1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/synchronization/waitable_event_watcher.h"
6 
7 #include "base/bind.h"
8 #include "base/location.h"
9 #include "base/macros.h"
10 #include "base/single_thread_task_runner.h"
11 #include "base/synchronization/lock.h"
12 #include "base/synchronization/waitable_event.h"
13 
14 namespace base {
15 
16 // -----------------------------------------------------------------------------
17 // WaitableEventWatcher (async waits).
18 //
19 // The basic design is that we add an AsyncWaiter to the wait-list of the event.
20 // That AsyncWaiter has a pointer to MessageLoop, and a Task to be posted to it.
21 // The MessageLoop ends up running the task, which calls the delegate.
22 //
23 // Since the wait can be canceled, we have a thread-safe Flag object which is
24 // set when the wait has been canceled. At each stage in the above, we check the
25 // flag before going onto the next stage. Since the wait may only be canceled in
26 // the MessageLoop which runs the Task, we are assured that the delegate cannot
27 // be called after canceling...
28 
29 // -----------------------------------------------------------------------------
30 // A thread-safe, reference-counted, write-once flag.
31 // -----------------------------------------------------------------------------
32 class Flag : public RefCountedThreadSafe<Flag> {
33  public:
Flag()34   Flag() { flag_ = false; }
35 
Set()36   void Set() {
37     AutoLock locked(lock_);
38     flag_ = true;
39   }
40 
value() const41   bool value() const {
42     AutoLock locked(lock_);
43     return flag_;
44   }
45 
46  private:
47   friend class RefCountedThreadSafe<Flag>;
~Flag()48   ~Flag() {}
49 
50   mutable Lock lock_;
51   bool flag_;
52 
53   DISALLOW_COPY_AND_ASSIGN(Flag);
54 };
55 
56 // -----------------------------------------------------------------------------
57 // This is an asynchronous waiter which posts a task to a MessageLoop when
58 // fired. An AsyncWaiter may only be in a single wait-list.
59 // -----------------------------------------------------------------------------
60 class AsyncWaiter : public WaitableEvent::Waiter {
61  public:
AsyncWaiter(MessageLoop * message_loop,const base::Closure & callback,Flag * flag)62   AsyncWaiter(MessageLoop* message_loop,
63               const base::Closure& callback,
64               Flag* flag)
65       : message_loop_(message_loop),
66         callback_(callback),
67         flag_(flag) { }
68 
Fire(WaitableEvent * event)69   bool Fire(WaitableEvent* event) override {
70     // Post the callback if we haven't been cancelled.
71     if (!flag_->value()) {
72       message_loop_->task_runner()->PostTask(FROM_HERE, callback_);
73     }
74 
75     // We are removed from the wait-list by the WaitableEvent itself. It only
76     // remains to delete ourselves.
77     delete this;
78 
79     // We can always return true because an AsyncWaiter is never in two
80     // different wait-lists at the same time.
81     return true;
82   }
83 
84   // See StopWatching for discussion
Compare(void * tag)85   bool Compare(void* tag) override { return tag == flag_.get(); }
86 
87  private:
88   MessageLoop *const message_loop_;
89   base::Closure callback_;
90   scoped_refptr<Flag> flag_;
91 };
92 
93 // -----------------------------------------------------------------------------
94 // For async waits we need to make a callback in a MessageLoop thread. We do
95 // this by posting a callback, which calls the delegate and keeps track of when
96 // the event is canceled.
97 // -----------------------------------------------------------------------------
AsyncCallbackHelper(Flag * flag,const WaitableEventWatcher::EventCallback & callback,WaitableEvent * event)98 void AsyncCallbackHelper(Flag* flag,
99                          const WaitableEventWatcher::EventCallback& callback,
100                          WaitableEvent* event) {
101   // Runs in MessageLoop thread.
102   if (!flag->value()) {
103     // This is to let the WaitableEventWatcher know that the event has occured
104     // because it needs to be able to return NULL from GetWatchedObject
105     flag->Set();
106     callback.Run(event);
107   }
108 }
109 
WaitableEventWatcher()110 WaitableEventWatcher::WaitableEventWatcher()
111     : message_loop_(NULL),
112       cancel_flag_(NULL),
113       waiter_(NULL),
114       event_(NULL) {
115 }
116 
~WaitableEventWatcher()117 WaitableEventWatcher::~WaitableEventWatcher() {
118   StopWatching();
119 }
120 
121 // -----------------------------------------------------------------------------
122 // The Handle is how the user cancels a wait. After deleting the Handle we
123 // insure that the delegate cannot be called.
124 // -----------------------------------------------------------------------------
StartWatching(WaitableEvent * event,const EventCallback & callback)125 bool WaitableEventWatcher::StartWatching(
126     WaitableEvent* event,
127     const EventCallback& callback) {
128   MessageLoop *const current_ml = MessageLoop::current();
129   DCHECK(current_ml) << "Cannot create WaitableEventWatcher without a "
130                         "current MessageLoop";
131 
132   // A user may call StartWatching from within the callback function. In this
133   // case, we won't know that we have finished watching, expect that the Flag
134   // will have been set in AsyncCallbackHelper().
