1 /* Portions are Copyright (C) 2011 Google Inc */
2 /* ***** BEGIN LICENSE BLOCK *****
3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4 *
5 * The contents of this file are subject to the Mozilla Public License Version
6 * 1.1 (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 * http://www.mozilla.org/MPL/
9 *
10 * Software distributed under the License is distributed on an "AS IS" basis,
11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12 * for the specific language governing rights and limitations under the
13 * License.
14 *
15 * The Original Code is the Netscape Portable Runtime (NSPR).
16 *
17 * The Initial Developer of the Original Code is
18 * Netscape Communications Corporation.
19 * Portions created by the Initial Developer are Copyright (C) 1998-2000
20 * the Initial Developer. All Rights Reserved.
21 *
22 * Contributor(s):
23 *
24 * Alternatively, the contents of this file may be used under the terms of
25 * either the GNU General Public License Version 2 or later (the "GPL"), or
26 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
27 * in which case the provisions of the GPL or the LGPL are applicable instead
28 * of those above. If you wish to allow use of your version of this file only
29 * under the terms of either the GPL or the LGPL, and not to allow others to
30 * use your version of this file under the terms of the MPL, indicate your
31 * decision by deleting the provisions above and replace them with the notice
32 * and other provisions required by the GPL or the LGPL. If you do not delete
33 * the provisions above, a recipient may use your version of this file under
34 * the terms of any one of the MPL, the GPL or the LGPL.
35 *
36 * ***** END LICENSE BLOCK ***** */
37
38 /*
39 * prtime.cc --
40 * NOTE: The original nspr file name is prtime.c
41 *
42 * NSPR date and time functions
43 *
44 * CVS revision 3.37
45 */
46
47 /*
48 * The following functions were copied from the NSPR prtime.c file.
49 * PR_ParseTimeString
50 * We inlined the new PR_ParseTimeStringToExplodedTime function to avoid
51 * copying PR_ExplodeTime and PR_LocalTimeParameters. (The PR_ExplodeTime
52 * and PR_ImplodeTime calls cancel each other out.)
53 * PR_NormalizeTime
54 * PR_GMTParameters
55 * PR_ImplodeTime
56 * This was modified to use the Win32 SYSTEMTIME/FILETIME structures
57 * and the timezone offsets are applied to the FILETIME structure.
58 * All types and macros are defined in the base/third_party/prtime.h file.
59 * These have been copied from the following nspr files. We have only copied
60 * over the types we need.
61 * 1. prtime.h
62 * 2. prtypes.h
63 * 3. prlong.h
64 *
65 * Unit tests are in base/time/pr_time_unittest.cc.
66 */
67
68 #include <limits.h>
69
70 #include "base/logging.h"
71 #include "base/third_party/nspr/prtime.h"
72 #include "build/build_config.h"
73
74 #if defined(OS_WIN)
75 #include <windows.h>
76 #elif defined(OS_MACOSX)
77 #include <CoreFoundation/CoreFoundation.h>
78 #elif defined(OS_ANDROID)
79 #include <ctype.h>
80 #include "base/os_compat_android.h" // For timegm()
81 #elif defined(OS_NACL)
82 #include "base/os_compat_nacl.h" // For timegm()
83 #endif
84 #include <errno.h> /* for EINVAL */
85 #include <time.h>
86
87 /* Implements the Unix localtime_r() function for windows */
88 #if defined(OS_WIN)
localtime_r(const time_t * secs,struct tm * time)89 static void localtime_r(const time_t* secs, struct tm* time) {
90 (void) localtime_s(time, secs);
91 }
92 #endif
93
94 /*
95 *------------------------------------------------------------------------
96 *
97 * PR_ImplodeTime --
98 *
99 * Cf. time_t mktime(struct tm *tp)
100 * Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough.
101 *
102 *------------------------------------------------------------------------
103 */
104 PRTime
PR_ImplodeTime(const PRExplodedTime * exploded)105 PR_ImplodeTime(const PRExplodedTime *exploded)
106 {
107 // This is important, we want to make sure multiplications are
108 // done with the correct precision.
109 static const PRTime kSecondsToMicroseconds = static_cast<PRTime>(1000000);
110 #if defined(OS_WIN)
111 // Create the system struct representing our exploded time.
112 SYSTEMTIME st = {};
113 FILETIME ft = {};
114 ULARGE_INTEGER uli = {};
115
116 st.wYear = exploded->tm_year;
117 st.wMonth = static_cast<WORD>(exploded->tm_month + 1);
118 st.wDayOfWeek = exploded->tm_wday;
119 st.wDay = static_cast<WORD>(exploded->tm_mday);
120 st.wHour = static_cast<WORD>(exploded->tm_hour);
121 st.wMinute = static_cast<WORD>(exploded->tm_min);
122 st.wSecond = static_cast<WORD>(exploded->tm_sec);
123 st.wMilliseconds = static_cast<WORD>(exploded->tm_usec/1000);
124 // Convert to FILETIME.
125 if (!SystemTimeToFileTime(&st, &ft)) {
126 NOTREACHED() << "Unable to convert time";
127 return 0;
128 }
129 // Apply offsets.
130 uli.LowPart = ft.dwLowDateTime;
131 uli.HighPart = ft.dwHighDateTime;
132 // Convert from Windows epoch to NSPR epoch, and 100-nanoseconds units
133 // to microsecond units.
134 PRTime result =
135 static_cast<PRTime>((uli.QuadPart / 10) - 11644473600000000i64);
136 // Adjust for time zone and dst. Convert from seconds to microseconds.
137 result -= (exploded->tm_params.tp_gmt_offset +
138 exploded->tm_params.tp_dst_offset) * kSecondsToMicroseconds;
139 // Add microseconds that cannot be represented in |st|.
140 result += exploded->tm_usec % 1000;
141 return result;
142 #elif defined(OS_MACOSX)
143 // Create the system struct representing our exploded time.
