the size of a call in instructions. Note, the value returned is
119   // only valid as long as no entries are added to the constant pool between
120   // checking the call size and emitting the actual call.
121   static int CallSize(Register target);
122   int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
123   static int CallSizeNotPredictableCodeSize(Address target,
124                                             RelocInfo::Mode rmode,
125                                             Condition cond = al);
126 
127   // Jump, Call, and Ret pseudo instructions implementing inter-working.
128   void Jump(Register target);
129   void JumpToJSEntry(Register target);
130   void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
131             CRegister cr = cr7);
132   void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
133   void Call(Register target);
134   void CallJSEntry(Register target);
135   void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
136   int CallSize(Handle<Code> code,
137                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
138                TypeFeedbackId ast_id = TypeFeedbackId::None(),
139                Condition cond = al);
140   void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
141             TypeFeedbackId ast_id = TypeFeedbackId::None(),
142             Condition cond = al);
Ret()143   void Ret() { blr(); }
144   void Ret(Condition cond, CRegister cr = cr7) { bclr(cond, cr); }
145 
146   // Emit code to discard a non-negative number of pointer-sized elements
147   // from the stack, clobbering only the sp register.
148   void Drop(int count);
149 
Ret(int drop)150   void Ret(int drop) {
151     Drop(drop);
152     blr();
153   }
154 
155   void Call(Label* target);
156 
157   // Emit call to the code we are currently generating.
CallSelf()158   void CallSelf() {
159     Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
160     Call(self, RelocInfo::CODE_TARGET);
161   }
162 
163   // Register move. May do nothing if the registers are identical.
164   void Move(Register dst, Handle<Object> value);
165   void Move(Register dst, Register src, Condition cond = al);
166   void Move(DoubleRegister dst, DoubleRegister src);
167 
168   void MultiPush(RegList regs, Register location = sp);
169   void MultiPop(RegList regs, Register location = sp);
170 
171   void MultiPushDoubles(RegList dregs, Register location = sp);
172   void MultiPopDoubles(RegList dregs, Register location = sp);
173 
174   // Load an object from the root table.
175   void LoadRoot(Register destination, Heap::RootListIndex index,
176                 Condition cond = al);
177   // Store an object to the root table.
178   void StoreRoot(Register source, Heap::RootListIndex index,
179                  Condition cond = al);
180 
181   // ---------------------------------------------------------------------------
182   // GC Support
183 
184   void IncrementalMarkingRecordWriteHelper(Register object, Register value,
185                                            Register address);
186 
187   enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
188 
189   // Record in the remembered set the fact that we have a pointer to new space
190   // at the address pointed to by the addr register.  Only works if addr is not
191   // in new space.
192   void RememberedSetHelper(Register object,  // Used for debug code.
193                            Register addr, Register scratch,
194                            SaveFPRegsMode save_fp,
195                            RememberedSetFinalAction and_then);
196 
197   void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
198                      Label* condition_met);
199 
200   // Check if object is in new space.  Jumps if the object is not in new space.
201   // The register scratch can be object itself, but scratch will be clobbered.
JumpIfNotInNewSpace(Register object,Register scratch,Label * branch)202   void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) {
203     InNewSpace(object, scratch, ne, branch);
204   }
205 
206   // Check if object is in new space.  Jumps if the object is in new space.
207   // The register scratch can be object itself, but it will be clobbered.
JumpIfInNewSpace(Register object,Register scratch,Label * branch)208   void JumpIfInNewSpace(Register object, Register scratch, Label* branch) {
209     InNewSpace(object, scratch, eq, branch);
210   }
211 
212   // Check if an object has a given incremental marking color.
213   void HasColor(Register object, Register scratch0, Register scratch1,
214                 Label* has_color, int first_bit, int second_bit);
215 
216   void JumpIfBlack(Register object, Register scratch0, Register scratch1,
217                    Label* on_black);
218 
219   // Checks the color of an object.  If the object is white we jump to the
220   // incremental marker.
221   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
222                    Register scratch3, Label* value_is_white);
223 
224   // Notify the garbage collector that we wrote a pointer into an object.
225   // |object| is the object being stored into, |value| is the object being
226   // stored.  value and scratch registers are clobbered by the operation.
227   // The offset is the offset from the start of the object, not the offset from
228   // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
229   void RecordWriteField(
230       Register object, int offset, Register value, Register scratch,
231       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
232       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
233       SmiCheck smi_check = INLINE_SMI_CHECK,
234       PointersToHereCheck pointers_to_here_check_for_value =
235           kPointersToHereMaybeInteresting);
236 
237   // As above, but the offset has the tag presubtracted.  For use with
238   // MemOperand(reg, off).
239   inline void RecordWriteContextSlot(
240       Register context, int offset, Register value, Register scratch,
241       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
242       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
243       SmiCheck smi_check = INLINE_SMI_CHECK,
244       PointersToHereCheck pointers_to_here_check_for_value =
245           kPointersToHereMaybeInteresting) {
246     RecordWriteField(context, offset + kHeapObjectTag, value, scratch,
247                      lr_status, save_fp, remembered_set_action, smi_check,
248                      pointers_to_here_check_for_value);
249   }
250 
251   void RecordWriteForMap(Register object, Register map, Register dst,
252                          LinkRegisterStatus lr_status, SaveFPRegsMode save_fp);
253 
254   // For a given |object| notify the garbage collector that the slot |address|
255   // has been written.  |value| is the object being stored. The value and
256   // address registers are clobbered by the operation.
257   void RecordWrite(
258       Register object, Register address, Register value,
259       LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
260       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
261       SmiCheck smi_check = INLINE_SMI_CHECK,
262       PointersToHereCheck pointers_to_here_check_for_value =
263           kPointersToHereMaybeInteresting);
264 
Push(Register src)265   void Push(Register src) { push(src); }
266 
267   // Push a handle.
268   void Push(Handle<Object> handle);
Push(Smi * smi)269   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
270 
271   // Push two registers.  Pushes leftmost register first (to highest address).