135   if (cancel_flag_.get() && cancel_flag_->value()) {
136     if (message_loop_) {
137       message_loop_->RemoveDestructionObserver(this);
138       message_loop_ = NULL;
139     }
140 
141     cancel_flag_ = NULL;
142   }
143 
144   DCHECK(!cancel_flag_.get()) << "StartWatching called while still watching";
145 
146   cancel_flag_ = new Flag;
147   callback_ = callback;
148   internal_callback_ =
149       base::Bind(&AsyncCallbackHelper, cancel_flag_, callback_, event);
150   WaitableEvent::WaitableEventKernel* kernel = event->kernel_.get();
151 
152   AutoLock locked(kernel->lock_);
153 
154   event_ = event;
155 
156   if (kernel->signaled_) {
157     if (!kernel->manual_reset_)
158       kernel->signaled_ = false;
159 
160     // No hairpinning - we can't call the delegate directly here. We have to
161     // enqueue a task on the MessageLoop as normal.
162     current_ml->task_runner()->PostTask(FROM_HERE, internal_callback_);
163     return true;
164   }
165 
166   message_loop_ = current_ml;
167   current_ml->AddDestructionObserver(this);
168 
169   kernel_ = kernel;
170   waiter_ = new AsyncWaiter(current_ml, internal_callback_, cancel_flag_.get());
171   event->Enqueue(waiter_);
172 
173   return true;
174 }
175 
StopWatching()176 void WaitableEventWatcher::StopWatching() {
177   callback_.Reset();
178 
179   if (message_loop_) {
180     message_loop_->RemoveDestructionObserver(this);
181     message_loop_ = NULL;
182   }
183 
184   if (!cancel_flag_.get())  // if not currently watching...
185     return;
186 
187   if (cancel_flag_->value()) {
188     // In this case, the event has fired, but we haven't figured that out yet.
189     // The WaitableEvent may have been deleted too.
190     cancel_flag_ = NULL;
191     return;
192   }
193 
194   if (!kernel_.get()) {
195     // We have no kernel. This means that we never enqueued a Waiter on an
196     // event because the event was already signaled when StartWatching was
197     // called.
198     //
199     // In this case, a task was enqueued on the MessageLoop and will run.
200     // We set the flag in case the task hasn't yet run. The flag will stop the
201     // delegate getting called. If the task has run then we have the last
202     // reference to the flag and it will be deleted immedately after.
203     cancel_flag_->Set();
204     cancel_flag_ = NULL;
205     return;
206   }
207 
208   AutoLock locked(kernel_->lock_);
209   // We have a lock on the kernel. No one else can signal the event while we
210   // have it.
211 
212   // We have a possible ABA issue here. If Dequeue was to compare only the
213   // pointer values then it's possible that the AsyncWaiter could have been
214   // fired, freed and the memory reused for a different Waiter which was
215   // enqueued in the same wait-list. We would think that that waiter was our
216   // AsyncWaiter and remove it.
217   //
218   // To stop this, Dequeue also takes a tag argument which is passed to the
219   // virtual Compare function before the two are considered a match. So we need
220   // a tag which is good for the lifetime of this handle: the Flag. Since we
221   // have a reference to the Flag, its memory cannot be reused while this object
222   // still exists. So if we find a waiter with the correct pointer value, and
223   // which shares a Flag pointer, we have a real match.
224   if (kernel_->Dequeue(waiter_, cancel_flag_.get())) {
225     // Case 2: the waiter hasn't been signaled yet; it was still on the wait
226     // list. We've removed it, thus we can delete it and the task (which cannot
227     // have been enqueued with the MessageLoop because the waiter was never
228     // signaled)
229     delete waiter_;
230     internal_callback_.Reset();
231     cancel_flag_ = NULL;
232     return;
233   }
234 
235   // Case 3: the waiter isn't on the wait-list, thus it was signaled. It may
236   // not have run yet, so we set the flag to tell it not to bother enqueuing the
237   // task on the MessageLoop, but to delete it instead. The Waiter deletes
238   // itself once run.
239   cancel_flag_->Set();
240   cancel_flag_ = NULL;
241 
242   // If the waiter has already run then the task has been enqueued. If the Task
243   // hasn't yet run, the flag will stop the delegate from getting called. (This
244   // is thread safe because one may only delete a Handle from the MessageLoop
245   // thread.)
246   //
247   // If the delegate has already been called then we have nothing to do. The
248   // task has been deleted by the MessageLoop.
249 }
250 
GetWatchedEvent()251 WaitableEvent* WaitableEventWatcher::GetWatchedEvent() {
252   if (!cancel_flag_.get())
253     return NULL;
254 
255   if (cancel_flag_->value())
256     return NULL;
257 
258   return event_;
259 }
260 
261 // -----------------------------------------------------------------------------
262 // This is called when the MessageLoop which the callback will be run it is
263 // deleted. We need to cancel the callback as if we had been deleted, but we
264 // will still be deleted at some point in the future.
265 // -----------------------------------------------------------------------------
WillDestroyCurrentMessageLoop()266 void WaitableEventWatcher::WillDestroyCurrentMessageLoop() {
267   StopWatching();
268 }
269 
270 }  // namespace base
271