1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/synchronization/waitable_event_watcher.h"
6
7 #include "base/bind.h"
8 #include "base/location.h"
9 #include "base/macros.h"
10 #include "base/single_thread_task_runner.h"
11 #include "base/synchronization/lock.h"
12 #include "base/synchronization/waitable_event.h"
13
14 namespace base {
15
16 // -----------------------------------------------------------------------------
17 // WaitableEventWatcher (async waits).
18 //
19 // The basic design is that we add an AsyncWaiter to the wait-list of the event.
20 // That AsyncWaiter has a pointer to MessageLoop, and a Task to be posted to it.
21 // The MessageLoop ends up running the task, which calls the delegate.
22 //
23 // Since the wait can be canceled, we have a thread-safe Flag object which is
24 // set when the wait has been canceled. At each stage in the above, we check the
25 // flag before going onto the next stage. Since the wait may only be canceled in
26 // the MessageLoop which runs the Task, we are assured that the delegate cannot
27 // be called after canceling...
28
29 // -----------------------------------------------------------------------------
30 // A thread-safe, reference-counted, write-once flag.
31 // -----------------------------------------------------------------------------
32 class Flag : public RefCountedThreadSafe<Flag> {
33 public:
Flag()34 Flag() { flag_ = false; }
35
Set()36 void Set() {
37 AutoLock locked(lock_);
38 flag_ = true;
39 }
40
value() const41 bool value() const {
42 AutoLock locked(lock_);
43 return flag_;
44 }
45
46 private:
47 friend class RefCountedThreadSafe<Flag>;
~Flag()48 ~Flag() {}
49
50 mutable Lock lock_;
51 bool flag_;
52
53 DISALLOW_COPY_AND_ASSIGN(Flag);
54 };
55
56 // -----------------------------------------------------------------------------
57 // This is an asynchronous waiter which posts a task to a MessageLoop when
58 // fired. An AsyncWaiter may only be in a single wait-list.
59 // -----------------------------------------------------------------------------
60 class AsyncWaiter : public WaitableEvent::Waiter {
61 public:
AsyncWaiter(MessageLoop * message_loop,const base::Closure & callback,Flag * flag)62 AsyncWaiter(MessageLoop* message_loop,
63 const base::Closure& callback,
64 Flag* flag)
65 : message_loop_(message_loop),
66 callback_(callback),
67 flag_(flag) { }
68
Fire(WaitableEvent * event)69 bool Fire(WaitableEvent* event) override {
70 // Post the callback if we haven't been cancelled.
71 if (!flag_->value()) {
72 message_loop_->task_runner()->PostTask(FROM_HERE, callback_);
73 }
74
75 // We are removed from the wait-list by the WaitableEvent itself. It only
76 // remains to delete ourselves.
77 delete this;
78
79 // We can always return true because an AsyncWaiter is never in two
80 // different wait-lists at the same time.
81 return true;
82 }
83
84 // See StopWatching for discussion
Compare(void * tag)85 bool Compare(void* tag) override { return tag == flag_.get(); }
86
87 private:
88 MessageLoop *const message_loop_;
89 base::Closure callback_;
90 scoped_refptr<Flag> flag_;
91 };
92
93 // -----------------------------------------------------------------------------
94 // For async waits we need to make a callback in a MessageLoop thread. We do
95 // this by posting a callback, which calls the delegate and keeps track of when
96 // the event is canceled.
97 // -----------------------------------------------------------------------------
AsyncCallbackHelper(Flag * flag,const WaitableEventWatcher::EventCallback & callback,WaitableEvent * event)98 void AsyncCallbackHelper(Flag* flag,
99 const WaitableEventWatcher::EventCallback& callback,
100 WaitableEvent* event) {
101 // Runs in MessageLoop thread.
102 if (!flag->value()) {
103 // This is to let the WaitableEventWatcher know that the event has occured
104 // because it needs to be able to return NULL from GetWatchedObject
105 flag->Set();
106 callback.Run(event);
107 }
108 }
109
WaitableEventWatcher()110 WaitableEventWatcher::WaitableEventWatcher()
111 : message_loop_(NULL),
112 cancel_flag_(NULL),
113 waiter_(NULL),
114 event_(NULL) {
115 }
116
~WaitableEventWatcher()117 WaitableEventWatcher::~WaitableEventWatcher() {
118 StopWatching();
119 }
120
121 // -----------------------------------------------------------------------------
122 // The Handle is how the user cancels a wait. After deleting the Handle we
123 // insure that the delegate cannot be called.
124 // -----------------------------------------------------------------------------
StartWatching(WaitableEvent * event,const EventCallback & callback)125 bool WaitableEventWatcher::StartWatching(
126 WaitableEvent* event,
127 const EventCallback& callback) {
128 MessageLoop *const current_ml = MessageLoop::current();
129 DCHECK(current_ml) << "Cannot create WaitableEventWatcher without a "
130 "current MessageLoop";
131
132 // A user may call StartWatching from within the callback function. In this
133 // case, we won't know that we have finished watching, expect that the Flag
134 // will have been set in AsyncCallbackHelper().
