1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2011 the V8 project authors. All rights reserved.
34 
35 // A light-weight IA32 Assembler.
36 
37 #ifndef V8_X87_ASSEMBLER_X87_H_
38 #define V8_X87_ASSEMBLER_X87_H_
39 
40 #include <deque>
41 
42 #include "src/assembler.h"
43 #include "src/isolate.h"
44 #include "src/utils.h"
45 
46 namespace v8 {
47 namespace internal {
48 
49 #define GENERAL_REGISTERS(V) \
50   V(eax)                     \
51   V(ecx)                     \
52   V(edx)                     \
53   V(ebx)                     \
54   V(esp)                     \
55   V(ebp)                     \
56   V(esi)                     \
57   V(edi)
58 
59 #define ALLOCATABLE_GENERAL_REGISTERS(V) \
60   V(eax)                                 \
61   V(ecx)                                 \
62   V(edx)                                 \
63   V(ebx)                                 \
64   V(esi)                                 \
65   V(edi)
66 
67 #define DOUBLE_REGISTERS(V) \
68   V(stX_0)                  \
69   V(stX_1)                  \
70   V(stX_2)                  \
71   V(stX_3)                  \
72   V(stX_4)                  \
73   V(stX_5)                  \
74   V(stX_6)                  \
75   V(stX_7)
76 
77 #define ALLOCATABLE_DOUBLE_REGISTERS(V) \
78   V(stX_0)                              \
79   V(stX_1)                              \
80   V(stX_2)                              \
81   V(stX_3)                              \
82   V(stX_4)                              \
83   V(stX_5)
84 
85 // CPU Registers.
86 //
87 // 1) We would prefer to use an enum, but enum values are assignment-
88 // compatible with int, which has caused code-generation bugs.
89 //
90 // 2) We would prefer to use a class instead of a struct but we don't like
91 // the register initialization to depend on the particular initialization
92 // order (which appears to be different on OS X, Linux, and Windows for the
93 // installed versions of C++ we tried). Using a struct permits C-style
94 // "initialization". Also, the Register objects cannot be const as this
95 // forces initialization stubs in MSVC, making us dependent on initialization
96 // order.
97 //
98 // 3) By not using an enum, we are possibly preventing the compiler from
99 // doing certain constant folds, which may significantly reduce the
100 // code generated for some assembly instructions (because they boil down
101 // to a few constants). If this is a problem, we could change the code
102 // such that we use an enum in optimized mode, and the struct in debug
103 // mode. This way we get the compile-time error checking in debug mode
104 // and best performance in optimized code.
105 //
106 struct Register {
107   enum Code {
108 #define REGISTER_CODE(R) kCode_##R,
109     GENERAL_REGISTERS(REGISTER_CODE)
110 #undef REGISTER_CODE
111         kAfterLast,
112     kCode_no_reg = -1
113   };
114 
115   static const int kNumRegisters = Code::kAfterLast;
116 
from_codeRegister117   static Register from_code(int code) {
118     DCHECK(code >= 0);
119     DCHECK(code < kNumRegisters);
120     Register r = {code};
121     return r;
122   }
123   const char* ToString();
124   bool IsAllocatable() const;
is_validRegister125   bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
isRegister126   bool is(Register reg) const { return reg_code == reg.reg_code; }
codeRegister127   int code() const {
128     DCHECK(is_valid());
129     return reg_code;
130   }
bitRegister131   int bit() const {
132     DCHECK(is_valid());
133     return 1 << reg_code;
134   }
135 
is_byte_registerRegister136   bool is_byte_register() const { return reg_code <= 3; }
137 
138   // Unfortunately we can't make this private in a struct.
139   int reg_code;
140 };
141 
142 
143 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
144 GENERAL_REGISTERS(DECLARE_REGISTER)
145 #undef DECLARE_REGISTER
146 const Register no_reg = {Register::kCode_no_reg};
147 
148 
149 struct DoubleRegister {
150   enum Code {
151 #define REGISTER_CODE(R) kCode_##R,
152     DOUBLE_REGISTERS(REGISTER_CODE)
153 #undef REGISTER_CODE
154         kAfterLast,
155     kCode_no_reg = -1
156   };
157 
158   static const int kMaxNumRegisters = Code::kAfterLast;
159   static const int kMaxNumAllocatableRegisters = 6;
160 
from_codeDoubleRegister161   static DoubleRegister from_code(int code) {
162     DoubleRegister result = {code};
163     return result;
164   }
165 
166   bool IsAllocatable() const;
is_validDoubleRegister167   bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
168 
codeDoubleRegister169   int code() const {
170     DCHECK(is_valid());
171     return reg_code;
172   }
173 
isDoubleRegister174   bool is(DoubleRegister reg) const { return reg_code == reg.reg_code; }
175 
176   const char* ToString();
177 
178   int reg_code;
179 };
180 
181 #define DECLARE_REGISTER(R) \
182   const DoubleRegister R = {DoubleRegister::kCode_##R};
183 DOUBLE_REGISTERS(DECLARE_REGISTER)
184 #undef DECLARE_REGISTER
185 const DoubleRegister no_double_reg = {DoubleRegister::kCode_no_reg};
186 
187 typedef DoubleRegister X87Register;
188 
189 enum Condition {
190   // any value < 0 is considered no_condition
191   no_condition  = -1,
192 
193   overflow      =  0,
194   no_overflow   =  1,
195   below         =  2,
196   above_equal   =  3,
197   equal         =  4,
198   not_equal     =  5,
199   below_equal   =  6,
200   above         =  7,
201   negative      =  8,
202   positive      =  9,
203   parity_even   = 10,
204   parity_odd    = 11,
205   less          = 12,
206   greater_equal = 13,
207   less_equal    = 14,
208   greater       = 15,
209 
210   // aliases
211   carry         = below,
212   not_carry     = above_equal,
213   zero          = equal,
214   not_zero      = not_equal,
215   sign          = negative,
216   not_sign      = positive
217 };
218 
219 
220 // Returns the equivalent of !cc.
