1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "thread.h"
18 
19 #include <pthread.h>
20 #include <signal.h>
21 #include <sys/resource.h>
22 #include <sys/time.h>
23 
24 #include <algorithm>
25 #include <bitset>
26 #include <cerrno>
27 #include <iostream>
28 #include <list>
29 #include <sstream>
30 
31 #include "arch/context.h"
32 #include "art_field-inl.h"
33 #include "art_method-inl.h"
34 #include "base/bit_utils.h"
35 #include "base/memory_tool.h"
36 #include "base/mutex.h"
37 #include "base/timing_logger.h"
38 #include "base/to_str.h"
39 #include "base/systrace.h"
40 #include "class_linker-inl.h"
41 #include "debugger.h"
42 #include "dex_file-inl.h"
43 #include "entrypoints/entrypoint_utils.h"
44 #include "entrypoints/quick/quick_alloc_entrypoints.h"
45 #include "gc/accounting/card_table-inl.h"
46 #include "gc/accounting/heap_bitmap-inl.h"
47 #include "gc/allocator/rosalloc.h"
48 #include "gc/heap.h"
49 #include "gc/space/space-inl.h"
50 #include "handle_scope-inl.h"
51 #include "indirect_reference_table-inl.h"
52 #include "jni_internal.h"
53 #include "mirror/class_loader.h"
54 #include "mirror/class-inl.h"
55 #include "mirror/object_array-inl.h"
56 #include "mirror/stack_trace_element.h"
57 #include "monitor.h"
58 #include "oat_quick_method_header.h"
59 #include "object_lock.h"
60 #include "quick_exception_handler.h"
61 #include "quick/quick_method_frame_info.h"
62 #include "reflection.h"
63 #include "runtime.h"
64 #include "scoped_thread_state_change.h"
65 #include "ScopedLocalRef.h"
66 #include "ScopedUtfChars.h"
67 #include "stack.h"
68 #include "stack_map.h"
69 #include "thread_list.h"
70 #include "thread-inl.h"
71 #include "utils.h"
72 #include "verifier/method_verifier.h"
73 #include "verify_object-inl.h"
74 #include "well_known_classes.h"
75 #include "interpreter/interpreter.h"
76 
77 #if ART_USE_FUTEXES
78 #include "linux/futex.h"
79 #include "sys/syscall.h"
80 #ifndef SYS_futex
81 #define SYS_futex __NR_futex
82 #endif
83 #endif  // ART_USE_FUTEXES
84 
85 namespace art {
86 
87 bool Thread::is_started_ = false;
88 pthread_key_t Thread::pthread_key_self_;
89 ConditionVariable* Thread::resume_cond_ = nullptr;
90 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
91 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
92 Thread* Thread::jit_sensitive_thread_ = nullptr;
93 
94 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
95 
96 // For implicit overflow checks we reserve an extra piece of memory at the bottom
97 // of the stack (lowest memory).  The higher portion of the memory
98 // is protected against reads and the lower is available for use while
99 // throwing the StackOverflow exception.
100 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
101 
102 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
103 
InitCardTable()104 void Thread::InitCardTable() {
105   tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
106 }
107 
UnimplementedEntryPoint()108 static void UnimplementedEntryPoint() {
109   UNIMPLEMENTED(FATAL);
110 }
111 
112 void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
113 
InitTlsEntryPoints()114 void Thread::InitTlsEntryPoints() {
115   // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
116   uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
117   uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) +
118       sizeof(tlsPtr_.quick_entrypoints));
119   for (uintptr_t* it = begin; it != end; ++it) {
120     *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
121   }
122   InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
123 }
124 
InitStringEntryPoints()125 void Thread::InitStringEntryPoints() {
126   ScopedObjectAccess soa(this);
127   QuickEntryPoints* qpoints = &tlsPtr_.quick_entrypoints;
128   qpoints->pNewEmptyString = reinterpret_cast<void(*)()>(
129       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newEmptyString));
130   qpoints->pNewStringFromBytes_B = reinterpret_cast<void(*)()>(
131       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_B));
132   qpoints->pNewStringFromBytes_BI = reinterpret_cast<void(*)()>(
133       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BI));
134   qpoints->pNewStringFromBytes_BII = reinterpret_cast<void(*)()>(
135       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BII));
136   qpoints->pNewStringFromBytes_BIII = reinterpret_cast<void(*)()>(
137       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIII));
138   qpoints->pNewStringFromBytes_BIIString = reinterpret_cast<void(*)()>(
139       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIIString));
140   qpoints->pNewStringFromBytes_BString = reinterpret_cast<void(*)()>(
141       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BString));
142   qpoints->pNewStringFromBytes_BIICharset = reinterpret_cast<void(*)()>(
143       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIICharset));
144   qpoints->pNewStringFromBytes_BCharset = reinterpret_cast<void(*)()>(
145       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BCharset));
146   qpoints->pNewStringFromChars_C = reinterpret_cast<void(*)()>(
147       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_C));
148   qpoints->pNewStringFromChars_CII = reinterpret_cast<void(*)()>(
149       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_CII));