144 CFGregorianDate gregorian_date;
145 gregorian_date.year = exploded->tm_year;
146 gregorian_date.month = exploded->tm_month + 1;
147 gregorian_date.day = exploded->tm_mday;
148 gregorian_date.hour = exploded->tm_hour;
149 gregorian_date.minute = exploded->tm_min;
150 gregorian_date.second = exploded->tm_sec;
151
152 // Compute |absolute_time| in seconds, correct for gmt and dst
153 // (note the combined offset will be negative when we need to add it), then
154 // convert to microseconds which is what PRTime expects.
155 CFAbsoluteTime absolute_time =
156 CFGregorianDateGetAbsoluteTime(gregorian_date, NULL);
157 PRTime result = static_cast<PRTime>(absolute_time);
158 result -= exploded->tm_params.tp_gmt_offset +
159 exploded->tm_params.tp_dst_offset;
160 result += kCFAbsoluteTimeIntervalSince1970; // PRTime epoch is 1970
161 result *= kSecondsToMicroseconds;
162 result += exploded->tm_usec;
163 return result;
164 #elif defined(OS_POSIX)
165 struct tm exp_tm;
166 memset(&exp_tm, 0, sizeof(exp_tm));
167 exp_tm.tm_sec = exploded->tm_sec;
168 exp_tm.tm_min = exploded->tm_min;
169 exp_tm.tm_hour = exploded->tm_hour;
170 exp_tm.tm_mday = exploded->tm_mday;
171 exp_tm.tm_mon = exploded->tm_month;
172 exp_tm.tm_year = exploded->tm_year - 1900;
173
174 time_t absolute_time = timegm(&exp_tm);
175
176 // If timegm returned -1. Since we don't pass it a time zone, the only
177 // valid case of returning -1 is 1 second before Epoch (Dec 31, 1969).
178 if (absolute_time == -1 &&
179 !(exploded->tm_year == 1969 && exploded->tm_month == 11 &&
180 exploded->tm_mday == 31 && exploded->tm_hour == 23 &&
181 exploded->tm_min == 59 && exploded->tm_sec == 59)) {
182 // If we get here, time_t must be 32 bits.
183 // Date was possibly too far in the future and would overflow. Return
184 // the most future date possible (year 2038).
185 if (exploded->tm_year >= 1970)
186 return INT_MAX * kSecondsToMicroseconds;
187 // Date was possibly too far in the past and would underflow. Return
188 // the most past date possible (year 1901).
189 return INT_MIN * kSecondsToMicroseconds;
190 }
191
192 PRTime result = static_cast<PRTime>(absolute_time);
193 result -= exploded->tm_params.tp_gmt_offset +
194 exploded->tm_params.tp_dst_offset;
195 result *= kSecondsToMicroseconds;
196 result += exploded->tm_usec;
197 return result;
198 #else
199 #error No PR_ImplodeTime implemented on your platform.
200 #endif
201 }
202
203 /*
204 * The COUNT_LEAPS macro counts the number of leap years passed by
205 * till the start of the given year Y. At the start of the year 4
206 * A.D. the number of leap years passed by is 0, while at the start of
207 * the year 5 A.D. this count is 1. The number of years divisible by
208 * 100 but not divisible by 400 (the non-leap years) is deducted from
209 * the count to get the correct number of leap years.
210 *
211 * The COUNT_DAYS macro counts the number of days since 01/01/01 till the
212 * start of the given year Y. The number of days at the start of the year
213 * 1 is 0 while the number of days at the start of the year 2 is 365
214 * (which is ((2)-1) * 365) and so on. The reference point is 01/01/01
215 * midnight 00:00:00.
216 */
217
218 #define COUNT_LEAPS(Y) ( ((Y)-1)/4 - ((Y)-1)/100 + ((Y)-1)/400 )
219 #define COUNT_DAYS(Y) ( ((Y)-1)*365 + COUNT_LEAPS(Y) )
220 #define DAYS_BETWEEN_YEARS(A, B) (COUNT_DAYS(B) - COUNT_DAYS(A))
221
222 /*
223 * Static variables used by functions in this file
224 */
225
226 /*
227 * The following array contains the day of year for the last day of
228 * each month, where index 1 is January, and day 0 is January 1.
229 */
230
231 static const int lastDayOfMonth[2][13] = {
232 {-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364},
233 {-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}
234 };
235
236 /*
237 * The number of days in a month
238 */
239
240 static const PRInt8 nDays[2][12] = {
241 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
242 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
243 };
244
245 /*
246 *-------------------------------------------------------------------------
247 *
248 * IsLeapYear --
249 *
250 * Returns 1 if the year is a leap year, 0 otherwise.
251 *
252 *-------------------------------------------------------------------------
253 */
254
IsLeapYear(PRInt16 year)255 static int IsLeapYear(PRInt16 year)
256 {
257 if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)
258 return 1;
259 else
260 return 0;
261 }
262
263 /*
264 * 'secOffset' should be less than 86400 (i.e., a day).
265 * 'time' should point to a normalized PRExplodedTime.