221 // Negation of the default no_condition (-1) results in a non-default
222 // no_condition value (-2). As long as tests for no_condition check
223 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)224 inline Condition NegateCondition(Condition cc) {
225   return static_cast<Condition>(cc ^ 1);
226 }
227 
228 
229 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cc)230 inline Condition CommuteCondition(Condition cc) {
231   switch (cc) {
232     case below:
233       return above;
234     case above:
235       return below;
236     case above_equal:
237       return below_equal;
238     case below_equal:
239       return above_equal;
240     case less:
241       return greater;
242     case greater:
243       return less;
244     case greater_equal:
245       return less_equal;
246     case less_equal:
247       return greater_equal;
248     default:
249       return cc;
250   }
251 }
252 
253 
254 enum RoundingMode {
255   kRoundToNearest = 0x0,
256   kRoundDown = 0x1,
257   kRoundUp = 0x2,
258   kRoundToZero = 0x3
259 };
260 
261 
262 // -----------------------------------------------------------------------------
263 // Machine instruction Immediates
264 
265 class Immediate BASE_EMBEDDED {
266  public:
267   inline explicit Immediate(int x);
268   inline explicit Immediate(const ExternalReference& ext);
269   inline explicit Immediate(Handle<Object> handle);
270   inline explicit Immediate(Smi* value);
271   inline explicit Immediate(Address addr);
272 
CodeRelativeOffset(Label * label)273   static Immediate CodeRelativeOffset(Label* label) {
274     return Immediate(label);
275   }
276 
is_zero()277   bool is_zero() const { return x_ == 0 && RelocInfo::IsNone(rmode_); }
is_int8()278   bool is_int8() const {
279     return -128 <= x_ && x_ < 128 && RelocInfo::IsNone(rmode_);
280   }
is_int16()281   bool is_int16() const {
282     return -32768 <= x_ && x_ < 32768 && RelocInfo::IsNone(rmode_);
283   }
284 
285  private:
286   inline explicit Immediate(Label* value);
287 
288   int x_;
289   RelocInfo::Mode rmode_;
290 
291   friend class Operand;
292   friend class Assembler;
293   friend class MacroAssembler;
294 };
295 
296 
297 // -----------------------------------------------------------------------------
298 // Machine instruction Operands
299 
300 enum ScaleFactor {
301   times_1 = 0,
302   times_2 = 1,
303   times_4 = 2,
304   times_8 = 3,
305   times_int_size = times_4,
306   times_half_pointer_size = times_2,
307   times_pointer_size = times_4,
308   times_twice_pointer_size = times_8
309 };
310 
311 
312 class Operand BASE_EMBEDDED {
313  public:
314   // reg
315   INLINE(explicit Operand(Register reg));
316 
317   // [disp/r]
318   INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
319 
320   // [disp/r]
321   INLINE(explicit Operand(Immediate imm));
322 
323   // [base + disp/r]
324   explicit Operand(Register base, int32_t disp,
325                    RelocInfo::Mode rmode = RelocInfo::NONE32);
326 
327   // [base + index*scale + disp/r]
328   explicit Operand(Register base,
329                    Register index,
330                    ScaleFactor scale,
331                    int32_t disp,
332                    RelocInfo::Mode rmode = RelocInfo::NONE32);
333 
334   // [index*scale + disp/r]
335   explicit Operand(Register index,
336                    ScaleFactor scale,
337                    int32_t disp,
338                    RelocInfo::Mode rmode = RelocInfo::NONE32);
339 
JumpTable(Register index,ScaleFactor scale,Label * table)340   static Operand JumpTable(Register index, ScaleFactor scale, Label* table) {
341     return Operand(index, scale, reinterpret_cast<int32_t>(table),
342                    RelocInfo::INTERNAL_REFERENCE);
343   }
344 
StaticVariable(const ExternalReference & ext)345   static Operand StaticVariable(const ExternalReference& ext) {
346     return Operand(reinterpret_cast<int32_t>(ext.address()),
347                    RelocInfo::EXTERNAL_REFERENCE);
348   }
349 
StaticArray(Register index,ScaleFactor scale,const ExternalReference & arr)350   static Operand StaticArray(Register index,
351                              ScaleFactor scale,
352                              const ExternalReference& arr) {
353     return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
354                    RelocInfo::EXTERNAL_REFERENCE);
355   }
356 
ForCell(Handle<Cell> cell)357   static Operand ForCell(Handle<Cell> cell) {
358     AllowDeferredHandleDereference embedding_raw_address;
359     return Operand(reinterpret_cast<int32_t>(cell.location()),
360                    RelocInfo::CELL);
361   }
362 
ForRegisterPlusImmediate(Register base,Immediate imm)363   static Operand ForRegisterPlusImmediate(Register base, Immediate imm) {
364     return Operand(base, imm.x_, imm.rmode_);
365   }
366 
367   // Returns true if this Operand is a wrapper for the specified register.