150   qpoints->pNewStringFromChars_IIC = reinterpret_cast<void(*)()>(
151       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_IIC));
152   qpoints->pNewStringFromCodePoints = reinterpret_cast<void(*)()>(
153       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromCodePoints));
154   qpoints->pNewStringFromString = reinterpret_cast<void(*)()>(
155       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromString));
156   qpoints->pNewStringFromStringBuffer = reinterpret_cast<void(*)()>(
157       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromStringBuffer));
158   qpoints->pNewStringFromStringBuilder = reinterpret_cast<void(*)()>(
159       soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromStringBuilder));
160 }
161 
ResetQuickAllocEntryPointsForThread()162 void Thread::ResetQuickAllocEntryPointsForThread() {
163   ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
164 }
165 
166 class DeoptimizationContextRecord {
167  public:
DeoptimizationContextRecord(const JValue & ret_val,bool is_reference,bool from_code,mirror::Throwable * pending_exception,DeoptimizationContextRecord * link)168   DeoptimizationContextRecord(const JValue& ret_val,
169                               bool is_reference,
170                               bool from_code,
171                               mirror::Throwable* pending_exception,
172                               DeoptimizationContextRecord* link)
173       : ret_val_(ret_val),
174         is_reference_(is_reference),
175         from_code_(from_code),
176         pending_exception_(pending_exception),
177         link_(link) {}
178 
GetReturnValue() const179   JValue GetReturnValue() const { return ret_val_; }
IsReference() const180   bool IsReference() const { return is_reference_; }
GetFromCode() const181   bool GetFromCode() const { return from_code_; }
GetPendingException() const182   mirror::Throwable* GetPendingException() const { return pending_exception_; }
GetLink() const183   DeoptimizationContextRecord* GetLink() const { return link_; }
GetReturnValueAsGCRoot()184   mirror::Object** GetReturnValueAsGCRoot() {
185     DCHECK(is_reference_);
186     return ret_val_.GetGCRoot();
187   }
GetPendingExceptionAsGCRoot()188   mirror::Object** GetPendingExceptionAsGCRoot() {
189     return reinterpret_cast<mirror::Object**>(&pending_exception_);
190   }
191 
192  private:
193   // The value returned by the method at the top of the stack before deoptimization.
194   JValue ret_val_;
195 
196   // Indicates whether the returned value is a reference. If so, the GC will visit it.
197   const bool is_reference_;
198 
199   // Whether the context was created from an explicit deoptimization in the code.
200   const bool from_code_;
201 
202   // The exception that was pending before deoptimization (or null if there was no pending
203   // exception).
204   mirror::Throwable* pending_exception_;
205 
206   // A link to the previous DeoptimizationContextRecord.
207   DeoptimizationContextRecord* const link_;
208 
209   DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
210 };
211 
212 class StackedShadowFrameRecord {
213  public:
StackedShadowFrameRecord(ShadowFrame * shadow_frame,StackedShadowFrameType type,StackedShadowFrameRecord * link)214   StackedShadowFrameRecord(ShadowFrame* shadow_frame,
215                            StackedShadowFrameType type,
216                            StackedShadowFrameRecord* link)
217       : shadow_frame_(shadow_frame),
218         type_(type),
219         link_(link) {}
220 
GetShadowFrame() const221   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetType() const222   StackedShadowFrameType GetType() const { return type_; }
GetLink() const223   StackedShadowFrameRecord* GetLink() const { return link_; }
224 
225  private:
226   ShadowFrame* const shadow_frame_;
227   const StackedShadowFrameType type_;
228   StackedShadowFrameRecord* const link_;
229 
230   DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
231 };
232 
PushDeoptimizationContext(const JValue & return_value,bool is_reference,bool from_code,mirror::Throwable * exception)233 void Thread::PushDeoptimizationContext(const JValue& return_value,
234                                        bool is_reference,
235                                        bool from_code,
236                                        mirror::Throwable* exception) {
237   DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
238       return_value,
239       is_reference,
240       from_code,
241       exception,
242       tlsPtr_.deoptimization_context_stack);
243   tlsPtr_.deoptimization_context_stack = record;
244 }
245 
PopDeoptimizationContext(JValue * result,mirror::Throwable ** exception,bool * from_code)246 void Thread::PopDeoptimizationContext(JValue* result,
247                                       mirror::Throwable** exception,
248                                       bool* from_code) {
249   AssertHasDeoptimizationContext();
250   DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
251   tlsPtr_.deoptimization_context_stack = record->GetLink();
252   result->SetJ(record->GetReturnValue().GetJ());
253   *exception = record->GetPendingException();
254   *from_code = record->GetFromCode();
255   delete record;
256 }
257 
AssertHasDeoptimizationContext()258 void Thread::AssertHasDeoptimizationContext() {
