1/*
2 * Copyright (C) 2012, 2013 Apple Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
14 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
15 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
16 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
17 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
18 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
19 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
20 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
21 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
22 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
23 * THE POSSIBILITY OF SUCH DAMAGE.
24 */
25
26var Statistics = new (function () {
27
28    this.max = function (values) {
29        var maxVal = values[0];
30        for (var i = 1; i < values.length; i++) {
31            maxVal = Math.max(maxVal, values[i]);
32        }
33        return maxVal;
34    }
35
36    this.min = function (values) {
37        var minVal = values[0];
38        for (var i = 1; i < values.length; i++) {
39            minVal = Math.min(minVal, values[i]);
40        }
41        return minVal;
42    }
43
44    this.sum = function (values) {
45        return values.reduce(function (a, b) { return a + b; }, 0);
46    }
47
48    this.squareSum = function (values) {
49        return values.reduce(function (sum, value) { return sum + value * value;}, 0);
50    }
51
52    // With sum and sum of squares, we can compute the sample standard deviation in O(1).
53    // See https://rniwa.com/2012-11-10/sample-standard-deviation-in-terms-of-sum-and-square-sum-of-samples/
54    this.sampleStandardDeviation = function (numberOfSamples, sum, squareSum) {
55        if (numberOfSamples < 2)
56            return 0;
57        return Math.sqrt(squareSum / (numberOfSamples - 1)
58            - sum * sum / (numberOfSamples - 1) / numberOfSamples);
59    }
60
61    this.supportedConfidenceLevels = function () {
62        var supportedLevels = [];
63        for (var quantile in tDistributionInverseCDF)
64            supportedLevels.push((1 - (1 - quantile) * 2).toFixed(2));
65        return supportedLevels;
66    }
67
68    this.quantile = function (confidenceLevel, numberOfSamples, opt_degreesOfFreedom) {
69        var probability = (1 - (1 - confidenceLevel) / 2);
70        if (!(probability in tDistributionInverseCDF)) {
71            console.warn('We only support ' + this.supportedConfidenceLevels().map(
72                function (level) { return level * 100 + '%'; } ).join(', ') + ' confidence intervals.');
73            return NaN;
74        }
75        if (numberOfSamples < 2)
76            return Number.POSITIVE_INFINITY;
77
78        var cdfForProbability = tDistributionInverseCDF[probability];
79        var degreesOfFreedom = opt_degreesOfFreedom;
80        if (degreesOfFreedom === undefined)
81          degreesOfFreedom = numberOfSamples - 1;
82
83        // tDistributionQuantile(degreesOfFreedom, confidenceLevel) * sampleStandardDeviation / sqrt(numberOfSamples) * S/sqrt(numberOfSamples)
84        if (degreesOfFreedom <= 100)
85          return cdfForProbability[degreesOfFreedom - 1]; // The first entry is for the one degree of freedom.
86        else if (degreesOfFreedom <= 300)
87          return cdfForProbability[Math.round(degreesOfFreedom / 10) + 100 - 10 - 1];
88        else if (degreesOfFreedom <= 1300)
89          return cdfForProbability[Math.round(degreesOfFreedom / 100) + 120 - 3 - 1];
90        else
91          return cdfForProbability[cdfForProbability.length - 1];
92    }
93
94    // Computes the delta d s.t. (mean - d, mean + d) is the confidence interval with the specified confidence level in O(1).
95    this.confidenceIntervalDelta = function (confidenceLevel, numberOfSamples, sum, squareSum) {
96        var sampleStandardDeviation = this.sampleStandardDeviation(numberOfSamples, sum, squareSum);
97        return this.confidenceIntervalDeltaFromStd(confidenceLevel, numberOfSamples, sampleStandardDeviation);
98    }
99
100    this.confidenceIntervalDeltaFromStd = function (confidenceLevel, numberOfSamples, sampleStandardDeviation, opt_degreesOfFreedom) {
101        var quantile = this.quantile(confidenceLevel, numberOfSamples, opt_degreesOfFreedom);
102        return quantile * sampleStandardDeviation / Math.sqrt(numberOfSamples);
103    }
104
105
106    this.confidenceInterval = function (values, probability) {
107        var sum = this.sum(values);
108        var mean = sum / values.length;
109        var delta = this.confidenceIntervalDelta(probability || 0.95, values.length, sum, this.squareSum(values));
110        return [mean - delta, mean + delta];
111    }
112
113    // See http://en.wikipedia.org/wiki/Student's_t-distribution#Table_of_selected_values
114    // This table contains one sided (a.k.a. tail) values.