368   bool is_reg(Register reg) const;
369 
370   // Returns true if this Operand is a wrapper for one register.
371   bool is_reg_only() const;
372 
373   // Asserts that this Operand is a wrapper for one register and returns the
374   // register.
375   Register reg() const;
376 
377  private:
378   // Set the ModRM byte without an encoded 'reg' register. The
379   // register is encoded later as part of the emit_operand operation.
380   inline void set_modrm(int mod, Register rm);
381 
382   inline void set_sib(ScaleFactor scale, Register index, Register base);
383   inline void set_disp8(int8_t disp);
384   inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
385 
386   byte buf_[6];
387   // The number of bytes in buf_.
388   unsigned int len_;
389   // Only valid if len_ > 4.
390   RelocInfo::Mode rmode_;
391 
392   friend class Assembler;
393   friend class MacroAssembler;
394 };
395 
396 
397 // -----------------------------------------------------------------------------
398 // A Displacement describes the 32bit immediate field of an instruction which
399 // may be used together with a Label in order to refer to a yet unknown code
400 // position. Displacements stored in the instruction stream are used to describe
401 // the instruction and to chain a list of instructions using the same Label.
402 // A Displacement contains 2 different fields:
403 //
404 // next field: position of next displacement in the chain (0 = end of list)
405 // type field: instruction type
406 //
407 // A next value of null (0) indicates the end of a chain (note that there can
408 // be no displacement at position zero, because there is always at least one
409 // instruction byte before the displacement).
410 //
411 // Displacement _data field layout
412 //
413 // |31.....2|1......0|
414 // [  next  |  type  |
415 
416 class Displacement BASE_EMBEDDED {
417  public:
418   enum Type { UNCONDITIONAL_JUMP, CODE_RELATIVE, OTHER, CODE_ABSOLUTE };
419 
data()420   int data() const { return data_; }
type()421   Type type() const { return TypeField::decode(data_); }
next(Label * L)422   void next(Label* L) const {
423     int n = NextField::decode(data_);
424     n > 0 ? L->link_to(n) : L->Unuse();
425   }
link_to(Label * L)426   void link_to(Label* L) { init(L, type()); }
427 
Displacement(int data)428   explicit Displacement(int data) { data_ = data; }
429 
Displacement(Label * L,Type type)430   Displacement(Label* L, Type type) { init(L, type); }
431 
print()432   void print() {
433     PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
434                        NextField::decode(data_));
435   }
436 
437  private:
438   int data_;
439 
440   class TypeField: public BitField<Type, 0, 2> {};
441   class NextField: public BitField<int,  2, 32-2> {};
442 
443   void init(Label* L, Type type);
444 };
445 
446 
447 class Assembler : public AssemblerBase {
448  private:
449   // We check before assembling an instruction that there is sufficient
450   // space to write an instruction and its relocation information.
451   // The relocation writer's position must be kGap bytes above the end of
452   // the generated instructions. This leaves enough space for the
453   // longest possible ia32 instruction, 15 bytes, and the longest possible
454   // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
455   // (There is a 15 byte limit on ia32 instruction length that rules out some
456   // otherwise valid instructions.)
457   // This allows for a single, fast space check per instruction.
458   static const int kGap = 32;
459 
460  public:
461   // Create an assembler. Instructions and relocation information are emitted
462   // into a buffer, with the instructions starting from the beginning and the
463   // relocation information starting from the end of the buffer. See CodeDesc
464   // for a detailed comment on the layout (globals.h).
465   //
466   // If the provided buffer is NULL, the assembler allocates and grows its own
467   // buffer, and buffer_size determines the initial buffer size. The buffer is
468   // owned by the assembler and deallocated upon destruction of the assembler.