266 */
267
268 static void
ApplySecOffset(PRExplodedTime * time,PRInt32 secOffset)269 ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset)
270 {
271 time->tm_sec += secOffset;
272
273 /* Note that in this implementation we do not count leap seconds */
274 if (time->tm_sec < 0 || time->tm_sec >= 60) {
275 time->tm_min += time->tm_sec / 60;
276 time->tm_sec %= 60;
277 if (time->tm_sec < 0) {
278 time->tm_sec += 60;
279 time->tm_min--;
280 }
281 }
282
283 if (time->tm_min < 0 || time->tm_min >= 60) {
284 time->tm_hour += time->tm_min / 60;
285 time->tm_min %= 60;
286 if (time->tm_min < 0) {
287 time->tm_min += 60;
288 time->tm_hour--;
289 }
290 }
291
292 if (time->tm_hour < 0) {
293 /* Decrement mday, yday, and wday */
294 time->tm_hour += 24;
295 time->tm_mday--;
296 time->tm_yday--;
297 if (time->tm_mday < 1) {
298 time->tm_month--;
299 if (time->tm_month < 0) {
300 time->tm_month = 11;
301 time->tm_year--;
302 if (IsLeapYear(time->tm_year))
303 time->tm_yday = 365;
304 else
305 time->tm_yday = 364;
306 }
307 time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month];
308 }
309 time->tm_wday--;
310 if (time->tm_wday < 0)
311 time->tm_wday = 6;
312 } else if (time->tm_hour > 23) {
313 /* Increment mday, yday, and wday */
314 time->tm_hour -= 24;
315 time->tm_mday++;
316 time->tm_yday++;
317 if (time->tm_mday >
318 nDays[IsLeapYear(time->tm_year)][time->tm_month]) {
319 time->tm_mday = 1;
320 time->tm_month++;
321 if (time->tm_month > 11) {
322 time->tm_month = 0;
323 time->tm_year++;
324 time->tm_yday = 0;
325 }
326 }
327 time->tm_wday++;
328 if (time->tm_wday > 6)
329 time->tm_wday = 0;
330 }
331 }
332
333 void
PR_NormalizeTime(PRExplodedTime * time,PRTimeParamFn params)334 PR_NormalizeTime(PRExplodedTime *time, PRTimeParamFn params)
335 {
336 int daysInMonth;
337 PRInt32 numDays;
338
339 /* Get back to GMT */
340 time->tm_sec -= time->tm_params.tp_gmt_offset
341 + time->tm_params.tp_dst_offset;
342 time->tm_params.tp_gmt_offset = 0;
343 time->tm_params.tp_dst_offset = 0;
344
345 /* Now normalize GMT */
346
347 if (time->tm_usec < 0 || time->tm_usec >= 1000000) {
348 time->tm_sec += time->tm_usec / 1000000;
349 time->tm_usec %= 1000000;
350 if (time->tm_usec < 0) {
351 time->tm_usec += 1000000;
352 time->tm_sec--;
353 }
354 }
355
356 /* Note that we do not count leap seconds in this implementation */
357 if (time->tm_sec < 0 || time->tm_sec >= 60) {
358 time->tm_min += time->tm_sec / 60;
359 time->tm_sec %= 60;
360 if (time->tm_sec < 0) {
361 time->tm_sec += 60;
362 time->tm_min--;
363 }
364 }
365
366 if (time->tm_min < 0 || time->tm_min >= 60) {
367 time->tm_hour += time->tm_min / 60;
368 time->tm_min %= 60;
369 if (time->tm_min < 0) {
370 time->tm_min += 60;
371 time->tm_hour--;
372 }
373 }
374
375 if (time->tm_hour < 0 || time->tm_hour >= 24) {
376 time->tm_mday += time->tm_hour / 24;
377 time->tm_hour %= 24;
378 if (time->tm_hour < 0) {
379 time->tm_hour += 24;
380 time->tm_mday--;
381 }
382 }
383
384 /* Normalize month and year before mday */
385 if (time->tm_month < 0 || time->tm_month >= 12) {
386 time->tm_year += static_cast<PRInt16>(time->tm_month / 12);
387 time->tm_month %= 12;
388 if (time->tm_month < 0) {
389 time->tm_month += 12;
390 time->tm_year--;
391 }
392 }
393
394 /* Now that month and year are in proper range, normalize mday */
395
396 if (time->tm_mday < 1) {
397 /* mday too small */
398 do {
399 /* the previous month */
400 time->tm_month--;
401 if (time->tm_month < 0) {
402 time->tm_month = 11;
403 time->tm_year--;
404 }
405 time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month];
406 } while (time->tm_mday < 1);
407 } else {
408 daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
409 while (time->tm_mday > daysInMonth) {
410 /* mday too large */
411 time->tm_mday -= daysInMonth;
412 time->tm_month++;
413 if (time->tm_month > 11) {
414 time->tm_month = 0;
415 time->tm_year++;
416 }
417 daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
418 }
419 }
420
421 /* Recompute yday and wday */
422 time->tm_yday = static_cast<PRInt16>(time->tm_mday +
423 lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month]);
424
425 numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday;
426 time->tm_wday = (numDays + 4) % 7;
427 if (time->tm_wday < 0) {
428 time->tm_wday += 7;
429 }
430
431 /* Recompute time parameters */
432
433 time->tm_params = params(time);
434
435 ApplySecOffset(time, time->tm_params.tp_gmt_offset
436 + time->tm_params.tp_dst_offset);
437 }
438
439 /*
440 *------------------------------------------------------------------------
441 *
442 * PR_GMTParameters --
443 *
444 * Returns the PRTimeParameters for Greenwich Mean Time.
445 * Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0.
446 *
447 *------------------------------------------------------------------------
448 */
449
450 PRTimeParameters
PR_GMTParameters(const PRExplodedTime *)451 PR_GMTParameters(const PRExplodedTime* /* gmt */)
452 {
453 PRTimeParameters retVal = { 0, 0 };
454 return retVal;
455 }
456
457 /*
458 * The following code implements PR_ParseTimeString(). It is based on
459 * ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <jwz@netscape.com>.
460 */
461
462 /*
463 * We only recognize the abbreviations of a small subset of time zones
464 * in North America, Europe, and Japan.
465 *
466 * PST/PDT: Pacific Standard/Daylight Time
467 * MST/MDT: Mountain Standard/Daylight Time
468 * CST/CDT: Central Standard/Daylight Time
469 * EST/EDT: Eastern Standard/Daylight Time
470 * AST: Atlantic Standard Time
471 * NST: Newfoundland Standard Time
472 * GMT: Greenwich Mean Time
473 * BST: British Summer Time
474 * MET: Middle Europe Time
475 * EET: Eastern Europe Time
476 * JST: Japan Standard Time
477 */
478
479 typedef enum
480 {
481 TT_UNKNOWN,
482
483 TT_SUN, TT_MON, TT_TUE, TT_WED, TT_THU, TT_FRI, TT_SAT,
484
485 TT_JAN, TT_FEB, TT_MAR, TT_APR, TT_MAY, TT_JUN,
486 TT_JUL, TT_AUG, TT_SEP, TT_OCT, TT_NOV, TT_DEC,
487
488 TT_PST, TT_PDT, TT_MST, TT_MDT, TT_CST, TT_CDT, TT_EST, TT_EDT,
489 TT_AST, TT_NST, TT_GMT, TT_BST, TT_MET, TT_EET, TT_JST
490 } TIME_TOKEN;
491
492 /*
493 * This parses a time/date string into a PRTime
494 * (microseconds after "1-Jan-1970 00:00:00 GMT").