259   CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
260       << "No deoptimization context for thread " << *this;
261 }
262 
PushStackedShadowFrame(ShadowFrame * sf,StackedShadowFrameType type)263 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
264   StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
265       sf, type, tlsPtr_.stacked_shadow_frame_record);
266   tlsPtr_.stacked_shadow_frame_record = record;
267 }
268 
PopStackedShadowFrame(StackedShadowFrameType type,bool must_be_present)269 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
270   StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
271   if (must_be_present) {
272     DCHECK(record != nullptr);
273     DCHECK_EQ(record->GetType(), type);
274   } else {
275     if (record == nullptr || record->GetType() != type) {
276       return nullptr;
277     }
278   }
279   tlsPtr_.stacked_shadow_frame_record = record->GetLink();
280   ShadowFrame* shadow_frame = record->GetShadowFrame();
281   delete record;
282   return shadow_frame;
283 }
284 
285 class FrameIdToShadowFrame {
286  public:
Create(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next,size_t num_vregs)287   static FrameIdToShadowFrame* Create(size_t frame_id,
288                                       ShadowFrame* shadow_frame,
289                                       FrameIdToShadowFrame* next,
290                                       size_t num_vregs) {
291     // Append a bool array at the end to keep track of what vregs are updated by the debugger.
292     uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
293     return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
294   }
295 
Delete(FrameIdToShadowFrame * f)296   static void Delete(FrameIdToShadowFrame* f) {
297     uint8_t* memory = reinterpret_cast<uint8_t*>(f);
298     delete[] memory;
299   }
300 
GetFrameId() const301   size_t GetFrameId() const { return frame_id_; }
GetShadowFrame() const302   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetNext() const303   FrameIdToShadowFrame* GetNext() const { return next_; }
SetNext(FrameIdToShadowFrame * next)304   void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
GetUpdatedVRegFlags()305   bool* GetUpdatedVRegFlags() {
306     return updated_vreg_flags_;
307   }
308 
309  private:
FrameIdToShadowFrame(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next)310   FrameIdToShadowFrame(size_t frame_id,
311                        ShadowFrame* shadow_frame,
312                        FrameIdToShadowFrame* next)
313       : frame_id_(frame_id),
314         shadow_frame_(shadow_frame),
315         next_(next) {}
316 
317   const size_t frame_id_;
318   ShadowFrame* const shadow_frame_;
319   FrameIdToShadowFrame* next_;
320   bool updated_vreg_flags_[0];
321 
322   DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
323 };
324 
FindFrameIdToShadowFrame(FrameIdToShadowFrame * head,size_t frame_id)325 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
326                                                       size_t frame_id) {
327   FrameIdToShadowFrame* found = nullptr;
328   for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
329     if (record->GetFrameId() == frame_id) {
330       if (kIsDebugBuild) {
331         // Sanity check we have at most one record for this frame.
332         CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
333         found = record;
334       } else {
335         return record;
336       }
337     }
338   }
339   return found;
340 }
341 
FindDebuggerShadowFrame(size_t frame_id)342 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
343   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
344       tlsPtr_.frame_id_to_shadow_frame, frame_id);
345   if (record != nullptr) {
346     return record->GetShadowFrame();
347   }
348   return nullptr;
349 }
350 
351 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
GetUpdatedVRegFlags(size_t frame_id)352 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
353   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
354       tlsPtr_.frame_id_to_shadow_frame, frame_id);
355   CHECK(record != nullptr);
356   return record->GetUpdatedVRegFlags();
357 }
358 
FindOrCreateDebuggerShadowFrame(size_t frame_id,uint32_t num_vregs,ArtMethod * method,uint32_t dex_pc)359 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
360                                                      uint32_t num_vregs,
361                                                      ArtMethod* method,
362                                                      uint32_t dex_pc) {
363   ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
364   if (shadow_frame != nullptr) {
365     return shadow_frame;
366   }
367   VLOG(deopt) << "Create pre-deopted ShadowFrame for " << PrettyMethod(method);
368   shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
369   FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
370                                                               shadow_frame,
371                                                               tlsPtr_.frame_id_to_shadow_frame,
372                                                               num_vregs);
373   for (uint32_t i = 0; i < num_vregs; i++) {
374     // Do this to clear all references for root visitors.