Push(Register src1,Register src2)272   void Push(Register src1, Register src2) {
273     StorePU(src2, MemOperand(sp, -2 * kPointerSize));
274     StoreP(src1, MemOperand(sp, kPointerSize));
275   }
276 
277   // Push three registers.  Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3)278   void Push(Register src1, Register src2, Register src3) {
279     StorePU(src3, MemOperand(sp, -3 * kPointerSize));
280     StoreP(src2, MemOperand(sp, kPointerSize));
281     StoreP(src1, MemOperand(sp, 2 * kPointerSize));
282   }
283 
284   // Push four registers.  Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4)285   void Push(Register src1, Register src2, Register src3, Register src4) {
286     StorePU(src4, MemOperand(sp, -4 * kPointerSize));
287     StoreP(src3, MemOperand(sp, kPointerSize));
288     StoreP(src2, MemOperand(sp, 2 * kPointerSize));
289     StoreP(src1, MemOperand(sp, 3 * kPointerSize));
290   }
291 
292   // Push five registers.  Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4,Register src5)293   void Push(Register src1, Register src2, Register src3, Register src4,
294             Register src5) {
295     StorePU(src5, MemOperand(sp, -5 * kPointerSize));
296     StoreP(src4, MemOperand(sp, kPointerSize));
297     StoreP(src3, MemOperand(sp, 2 * kPointerSize));
298     StoreP(src2, MemOperand(sp, 3 * kPointerSize));
299     StoreP(src1, MemOperand(sp, 4 * kPointerSize));
300   }
301 
Pop(Register dst)302   void Pop(Register dst) { pop(dst); }
303 
304   // Pop two registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2)305   void Pop(Register src1, Register src2) {
306     LoadP(src2, MemOperand(sp, 0));
307     LoadP(src1, MemOperand(sp, kPointerSize));
308     addi(sp, sp, Operand(2 * kPointerSize));
309   }
310 
311   // Pop three registers.  Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3)312   void Pop(Register src1, Register src2, Register src3) {
313     LoadP(src3, MemOperand(sp, 0));
314     LoadP(src2, MemOperand(sp, kPointerSize));
315     LoadP(src1, MemOperand(sp, 2 * kPointerSize));
316     addi(sp, sp, Operand(3 * kPointerSize));
317   }
318 
319   // Pop four registers.  Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3,Register src4)320   void Pop(Register src1, Register src2, Register src3, Register src4) {
321     LoadP(src4, MemOperand(sp, 0));
322     LoadP(src3, MemOperand(sp, kPointerSize));
323     LoadP(src2, MemOperand(sp, 2 * kPointerSize));
324     LoadP(src1, MemOperand(sp, 3 * kPointerSize));
325     addi(sp, sp, Operand(4 * kPointerSize));
326   }
327 
328   // Pop five registers.  Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3,Register src4,Register src5)329   void Pop(Register src1, Register src2, Register src3, Register src4,
330            Register src5) {
331     LoadP(src5, MemOperand(sp, 0));
332     LoadP(src4, MemOperand(sp, kPointerSize));
333     LoadP(src3, MemOperand(sp, 2 * kPointerSize));
334     LoadP(src2, MemOperand(sp, 3 * kPointerSize));
335     LoadP(src1, MemOperand(sp, 4 * kPointerSize));
336     addi(sp, sp, Operand(5 * kPointerSize));
337   }
338 
339   // Push a fixed frame, consisting of lr, fp, context and
340   // JS function / marker id if marker_reg is a valid register.
341   void PushFixedFrame(Register marker_reg = no_reg);
342   void PopFixedFrame(Register marker_reg = no_reg);
343 
344   // Push and pop the registers that can hold pointers, as defined by the
345   // RegList constant kSafepointSavedRegisters.
346   void PushSafepointRegisters();
347   void PopSafepointRegisters();
348   // Store value in register src in the safepoint stack slot for
349   // register dst.
350   void StoreToSafepointRegisterSlot(Register src, Register dst);
351   // Load the value of the src register from its safepoint stack slot
352   // into register dst.
353   void LoadFromSafepointRegisterSlot(Register dst, Register src);
354 
355   // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
356   // from C.
357   // Does not handle errors.
358   void FlushICache(Register address, size_t size, Register scratch);
359 
360   // If the value is a NaN, canonicalize the value else, do nothing.
361   void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
CanonicalizeNaN(const DoubleRegister value)362   void CanonicalizeNaN(const DoubleRegister value) {
363     CanonicalizeNaN(value, value);
364   }
365 
366   // Converts the integer (untagged smi) in |src| to a double, storing
367   // the result to |double_dst|
368   void ConvertIntToDouble(Register src, DoubleRegister double_dst);
369 
370   // Converts the unsigned integer (untagged smi) in |src| to
371   // a double, storing the result to |double_dst|
372   void ConvertUnsignedIntToDouble(Register src, DoubleRegister double_dst);
373 
374   // Converts the integer (untagged smi) in |src| to
375   // a float, storing the result in |dst|
376   // Warning: The value in |int_scrach| will be changed in the process!
377   void ConvertIntToFloat(const DoubleRegister dst, const Register src,
378                          const Register int_scratch);
379 
380 #if V8_TARGET_ARCH_PPC64
381   void ConvertInt64ToFloat(Register src, DoubleRegister double_dst);
382   void ConvertInt64ToDouble(Register src, DoubleRegister double_dst);
383   void ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst);
384   void ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst);
385 #endif
386 
387   // Converts the double_input to an integer.  Note that, upon return,
388   // the contents of double_dst will also hold the fixed point representation.
389   void ConvertDoubleToInt64(const DoubleRegister double_input,
390 #if !V8_TARGET_ARCH_PPC64
391                             const Register dst_hi,
392 #endif
393                             const Register dst, const DoubleRegister double_dst,
394                             FPRoundingMode rounding_mode = kRoundToZero);
395 
396 #if V8_TARGET_ARCH_PPC64
397   // Converts the double_input to an unsigned integer.  Note that, upon return,
398   // the contents of double_dst will also hold the fixed point representation.
399   void ConvertDoubleToUnsignedInt64(
400       const DoubleRegister double_input, const Register dst,
401       const DoubleRegister double_dst,
402       FPRoundingMode rounding_mode = kRoundToZero);
403 #endif
404 
405   // Generates function and stub prologue code.
406   void StubPrologue(Register base = no_reg, int prologue_offset = 0);
407   void Prologue(bool code_pre_aging, Register base, int prologue_offset = 0);
408 
409   // Enter exit frame.
410   // stack_space - extra stack space, used for parameters before call to C.
411   // At least one slot (for the return address) should be provided.
412   void EnterExitFrame(bool save_doubles, int stack_space = 1);
413 
414   // Leave the current exit frame. Expects the return value in r0.
415   // Expect the number of values, pushed prior to the exit frame, to
416   // remove in a register (or no_reg, if there is nothing to remove).
417   void LeaveExitFrame(bool save_doubles, Register argument_count,
418                       bool restore_context,
419                       bool argument_count_is_length = false);
420 
421   // Get the actual activation frame alignment for target environment.
422   static int ActivationFrameAlignment();
423 
424   void LoadContext(Register dst, int context_chain_length);
425 
426   // Load the global object from the current context.
LoadGlobalObject(Register dst)427   void LoadGlobalObject(Register dst) {
428     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
429   }
430 
431   // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)432   void LoadGlobalProxy(Register dst) {
433     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
434   }
435 
436   // Conditionally load the cached Array transitioned map of type
437   // transitioned_kind from the native context if the map in register
438   // map_in_out is the cached Array map in the native context of
439   // expected_kind.
440   void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
441                                            ElementsKind transitioned_kind,
442                                            Register map_in_out,
443                                            Register scratch,
444                                            Label* no_map_match);
445 
446   void LoadNativeContextSlot(int index, Register dst);
447 
448   // Load the initial map from the global function. The registers
449   // function and map can be the same, function is then overwritten.
450   void LoadGlobalFunctionInitialMap(Register function, Register map,
451                                     Register scratch);
452 
InitializeRootRegister()453   void InitializeRootRegister() {
454     ExternalReference roots_array_start =
455         ExternalReference::roots_array_start(isolate());
456     mov(kRootRegister, Operand(roots_array_start));
457   }
458 
459   // ----------------------------------------------------------------
460   // new PPC macro-assembler interfaces that are slightly higher level
461   // than assembler-ppc and may generate variable length sequences
462 
463   // load a literal signed int value <value> to GPR <dst>
464   void LoadIntLiteral(Register dst, int value);
465 
466   // load an SMI value <value> to GPR <dst>
467   void LoadSmiLiteral(Register dst, Smi* smi);
468 
469   // load a literal double value <value> to FPR <result>
470   void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch);
471 
472   void LoadWord(Register dst, const MemOperand& mem, Register scratch);
473   void LoadWordArith(Register dst, const MemOperand& mem,
474                      Register scratch = no_reg);
475   void StoreWord(Register src, const MemOperand& mem, Register scratch);
476 
477   void LoadHalfWord(Register dst, const MemOperand& mem, Register scratch);
478   void LoadHalfWordArith(Register dst, const MemOperand& mem,
479                          Register scratch = no_reg);
480   void StoreHalfWord(Register src, const MemOperand& mem, Register scratch);
481 
482   void LoadByte(Register dst, const MemOperand& mem, Register scratch);
483   void StoreByte(Register src, const MemOperand& mem, Register scratch);
484 
485   void LoadRepresentation(Register dst, const MemOperand& mem, Representation r,
486                           Register scratch = no_reg);
487   void StoreRepresentation(Register src, const MemOperand& mem,
488                            Representation r, Register scratch = no_reg);
489 
490   void LoadDouble(DoubleRegister dst, const MemOperand& mem, Register scratch);
491   void StoreDouble(DoubleRegister src, const MemOperand& mem, Register scratch);
492 
493   // Move values between integer and floating point registers.