469   //
470   // If the provided buffer is not NULL, the assembler uses the provided buffer
471   // for code generation and assumes its size to be buffer_size. If the buffer
472   // is too small, a fatal error occurs. No deallocation of the buffer is done
473   // upon destruction of the assembler.
474   // TODO(vitalyr): the assembler does not need an isolate.
475   Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()476   virtual ~Assembler() { }
477 
478   // GetCode emits any pending (non-emitted) code and fills the descriptor
479   // desc. GetCode() is idempotent; it returns the same result if no other
480   // Assembler functions are invoked in between GetCode() calls.
481   void GetCode(CodeDesc* desc);
482 
483   // Read/Modify the code target in the branch/call instruction at pc.
484   inline static Address target_address_at(Address pc, Address constant_pool);
485   inline static void set_target_address_at(
486       Isolate* isolate, Address pc, Address constant_pool, Address target,
487       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
target_address_at(Address pc,Code * code)488   static inline Address target_address_at(Address pc, Code* code) {
489     Address constant_pool = code ? code->constant_pool() : NULL;
490     return target_address_at(pc, constant_pool);
491   }
492   static inline void set_target_address_at(
493       Isolate* isolate, Address pc, Code* code, Address target,
494       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
495     Address constant_pool = code ? code->constant_pool() : NULL;
496     set_target_address_at(isolate, pc, constant_pool, target);
497   }
498 
499   // Return the code target address at a call site from the return address
500   // of that call in the instruction stream.
501   inline static Address target_address_from_return_address(Address pc);
502 
503   // This sets the branch destination (which is in the instruction on x86).
504   // This is for calls and branches within generated code.
deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)505   inline static void deserialization_set_special_target_at(
506       Isolate* isolate, Address instruction_payload, Code* code,
507       Address target) {
508     set_target_address_at(isolate, instruction_payload, code, target);
509   }
510 
511   // This sets the internal reference at the pc.
512   inline static void deserialization_set_target_internal_reference_at(
513       Isolate* isolate, Address pc, Address target,
514       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
515 
516   static const int kSpecialTargetSize = kPointerSize;
517 
518   // Distance between the address of the code target in the call instruction
519   // and the return address
520   static const int kCallTargetAddressOffset = kPointerSize;
521 
522   static const int kCallInstructionLength = 5;
523 
524   // The debug break slot must be able to contain a call instruction.
525   static const int kDebugBreakSlotLength = kCallInstructionLength;
526 
527   // Distance between start of patched debug break slot and the emitted address
528   // to jump to.
529   static const int kPatchDebugBreakSlotAddressOffset = 1;  // JMP imm32.
530 
531   // One byte opcode for test al, 0xXX.
532   static const byte kTestAlByte = 0xA8;
533   // One byte opcode for nop.
534   static const byte kNopByte = 0x90;
535 
536   // One byte opcode for a short unconditional jump.
537   static const byte kJmpShortOpcode = 0xEB;
538   // One byte prefix for a short conditional jump.
539   static const byte kJccShortPrefix = 0x70;
540   static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
541   static const byte kJcShortOpcode = kJccShortPrefix | carry;
542   static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
543   static const byte kJzShortOpcode = kJccShortPrefix | zero;
544 
545 
546   // ---------------------------------------------------------------------------
547   // Code generation
548   //
549   // - function names correspond one-to-one to ia32 instruction mnemonics
550   // - unless specified otherwise, instructions operate on 32bit operands
551   // - instructions on 8bit (byte) operands/registers have a trailing '_b'
552   // - instructions on 16bit (word) operands/registers have a trailing '_w'
553   // - naming conflicts with C++ keywords are resolved via a trailing '_'
554 
555   // NOTE ON INTERFACE: Currently, the interface is not very consistent
556   // in the sense that some operations (e.g. mov()) can be called in more
557   // the one way to generate the same instruction: The Register argument
558   // can in some cases be replaced with an Operand(Register) argument.
559   // This should be cleaned up and made more orthogonal. The questions
560   // is: should we always use Operands instead of Registers where an
561   // Operand is possible, or should we have a Register (overloaded) form
562   // instead? We must be careful to make sure that the selected instruction
563   // is obvious from the parameters to avoid hard-to-find code generation
564   // bugs.
565 
566   // Insert the smallest number of nop instructions
567   // possible to align the pc offset to a multiple
568   // of m. m must be a power of 2.
569   void Align(int m);
570   // Insert the smallest number of zero bytes possible to align the pc offset
571   // to a mulitple of m. m must be a power of 2 (>= 2).
572   void DataAlign(int m);
573   void Nop(int bytes = 1);
574   // Aligns code to something that's optimal for a jump target for the platform.