375     shadow_frame->SetVRegReference(i, nullptr);
376     // This flag will be changed to true if the debugger modifies the value.
377     record->GetUpdatedVRegFlags()[i] = false;
378   }
379   tlsPtr_.frame_id_to_shadow_frame = record;
380   return shadow_frame;
381 }
382 
RemoveDebuggerShadowFrameMapping(size_t frame_id)383 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
384   FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
385   if (head->GetFrameId() == frame_id) {
386     tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
387     FrameIdToShadowFrame::Delete(head);
388     return;
389   }
390   FrameIdToShadowFrame* prev = head;
391   for (FrameIdToShadowFrame* record = head->GetNext();
392        record != nullptr;
393        prev = record, record = record->GetNext()) {
394     if (record->GetFrameId() == frame_id) {
395       prev->SetNext(record->GetNext());
396       FrameIdToShadowFrame::Delete(record);
397       return;
398     }
399   }
400   LOG(FATAL) << "No shadow frame for frame " << frame_id;
401   UNREACHABLE();
402 }
403 
InitTid()404 void Thread::InitTid() {
405   tls32_.tid = ::art::GetTid();
406 }
407 
InitAfterFork()408 void Thread::InitAfterFork() {
409   // One thread (us) survived the fork, but we have a new tid so we need to
410   // update the value stashed in this Thread*.
411   InitTid();
412 }
413 
CreateCallback(void * arg)414 void* Thread::CreateCallback(void* arg) {
415   Thread* self = reinterpret_cast<Thread*>(arg);
416   Runtime* runtime = Runtime::Current();
417   if (runtime == nullptr) {
418     LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
419     return nullptr;
420   }
421   {
422     // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
423     //       after self->Init().
424     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
425     // Check that if we got here we cannot be shutting down (as shutdown should never have started
426     // while threads are being born).
427     CHECK(!runtime->IsShuttingDownLocked());
428     // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
429     //       a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
430     //       the runtime in such a case. In case this ever changes, we need to make sure here to
431     //       delete the tmp_jni_env, as we own it at this point.
432     CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
433     self->tlsPtr_.tmp_jni_env = nullptr;
434     Runtime::Current()->EndThreadBirth();
435   }
436   {
437     ScopedObjectAccess soa(self);
438     self->InitStringEntryPoints();
439 
440     // Copy peer into self, deleting global reference when done.
441     CHECK(self->tlsPtr_.jpeer != nullptr);
442     self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
443     self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
444     self->tlsPtr_.jpeer = nullptr;
445     self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
446 
447     ArtField* priorityField = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority);
448     self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
449     Dbg::PostThreadStart(self);
450 
451     // Invoke the 'run' method of our java.lang.Thread.
452     mirror::Object* receiver = self->tlsPtr_.opeer;
453     jmethodID mid = WellKnownClasses::java_lang_Thread_run;
454     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
455     InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
456   }
457   // Detach and delete self.
458   Runtime::Current()->GetThreadList()->Unregister(self);
459 
460   return nullptr;
461 }
462 
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,mirror::Object * thread_peer)463 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
464                                   mirror::Object* thread_peer) {
465   ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
466   Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
467   // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
468   // to stop it from going away.
469   if (kIsDebugBuild) {
470     MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
471     if (result != nullptr && !result->IsSuspended()) {
472       Locks::thread_list_lock_->AssertHeld(soa.Self());
473     }
474   }
475   return result;
476 }
477 
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)478 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
479                                   jobject java_thread) {
480   return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
481 }
482 
FixStackSize(size_t stack_size)483 static size_t FixStackSize(size_t stack_size) {
484   // A stack size of zero means "use the default".
485   if (stack_size == 0) {
486     stack_size = Runtime::Current()->GetDefaultStackSize();
487   }
488 
489   // Dalvik used the bionic pthread default stack size for native threads,
490   // so include that here to support apps that expect large native stacks.
491   stack_size += 1 * MB;
492 
493   // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
494   if (stack_size < PTHREAD_STACK_MIN) {
495     stack_size = PTHREAD_STACK_MIN;
496   }
497 
498   if (Runtime::Current()->ExplicitStackOverflowChecks()) {
499     // It's likely that callers are trying to ensure they have at least a certain amount of
500     // stack space, so we should add our reserved space on top of what they requested, rather
501     // than implicitly take it away from them.
502     stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
503   } else {
504     // If we are going to use implicit stack checks, allocate space for the protected
505     // region at the bottom of the stack.