494   void MovIntToDouble(DoubleRegister dst, Register src, Register scratch);
495   void MovUnsignedIntToDouble(DoubleRegister dst, Register src,
496                               Register scratch);
497   void MovInt64ToDouble(DoubleRegister dst,
498 #if !V8_TARGET_ARCH_PPC64
499                         Register src_hi,
500 #endif
501                         Register src);
502 #if V8_TARGET_ARCH_PPC64
503   void MovInt64ComponentsToDouble(DoubleRegister dst, Register src_hi,
504                                   Register src_lo, Register scratch);
505 #endif
506   void InsertDoubleLow(DoubleRegister dst, Register src, Register scratch);
507   void InsertDoubleHigh(DoubleRegister dst, Register src, Register scratch);
508   void MovDoubleLowToInt(Register dst, DoubleRegister src);
509   void MovDoubleHighToInt(Register dst, DoubleRegister src);
510   void MovDoubleToInt64(
511 #if !V8_TARGET_ARCH_PPC64
512       Register dst_hi,
513 #endif
514       Register dst, DoubleRegister src);
515   void MovIntToFloat(DoubleRegister dst, Register src);
516   void MovFloatToInt(Register dst, DoubleRegister src);
517 
518   void Add(Register dst, Register src, intptr_t value, Register scratch);
519   void Cmpi(Register src1, const Operand& src2, Register scratch,
520             CRegister cr = cr7);
521   void Cmpli(Register src1, const Operand& src2, Register scratch,
522              CRegister cr = cr7);
523   void Cmpwi(Register src1, const Operand& src2, Register scratch,
524              CRegister cr = cr7);
525   void Cmplwi(Register src1, const Operand& src2, Register scratch,
526               CRegister cr = cr7);
527   void And(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
528   void Or(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
529   void Xor(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
530 
531   void AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
532   void SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
533   void CmpSmiLiteral(Register src1, Smi* smi, Register scratch,
534                      CRegister cr = cr7);
535   void CmplSmiLiteral(Register src1, Smi* smi, Register scratch,
536                       CRegister cr = cr7);
537   void AndSmiLiteral(Register dst, Register src, Smi* smi, Register scratch,
538                      RCBit rc = LeaveRC);
539 
540   // Set new rounding mode RN to FPSCR
541   void SetRoundingMode(FPRoundingMode RN);
542 
543   // reset rounding mode to default (kRoundToNearest)
544   void ResetRoundingMode();
545 
546   // These exist to provide portability between 32 and 64bit
547   void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
548   void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg);
549 
550   // ---------------------------------------------------------------------------
551   // JavaScript invokes
552 
553   // Invoke the JavaScript function code by either calling or jumping.
554   void InvokeFunctionCode(Register function, Register new_target,
555                           const ParameterCount& expected,
556                           const ParameterCount& actual, InvokeFlag flag,
557                           const CallWrapper& call_wrapper);
558 
559   void FloodFunctionIfStepping(Register fun, Register new_target,
560                                const ParameterCount& expected,
561                                const ParameterCount& actual);
562 
563   // Invoke the JavaScript function in the given register. Changes the
564   // current context to the context in the function before invoking.
565   void InvokeFunction(Register function, Register new_target,
566                       const ParameterCount& actual, InvokeFlag flag,
567                       const CallWrapper& call_wrapper);
568 
569   void InvokeFunction(Register function, const ParameterCount& expected,
570                       const ParameterCount& actual, InvokeFlag flag,
571                       const CallWrapper& call_wrapper);
572 
573   void InvokeFunction(Handle<JSFunction> function,
574                       const ParameterCount& expected,
575                       const ParameterCount& actual, InvokeFlag flag,
576                       const CallWrapper& call_wrapper);
577 
578   void IsObjectJSStringType(Register object, Register scratch, Label* fail);
579 
580   void IsObjectNameType(Register object, Register scratch, Label* fail);
581 
582   // ---------------------------------------------------------------------------
583   // Debugger Support
584 
585   void DebugBreak();
586 
587   // ---------------------------------------------------------------------------
588   // Exception handling
589 
590   // Push a new stack handler and link into stack handler chain.
591   void PushStackHandler();
592 
593   // Unlink the stack handler on top of the stack from the stack handler chain.
594   // Must preserve the result register.
595   void PopStackHandler();
596 
597   // ---------------------------------------------------------------------------
598   // Inline caching support
599 
600   // Generate code for checking access rights - used for security checks
601   // on access to global objects across environments. The holder register
602   // is left untouched, whereas both scratch registers are clobbered.
603   void CheckAccessGlobalProxy(Register holder_reg, Register scratch,
604                               Label* miss);
605 
606   void GetNumberHash(Register t0, Register scratch);
607 
608   void LoadFromNumberDictionary(Label* miss, Register elements, Register key,
609                                 Register result, Register t0, Register t1,
610                                 Register t2);
611 
612 
MarkCode(NopMarkerTypes type)613   inline void MarkCode(NopMarkerTypes type) { nop(type); }
614 
615   // Check if the given instruction is a 'type' marker.
616   // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
617   // These instructions are generated to mark special location in the code,
618   // like some special IC code.
IsMarkedCode(Instr instr,int type)619   static inline bool IsMarkedCode(Instr instr, int type) {
620     DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
621     return IsNop(instr, type);
622   }
623 
624 
GetCodeMarker(Instr instr)625   static inline int GetCodeMarker(Instr instr) {
626     int dst_reg_offset = 12;
627     int dst_mask = 0xf << dst_reg_offset;
628     int src_mask = 0xf;
629     int dst_reg = (instr & dst_mask) >> dst_reg_offset;
630     int src_reg = instr & src_mask;
631     uint32_t non_register_mask = ~(dst_mask | src_mask);
632     uint32_t mov_mask = al | 13 << 21;
633 
634     // Return <n> if we have a mov rn rn, else return -1.
635     int type = ((instr & non_register_mask) == mov_mask) &&
636                        (dst_reg == src_reg) && (FIRST_IC_MARKER <= dst_reg) &&
637                        (dst_reg < LAST_CODE_MARKER)
638                    ? src_reg
639                    : -1;
640     DCHECK((type == -1) ||
641            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
642     return type;
643   }
644 
645 
646   // ---------------------------------------------------------------------------
647   // Allocation support
648 
649   // Allocate an object in new space or old space. The object_size is
650   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
651   // is passed. If the space is exhausted control continues at the gc_required
652   // label. The allocated object is returned in result. If the flag
653   // tag_allocated_object is true the result is tagged as as a heap object.
654   // All registers are clobbered also when control continues at the gc_required
655   // label.