495 * It returns PR_SUCCESS on success, and PR_FAILURE
496 * if the time/date string can't be parsed.
497 *
498 * Many formats are handled, including:
499 *
500 * 14 Apr 89 03:20:12
501 * 14 Apr 89 03:20 GMT
502 * Fri, 17 Mar 89 4:01:33
503 * Fri, 17 Mar 89 4:01 GMT
504 * Mon Jan 16 16:12 PDT 1989
505 * Mon Jan 16 16:12 +0130 1989
506 * 6 May 1992 16:41-JST (Wednesday)
507 * 22-AUG-1993 10:59:12.82
508 * 22-AUG-1993 10:59pm
509 * 22-AUG-1993 12:59am
510 * 22-AUG-1993 12:59 PM
511 * Friday, August 04, 1995 3:54 PM
512 * 06/21/95 04:24:34 PM
513 * 20/06/95 21:07
514 * 95-06-08 19:32:48 EDT
515 * 1995-06-17T23:11:25.342156Z
516 *
517 * If the input string doesn't contain a description of the timezone,
518 * we consult the `default_to_gmt' to decide whether the string should
519 * be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE).
520 * The correct value for this argument depends on what standard specified
521 * the time string which you are parsing.
522 */
523
524 PRStatus
PR_ParseTimeString(const char * string,PRBool default_to_gmt,PRTime * result_imploded)525 PR_ParseTimeString(
526 const char *string,
527 PRBool default_to_gmt,
528 PRTime *result_imploded)
529 {
530 PRExplodedTime tm;
531 PRExplodedTime *result = &tm;
532 TIME_TOKEN dotw = TT_UNKNOWN;
533 TIME_TOKEN month = TT_UNKNOWN;
534 TIME_TOKEN zone = TT_UNKNOWN;
535 int zone_offset = -1;
536 int dst_offset = 0;
537 int date = -1;
538 PRInt32 year = -1;
539 int hour = -1;
540 int min = -1;
541 int sec = -1;
542 int usec = -1;
543
544 const char *rest = string;
545
546 int iterations = 0;
547
548 PR_ASSERT(string && result);
549 if (!string || !result) return PR_FAILURE;
550
551 while (*rest)
552 {
553
554 if (iterations++ > 1000)
555 {
556 return PR_FAILURE;
557 }
558
559 switch (*rest)
560 {
561 case 'a': case 'A':
562 if (month == TT_UNKNOWN &&
563 (rest[1] == 'p' || rest[1] == 'P') &&
564 (rest[2] == 'r' || rest[2] == 'R'))
565 month = TT_APR;
566 else if (zone == TT_UNKNOWN &&
567 (rest[1] == 's' || rest[1] == 'S') &&
568 (rest[2] == 't' || rest[2] == 'T'))
569 zone = TT_AST;
570 else if (month == TT_UNKNOWN &&
571 (rest[1] == 'u' || rest[1] == 'U') &&
572 (rest[2] == 'g' || rest[2] == 'G'))
573 month = TT_AUG;
574 break;
575 case 'b': case 'B':
576 if (zone == TT_UNKNOWN &&
577 (rest[1] == 's' || rest[1] == 'S') &&
578 (rest[2] == 't' || rest[2] == 'T'))
579 zone = TT_BST;
580 break;
581 case 'c': case 'C':
582 if (zone == TT_UNKNOWN &&
583 (rest[1] == 'd' || rest[1] == 'D') &&
584 (rest[2] == 't' || rest[2] == 'T'))
585 zone = TT_CDT;
586 else if (zone == TT_UNKNOWN &&
587 (rest[1] == 's' || rest[1] == 'S') &&
588 (rest[2] == 't' || rest[2] == 'T'))
589 zone = TT_CST;
590 break;
591 case 'd': case 'D':
592 if (month == TT_UNKNOWN &&
593 (rest[1] == 'e' || rest[1] == 'E') &&
594 (rest[2] == 'c' || rest[2] == 'C'))
595 month = TT_DEC;
596 break;
597 case 'e': case 'E':
598 if (zone == TT_UNKNOWN &&
599 (rest[1] == 'd' || rest[1] == 'D') &&
600 (rest[2] == 't' || rest[2] == 'T'))
601 zone = TT_EDT;
602 else if (zone == TT_UNKNOWN &&
603 (rest[1] == 'e' || rest[1] == 'E') &&
604 (rest[2] == 't' || rest[2] == 'T'))
605 zone = TT_EET;
606 else if (zone == TT_UNKNOWN &&
607 (rest[1] == 's' || rest[1] == 'S') &&
608 (rest[2] == 't' || rest[2] == 'T'))
609 zone = TT_EST;
610 break;
611 case 'f': case 'F':
612 if (month == TT_UNKNOWN &&
613 (rest[1] == 'e' || rest[1] == 'E') &&
614 (rest[2] == 'b' || rest[2] == 'B'))
615 month = TT_FEB;
616 else if (dotw == TT_UNKNOWN &&
617 (rest[1] == 'r' || rest[1] == 'R') &&
618 (rest[2] == 'i' || rest[2] == 'I'))
619 dotw = TT_FRI;
620 break;
621 case 'g': case 'G':
622 if (zone == TT_UNKNOWN &&
623 (rest[1] == 'm' || rest[1] == 'M') &&
624 (rest[2] == 't' || rest[2] == 'T'))
625 zone = TT_GMT;
626 break;
627 case 'j': case 'J':
628 if (month == TT_UNKNOWN &&
629 (rest[1] == 'a' || rest[1] == 'A') &&
630 (rest[2] == 'n' || rest[2] == 'N'))
631 month = TT_JAN;
632 else if (zone == TT_UNKNOWN &&
633 (rest[1] == 's' || rest[1] == 'S') &&
634 (rest[2] == 't' || rest[2] == 'T'))
635 zone = TT_JST;
636 else if (month == TT_UNKNOWN &&
637 (rest[1] == 'u' || rest[1] == 'U') &&
638 (rest[2] == 'l' || rest[2] == 'L'))
639 month = TT_JUL;
640 else if (month == TT_UNKNOWN &&