115    // Use TINV((1 - probability) * 2, df) in your favorite spreadsheet software to compute these.
116    // The spacing of the values with df greater than 100 maintains error less than 0.8%.
117    var tDistributionInverseCDF = {
118        0.9: [
119            // 1 - 100 step 1
120            3.077684, 1.885618, 1.637744, 1.533206, 1.475884, 1.439756, 1.414924, 1.396815, 1.383029, 1.372184,
121            1.363430, 1.356217, 1.350171, 1.345030, 1.340606, 1.336757, 1.333379, 1.330391, 1.327728, 1.325341,
122            1.323188, 1.321237, 1.319460, 1.317836, 1.316345, 1.314972, 1.313703, 1.312527, 1.311434, 1.310415,
123            1.309464, 1.308573, 1.307737, 1.306952, 1.306212, 1.305514, 1.304854, 1.304230, 1.303639, 1.303077,
124            1.302543, 1.302035, 1.301552, 1.301090, 1.300649, 1.300228, 1.299825, 1.299439, 1.299069, 1.298714,
125            1.298373, 1.298045, 1.297730, 1.297426, 1.297134, 1.296853, 1.296581, 1.296319, 1.296066, 1.295821,
126            1.295585, 1.295356, 1.295134, 1.294920, 1.294712, 1.294511, 1.294315, 1.294126, 1.293942, 1.293763,
127            1.293589, 1.293421, 1.293256, 1.293097, 1.292941, 1.292790, 1.292643, 1.292500, 1.292360, 1.292224,
128            1.292091, 1.291961, 1.291835, 1.291711, 1.291591, 1.291473, 1.291358, 1.291246, 1.291136, 1.291029,
129            1.290924, 1.290821, 1.290721, 1.290623, 1.290527, 1.290432, 1.290340, 1.290250, 1.290161, 1.290075,
130            // 110 - 300 step 10
131            1.289295, 1.288646, 1.288098, 1.287628, 1.287221, 1.286865, 1.286551, 1.286272, 1.286023, 1.285799,
132            1.285596, 1.285411, 1.285243, 1.285089, 1.284947, 1.284816, 1.284695, 1.284582, 1.284478, 1.284380,
133            // 400 - 1300 step 100
134            1.283672, 1.283247, 1.282964, 1.282762, 1.282611, 1.282493, 1.282399, 1.282322, 1.282257, 1.282203,
135            // Infinity
136            1.281548],
137        0.95: [
138            // 1 - 100 step 1
139            6.313752, 2.919986, 2.353363, 2.131847, 2.015048, 1.943180, 1.894579, 1.859548, 1.833113, 1.812461,
140            1.795885, 1.782288, 1.770933, 1.761310, 1.753050, 1.745884, 1.739607, 1.734064, 1.729133, 1.724718,
141            1.720743, 1.717144, 1.713872, 1.710882, 1.708141, 1.705618, 1.703288, 1.701131, 1.699127, 1.697261,
142            1.695519, 1.693889, 1.692360, 1.690924, 1.689572, 1.688298, 1.687094, 1.685954, 1.684875, 1.683851,
143            1.682878, 1.681952, 1.681071, 1.680230, 1.679427, 1.678660, 1.677927, 1.677224, 1.676551, 1.675905,
144            1.675285, 1.674689, 1.674116, 1.673565, 1.673034, 1.672522, 1.672029, 1.671553, 1.671093, 1.670649,
145            1.670219, 1.669804, 1.669402, 1.669013, 1.668636, 1.668271, 1.667916, 1.667572, 1.667239, 1.666914,
146            1.666600, 1.666294, 1.665996, 1.665707, 1.665425, 1.665151, 1.664885, 1.664625, 1.664371, 1.664125,
147            1.663884, 1.663649, 1.663420, 1.663197, 1.662978, 1.662765, 1.662557, 1.662354, 1.662155, 1.661961,
148            1.661771, 1.661585, 1.661404, 1.661226, 1.661052, 1.660881, 1.660715, 1.660551, 1.660391, 1.660234,
149            // 110 - 300 step 10
150            1.658824, 1.657651, 1.656659, 1.655811, 1.655076, 1.654433, 1.653866, 1.653363, 1.652913, 1.652508,
151            1.652142, 1.651809, 1.651506, 1.651227, 1.650971, 1.650735, 1.650517, 1.650314, 1.650125, 1.649949,
152            // 400 - 1300 step 100
153            1.648672, 1.647907, 1.647397, 1.647033, 1.646761, 1.646548, 1.646379, 1.646240, 1.646124, 1.646027,
154            // Infinity