656   void Allocate(int object_size, Register result, Register scratch1,
657                 Register scratch2, Label* gc_required, AllocationFlags flags);
658 
659   void Allocate(Register object_size, Register result, Register result_end,
660                 Register scratch, Label* gc_required, AllocationFlags flags);
661 
662   void AllocateTwoByteString(Register result, Register length,
663                              Register scratch1, Register scratch2,
664                              Register scratch3, Label* gc_required);
665   void AllocateOneByteString(Register result, Register length,
666                              Register scratch1, Register scratch2,
667                              Register scratch3, Label* gc_required);
668   void AllocateTwoByteConsString(Register result, Register length,
669                                  Register scratch1, Register scratch2,
670                                  Label* gc_required);
671   void AllocateOneByteConsString(Register result, Register length,
672                                  Register scratch1, Register scratch2,
673                                  Label* gc_required);
674   void AllocateTwoByteSlicedString(Register result, Register length,
675                                    Register scratch1, Register scratch2,
676                                    Label* gc_required);
677   void AllocateOneByteSlicedString(Register result, Register length,
678                                    Register scratch1, Register scratch2,
679                                    Label* gc_required);
680 
681   // Allocates a heap number or jumps to the gc_required label if the young
682   // space is full and a scavenge is needed. All registers are clobbered also
683   // when control continues at the gc_required label.
684   void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
685                           Register heap_number_map, Label* gc_required,
686                           TaggingMode tagging_mode = TAG_RESULT,
687                           MutableMode mode = IMMUTABLE);
688   void AllocateHeapNumberWithValue(Register result, DoubleRegister value,
689                                    Register scratch1, Register scratch2,
690                                    Register heap_number_map,
691                                    Label* gc_required);
692 
693   // Allocate and initialize a JSValue wrapper with the specified {constructor}
694   // and {value}.
695   void AllocateJSValue(Register result, Register constructor, Register value,
696                        Register scratch1, Register scratch2,
697                        Label* gc_required);
698 
699   // Copies a number of bytes from src to dst. All registers are clobbered. On
700   // exit src and dst will point to the place just after where the last byte was
701   // read or written and length will be zero.
702   void CopyBytes(Register src, Register dst, Register length, Register scratch);
703 
704   // Initialize fields with filler values.  |count| fields starting at
705   // |current_address| are overwritten with the value in |filler|.  At the end
706   // the loop, |current_address| points at the next uninitialized field.
707   // |count| is assumed to be non-zero.
708   void InitializeNFieldsWithFiller(Register current_address, Register count,
709                                    Register filler);
710 
711   // Initialize fields with filler values.  Fields starting at |current_address|
712   // not including |end_address| are overwritten with the value in |filler|.  At
713   // the end the loop, |current_address| takes the value of |end_address|.
714   void InitializeFieldsWithFiller(Register current_address,
715                                   Register end_address, Register filler);
716 
717   // ---------------------------------------------------------------------------
718   // Support functions.
719 
720   // Machine code version of Map::GetConstructor().
721   // |temp| holds |result|'s map when done, and |temp2| its instance type.
722   void GetMapConstructor(Register result, Register map, Register temp,
723                          Register temp2);
724 
725   // Try to get function prototype of a function and puts the value in
726   // the result register. Checks that the function really is a
727   // function and jumps to the miss label if the fast checks fail. The
728   // function register will be untouched; the other registers may be
729   // clobbered.
730   void TryGetFunctionPrototype(Register function, Register result,
731                                Register scratch, Label* miss);
732 
733   // Compare object type for heap object.  heap_object contains a non-Smi
734   // whose object type should be compared with the given type.  This both
735   // sets the flags and leaves the object type in the type_reg register.
736   // It leaves the map in the map register (unless the type_reg and map register
737   // are the same register).  It leaves the heap object in the heap_object
738   // register unless the heap_object register is the same register as one of the
739   // other registers.
740   // Type_reg can be no_reg. In that case ip is used.
741   void CompareObjectType(Register heap_object, Register map, Register type_reg,
742                          InstanceType type);
743 
744   // Compare instance type in a map.  map contains a valid map object whose
745   // object type should be compared with the given type.  This both
746   // sets the flags and leaves the object type in the type_reg register.
747   void CompareInstanceType(Register map, Register type_reg, InstanceType type);
748 
749 
750   // Check if a map for a JSObject indicates that the object has fast elements.
751   // Jump to the specified label if it does not.
752   void CheckFastElements(Register map, Register scratch, Label* fail);
753 
754   // Check if a map for a JSObject indicates that the object can have both smi
755   // and HeapObject elements.  Jump to the specified label if it does not.
756   void CheckFastObjectElements(Register map, Register scratch, Label* fail);
757 
758   // Check if a map for a JSObject indicates that the object has fast smi only
759   // elements.  Jump to the specified label if it does not.
760   void CheckFastSmiElements(Register map, Register scratch, Label* fail);
761 
762   // Check to see if maybe_number can be stored as a double in
763   // FastDoubleElements. If it can, store it at the index specified by key in
764   // the FastDoubleElements array elements. Otherwise jump to fail.
765   void StoreNumberToDoubleElements(Register value_reg, Register key_reg,
766                                    Register elements_reg, Register scratch1,
767                                    DoubleRegister double_scratch, Label* fail,
768                                    int elements_offset = 0);
769 
770   // Compare an object's map with the specified map and its transitioned
771   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
772   // set with result of map compare. If multiple map compares are required, the
773   // compare sequences branches to early_success.
774   void CompareMap(Register obj, Register scratch, Handle<Map> map,
775                   Label* early_success);
776 
777   // As above, but the map of the object is already loaded into the register
778   // which is preserved by the code generated.
779   void CompareMap(Register obj_map, Handle<Map> map, Label* early_success);
780 
781   // Check if the map of an object is equal to a specified map and branch to
782   // label if not. Skip the smi check if not required (object is known to be a
783   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
784   // against maps that are ElementsKind transition maps of the specified map.
785   void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail,
786                 SmiCheckType smi_check_type);
787 
788 
789   void CheckMap(Register obj, Register scratch, Heap::RootListIndex index,
790                 Label* fail, SmiCheckType smi_check_type);
791 
792 
793   // Check if the map of an object is equal to a specified weak map and branch
794   // to a specified target if equal. Skip the smi check if not required
795   // (object is known to be a heap object)
796   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
797                        Handle<WeakCell> cell, Handle<Code> success,
798                        SmiCheckType smi_check_type);
799 
800   // Compare the given value and the value of weak cell.
801   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch,
802                     CRegister cr = cr7);
803 
804   void GetWeakValue(Register value, Handle<WeakCell> cell);
805 
806   // Load the value of the weak cell in the value register. Branch to the given
807   // miss label if the weak cell was cleared.
808   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
809 
810   // Compare the object in a register to a value from the root list.
811   // Uses the ip register as scratch.
812   void CompareRoot(Register obj, Heap::RootListIndex index);
PushRoot(Heap::RootListIndex index)813   void PushRoot(Heap::RootListIndex index) {
814     LoadRoot(r0, index);
815     Push(r0);
816   }
817 
818   // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,Heap::RootListIndex index,Label * if_equal)819   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
820     CompareRoot(with, index);
821     beq(if_equal);
822   }
823 
824   // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,Heap::RootListIndex index,Label * if_not_equal)825   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
826                      Label* if_not_equal) {
827     CompareRoot(with, index);
828     bne(if_not_equal);
829   }
830 
831   // Load and check the instance type of an object for being a string.
832   // Loads the type into the second argument register.
833   // Returns a condition that will be enabled if the object was a string.
IsObjectStringType(Register obj,Register type)834   Condition IsObjectStringType(Register obj, Register type) {
835     LoadP(type, FieldMemOperand(obj, HeapObject::kMapOffset));
836     lbz(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
837     andi(r0, type, Operand(kIsNotStringMask));
838     DCHECK_EQ(0u, kStringTag);
839     return eq;
840   }
841 
842 
843   // Picks out an array index from the hash field.