641 (rest[1] == 'u' || rest[1] == 'U') &&
642 (rest[2] == 'n' || rest[2] == 'N'))
643 month = TT_JUN;
644 break;
645 case 'm': case 'M':
646 if (month == TT_UNKNOWN &&
647 (rest[1] == 'a' || rest[1] == 'A') &&
648 (rest[2] == 'r' || rest[2] == 'R'))
649 month = TT_MAR;
650 else if (month == TT_UNKNOWN &&
651 (rest[1] == 'a' || rest[1] == 'A') &&
652 (rest[2] == 'y' || rest[2] == 'Y'))
653 month = TT_MAY;
654 else if (zone == TT_UNKNOWN &&
655 (rest[1] == 'd' || rest[1] == 'D') &&
656 (rest[2] == 't' || rest[2] == 'T'))
657 zone = TT_MDT;
658 else if (zone == TT_UNKNOWN &&
659 (rest[1] == 'e' || rest[1] == 'E') &&
660 (rest[2] == 't' || rest[2] == 'T'))
661 zone = TT_MET;
662 else if (dotw == TT_UNKNOWN &&
663 (rest[1] == 'o' || rest[1] == 'O') &&
664 (rest[2] == 'n' || rest[2] == 'N'))
665 dotw = TT_MON;
666 else if (zone == TT_UNKNOWN &&
667 (rest[1] == 's' || rest[1] == 'S') &&
668 (rest[2] == 't' || rest[2] == 'T'))
669 zone = TT_MST;
670 break;
671 case 'n': case 'N':
672 if (month == TT_UNKNOWN &&
673 (rest[1] == 'o' || rest[1] == 'O') &&
674 (rest[2] == 'v' || rest[2] == 'V'))
675 month = TT_NOV;
676 else if (zone == TT_UNKNOWN &&
677 (rest[1] == 's' || rest[1] == 'S') &&
678 (rest[2] == 't' || rest[2] == 'T'))
679 zone = TT_NST;
680 break;
681 case 'o': case 'O':
682 if (month == TT_UNKNOWN &&
683 (rest[1] == 'c' || rest[1] == 'C') &&
684 (rest[2] == 't' || rest[2] == 'T'))
685 month = TT_OCT;
686 break;
687 case 'p': case 'P':
688 if (zone == TT_UNKNOWN &&
689 (rest[1] == 'd' || rest[1] == 'D') &&
690 (rest[2] == 't' || rest[2] == 'T'))
691 zone = TT_PDT;
692 else if (zone == TT_UNKNOWN &&
693 (rest[1] == 's' || rest[1] == 'S') &&
694 (rest[2] == 't' || rest[2] == 'T'))
695 zone = TT_PST;
696 break;
697 case 's': case 'S':
698 if (dotw == TT_UNKNOWN &&
699 (rest[1] == 'a' || rest[1] == 'A') &&
700 (rest[2] == 't' || rest[2] == 'T'))
701 dotw = TT_SAT;
702 else if (month == TT_UNKNOWN &&
703 (rest[1] == 'e' || rest[1] == 'E') &&
704 (rest[2] == 'p' || rest[2] == 'P'))
705 month = TT_SEP;
706 else if (dotw == TT_UNKNOWN &&
707 (rest[1] == 'u' || rest[1] == 'U') &&
708 (rest[2] == 'n' || rest[2] == 'N'))
709 dotw = TT_SUN;
710 break;
711 case 't': case 'T':
712 if (dotw == TT_UNKNOWN &&
713 (rest[1] == 'h' || rest[1] == 'H') &&
714 (rest[2] == 'u' || rest[2] == 'U'))
715 dotw = TT_THU;
716 else if (dotw == TT_UNKNOWN &&
717 (rest[1] == 'u' || rest[1] == 'U') &&
718 (rest[2] == 'e' || rest[2] == 'E'))
719 dotw = TT_TUE;
720 break;
721 case 'u': case 'U':
722 if (zone == TT_UNKNOWN &&
723 (rest[1] == 't' || rest[1] == 'T') &&
724 !(rest[2] >= 'A' && rest[2] <= 'Z') &&
725 !(rest[2] >= 'a' && rest[2] <= 'z'))
726 /* UT is the same as GMT but UTx is not. */
727 zone = TT_GMT;
728 break;
729 case 'w': case 'W':
730 if (dotw == TT_UNKNOWN &&
731 (rest[1] == 'e' || rest[1] == 'E') &&
732 (rest[2] == 'd' || rest[2] == 'D'))
733 dotw = TT_WED;
734 break;
735
736 case '+': case '-':
737 {
738 const char *end;
739 int sign;
740 if (zone_offset != -1)
741 {
742 /* already got one... */
743 rest++;
744 break;
745 }
746 if (zone != TT_UNKNOWN && zone != TT_GMT)
747 {
748 /* GMT+0300 is legal, but PST+0300 is not. */
749 rest++;
750 break;
751 }
752
753 sign = ((*rest == '+') ? 1 : -1);
754 rest++; /* move over sign */
755 end = rest;
756 while (*end >= '0' && *end <= '9')
757 end++;
758 if (rest == end) /* no digits here */
759 break;
760
761 if ((end - rest) == 4)
762 /* offset in HHMM */
763 zone_offset = (((((rest[0]-'0')*10) + (rest[1]-'0')) * 60) +
764 (((rest[2]-'0')*10) + (rest[3]-'0')));
765 else if ((end - rest) == 2)
766 /* offset in hours */
767 zone_offset = (((rest[0]-'0')*10) + (rest[1]-'0')) * 60;
768 else if ((end - rest) == 1)
769 /* offset in hours */
770 zone_offset = (rest[0]-'0') * 60;
771 else
772 /* 3 or >4 */
773 break;
774
775 zone_offset *= sign;
776 zone = TT_GMT;
777 break;
778 }
779
780 case '0': case '1': case '2': case '3': case '4':
781 case '5': case '6': case '7': case '8': case '9':
782 {
783 int tmp_hour = -1;
784 int tmp_min = -1;
785 int tmp_sec = -1;
786 int tmp_usec = -1;
787 const char *end = rest + 1;
788 while (*end >= '0' && *end <= '9')
789 end++;
790
791 /* end is now the first character after a range of digits. */