575   void CodeTargetAlign();
576 
577   // Stack
578   void pushad();
579   void popad();
580 
581   void pushfd();
582   void popfd();
583 
584   void push(const Immediate& x);
585   void push_imm32(int32_t imm32);
586   void push(Register src);
587   void push(const Operand& src);
588 
589   void pop(Register dst);
590   void pop(const Operand& dst);
591 
592   void enter(const Immediate& size);
593   void leave();
594 
595   // Moves
mov_b(Register dst,Register src)596   void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); }
597   void mov_b(Register dst, const Operand& src);
mov_b(Register dst,int8_t imm8)598   void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); }
599   void mov_b(const Operand& dst, int8_t imm8);
600   void mov_b(const Operand& dst, const Immediate& src);
601   void mov_b(const Operand& dst, Register src);
602 
603   void mov_w(Register dst, const Operand& src);
604   void mov_w(const Operand& dst, Register src);
605   void mov_w(const Operand& dst, int16_t imm16);
606   void mov_w(const Operand& dst, const Immediate& src);
607 
608 
609   void mov(Register dst, int32_t imm32);
610   void mov(Register dst, const Immediate& x);
611   void mov(Register dst, Handle<Object> handle);
612   void mov(Register dst, const Operand& src);
613   void mov(Register dst, Register src);
614   void mov(const Operand& dst, const Immediate& x);
615   void mov(const Operand& dst, Handle<Object> handle);
616   void mov(const Operand& dst, Register src);
617 
movsx_b(Register dst,Register src)618   void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); }
619   void movsx_b(Register dst, const Operand& src);
620 
movsx_w(Register dst,Register src)621   void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); }
622   void movsx_w(Register dst, const Operand& src);
623 
movzx_b(Register dst,Register src)624   void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); }
625   void movzx_b(Register dst, const Operand& src);
626 
movzx_w(Register dst,Register src)627   void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); }
628   void movzx_w(Register dst, const Operand& src);
629 
630   // Flag management.
631   void cld();
632 
633   // Repetitive string instructions.
634   void rep_movs();
635   void rep_stos();
636   void stos();
637 
638   // Exchange
639   void xchg(Register dst, Register src);
640   void xchg(Register dst, const Operand& src);
641 
642   // Arithmetics
643   void adc(Register dst, int32_t imm32);
644   void adc(Register dst, const Operand& src);
645 
add(Register dst,Register src)646   void add(Register dst, Register src) { add(dst, Operand(src)); }
647   void add(Register dst, const Operand& src);
648   void add(const Operand& dst, Register src);
add(Register dst,const Immediate & imm)649   void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); }
650   void add(const Operand& dst, const Immediate& x);
651 
652   void and_(Register dst, int32_t imm32);
653   void and_(Register dst, const Immediate& x);
and_(Register dst,Register src)654   void and_(Register dst, Register src) { and_(dst, Operand(src)); }
655   void and_(Register dst, const Operand& src);
656   void and_(const Operand& dst, Register src);
657   void and_(const Operand& dst, const Immediate& x);
658 
cmpb(Register reg,int8_t imm8)659   void cmpb(Register reg, int8_t imm8) { cmpb(Operand(reg), imm8); }
660   void cmpb(const Operand& op, int8_t imm8);
661   void cmpb(Register reg, const Operand& op);
662   void cmpb(const Operand& op, Register reg);
663   void cmpb_al(const Operand& op);
664   void cmpw_ax(const Operand& op);
665   void cmpw(const Operand& op, Immediate imm16);
666   void cmp(Register reg, int32_t imm32);
667   void cmp(Register reg, Handle<Object> handle);
cmp(Register reg0,Register reg1)668   void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); }
669   void cmp(Register reg, const Operand& op);
cmp(Register reg,const Immediate & imm)670   void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); }
671   void cmp(const Operand& op, const Immediate& imm);
672   void cmp(const Operand& op, Handle<Object> handle);
673 
674   void dec_b(Register dst);
675   void dec_b(const Operand& dst);
676 
677   void dec(Register dst);
678   void dec(const Operand& dst);
679 
680   void cdq();
681 
idiv(Register src)682   void idiv(Register src) { idiv(Operand(src)); }
683   void idiv(const Operand& src);
div(Register src)684   void div(Register src) { div(Operand(src)); }
685   void div(const Operand& src);
686 
687   // Signed multiply instructions.
688   void imul(Register src);                               // edx:eax = eax * src.
imul(Register dst,Register src)689   void imul(Register dst, Register src) { imul(dst, Operand(src)); }
690   void imul(Register dst, const Operand& src);           // dst = dst * src.
691   void imul(Register dst, Register src, int32_t imm32);  // dst = src * imm32.
692   void imul(Register dst, const Operand& src, int32_t imm32);
693 
694   void inc(Register dst);
695   void inc(const Operand& dst);
696 
697   void lea(Register dst, const Operand& src);
698 
699   // Unsigned multiply instruction.
700   void mul(Register src);                                // edx:eax = eax * reg.