506     stack_size += Thread::kStackOverflowImplicitCheckSize +
507         GetStackOverflowReservedBytes(kRuntimeISA);
508   }
509 
510   // Some systems require the stack size to be a multiple of the system page size, so round up.
511   stack_size = RoundUp(stack_size, kPageSize);
512 
513   return stack_size;
514 }
515 
516 // Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
517 // overflow is detected.  It is located right below the stack_begin_.
518 ATTRIBUTE_NO_SANITIZE_ADDRESS
InstallImplicitProtection()519 void Thread::InstallImplicitProtection() {
520   uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
521   uint8_t* stack_himem = tlsPtr_.stack_end;
522   uint8_t* stack_top = reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(&stack_himem) &
523       ~(kPageSize - 1));    // Page containing current top of stack.
524 
525   // Try to directly protect the stack.
526   VLOG(threads) << "installing stack protected region at " << std::hex <<
527         static_cast<void*>(pregion) << " to " <<
528         static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
529   if (ProtectStack(/* fatal_on_error */ false)) {
530     // Tell the kernel that we won't be needing these pages any more.
531     // NB. madvise will probably write zeroes into the memory (on linux it does).
532     uint32_t unwanted_size = stack_top - pregion - kPageSize;
533     madvise(pregion, unwanted_size, MADV_DONTNEED);
534     return;
535   }
536 
537   // There is a little complexity here that deserves a special mention.  On some
538   // architectures, the stack is created using a VM_GROWSDOWN flag
539   // to prevent memory being allocated when it's not needed.  This flag makes the
540   // kernel only allocate memory for the stack by growing down in memory.  Because we
541   // want to put an mprotected region far away from that at the stack top, we need
542   // to make sure the pages for the stack are mapped in before we call mprotect.
543   //
544   // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
545   // with a non-mapped stack (usually only the main thread).
546   //
547   // We map in the stack by reading every page from the stack bottom (highest address)
548   // to the stack top. (We then madvise this away.) This must be done by reading from the
549   // current stack pointer downwards. Any access more than a page below the current SP
550   // might cause a segv.
551   // TODO: This comment may be out of date. It seems possible to speed this up. As
552   //       this is normally done once in the zygote on startup, ignore for now.
553   //
554   // AddressSanitizer does not like the part of this functions that reads every stack page.
555   // Looks a lot like an out-of-bounds access.
556 
557   // (Defensively) first remove the protection on the protected region as will want to read
558   // and write it. Ignore errors.
559   UnprotectStack();
560 
561   VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
562       static_cast<void*>(pregion);
563 
564   // Read every page from the high address to the low.
565   volatile uint8_t dont_optimize_this;
566   UNUSED(dont_optimize_this);
567   for (uint8_t* p = stack_top; p >= pregion; p -= kPageSize) {
568     dont_optimize_this = *p;
569   }
570 
571   VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
572       static_cast<void*>(pregion) << " to " <<
573       static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
574 
575   // Protect the bottom of the stack to prevent read/write to it.
576   ProtectStack(/* fatal_on_error */ true);
577 
578   // Tell the kernel that we won't be needing these pages any more.
579   // NB. madvise will probably write zeroes into the memory (on linux it does).
580   uint32_t unwanted_size = stack_top - pregion - kPageSize;
581   madvise(pregion, unwanted_size, MADV_DONTNEED);
582 }
583 
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)584 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
585   CHECK(java_peer != nullptr);
586   Thread* self = static_cast<JNIEnvExt*>(env)->self;
587 
588   if (VLOG_IS_ON(threads)) {
589     ScopedObjectAccess soa(env);
590 
591     ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
592     mirror::String* java_name = reinterpret_cast<mirror::String*>(f->GetObject(
593         soa.Decode<mirror::Object*>(java_peer)));
594     std::string thread_name;
595     if (java_name != nullptr) {
596       thread_name = java_name->ToModifiedUtf8();
597     } else {
598       thread_name = "(Unnamed)";
599     }
600 
601     VLOG(threads) << "Creating native thread for " << thread_name;
602     self->Dump(LOG(INFO));
603   }
604 
605   Runtime* runtime = Runtime::Current();
606 
607   // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
608   bool thread_start_during_shutdown = false;
609   {
610     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
611     if (runtime->IsShuttingDownLocked()) {
612       thread_start_during_shutdown = true;
613     } else {
614       runtime->StartThreadBirth();
615     }
616   }
617   if (thread_start_during_shutdown) {
618     ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
619     env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
620     return;
621   }
622 
623   Thread* child_thread = new Thread(is_daemon);
624   // Use global JNI ref to hold peer live while child thread starts.
625   child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
626   stack_size = FixStackSize(stack_size);
627 
628   // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
629   // assign it.