844   // Register use:
845   //   hash - holds the index's hash. Clobbered.
846   //   index - holds the overwritten index on exit.
847   void IndexFromHash(Register hash, Register index);
848 
849   // Get the number of least significant bits from a register
850   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
851   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
852 
853   // Load the value of a smi object into a double register.
854   void SmiToDouble(DoubleRegister value, Register smi);
855 
856   // Check if a double can be exactly represented as a signed 32-bit integer.
857   // CR_EQ in cr7 is set if true.
858   void TestDoubleIsInt32(DoubleRegister double_input, Register scratch1,
859                          Register scratch2, DoubleRegister double_scratch);
860 
861   // Try to convert a double to a signed 32-bit integer.
862   // CR_EQ in cr7 is set and result assigned if the conversion is exact.
863   void TryDoubleToInt32Exact(Register result, DoubleRegister double_input,
864                              Register scratch, DoubleRegister double_scratch);
865 
866   // Floor a double and writes the value to the result register.
867   // Go to exact if the conversion is exact (to be able to test -0),
868   // fall through calling code if an overflow occurred, else go to done.
869   // In return, input_high is loaded with high bits of input.
870   void TryInt32Floor(Register result, DoubleRegister double_input,
871                      Register input_high, Register scratch,
872                      DoubleRegister double_scratch, Label* done, Label* exact);
873 
874   // Performs a truncating conversion of a floating point number as used by
875   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
876   // succeeds, otherwise falls through if result is saturated. On return
877   // 'result' either holds answer, or is clobbered on fall through.
878   //
879   // Only public for the test code in test-code-stubs-arm.cc.
880   void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
881                                   Label* done);
882 
883   // Performs a truncating conversion of a floating point number as used by
884   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
885   // Exits with 'result' holding the answer.
886   void TruncateDoubleToI(Register result, DoubleRegister double_input);
887 
888   // Performs a truncating conversion of a heap number as used by
889   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
890   // must be different registers.  Exits with 'result' holding the answer.
891   void TruncateHeapNumberToI(Register result, Register object);
892 
893   // Converts the smi or heap number in object to an int32 using the rules
894   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
895   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
896   // different registers.
897   void TruncateNumberToI(Register object, Register result,
898                          Register heap_number_map, Register scratch1,
899                          Label* not_int32);
900 
901   // Overflow handling functions.
902   // Usage: call the appropriate arithmetic function and then call one of the
903   // flow control functions with the corresponding label.
904 
905   // Compute dst = left + right, setting condition codes. dst may be same as
906   // either left or right (or a unique register). left and right must not be
907   // the same register.
908   void AddAndCheckForOverflow(Register dst, Register left, Register right,
909                               Register overflow_dst, Register scratch = r0);
910   void AddAndCheckForOverflow(Register dst, Register left, intptr_t right,
911                               Register overflow_dst, Register scratch = r0);
912 
913   // Compute dst = left - right, setting condition codes. dst may be same as
914   // either left or right (or a unique register). left and right must not be
915   // the same register.
916   void SubAndCheckForOverflow(Register dst, Register left, Register right,
917                               Register overflow_dst, Register scratch = r0);
918 
BranchOnOverflow(Label * label)919   void BranchOnOverflow(Label* label) { blt(label, cr0); }
920 
BranchOnNoOverflow(Label * label)921   void BranchOnNoOverflow(Label* label) { bge(label, cr0); }
922 
RetOnOverflow(void)923   void RetOnOverflow(void) { Ret(lt, cr0); }
924 
RetOnNoOverflow(void)925   void RetOnNoOverflow(void) { Ret(ge, cr0); }
926 
927   // ---------------------------------------------------------------------------
928   // Runtime calls
929 
930   // Call a code stub.
931   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None(),
932                 Condition cond = al);
933 
934   // Call a code stub.
935   void TailCallStub(CodeStub* stub, Condition cond = al);
936 
937   // Call a runtime routine.
938   void CallRuntime(const Runtime::Function* f, int num_arguments,
939                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)940   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
941     const Runtime::Function* function = Runtime::FunctionForId(fid);
942     CallRuntime(function, function->nargs, kSaveFPRegs);
943   }
944 
945   // Convenience function: Same as above, but takes the fid instead.
946   void CallRuntime(Runtime::FunctionId fid,
947                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
948     const Runtime::Function* function = Runtime::FunctionForId(fid);
949     CallRuntime(function, function->nargs, save_doubles);
950   }
951 
952   // Convenience function: Same as above, but takes the fid instead.
953   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
954                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
955     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
956   }
957 
958   // Convenience function: call an external reference.
959   void CallExternalReference(const ExternalReference& ext, int num_arguments);
960 
961   // Convenience function: tail call a runtime routine (jump).
962   void TailCallRuntime(Runtime::FunctionId fid);
963 
964   int CalculateStackPassedWords(int num_reg_arguments,
965                                 int num_double_arguments);
966 
967   // Before calling a C-function from generated code, align arguments on stack.
968   // After aligning the frame, non-register arguments must be stored in
969   // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
970   // are word sized. If double arguments are used, this function assumes that
971   // all double arguments are stored before core registers; otherwise the
972   // correct alignment of the double values is not guaranteed.
973   // Some compilers/platforms require the stack to be aligned when calling
974   // C++ code.
975   // Needs a scratch register to do some arithmetic. This register will be
976   // trashed.
977   void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
978                             Register scratch);
979   void PrepareCallCFunction(int num_reg_arguments, Register scratch);
980 
981   // There are two ways of passing double arguments on ARM, depending on
982   // whether soft or hard floating point ABI is used. These functions
983   // abstract parameter passing for the three different ways we call
984   // C functions from generated code.
985   void MovToFloatParameter(DoubleRegister src);
986   void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
987   void MovToFloatResult(DoubleRegister src);
988 
989   // Calls a C function and cleans up the space for arguments allocated
990   // by PrepareCallCFunction. The called function is not allowed to trigger a
991   // garbage collection, since that might move the code and invalidate the
992   // return address (unless this is somehow accounted for by the called
993   // function).
994   void CallCFunction(ExternalReference function, int num_arguments);
995   void CallCFunction(Register function, int num_arguments);
996   void CallCFunction(ExternalReference function, int num_reg_arguments,
997                      int num_double_arguments);
998   void CallCFunction(Register function, int num_reg_arguments,
999                      int num_double_arguments);
1000 
1001   void MovFromFloatParameter(DoubleRegister dst);
1002   void MovFromFloatResult(DoubleRegister dst);
1003 
1004   // Jump to a runtime routine.
1005   void JumpToExternalReference(const ExternalReference& builtin);
1006 
1007   // Invoke specified builtin JavaScript function.
1008   void InvokeBuiltin(int native_context_index, InvokeFlag flag,
1009                      const CallWrapper& call_wrapper = NullCallWrapper());
1010 
CodeObject()1011   Handle<Object> CodeObject() {
1012     DCHECK(!code_object_.is_null());
1013     return code_object_;
1014   }
1015 
1016 
1017   // Emit code for a truncating division by a constant. The dividend register is
1018   // unchanged and ip gets clobbered. Dividend and result must be different.
1019   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1020 
1021   // ---------------------------------------------------------------------------
1022   // StatsCounter support
1023 
1024   void SetCounter(StatsCounter* counter, int value, Register scratch1,
1025                   Register scratch2);
1026   void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
1027                         Register scratch2);
1028   void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
1029                         Register scratch2);
1030 
1031 
1032   // ---------------------------------------------------------------------------
1033   // Debugging
1034 
1035   // Calls Abort(msg) if the condition cond is not satisfied.
1036   // Use --debug_code to enable.