792
793 if (*end == ':')
794 {
795 if (hour >= 0 && min >= 0) /* already got it */
796 break;
797
798 /* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */
799 if ((end - rest) > 2)
800 /* it is [0-9][0-9][0-9]+: */
801 break;
802 else if ((end - rest) == 2)
803 tmp_hour = ((rest[0]-'0')*10 +
804 (rest[1]-'0'));
805 else
806 tmp_hour = (rest[0]-'0');
807
808 /* move over the colon, and parse minutes */
809
810 rest = ++end;
811 while (*end >= '0' && *end <= '9')
812 end++;
813
814 if (end == rest)
815 /* no digits after first colon? */
816 break;
817 else if ((end - rest) > 2)
818 /* it is [0-9][0-9][0-9]+: */
819 break;
820 else if ((end - rest) == 2)
821 tmp_min = ((rest[0]-'0')*10 +
822 (rest[1]-'0'));
823 else
824 tmp_min = (rest[0]-'0');
825
826 /* now go for seconds */
827 rest = end;
828 if (*rest == ':')
829 rest++;
830 end = rest;
831 while (*end >= '0' && *end <= '9')
832 end++;
833
834 if (end == rest)
835 /* no digits after second colon - that's ok. */
836 ;
837 else if ((end - rest) > 2)
838 /* it is [0-9][0-9][0-9]+: */
839 break;
840 else if ((end - rest) == 2)
841 tmp_sec = ((rest[0]-'0')*10 +
842 (rest[1]-'0'));
843 else
844 tmp_sec = (rest[0]-'0');
845
846 /* fractional second */
847 rest = end;
848 if (*rest == '.')
849 {
850 rest++;
851 end++;
852 tmp_usec = 0;
853 /* use up to 6 digits, skip over the rest */
854 while (*end >= '0' && *end <= '9')
855 {
856 if (end - rest < 6)
857 tmp_usec = tmp_usec * 10 + *end - '0';
858 end++;
859 }
860 int ndigits = end - rest;
861 while (ndigits++ < 6)
862 tmp_usec *= 10;
863 rest = end;
864 }
865
866 if (*rest == 'Z')
867 {
868 zone = TT_GMT;
869 rest++;
870 }
871 else if (tmp_hour <= 12)
872 {
873 /* If we made it here, we've parsed hour and min,
874 and possibly sec, so the current token is a time.
875 Now skip over whitespace and see if there's an AM
876 or PM directly following the time.
877 */
878 const char *s = end;
879 while (*s && (*s == ' ' || *s == '\t'))
880 s++;
881 if ((s[0] == 'p' || s[0] == 'P') &&
882 (s[1] == 'm' || s[1] == 'M'))
883 /* 10:05pm == 22:05, and 12:05pm == 12:05 */
884 tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12);
885 else if (tmp_hour == 12 &&
886 (s[0] == 'a' || s[0] == 'A') &&
887 (s[1] == 'm' || s[1] == 'M'))
888 /* 12:05am == 00:05 */
889 tmp_hour = 0;
890 }
891
892 hour = tmp_hour;
893 min = tmp_min;
894 sec = tmp_sec;
895 usec = tmp_usec;
896 rest = end;
897 break;
898 }
899 else if ((*end == '/' || *end == '-') &&
900 end[1] >= '0' && end[1] <= '9')
901 {
902 /* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95
903 or even 95-06-05 or 1995-06-22.
904 */
905 int n1, n2, n3;
906 const char *s;
907
908 if (month != TT_UNKNOWN)
909 /* if we saw a month name, this can't be. */
910 break;
911
912 s = rest;
913
914 n1 = (*s++ - '0'); /* first 1, 2 or 4 digits */
915 if (*s >= '0' && *s <= '9')
916 {
917 n1 = n1*10 + (*s++ - '0');
918
919 if (*s >= '0' && *s <= '9') /* optional digits 3 and 4 */
920 {
921 n1 = n1*10 + (*s++ - '0');
922 if (*s < '0' || *s > '9')
923 break;
924 n1 = n1*10 + (*s++ - '0');
925 }
926 }
927
928 if (*s != '/' && *s != '-') /* slash */
929 break;
930 s++;
931
932 if (*s < '0' || *s > '9') /* second 1 or 2 digits */
933 break;
934 n2 = (*s++ - '0');
935 if (*s >= '0' && *s <= '9')
936 n2 = n2*10 + (*s++ - '0');
937
938 if (*s != '/' && *s != '-') /* slash */
939 break;
940 s++;
941
942 if (*s < '0' || *s > '9') /* third 1, 2, 4, or 5 digits */
943 break;
944 n3 = (*s++ - '0');
945 if (*s >= '0' && *s <= '9')
946 n3 = n3*10 + (*s++ - '0');
947
948 if (*s >= '0' && *s <= '9') /* optional digits 3, 4, and 5 */
949 {
950 n3 = n3*10 + (*s++ - '0');
951 if (*s < '0' || *s > '9')
952 break;
953 n3 = n3*10 + (*s++ - '0');
954 if (*s >= '0' && *s <= '9')
955 n3 = n3*10 + (*s++ - '0');
956 }
957
958 if (*s == 'T' && s[1] >= '0' && s[1] <= '9')
959 /* followed by ISO 8601 T delimiter and number is ok */
960 ;
961 else if ((*s >= '0' && *s <= '9') ||
962 (*s >= 'A' && *s <= 'Z') ||
963 (*s >= 'a' && *s <= 'z'))
964 /* but other alphanumerics are not ok */
965 break;
966
967 /* Ok, we parsed three multi-digit numbers, with / or -
968 between them. Now decide what the hell they are
969 (DD/MM/YY or MM/DD/YY or [YY]YY/MM/DD.)