701 
702   void neg(Register dst);
703   void neg(const Operand& dst);
704 
705   void not_(Register dst);
706   void not_(const Operand& dst);
707 
708   void or_(Register dst, int32_t imm32);
or_(Register dst,Register src)709   void or_(Register dst, Register src) { or_(dst, Operand(src)); }
710   void or_(Register dst, const Operand& src);
711   void or_(const Operand& dst, Register src);
or_(Register dst,const Immediate & imm)712   void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); }
713   void or_(const Operand& dst, const Immediate& x);
714 
715   void rcl(Register dst, uint8_t imm8);
716   void rcr(Register dst, uint8_t imm8);
717 
ror(Register dst,uint8_t imm8)718   void ror(Register dst, uint8_t imm8) { ror(Operand(dst), imm8); }
719   void ror(const Operand& dst, uint8_t imm8);
ror_cl(Register dst)720   void ror_cl(Register dst) { ror_cl(Operand(dst)); }
721   void ror_cl(const Operand& dst);
722 
sar(Register dst,uint8_t imm8)723   void sar(Register dst, uint8_t imm8) { sar(Operand(dst), imm8); }
724   void sar(const Operand& dst, uint8_t imm8);
sar_cl(Register dst)725   void sar_cl(Register dst) { sar_cl(Operand(dst)); }
726   void sar_cl(const Operand& dst);
727 
728   void sbb(Register dst, const Operand& src);
729 
shld(Register dst,Register src)730   void shld(Register dst, Register src) { shld(dst, Operand(src)); }
731   void shld(Register dst, const Operand& src);
732 
shl(Register dst,uint8_t imm8)733   void shl(Register dst, uint8_t imm8) { shl(Operand(dst), imm8); }
734   void shl(const Operand& dst, uint8_t imm8);
shl_cl(Register dst)735   void shl_cl(Register dst) { shl_cl(Operand(dst)); }
736   void shl_cl(const Operand& dst);
737 
shrd(Register dst,Register src)738   void shrd(Register dst, Register src) { shrd(dst, Operand(src)); }
739   void shrd(Register dst, const Operand& src);
740 
shr(Register dst,uint8_t imm8)741   void shr(Register dst, uint8_t imm8) { shr(Operand(dst), imm8); }
742   void shr(const Operand& dst, uint8_t imm8);
shr_cl(Register dst)743   void shr_cl(Register dst) { shr_cl(Operand(dst)); }
744   void shr_cl(const Operand& dst);
745 
sub(Register dst,const Immediate & imm)746   void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); }
747   void sub(const Operand& dst, const Immediate& x);
sub(Register dst,Register src)748   void sub(Register dst, Register src) { sub(dst, Operand(src)); }
749   void sub(Register dst, const Operand& src);
750   void sub(const Operand& dst, Register src);
751 
752   void test(Register reg, const Immediate& imm);
test(Register reg0,Register reg1)753   void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); }
754   void test(Register reg, const Operand& op);
755   void test_b(Register reg, const Operand& op);
756   void test(const Operand& op, const Immediate& imm);
757   void test_b(Register reg, uint8_t imm8);
758   void test_b(const Operand& op, uint8_t imm8);
759 
760   void xor_(Register dst, int32_t imm32);
xor_(Register dst,Register src)761   void xor_(Register dst, Register src) { xor_(dst, Operand(src)); }
762   void xor_(Register dst, const Operand& src);
763   void xor_(const Operand& dst, Register src);
xor_(Register dst,const Immediate & imm)764   void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); }
765   void xor_(const Operand& dst, const Immediate& x);
766 
767   // Bit operations.
768   void bt(const Operand& dst, Register src);
bts(Register dst,Register src)769   void bts(Register dst, Register src) { bts(Operand(dst), src); }
770   void bts(const Operand& dst, Register src);
bsr(Register dst,Register src)771   void bsr(Register dst, Register src) { bsr(dst, Operand(src)); }
772   void bsr(Register dst, const Operand& src);
bsf(Register dst,Register src)773   void bsf(Register dst, Register src) { bsf(dst, Operand(src)); }
774   void bsf(Register dst, const Operand& src);
775 
776   // Miscellaneous
777   void hlt();
778   void int3();
779   void nop();
780   void ret(int imm16);
781   void ud2();
782 
783   // Label operations & relative jumps (PPUM Appendix D)
784   //
785   // Takes a branch opcode (cc) and a label (L) and generates
786   // either a backward branch or a forward branch and links it
787   // to the label fixup chain. Usage:
788   //
789   // Label L;    // unbound label
790   // j(cc, &L);  // forward branch to unbound label
791   // bind(&L);   // bind label to the current pc
792   // j(cc, &L);  // backward branch to bound label
793   // bind(&L);   // illegal: a label may be bound only once
794   //
795   // Note: The same Label can be used for forward and backward branches
796   // but it may be bound only once.