1037   void Assert(Condition cond, BailoutReason reason, CRegister cr = cr7);
1038   void AssertFastElements(Register elements);
1039 
1040   // Like Assert(), but always enabled.
1041   void Check(Condition cond, BailoutReason reason, CRegister cr = cr7);
1042 
1043   // Print a message to stdout and abort execution.
1044   void Abort(BailoutReason reason);
1045 
1046   // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)1047   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1048   bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)1049   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1050   bool has_frame() { return has_frame_; }
1051   inline bool AllowThisStubCall(CodeStub* stub);
1052 
1053   // ---------------------------------------------------------------------------
1054   // Number utilities
1055 
1056   // Check whether the value of reg is a power of two and not zero. If not
1057   // control continues at the label not_power_of_two. If reg is a power of two
1058   // the register scratch contains the value of (reg - 1) when control falls
1059   // through.
1060   void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch,
1061                                  Label* not_power_of_two_or_zero);
1062   // Check whether the value of reg is a power of two and not zero.
1063   // Control falls through if it is, with scratch containing the mask
1064   // value (reg - 1).
1065   // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
1066   // zero or negative, or jumps to the 'not_power_of_two' label if the value is
1067   // strictly positive but not a power of two.
1068   void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch,
1069                                        Label* zero_and_neg,
1070                                        Label* not_power_of_two);
1071 
1072   // ---------------------------------------------------------------------------
1073   // Bit testing/extraction
1074   //
1075   // Bit numbering is such that the least significant bit is bit 0
1076   // (for consistency between 32/64-bit).
1077 
1078   // Extract consecutive bits (defined by rangeStart - rangeEnd) from src
1079   // and place them into the least significant bits of dst.
1080   inline void ExtractBitRange(Register dst, Register src, int rangeStart,
1081                               int rangeEnd, RCBit rc = LeaveRC) {
1082     DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer);
1083     int rotate = (rangeEnd == 0) ? 0 : kBitsPerPointer - rangeEnd;
1084     int width = rangeStart - rangeEnd + 1;
1085     if (rc == SetRC && rangeEnd == 0 && width <= 16) {
1086       andi(dst, src, Operand((1 << width) - 1));
1087     } else {
1088 #if V8_TARGET_ARCH_PPC64
1089       rldicl(dst, src, rotate, kBitsPerPointer - width, rc);
1090 #else
1091       rlwinm(dst, src, rotate, kBitsPerPointer - width, kBitsPerPointer - 1,
1092              rc);
1093 #endif
1094     }
1095   }
1096 
1097   inline void ExtractBit(Register dst, Register src, uint32_t bitNumber,
1098                          RCBit rc = LeaveRC) {
1099     ExtractBitRange(dst, src, bitNumber, bitNumber, rc);
1100   }
1101 
1102   // Extract consecutive bits (defined by mask) from src and place them
1103   // into the least significant bits of dst.
1104   inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
1105                              RCBit rc = LeaveRC) {
1106     int start = kBitsPerPointer - 1;
1107     int end;
1108     uintptr_t bit = (1L << start);
1109 
1110     while (bit && (mask & bit) == 0) {
1111       start--;
1112       bit >>= 1;
1113     }
1114     end = start;
1115     bit >>= 1;
1116 
1117     while (bit && (mask & bit)) {
1118       end--;
1119       bit >>= 1;
1120     }
1121 
1122     // 1-bits in mask must be contiguous
1123     DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);
1124 
1125     ExtractBitRange(dst, src, start, end, rc);
1126   }
1127 
1128   // Test single bit in value.
1129   inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
1130     ExtractBitRange(scratch, value, bitNumber, bitNumber, SetRC);
1131   }
1132 
1133   // Test consecutive bit range in value.  Range is defined by
1134   // rangeStart - rangeEnd.
1135   inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
1136                            Register scratch = r0) {
1137     ExtractBitRange(scratch, value, rangeStart, rangeEnd, SetRC);
1138   }
1139 
1140   // Test consecutive bit range in value.  Range is defined by mask.
1141   inline void TestBitMask(Register value, uintptr_t mask,
1142                           Register scratch = r0) {
1143     ExtractBitMask(scratch, value, mask, SetRC);
1144   }
1145 
1146 
1147   // ---------------------------------------------------------------------------
1148   // Smi utilities
1149 
1150   // Shift left by kSmiShift
1151   void SmiTag(Register reg, RCBit rc = LeaveRC) { SmiTag(reg, reg, rc); }
1152   void SmiTag(Register dst, Register src, RCBit rc = LeaveRC) {
1153     ShiftLeftImm(dst, src, Operand(kSmiShift), rc);
1154   }
1155 
1156 #if !V8_TARGET_ARCH_PPC64
1157   // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1158   void SmiTagCheckOverflow(Register reg, Register overflow);
1159   void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1160 
JumpIfNotSmiCandidate(Register value,Register scratch,Label * not_smi_label)1161   inline void JumpIfNotSmiCandidate(Register value, Register scratch,
1162                                     Label* not_smi_label) {
1163     // High bits must be identical to fit into an Smi
1164     STATIC_ASSERT(kSmiShift == 1);
1165     addis(scratch, value, Operand(0x40000000u >> 16));
1166     cmpi(scratch, Operand::Zero());
1167     blt(not_smi_label);
1168   }
1169 #endif
TestUnsignedSmiCandidate(Register value,Register scratch)1170   inline void TestUnsignedSmiCandidate(Register value, Register scratch) {
1171     // The test is different for unsigned int values. Since we need
1172     // the value to be in the range of a positive smi, we can't
1173     // handle any of the high bits being set in the value.