630   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
631                     reinterpret_cast<jlong>(child_thread));
632 
633   // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
634   // do not have a good way to report this on the child's side.
635   std::unique_ptr<JNIEnvExt> child_jni_env_ext(
636       JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM()));
637 
638   int pthread_create_result = 0;
639   if (child_jni_env_ext.get() != nullptr) {
640     pthread_t new_pthread;
641     pthread_attr_t attr;
642     child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
643     CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
644     CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
645                        "PTHREAD_CREATE_DETACHED");
646     CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
647     pthread_create_result = pthread_create(&new_pthread,
648                                            &attr,
649                                            Thread::CreateCallback,
650                                            child_thread);
651     CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
652 
653     if (pthread_create_result == 0) {
654       // pthread_create started the new thread. The child is now responsible for managing the
655       // JNIEnvExt we created.
656       // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
657       //       between the threads.
658       child_jni_env_ext.release();
659       return;
660     }
661   }
662 
663   // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
664   {
665     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
666     runtime->EndThreadBirth();
667   }
668   // Manually delete the global reference since Thread::Init will not have been run.
669   env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
670   child_thread->tlsPtr_.jpeer = nullptr;
671   delete child_thread;
672   child_thread = nullptr;
673   // TODO: remove from thread group?
674   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
675   {
676     std::string msg(child_jni_env_ext.get() == nullptr ?
677         "Could not allocate JNI Env" :
678         StringPrintf("pthread_create (%s stack) failed: %s",
679                                  PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
680     ScopedObjectAccess soa(env);
681     soa.Self()->ThrowOutOfMemoryError(msg.c_str());
682   }
683 }
684 
Init(ThreadList * thread_list,JavaVMExt * java_vm,JNIEnvExt * jni_env_ext)685 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
686   // This function does all the initialization that must be run by the native thread it applies to.
687   // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
688   // we can handshake with the corresponding native thread when it's ready.) Check this native
689   // thread hasn't been through here already...
690   CHECK(Thread::Current() == nullptr);
691 
692   // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
693   // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
694   tlsPtr_.pthread_self = pthread_self();
695   CHECK(is_started_);
696 
697   SetUpAlternateSignalStack();
698   if (!InitStackHwm()) {
699     return false;
700   }
701   InitCpu();
702   InitTlsEntryPoints();
703   RemoveSuspendTrigger();
704   InitCardTable();
705   InitTid();
706   interpreter::InitInterpreterTls(this);
707 
708 #ifdef __ANDROID__
709   __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
710 #else
711   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
712 #endif
713   DCHECK_EQ(Thread::Current(), this);
714 
715   tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
716 
717   if (jni_env_ext != nullptr) {
718     DCHECK_EQ(jni_env_ext->vm, java_vm);
719     DCHECK_EQ(jni_env_ext->self, this);
720     tlsPtr_.jni_env = jni_env_ext;
721   } else {
722     tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm);
723     if (tlsPtr_.jni_env == nullptr) {
724       return false;
725     }
726   }
727 
728   thread_list->Register(this);
729   return true;
730 }
731 
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)732 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
733                        bool create_peer) {
734   Runtime* runtime = Runtime::Current();
735   if (runtime == nullptr) {
736     LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
737     return nullptr;
738   }
739   Thread* self;
740   {
741     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
742     if (runtime->IsShuttingDownLocked()) {
743       LOG(WARNING) << "Thread attaching while runtime is shutting down: " << thread_name;
744       return nullptr;
745     } else {
746       Runtime::Current()->StartThreadBirth();
747       self = new Thread(as_daemon);
748       bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
749       Runtime::Current()->EndThreadBirth();
750       if (!init_success) {
751         delete self;
752         return nullptr;
753       }
754     }
755   }
756 
757   self->InitStringEntryPoints();
758 
759   CHECK_NE(self->GetState(), kRunnable);
760   self->SetState(kNative);
761 
762   // If we're the main thread, ClassLinker won't be created until after we're attached,
763   // so that thread needs a two-stage attach. Regular threads don't need this hack.
764   // In the compiler, all threads need this hack, because no-one's going to be getting
765   // a native peer!
766   if (create_peer) {
767     self->CreatePeer(thread_name, as_daemon, thread_group);
768     if (self->IsExceptionPending()) {
769       // We cannot keep the exception around, as we're deleting self. Try to be helpful and log it.
770       {
771         ScopedObjectAccess soa(self);
772         LOG(ERROR) << "Exception creating thread peer:";
773         LOG(ERROR) << self->GetException()->Dump();
774         self->ClearException();
775       }
776       runtime->GetThreadList()->Unregister(self);
777       // Unregister deletes self, no need to do this here.