797 
798   void bind(Label* L);  // binds an unbound label L to the current code position
799 
800   // Calls
801   void call(Label* L);
802   void call(byte* entry, RelocInfo::Mode rmode);
803   int CallSize(const Operand& adr);
call(Register reg)804   void call(Register reg) { call(Operand(reg)); }
805   void call(const Operand& adr);
806   int CallSize(Handle<Code> code, RelocInfo::Mode mode);
807   void call(Handle<Code> code,
808             RelocInfo::Mode rmode,
809             TypeFeedbackId id = TypeFeedbackId::None());
810 
811   // Jumps
812   // unconditional jump to L
813   void jmp(Label* L, Label::Distance distance = Label::kFar);
814   void jmp(byte* entry, RelocInfo::Mode rmode);
jmp(Register reg)815   void jmp(Register reg) { jmp(Operand(reg)); }
816   void jmp(const Operand& adr);
817   void jmp(Handle<Code> code, RelocInfo::Mode rmode);
818 
819   // Conditional jumps
820   void j(Condition cc,
821          Label* L,
822          Label::Distance distance = Label::kFar);
823   void j(Condition cc, byte* entry, RelocInfo::Mode rmode);
824   void j(Condition cc, Handle<Code> code,
825          RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);
826 
827   // Floating-point operations
828   void fld(int i);
829   void fstp(int i);
830 
831   void fld1();
832   void fldz();
833   void fldpi();
834   void fldln2();
835 
836   void fld_s(const Operand& adr);
837   void fld_d(const Operand& adr);
838 
839   void fstp_s(const Operand& adr);
840   void fst_s(const Operand& adr);
841   void fstp_d(const Operand& adr);
842   void fst_d(const Operand& adr);
843 
844   void fild_s(const Operand& adr);
845   void fild_d(const Operand& adr);
846 
847   void fist_s(const Operand& adr);
848 
849   void fistp_s(const Operand& adr);
850   void fistp_d(const Operand& adr);
851 
852   // The fisttp instructions require SSE3.
853   void fisttp_s(const Operand& adr);
854   void fisttp_d(const Operand& adr);
855 
856   void fabs();
857   void fchs();
858   void fsqrt();
859   void fcos();
860   void fsin();
861   void fptan();
862   void fyl2x();
863   void f2xm1();
864   void fscale();
865   void fninit();
866 
867   void fadd(int i);
868   void fadd_i(int i);
869   void fadd_d(const Operand& adr);
870   void fsub(int i);
871   void fsub_i(int i);
872   void fsub_d(const Operand& adr);
873   void fsubr_d(const Operand& adr);
874   void fmul(int i);
875   void fmul_d(const Operand& adr);
876   void fmul_i(int i);
877   void fdiv(int i);
878   void fdiv_d(const Operand& adr);
879   void fdivr_d(const Operand& adr);
880   void fdiv_i(int i);
881 
882   void fisub_s(const Operand& adr);
883 
884   void faddp(int i = 1);
885   void fsubp(int i = 1);
886   void fsubr(int i = 1);
887   void fsubrp(int i = 1);
888   void fmulp(int i = 1);
889   void fdivp(int i = 1);
890   void fprem();
891   void fprem1();
892 
893   void fxch(int i = 1);
894   void fincstp();
895   void ffree(int i = 0);
896 
897   void ftst();
898   void fxam();
899   void fucomp(int i);
900   void fucompp();
901   void fucomi(int i);
902   void fucomip();
903   void fcompp();
904   void fnstsw_ax();
905   void fldcw(const Operand& adr);
906   void fnstcw(const Operand& adr);
907   void fwait();
908   void fnclex();
909   void fnsave(const Operand& adr);
910   void frstor(const Operand& adr);
911 
912   void frndint();
913 
914   void sahf();
915   void setcc(Condition cc, Register reg);
916 
917   void cpuid();
918 
919   // TODO(lrn): Need SFENCE for movnt?
920 
921   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)922   int SizeOfCodeGeneratedSince(Label* label) {
923     return pc_offset() - label->pos();
924   }
925 
926   // Mark generator continuation.
927   void RecordGeneratorContinuation();
928 
929   // Mark address of a debug break slot.
930   void RecordDebugBreakSlot(RelocInfo::Mode mode);
931 
932   // Record a comment relocation entry that can be used by a disassembler.
933   // Use --code-comments to enable.
934   void RecordComment(const char* msg);
935 
936   // Record a deoptimization reason that can be used by a log or cpu profiler.
937   // Use --trace-deopt to enable.
938   void RecordDeoptReason(const int reason, const SourcePosition position);
939 
940   // Writes a single byte or word of data in the code stream.  Used for
941   // inline tables, e.g., jump-tables.
942   void db(uint8_t data);
943   void dd(uint32_t data);
944   void dq(uint64_t data);
dp(uintptr_t data)945   void dp(uintptr_t data) { dd(data); }
946   void dd(Label* label);
947 
948   // Check if there is less than kGap bytes available in the buffer.