1174     TestBitRange(value, kBitsPerPointer - 1, kBitsPerPointer - 1 - kSmiShift,
1175                  scratch);
1176   }
JumpIfNotUnsignedSmiCandidate(Register value,Register scratch,Label * not_smi_label)1177   inline void JumpIfNotUnsignedSmiCandidate(Register value, Register scratch,
1178                                             Label* not_smi_label) {
1179     TestUnsignedSmiCandidate(value, scratch);
1180     bne(not_smi_label, cr0);
1181   }
1182 
1183   void SmiUntag(Register reg, RCBit rc = LeaveRC) { SmiUntag(reg, reg, rc); }
1184 
1185   void SmiUntag(Register dst, Register src, RCBit rc = LeaveRC) {
1186     ShiftRightArithImm(dst, src, kSmiShift, rc);
1187   }
1188 
SmiToPtrArrayOffset(Register dst,Register src)1189   void SmiToPtrArrayOffset(Register dst, Register src) {
1190 #if V8_TARGET_ARCH_PPC64
1191     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2);
1192     ShiftRightArithImm(dst, src, kSmiShift - kPointerSizeLog2);
1193 #else
1194     STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2);
1195     ShiftLeftImm(dst, src, Operand(kPointerSizeLog2 - kSmiShift));
1196 #endif
1197   }
1198 
SmiToByteArrayOffset(Register dst,Register src)1199   void SmiToByteArrayOffset(Register dst, Register src) { SmiUntag(dst, src); }
1200 
SmiToShortArrayOffset(Register dst,Register src)1201   void SmiToShortArrayOffset(Register dst, Register src) {
1202 #if V8_TARGET_ARCH_PPC64
1203     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 1);
1204     ShiftRightArithImm(dst, src, kSmiShift - 1);
1205 #else
1206     STATIC_ASSERT(kSmiTag == 0 && kSmiShift == 1);
1207     if (!dst.is(src)) {
1208       mr(dst, src);
1209     }
1210 #endif
1211   }
1212 
SmiToIntArrayOffset(Register dst,Register src)1213   void SmiToIntArrayOffset(Register dst, Register src) {
1214 #if V8_TARGET_ARCH_PPC64
1215     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 2);
1216     ShiftRightArithImm(dst, src, kSmiShift - 2);
1217 #else
1218     STATIC_ASSERT(kSmiTag == 0 && kSmiShift < 2);
1219     ShiftLeftImm(dst, src, Operand(2 - kSmiShift));
1220 #endif
1221   }
1222 
1223 #define SmiToFloatArrayOffset SmiToIntArrayOffset
1224 
SmiToDoubleArrayOffset(Register dst,Register src)1225   void SmiToDoubleArrayOffset(Register dst, Register src) {
1226 #if V8_TARGET_ARCH_PPC64
1227     STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kDoubleSizeLog2);
1228     ShiftRightArithImm(dst, src, kSmiShift - kDoubleSizeLog2);
1229 #else
1230     STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kDoubleSizeLog2);
1231     ShiftLeftImm(dst, src, Operand(kDoubleSizeLog2 - kSmiShift));
1232 #endif
1233   }
1234 
SmiToArrayOffset(Register dst,Register src,int elementSizeLog2)1235   void SmiToArrayOffset(Register dst, Register src, int elementSizeLog2) {
1236     if (kSmiShift < elementSizeLog2) {
1237       ShiftLeftImm(dst, src, Operand(elementSizeLog2 - kSmiShift));
1238     } else if (kSmiShift > elementSizeLog2) {
1239       ShiftRightArithImm(dst, src, kSmiShift - elementSizeLog2);
1240     } else if (!dst.is(src)) {
1241       mr(dst, src);
1242     }
1243   }
1244 
IndexToArrayOffset(Register dst,Register src,int elementSizeLog2,bool isSmi)1245   void IndexToArrayOffset(Register dst, Register src, int elementSizeLog2,
1246                           bool isSmi) {
1247     if (isSmi) {
1248       SmiToArrayOffset(dst, src, elementSizeLog2);
1249     } else {
1250       ShiftLeftImm(dst, src, Operand(elementSizeLog2));
1251     }
1252   }
1253 
1254   // Untag the source value into destination and jump if source is a smi.
1255   // Souce and destination can be the same register.
1256   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1257 
1258   // Untag the source value into destination and jump if source is not a smi.
1259   // Souce and destination can be the same register.
1260   void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1261 
TestIfSmi(Register value,Register scratch)1262   inline void TestIfSmi(Register value, Register scratch) {
1263     TestBitRange(value, kSmiTagSize - 1, 0, scratch);
1264   }
1265 
TestIfPositiveSmi(Register value,Register scratch)1266   inline void TestIfPositiveSmi(Register value, Register scratch) {
1267 #if V8_TARGET_ARCH_PPC64
1268     rldicl(scratch, value, 1, kBitsPerPointer - (1 + kSmiTagSize), SetRC);
1269 #else
1270     rlwinm(scratch, value, 1, kBitsPerPointer - (1 + kSmiTagSize),
1271            kBitsPerPointer - 1, SetRC);
1272 #endif
1273   }
1274 
1275   // Jump the register contains a smi.
JumpIfSmi(Register value,Label * smi_label)1276   inline void JumpIfSmi(Register value, Label* smi_label) {
1277     TestIfSmi(value, r0);
1278     beq(smi_label, cr0);  // branch if SMI
1279   }
1280   // Jump if either of the registers contain a non-smi.
JumpIfNotSmi(Register value,Label * not_smi_label)1281   inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
1282     TestIfSmi(value, r0);
1283     bne(not_smi_label, cr0);
1284   }
1285   // Jump if either of the registers contain a non-smi.
1286   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1287   // Jump if either of the registers contain a smi.
1288   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1289 
1290   // Abort execution if argument is a smi, enabled via --debug-code.
1291   void AssertNotSmi(Register object);
1292   void AssertSmi(Register object);
1293 
1294 
1295 #if V8_TARGET_ARCH_PPC64
1296   inline void TestIfInt32(Register value, Register scratch,
1297                           CRegister cr = cr7) {
1298     // High bits must be identical to fit into an 32-bit integer
1299     extsw(scratch, value);
1300     cmp(scratch, value, cr);
1301   }
1302 #else
1303   inline void TestIfInt32(Register hi_word, Register lo_word, Register scratch,
1304                           CRegister cr = cr7) {
1305     // High bits must be identical to fit into an 32-bit integer
1306     srawi(scratch, lo_word, 31);
1307     cmp(scratch, hi_word, cr);
1308   }
1309 #endif
1310 
1311 #if V8_TARGET_ARCH_PPC64
1312   // Ensure it is permissable to read/write int value directly from
1313   // upper half of the smi.
1314   STATIC_ASSERT(kSmiTag == 0);
1315   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
1316 #endif
1317 #if V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN
1318 #define SmiWordOffset(offset) (offset + kPointerSize / 2)
1319 #else
1320 #define SmiWordOffset(offset) offset
1321 #endif
1322 
1323   // Abort execution if argument is not a string, enabled via --debug-code.
1324   void AssertString(Register object);
1325 
1326   // Abort execution if argument is not a name, enabled via --debug-code.
1327   void AssertName(Register object);
1328 
1329   void AssertFunction(Register object);
1330 
1331   // Abort execution if argument is not a JSBoundFunction,
1332   // enabled via --debug-code.
1333   void AssertBoundFunction(Register object);
1334 
1335   // Abort execution if argument is not undefined or an AllocationSite, enabled
1336   // via --debug-code.
1337   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1338 
1339   // Abort execution if reg is not the root value with the given index,
1340   // enabled via --debug-code.
1341   void AssertIsRoot(Register reg, Heap::RootListIndex index);
1342 
1343   // ---------------------------------------------------------------------------
1344   // HeapNumber utilities
1345 
1346   void JumpIfNotHeapNumber(Register object, Register heap_number_map,
1347                            Register scratch, Label* on_not_heap_number);
1348 
1349   // ---------------------------------------------------------------------------
1350   // String utilities
1351 
1352   // Checks if both objects are sequential one-byte strings and jumps to label
1353   // if either is not. Assumes that neither object is a smi.
1354   void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
1355                                                     Register object2,
1356                                                     Register scratch1,
1357                                                     Register scratch2,
1358                                                     Label* failure);
1359 
1360   // Checks if both objects are sequential one-byte strings and jumps to label
1361   // if either is not.
1362   void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1363                                              Register scratch1,
1364                                              Register scratch2,
1365                                              Label* not_flat_one_byte_strings);
1366 
1367   // Checks if both instance types are sequential one-byte strings and jumps to
1368   // label if either is not.
1369   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1370       Register first_object_instance_type, Register second_object_instance_type,
1371       Register scratch1, Register scratch2, Label* failure);
1372 
1373   // Check if instance type is sequential one-byte string and jump to label if
1374   // it is not.
1375   void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1376                                                 Label* failure);
1377 
1378   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1379 
1380   void EmitSeqStringSetCharCheck(Register string, Register index,
1381                                  Register value, uint32_t encoding_mask);
1382 
1383   // ---------------------------------------------------------------------------
1384   // Patching helpers.
1385 
1386   // Decode offset from constant pool load instruction(s).
1387   // Caller must place the instruction word at <location> in <result>.