778       return nullptr;
779     }
780   } else {
781     // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
782     if (thread_name != nullptr) {
783       self->tlsPtr_.name->assign(thread_name);
784       ::art::SetThreadName(thread_name);
785     } else if (self->GetJniEnv()->check_jni) {
786       LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
787     }
788   }
789 
790   if (VLOG_IS_ON(threads)) {
791     if (thread_name != nullptr) {
792       VLOG(threads) << "Attaching thread " << thread_name;
793     } else {
794       VLOG(threads) << "Attaching unnamed thread.";
795     }
796     ScopedObjectAccess soa(self);
797     self->Dump(LOG(INFO));
798   }
799 
800   {
801     ScopedObjectAccess soa(self);
802     Dbg::PostThreadStart(self);
803   }
804 
805   return self;
806 }
807 
CreatePeer(const char * name,bool as_daemon,jobject thread_group)808 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
809   Runtime* runtime = Runtime::Current();
810   CHECK(runtime->IsStarted());
811   JNIEnv* env = tlsPtr_.jni_env;
812 
813   if (thread_group == nullptr) {
814     thread_group = runtime->GetMainThreadGroup();
815   }
816   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
817   // Add missing null check in case of OOM b/18297817
818   if (name != nullptr && thread_name.get() == nullptr) {
819     CHECK(IsExceptionPending());
820     return;
821   }
822   jint thread_priority = GetNativePriority();
823   jboolean thread_is_daemon = as_daemon;
824 
825   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
826   if (peer.get() == nullptr) {
827     CHECK(IsExceptionPending());
828     return;
829   }
830   {
831     ScopedObjectAccess soa(this);
832     tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
833   }
834   env->CallNonvirtualVoidMethod(peer.get(),
835                                 WellKnownClasses::java_lang_Thread,
836                                 WellKnownClasses::java_lang_Thread_init,
837                                 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
838   if (IsExceptionPending()) {
839     return;
840   }
841 
842   Thread* self = this;
843   DCHECK_EQ(self, Thread::Current());
844   env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
845                     reinterpret_cast<jlong>(self));
846 
847   ScopedObjectAccess soa(self);
848   StackHandleScope<1> hs(self);
849   MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
850   if (peer_thread_name.Get() == nullptr) {
851     // The Thread constructor should have set the Thread.name to a
852     // non-null value. However, because we can run without code
853     // available (in the compiler, in tests), we manually assign the
854     // fields the constructor should have set.
855     if (runtime->IsActiveTransaction()) {
856       InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
857     } else {
858       InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
859     }
860     peer_thread_name.Assign(GetThreadName(soa));
861   }
862   // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
863   if (peer_thread_name.Get() != nullptr) {
864     SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
865   }
866 }
867 
868 template<bool kTransactionActive>
InitPeer(ScopedObjectAccess & soa,jboolean thread_is_daemon,jobject thread_group,jobject thread_name,jint thread_priority)869 void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
870                       jobject thread_name, jint thread_priority) {
871   soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
872       SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
873   soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
874       SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
875   soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
876       SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
877   soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
878       SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
879 }
880 
SetThreadName(const char * name)881 void Thread::SetThreadName(const char* name) {
882   tlsPtr_.name->assign(name);
883   ::art::SetThreadName(name);
884   Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
885 }
886 
InitStackHwm()887 bool Thread::InitStackHwm() {
888   void* read_stack_base;
889   size_t read_stack_size;
890   size_t read_guard_size;
891   GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
892 
893   tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
894   tlsPtr_.stack_size = read_stack_size;
895 
896   // The minimum stack size we can cope with is the overflow reserved bytes (typically
897   // 8K) + the protected region size (4K) + another page (4K).  Typically this will
898   // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
899   // between 8K and 12K.
900   uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
901     + 4 * KB;
902   if (read_stack_size <= min_stack) {
903     // Note, as we know the stack is small, avoid operations that could use a lot of stack.
904     LogMessage::LogLineLowStack(__PRETTY_FUNCTION__, __LINE__, ERROR,
905                                 "Attempt to attach a thread with a too-small stack");
906     return false;
907   }
908 
909   // This is included in the SIGQUIT output, but it's useful here for thread debugging.
910   VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
911                                 read_stack_base,
912                                 PrettySize(read_stack_size).c_str(),
913                                 PrettySize(read_guard_size).c_str());
914 
915   // Set stack_end_ to the bottom of the stack saving space of stack overflows
916 
917   Runtime* runtime = Runtime::Current();
918   bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
919   ResetDefaultStackEnd();
920 
921   // Install the protected region if we are doing implicit overflow checks.
922   if (implicit_stack_check) {
923     // The thread might have protected region at the bottom.  We need
924     // to install our own region so we need to move the limits
925     // of the stack to make room for it.