135 if (cancel_flag_.get() && cancel_flag_->value()) {
136 if (message_loop_) {
137 message_loop_->RemoveDestructionObserver(this);
138 message_loop_ = NULL;
139 }
140
141 cancel_flag_ = NULL;
142 }
143
144 DCHECK(!cancel_flag_.get()) << "StartWatching called while still watching";
145
146 cancel_flag_ = new Flag;
147 callback_ = callback;
148 internal_callback_ =
149 base::Bind(&AsyncCallbackHelper, cancel_flag_, callback_, event);
150 WaitableEvent::WaitableEventKernel* kernel = event->kernel_.get();
151
152 AutoLock locked(kernel->lock_);
153
154 event_ = event;
155
156 if (kernel->signaled_) {
157 if (!kernel->manual_reset_)
158 kernel->signaled_ = false;
159
160 // No hairpinning - we can't call the delegate directly here. We have to
161 // enqueue a task on the MessageLoop as normal.
162 current_ml->task_runner()->PostTask(FROM_HERE, internal_callback_);
163 return true;
164 }
165
166 message_loop_ = current_ml;
167 current_ml->AddDestructionObserver(this);
168
169 kernel_ = kernel;
170 waiter_ = new AsyncWaiter(current_ml, internal_callback_, cancel_flag_.get());
171 event->Enqueue(waiter_);
172
173 return true;
174 }
175
StopWatching()176 void WaitableEventWatcher::StopWatching() {
177 callback_.Reset();
178
179 if (message_loop_) {
180 message_loop_->RemoveDestructionObserver(this);
181 message_loop_ = NULL;
182 }
183
184 if (!cancel_flag_.get()) // if not currently watching...
185 return;
186
187 if (cancel_flag_->value()) {
188 // In this case, the event has fired, but we haven't figured that out yet.
189 // The WaitableEvent may have been deleted too.
190 cancel_flag_ = NULL;
191 return;
192 }
193
194 if (!kernel_.get()) {
195 // We have no kernel. This means that we never enqueued a Waiter on an
196 // event because the event was already signaled when StartWatching was
197 // called.
198 //
199 // In this case, a task was enqueued on the MessageLoop and will run.
200 // We set the flag in case the task hasn't yet run. The flag will stop the
201 // delegate getting called. If the task has run then we have the last
202 // reference to the flag and it will be deleted immedately after.
203 cancel_flag_->Set();
204 cancel_flag_ = NULL;
205 return;
206 }
207
208 AutoLock locked(kernel_->lock_);
209 // We have a lock on the kernel. No one else can signal the event while we
210 // have it.
211
212 // We have a possible ABA issue here. If Dequeue was to compare only the
213 // pointer values then it's possible that the AsyncWaiter could have been
214 // fired, freed and the memory reused for a different Waiter which was
215 // enqueued in the same wait-list. We would think that that waiter was our
216 // AsyncWaiter and remove it.
217 //
218 // To stop this, Dequeue also takes a tag argument which is passed to the
219 // virtual Compare function before the two are considered a match. So we need
220 // a tag which is good for the lifetime of this handle: the Flag. Since we
221 // have a reference to the Flag, its memory cannot be reused while this object
222 // still exists. So if we find a waiter with the correct pointer value, and
223 // which shares a Flag pointer, we have a real match.
224 if (kernel_->Dequeue(waiter_, cancel_flag_.get())) {
225 // Case 2: the waiter hasn't been signaled yet; it was still on the wait
226 // list. We've removed it, thus we can delete it and the task (which cannot
227 // have been enqueued with the MessageLoop because the waiter was never
228 // signaled)
229 delete waiter_;
230 internal_callback_.Reset();
231 cancel_flag_ = NULL;
232 return;
233 }
234
235 // Case 3: the waiter isn't on the wait-list, thus it was signaled. It may
236 // not have run yet, so we set the flag to tell it not to bother enqueuing the
237 // task on the MessageLoop, but to delete it instead. The Waiter deletes
238 // itself once run.
239 cancel_flag_->Set();
240 cancel_flag_ = NULL;
241
242 // If the waiter has already run then the task has been enqueued. If the Task
243 // hasn't yet run, the flag will stop the delegate from getting called. (This
244 // is thread safe because one may only delete a Handle from the MessageLoop
245 // thread.)
246 //
247 // If the delegate has already been called then we have nothing to do. The
248 // task has been deleted by the MessageLoop.
249 }
250
GetWatchedEvent()251 WaitableEvent* WaitableEventWatcher::GetWatchedEvent() {
252 if (!cancel_flag_.get())
253 return NULL;
254
255 if (cancel_flag_->value())
256 return NULL;
257
258 return event_;
259 }
260
261 // -----------------------------------------------------------------------------
262 // This is called when the MessageLoop which the callback will be run it is
263 // deleted. We need to cancel the callback as if we had been deleted, but we
264 // will still be deleted at some point in the future.
265 // -----------------------------------------------------------------------------
WillDestroyCurrentMessageLoop()266 void WaitableEventWatcher::WillDestroyCurrentMessageLoop() {
267 StopWatching();
268 }
269
270 } // namespace base
271