970 */
971
972 if (n1 > 31 || n1 == 0) /* must be [YY]YY/MM/DD */
973 {
974 if (n2 > 12) break;
975 if (n3 > 31) break;
976 year = n1;
977 if (year < 70)
978 year += 2000;
979 else if (year < 100)
980 year += 1900;
981 month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
982 date = n3;
983 rest = s;
984 break;
985 }
986
987 if (n1 > 12 && n2 > 12) /* illegal */
988 {
989 rest = s;
990 break;
991 }
992
993 if (n3 < 70)
994 n3 += 2000;
995 else if (n3 < 100)
996 n3 += 1900;
997
998 if (n1 > 12) /* must be DD/MM/YY */
999 {
1000 date = n1;
1001 month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
1002 year = n3;
1003 }
1004 else /* assume MM/DD/YY */
1005 {
1006 /* #### In the ambiguous case, should we consult the
1007 locale to find out the local default? */
1008 month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1);
1009 date = n2;
1010 year = n3;
1011 }
1012 rest = s;
1013 }
1014 else if ((*end >= 'A' && *end <= 'Z') ||
1015 (*end >= 'a' && *end <= 'z'))
1016 /* Digits followed by non-punctuation - what's that? */
1017 ;
1018 else if ((end - rest) == 5) /* five digits is a year */
1019 year = (year < 0
1020 ? ((rest[0]-'0')*10000L +
1021 (rest[1]-'0')*1000L +
1022 (rest[2]-'0')*100L +
1023 (rest[3]-'0')*10L +
1024 (rest[4]-'0'))
1025 : year);
1026 else if ((end - rest) == 4) /* four digits is a year */
1027 year = (year < 0
1028 ? ((rest[0]-'0')*1000L +
1029 (rest[1]-'0')*100L +
1030 (rest[2]-'0')*10L +
1031 (rest[3]-'0'))
1032 : year);
1033 else if ((end - rest) == 2) /* two digits - date or year */
1034 {
1035 int n = ((rest[0]-'0')*10 +
1036 (rest[1]-'0'));
1037 /* If we don't have a date (day of the month) and we see a number
1038 less than 32, then assume that is the date.
1039
1040 Otherwise, if we have a date and not a year, assume this is the
1041 year. If it is less than 70, then assume it refers to the 21st
1042 century. If it is two digits (>= 70), assume it refers to this
1043 century. Otherwise, assume it refers to an unambiguous year.
1044
1045 The world will surely end soon.
1046 */
1047 if (date < 0 && n < 32)
1048 date = n;
1049 else if (year < 0)
1050 {
1051 if (n < 70)
1052 year = 2000 + n;
1053 else if (n < 100)
1054 year = 1900 + n;
1055 else
1056 year = n;
1057 }
1058 /* else what the hell is this. */
1059 }
1060 else if ((end - rest) == 1) /* one digit - date */
1061 date = (date < 0 ? (rest[0]-'0') : date);
1062 /* else, three or more than five digits - what's that? */
1063
1064 break;
1065 } /* case '0' .. '9' */
1066 } /* switch */
1067
1068 /* Skip to the end of this token, whether we parsed it or not.
1069 Tokens are delimited by whitespace, or ,;-+/()[] but explicitly not .:
1070 'T' is also treated as delimiter when followed by a digit (ISO 8601).
1071 */
1072 while (*rest &&
1073 *rest != ' ' && *rest != '\t' &&
1074 *rest != ',' && *rest != ';' &&
1075 *rest != '-' && *rest != '+' &&
1076 *rest != '/' &&
1077 *rest != '(' && *rest != ')' && *rest != '[' && *rest != ']' &&
1078 !(*rest == 'T' && rest[1] >= '0' && rest[1] <= '9')
1079 )
1080 rest++;
1081 /* skip over uninteresting chars. */
1082 SKIP_MORE:
1083 while (*rest == ' ' || *rest == '\t' ||
1084 *rest == ',' || *rest == ';' || *rest == '/' ||
1085 *rest == '(' || *rest == ')' || *rest == '[' || *rest == ']')
1086 rest++;
1087
1088 /* "-" is ignored at the beginning of a token if we have not yet
1089 parsed a year (e.g., the second "-" in "30-AUG-1966"), or if
1090 the character after the dash is not a digit. */
1091 if (*rest == '-' && ((rest > string &&
1092 isalpha((unsigned char)rest[-1]) && year < 0) ||
1093 rest[1] < '0' || rest[1] > '9'))
1094 {
1095 rest++;
1096 goto SKIP_MORE;
1097 }
1098
1099 /* Skip T that may precede ISO 8601 time. */
1100 if (*rest == 'T' && rest[1] >= '0' && rest[1] <= '9')
1101 rest++;
1102 } /* while */
1103
1104 if (zone != TT_UNKNOWN && zone_offset == -1)
1105 {
1106 switch (zone)
1107 {
1108 case TT_PST: zone_offset = -8 * 60; break;
1109 case TT_PDT: zone_offset = -8 * 60; dst_offset = 1 * 60; break;
1110 case TT_MST: zone_offset = -7 * 60; break;
1111 case TT_MDT: zone_offset = -7 * 60; dst_offset = 1 * 60; break;
1112 case TT_CST: zone_offset = -6 * 60; break;
1113 case TT_CDT: zone_offset = -6 * 60; dst_offset = 1 * 60; break;
1114 case TT_EST: zone_offset = -5 * 60; break;
1115 case TT_EDT: zone_offset = -5 * 60; dst_offset = 1 * 60; break;
1116 case TT_AST: zone_offset = -4 * 60; break;
1117 case TT_NST: zone_offset = -3 * 60 - 30; break;
1118 case TT_GMT: zone_offset = 0 * 60; break;
1119 case TT_BST: zone_offset = 0 * 60; dst_offset = 1 * 60; break;
1120 case TT_MET: zone_offset = 1 * 60; break;
1121 case TT_EET: zone_offset = 2 * 60; break;