155            1.644847],
156        0.975: [
157            // 1 - 100 step 1
158            12.706205, 4.302653, 3.182446, 2.776445, 2.570582, 2.446912, 2.364624, 2.306004, 2.262157, 2.228139,
159            2.200985, 2.178813, 2.160369, 2.144787, 2.131450, 2.119905, 2.109816, 2.100922, 2.093024, 2.085963,
160            2.079614, 2.073873, 2.068658, 2.063899, 2.059539, 2.055529, 2.051831, 2.048407, 2.045230, 2.042272,
161            2.039513, 2.036933, 2.034515, 2.032245, 2.030108, 2.028094, 2.026192, 2.024394, 2.022691, 2.021075,
162            2.019541, 2.018082, 2.016692, 2.015368, 2.014103, 2.012896, 2.011741, 2.010635, 2.009575, 2.008559,
163            2.007584, 2.006647, 2.005746, 2.004879, 2.004045, 2.003241, 2.002465, 2.001717, 2.000995, 2.000298,
164            1.999624, 1.998972, 1.998341, 1.997730, 1.997138, 1.996564, 1.996008, 1.995469, 1.994945, 1.994437,
165            1.993943, 1.993464, 1.992997, 1.992543, 1.992102, 1.991673, 1.991254, 1.990847, 1.990450, 1.990063,
166            1.989686, 1.989319, 1.988960, 1.988610, 1.988268, 1.987934, 1.987608, 1.987290, 1.986979, 1.986675,
167            1.986377, 1.986086, 1.985802, 1.985523, 1.985251, 1.984984, 1.984723, 1.984467, 1.984217, 1.983972,
168            // 110 - 300 step 10
169            1.981765, 1.979930, 1.978380, 1.977054, 1.975905, 1.974902, 1.974017, 1.973231, 1.972528, 1.971896,
170            1.971325, 1.970806, 1.970332, 1.969898, 1.969498, 1.969130, 1.968789, 1.968472, 1.968178, 1.967903,
171            // 400 - 1300 step 100
172            1.965912, 1.964720, 1.963926, 1.963359, 1.962934, 1.962603, 1.962339, 1.962123, 1.961943, 1.961790,
173            // Infinity
174            1.959964],
175        0.99: [
176            // 1 - 100 step 1
177            31.820516, 6.964557, 4.540703, 3.746947, 3.364930, 3.142668, 2.997952, 2.896459, 2.821438, 2.763769,
178            2.718079, 2.680998, 2.650309, 2.624494, 2.602480, 2.583487, 2.566934, 2.552380, 2.539483, 2.527977,
179            2.517648, 2.508325, 2.499867, 2.492159, 2.485107, 2.478630, 2.472660, 2.467140, 2.462021, 2.457262,
180            2.452824, 2.448678, 2.444794, 2.441150, 2.437723, 2.434494, 2.431447, 2.428568, 2.425841, 2.423257,
181            2.420803, 2.418470, 2.416250, 2.414134, 2.412116, 2.410188, 2.408345, 2.406581, 2.404892, 2.403272,
182            2.401718, 2.400225, 2.398790, 2.397410, 2.396081, 2.394801, 2.393568, 2.392377, 2.391229, 2.390119,
183            2.389047, 2.388011, 2.387008, 2.386037, 2.385097, 2.384186, 2.383302, 2.382446, 2.381615, 2.380807,
184            2.380024, 2.379262, 2.378522, 2.377802, 2.377102, 2.376420, 2.375757, 2.375111, 2.374482, 2.373868,
185            2.373270, 2.372687, 2.372119, 2.371564, 2.371022, 2.370493, 2.369977, 2.369472, 2.368979, 2.368497,
186            2.368026, 2.367566, 2.367115, 2.366674, 2.366243, 2.365821, 2.365407, 2.365002, 2.364606, 2.364217,
187            // 110 - 300 step 10
188            2.360726, 2.357825, 2.355375, 2.353278, 2.351465, 2.349880, 2.348483, 2.347243, 2.346134, 2.345137,
189            2.344236, 2.343417, 2.342670, 2.341985, 2.341356, 2.340775, 2.340238, 2.339739, 2.339275, 2.338842,
190            // 400 - 1300 step 100
191            2.335706, 2.333829, 2.332579, 2.331687, 2.331018, 2.330498, 2.330083, 2.329743, 2.329459, 2.329220,
192            // Infinity
193            2.326348],
194    };
195
196})();
197
198if (typeof module != 'undefined') {
199    for (var key in Statistics)
200        module.exports[key] = Statistics[key];
201}
202