1388   void DecodeConstantPoolOffset(Register result, Register location);
1389 
1390   void ClampUint8(Register output_reg, Register input_reg);
1391 
1392   // Saturate a value into 8-bit unsigned integer
1393   //   if input_value < 0, output_value is 0
1394   //   if input_value > 255, output_value is 255
1395   //   otherwise output_value is the (int)input_value (round to nearest)
1396   void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg,
1397                           DoubleRegister temp_double_reg);
1398 
1399 
1400   void LoadInstanceDescriptors(Register map, Register descriptors);
1401   void EnumLength(Register dst, Register map);
1402   void NumberOfOwnDescriptors(Register dst, Register map);
1403   void LoadAccessor(Register dst, Register holder, int accessor_index,
1404                     AccessorComponent accessor);
1405 
1406   template <typename Field>
1407   void DecodeField(Register dst, Register src, RCBit rc = LeaveRC) {
1408     ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift,
1409                     rc);
1410   }
1411 
1412   template <typename Field>
1413   void DecodeField(Register reg, RCBit rc = LeaveRC) {
1414     DecodeField<Field>(reg, reg, rc);
1415   }
1416 
1417   template <typename Field>
DecodeFieldToSmi(Register dst,Register src)1418   void DecodeFieldToSmi(Register dst, Register src) {
1419 #if V8_TARGET_ARCH_PPC64
1420     DecodeField<Field>(dst, src);
1421     SmiTag(dst);
1422 #else
1423     // 32-bit can do this in one instruction:
1424     int start = Field::kSize + kSmiShift - 1;
1425     int end = kSmiShift;
1426     int rotate = kSmiShift - Field::kShift;
1427     if (rotate < 0) {
1428       rotate += kBitsPerPointer;
1429     }
1430     rlwinm(dst, src, rotate, kBitsPerPointer - start - 1,
1431            kBitsPerPointer - end - 1);
1432 #endif
1433   }
1434 
1435   template <typename Field>
DecodeFieldToSmi(Register reg)1436   void DecodeFieldToSmi(Register reg) {
1437     DecodeFieldToSmi<Field>(reg, reg);
1438   }
1439 
1440   // Load the type feedback vector from a JavaScript frame.
1441   void EmitLoadTypeFeedbackVector(Register vector);
1442 
1443   // Activation support.
1444   void EnterFrame(StackFrame::Type type,
1445                   bool load_constant_pool_pointer_reg = false);
1446   // Returns the pc offset at which the frame ends.
1447   int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);
1448 
1449   // Expects object in r0 and returns map with validated enum cache
1450   // in r0.  Assumes that any other register can be used as a scratch.
1451   void CheckEnumCache(Register null_value, Label* call_runtime);
1452 
1453   // AllocationMemento support. Arrays may have an associated
1454   // AllocationMemento object that can be checked for in order to pretransition
1455   // to another type.
1456   // On entry, receiver_reg should point to the array object.
1457   // scratch_reg gets clobbered.
1458   // If allocation info is present, condition flags are set to eq.
1459   void TestJSArrayForAllocationMemento(Register receiver_reg,
1460                                        Register scratch_reg,
1461                                        Label* no_memento_found);
1462 
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)1463   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1464                                          Register scratch_reg,
1465                                          Label* memento_found) {
1466     Label no_memento_found;
1467     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1468                                     &no_memento_found);
1469     beq(memento_found);
1470     bind(&no_memento_found);
1471   }
1472 
1473   // Jumps to found label if a prototype map has dictionary elements.
1474   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1475                                         Register scratch1, Label* found);
1476 
1477   // Loads the constant pool pointer (kConstantPoolRegister).
1478   void LoadConstantPoolPointerRegisterFromCodeTargetAddress(
1479       Register code_target_address);
1480   void LoadConstantPoolPointerRegister();
1481   void LoadConstantPoolPointerRegister(Register base, int code_entry_delta = 0);
1482 
AbortConstantPoolBuilding()1483   void AbortConstantPoolBuilding() {
1484 #ifdef DEBUG
1485     // Avoid DCHECK(!is_linked()) failure in ~Label()
1486     bind(ConstantPoolPosition());
1487 #endif
1488   }
1489 
1490  private:
1491   static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
1492 
1493   void CallCFunctionHelper(Register function, int num_reg_arguments,
1494                            int num_double_arguments);
1495 
1496   void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
1497             CRegister cr = cr7);
1498 
1499   // Helper functions for generating invokes.
1500   void InvokePrologue(const ParameterCount& expected,
1501                       const ParameterCount& actual, Label* done,
1502                       bool* definitely_mismatches, InvokeFlag flag,
1503                       const CallWrapper& call_wrapper);
1504 
1505   void InitializeNewString(Register string, Register length,
1506                            Heap::RootListIndex map_index, Register scratch1,
1507                            Register scratch2);
1508 
1509   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1510   void InNewSpace(Register object, Register scratch,
1511                   Condition cond,  // eq for new space, ne otherwise.
1512                   Label* branch);
1513 
1514   // Helper for finding the mark bits for an address.  Afterwards, the
1515   // bitmap register points at the word with the mark bits and the mask
1516   // the position of the first bit.  Leaves addr_reg unchanged.
1517   inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
1518                           Register mask_reg);
1519 
1520   static const RegList kSafepointSavedRegisters;
1521   static const int kNumSafepointSavedRegisters;
1522 
1523   // Compute memory operands for safepoint stack slots.
1524   static int SafepointRegisterStackIndex(int reg_code);
1525   MemOperand SafepointRegisterSlot(Register reg);
1526   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1527 
1528   bool generating_stub_;
1529   bool has_frame_;
1530   // This handle will be patched with the code object on installation.
1531   Handle<Object> code_object_;
1532 
1533   // Needs access to SafepointRegisterStackIndex for compiled frame
1534   // traversal.
1535   friend class StandardFrame;
1536 };
1537 
1538 
1539 // The code patcher is used to patch (typically) small parts of code e.g. for
1540 // debugging and other types of instrumentation. When using the code patcher
1541 // the exact number of bytes specified must be emitted. It is not legal to emit
1542 // relocation information. If any of these constraints are violated it causes
1543 // an assertion to fail.
1544 class CodePatcher {
1545  public:
1546   enum FlushICache { FLUSH, DONT_FLUSH };
1547 
1548   CodePatcher(Isolate* isolate, byte* address, int instructions,
1549               FlushICache flush_cache = FLUSH);
1550   ~CodePatcher();
1551 
1552   // Macro assembler to emit code.
masm()1553   MacroAssembler* masm() { return &masm_; }
1554 
1555   // Emit an instruction directly.
1556   void Emit(Instr instr);
1557 
1558   // Emit the condition part of an instruction leaving the rest of the current
1559   // instruction unchanged.
1560   void EmitCondition(Condition cond);
1561 
1562  private:
1563   byte* address_;            // The address of the code being patched.
1564   int size_;                 // Number of bytes of the expected patch size.
1565   MacroAssembler masm_;      // Macro assembler used to generate the code.
1566   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
1567 };
1568 
1569 
1570 // -----------------------------------------------------------------------------
1571 // Static helper functions.
1572 
1573 inline MemOperand ContextMemOperand(Register context, int index = 0) {
1574   return MemOperand(context, Context::SlotOffset(index));
1575 }
1576 
1577 
NativeContextMemOperand()1578 inline MemOperand NativeContextMemOperand() {
1579   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
1580 }
1581 
1582 
1583 #ifdef GENERATED_CODE_COVERAGE
1584 #define CODE_COVERAGE_STRINGIFY(x) #x
1585 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1586 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1587 #define ACCESS_MASM(masm)    \
1588   masm->stop(__FILE_LINE__); \
1589   masm->
1590 #else
1591 #define ACCESS_MASM(masm) masm->
1592 #endif
1593 }  // namespace internal
1594 }  // namespace v8
1595 
1596 #endif  // V8_PPC_MACRO_ASSEMBLER_PPC_H_
1597