1122 case TT_JST: zone_offset = 9 * 60; break;
1123 default:
1124 PR_ASSERT (0);
1125 break;
1126 }
1127 }
1128
1129 /* If we didn't find a year, month, or day-of-the-month, we can't
1130 possibly parse this, and in fact, mktime() will do something random
1131 (I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt
1132 a numerologically significant date... */
1133 if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX)
1134 return PR_FAILURE;
1135
1136 memset(result, 0, sizeof(*result));
1137 if (usec != -1)
1138 result->tm_usec = usec;
1139 if (sec != -1)
1140 result->tm_sec = sec;
1141 if (min != -1)
1142 result->tm_min = min;
1143 if (hour != -1)
1144 result->tm_hour = hour;
1145 if (date != -1)
1146 result->tm_mday = date;
1147 if (month != TT_UNKNOWN)
1148 result->tm_month = (((int)month) - ((int)TT_JAN));
1149 if (year != -1)
1150 result->tm_year = static_cast<PRInt16>(year);
1151 if (dotw != TT_UNKNOWN)
1152 result->tm_wday = static_cast<PRInt8>(((int)dotw) - ((int)TT_SUN));
1153 /*
1154 * Mainly to compute wday and yday, but normalized time is also required
1155 * by the check below that works around a Visual C++ 2005 mktime problem.
1156 */
1157 PR_NormalizeTime(result, PR_GMTParameters);
1158 /* The remaining work is to set the gmt and dst offsets in tm_params. */
1159
1160 if (zone == TT_UNKNOWN && default_to_gmt)
1161 {
1162 /* No zone was specified, so pretend the zone was GMT. */
1163 zone = TT_GMT;
1164 zone_offset = 0;
1165 }
1166
1167 if (zone_offset == -1)
1168 {
1169 /* no zone was specified, and we're to assume that everything
1170 is local. */
1171 struct tm localTime;
1172 time_t secs;
1173
1174 PR_ASSERT(result->tm_month > -1 &&
1175 result->tm_mday > 0 &&
1176 result->tm_hour > -1 &&
1177 result->tm_min > -1 &&
1178 result->tm_sec > -1);
1179
1180 /*
1181 * To obtain time_t from a tm structure representing the local
1182 * time, we call mktime(). However, we need to see if we are
1183 * on 1-Jan-1970 or before. If we are, we can't call mktime()
1184 * because mktime() will crash on win16. In that case, we
1185 * calculate zone_offset based on the zone offset at
1186 * 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the
1187 * date we are parsing to transform the date to GMT. We also
1188 * do so if mktime() returns (time_t) -1 (time out of range).
1189 */
1190
1191 /* month, day, hours, mins and secs are always non-negative
1192 so we dont need to worry about them. */
1193 if (result->tm_year >= 1970)
1194 {
1195 localTime.tm_sec = result->tm_sec;
1196 localTime.tm_min = result->tm_min;
1197 localTime.tm_hour = result->tm_hour;
1198 localTime.tm_mday = result->tm_mday;
1199 localTime.tm_mon = result->tm_month;
1200 localTime.tm_year = result->tm_year - 1900;
1201 /* Set this to -1 to tell mktime "I don't care". If you set
1202 it to 0 or 1, you are making assertions about whether the
1203 date you are handing it is in daylight savings mode or not;
1204 and if you're wrong, it will "fix" it for you. */
1205 localTime.tm_isdst = -1;
1206
1207 #if _MSC_VER == 1400 /* 1400 = Visual C++ 2005 (8.0) */
1208 /*
1209 * mktime will return (time_t) -1 if the input is a date
1210 * after 23:59:59, December 31, 3000, US Pacific Time (not
1211 * UTC as documented):
1212 * http://msdn.microsoft.com/en-us/library/d1y53h2a(VS.80).aspx
1213 * But if the year is 3001, mktime also invokes the invalid
1214 * parameter handler, causing the application to crash. This
1215 * problem has been reported in
1216 * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=266036.
1217 * We avoid this crash by not calling mktime if the date is
1218 * out of range. To use a simple test that works in any time
1219 * zone, we consider year 3000 out of range as well. (See
1220 * bug 480740.)
1221 */
1222 if (result->tm_year >= 3000) {
1223 /* Emulate what mktime would have done. */
1224 errno = EINVAL;
1225 secs = (time_t) -1;
1226 } else {
1227 secs = mktime(&localTime);
1228 }
1229 #else
1230 secs = mktime(&localTime);
1231 #endif
1232 if (secs != (time_t) -1)
1233 {
1234 *result_imploded = (PRInt64)secs * PR_USEC_PER_SEC;
1235 *result_imploded += result->tm_usec;
1236 return PR_SUCCESS;
1237 }
1238 }
1239
1240 /* So mktime() can't handle this case. We assume the
1241 zone_offset for the date we are parsing is the same as
1242 the zone offset on 00:00:00 2 Jan 1970 GMT. */
1243 secs = 86400;
1244 localtime_r(&secs, &localTime);
1245 zone_offset = localTime.tm_min
1246 + 60 * localTime.tm_hour
1247 + 1440 * (localTime.tm_mday - 2);
1248 }
1249
1250 result->tm_params.tp_gmt_offset = zone_offset * 60;
1251 result->tm_params.tp_dst_offset = dst_offset * 60;
1252
1253 *result_imploded = PR_ImplodeTime(result);
1254 return PR_SUCCESS;
1255 }
1256