949   // If this is the case, we need to grow the buffer before emitting
950   // an instruction or relocation information.
buffer_overflow()951   inline bool buffer_overflow() const {
952     return pc_ >= reloc_info_writer.pos() - kGap;
953   }
954 
955   // Get the number of bytes available in the buffer.
available_space()956   inline int available_space() const { return reloc_info_writer.pos() - pc_; }
957 
958   static bool IsNop(Address addr);
959 
positions_recorder()960   PositionsRecorder* positions_recorder() { return &positions_recorder_; }
961 
relocation_writer_size()962   int relocation_writer_size() {
963     return (buffer_ + buffer_size_) - reloc_info_writer.pos();
964   }
965 
966   // Avoid overflows for displacements etc.
967   static const int kMaximalBufferSize = 512*MB;
968 
byte_at(int pos)969   byte byte_at(int pos) { return buffer_[pos]; }
set_byte_at(int pos,byte value)970   void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
971 
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)972   void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
973                                           ConstantPoolEntry::Access access,
974                                           ConstantPoolEntry::Type type) {
975     // No embedded constant pool support.
976     UNREACHABLE();
977   }
978 
979  protected:
addr_at(int pos)980   byte* addr_at(int pos) { return buffer_ + pos; }
981 
982 
983  private:
long_at(int pos)984   uint32_t long_at(int pos)  {
985     return *reinterpret_cast<uint32_t*>(addr_at(pos));
986   }
long_at_put(int pos,uint32_t x)987   void long_at_put(int pos, uint32_t x)  {
988     *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
989   }
990 
991   // code emission
992   void GrowBuffer();
993   inline void emit(uint32_t x);
994   inline void emit(Handle<Object> handle);
995   inline void emit(uint32_t x,
996                    RelocInfo::Mode rmode,
997                    TypeFeedbackId id = TypeFeedbackId::None());
998   inline void emit(Handle<Code> code,
999                    RelocInfo::Mode rmode,
1000                    TypeFeedbackId id = TypeFeedbackId::None());
1001   inline void emit(const Immediate& x);
1002   inline void emit_w(const Immediate& x);
1003   inline void emit_q(uint64_t x);
1004 
1005   // Emit the code-object-relative offset of the label's position
1006   inline void emit_code_relative_offset(Label* label);
1007 
1008   // instruction generation
1009   void emit_arith_b(int op1, int op2, Register dst, int imm8);
1010 
1011   // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
1012   // with a given destination expression and an immediate operand.  It attempts
1013   // to use the shortest encoding possible.
1014   // sel specifies the /n in the modrm byte (see the Intel PRM).
1015   void emit_arith(int sel, Operand dst, const Immediate& x);
1016 
1017   void emit_operand(Register reg, const Operand& adr);
1018 
1019   void emit_label(Label* label);
1020 
1021   void emit_farith(int b1, int b2, int i);
1022 
1023   // labels
1024   void print(Label* L);
1025   void bind_to(Label* L, int pos);
1026 
1027   // displacements
1028   inline Displacement disp_at(Label* L);
1029   inline void disp_at_put(Label* L, Displacement disp);
1030   inline void emit_disp(Label* L, Displacement::Type type);
1031   inline void emit_near_disp(Label* L);
1032 
1033   // record reloc info for current pc_
1034   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1035 
1036   friend class CodePatcher;
1037   friend class EnsureSpace;
1038 
1039   // Internal reference positions, required for (potential) patching in
1040   // GrowBuffer(); contains only those internal references whose labels
1041   // are already bound.
1042   std::deque<int> internal_reference_positions_;
1043 
1044   // code generation
1045   RelocInfoWriter reloc_info_writer;
1046 
1047   PositionsRecorder positions_recorder_;
1048   friend class PositionsRecorder;
1049 };
1050 
1051 
1052 // Helper class that ensures that there is enough space for generating
1053 // instructions and relocation information.  The constructor makes
1054 // sure that there is enough space and (in debug mode) the destructor
1055 // checks that we did not generate too much.
1056 class EnsureSpace BASE_EMBEDDED {
1057  public:
EnsureSpace(Assembler * assembler)1058   explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1059     if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1060 #ifdef DEBUG
1061     space_before_ = assembler_->available_space();
1062 #endif
1063   }
1064 
1065 #ifdef DEBUG
~EnsureSpace()1066   ~EnsureSpace() {
1067     int bytes_generated = space_before_ - assembler_->available_space();
1068     DCHECK(bytes_generated < assembler_->kGap);
1069   }
1070 #endif
1071 
1072  private:
1073   Assembler* assembler_;
1074 #ifdef DEBUG
1075   int space_before_;
1076 #endif
1077 };
1078 
1079 }  // namespace internal
1080 }  // namespace v8
1081 
1082 #endif  // V8_X87_ASSEMBLER_X87_H_
1083