926 
927     tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
928     tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
929     tlsPtr_.stack_size -= read_guard_size;
930 
931     InstallImplicitProtection();
932   }
933 
934   // Sanity check.
935   int stack_variable;
936   CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
937 
938   return true;
939 }
940 
ShortDump(std::ostream & os) const941 void Thread::ShortDump(std::ostream& os) const {
942   os << "Thread[";
943   if (GetThreadId() != 0) {
944     // If we're in kStarting, we won't have a thin lock id or tid yet.
945     os << GetThreadId()
946        << ",tid=" << GetTid() << ',';
947   }
948   os << GetState()
949      << ",Thread*=" << this
950      << ",peer=" << tlsPtr_.opeer
951      << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
952      << "]";
953 }
954 
Dump(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map) const955 void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map) const {
956   DumpState(os);
957   DumpStack(os, dump_native_stack, backtrace_map);
958 }
959 
GetThreadName(const ScopedObjectAccessAlreadyRunnable & soa) const960 mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
961   ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
962   return (tlsPtr_.opeer != nullptr) ?
963       reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
964 }
965 
GetThreadName(std::string & name) const966 void Thread::GetThreadName(std::string& name) const {
967   name.assign(*tlsPtr_.name);
968 }
969 
GetCpuMicroTime() const970 uint64_t Thread::GetCpuMicroTime() const {
971 #if defined(__linux__)
972   clockid_t cpu_clock_id;
973   pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
974   timespec now;
975   clock_gettime(cpu_clock_id, &now);
976   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
977 #else  // __APPLE__
978   UNIMPLEMENTED(WARNING);
979   return -1;
980 #endif
981 }
982 
983 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)984 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
985   LOG(ERROR) << *thread << " suspend count already zero.";
986   Locks::thread_suspend_count_lock_->Unlock(self);
987   if (!Locks::mutator_lock_->IsSharedHeld(self)) {
988     Locks::mutator_lock_->SharedTryLock(self);
989     if (!Locks::mutator_lock_->IsSharedHeld(self)) {
990       LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
991     }
992   }
993   if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
994     Locks::thread_list_lock_->TryLock(self);
995     if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
996       LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
997     }
998   }
999   std::ostringstream ss;
1000   Runtime::Current()->GetThreadList()->Dump(ss);
1001   LOG(FATAL) << ss.str();
1002 }
1003 
ModifySuspendCount(Thread * self,int delta,AtomicInteger * suspend_barrier,bool for_debugger)1004 bool Thread::ModifySuspendCount(Thread* self, int delta, AtomicInteger* suspend_barrier,
1005                                 bool for_debugger) {
1006   if (kIsDebugBuild) {
1007     DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
1008           << delta << " " << tls32_.debug_suspend_count << " " << this;
1009     DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
1010     Locks::thread_suspend_count_lock_->AssertHeld(self);
1011     if (this != self && !IsSuspended()) {
1012       Locks::thread_list_lock_->AssertHeld(self);
1013     }
1014   }
1015   if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
1016     UnsafeLogFatalForSuspendCount(self, this);
1017     return false;
1018   }
1019 
1020   uint16_t flags = kSuspendRequest;
1021   if (delta > 0 && suspend_barrier != nullptr) {
1022     uint32_t available_barrier = kMaxSuspendBarriers;
1023     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1024       if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
1025         available_barrier = i;
1026         break;
1027       }
1028     }
1029     if (available_barrier == kMaxSuspendBarriers) {
1030       // No barrier spaces available, we can't add another.
1031       return false;
1032     }
1033     tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
1034     flags |= kActiveSuspendBarrier;
1035   }
1036 
1037   tls32_.suspend_count += delta;
1038   if (for_debugger) {
1039     tls32_.debug_suspend_count += delta;
1040   }
1041 
1042   if (tls32_.suspend_count == 0) {
1043     AtomicClearFlag(kSuspendRequest);
1044   } else {
1045     // Two bits might be set simultaneously.
1046     tls32_.state_and_flags.as_atomic_int.FetchAndOrSequentiallyConsistent(flags);
1047     TriggerSuspend();
1048   }
1049   return true;
1050 }
1051 
PassActiveSuspendBarriers(Thread * self)1052 bool Thread::PassActiveSuspendBarriers(Thread* self) {
1053   // Grab the suspend_count lock and copy the current set of
1054   // barriers. Then clear the list and the flag. The ModifySuspendCount
1055   // function requires the lock so we prevent a race between setting
1056   // the kActiveSuspendBarrier flag and clearing it.
1057   AtomicInteger* pass_barriers[kMaxSuspendBarriers];
1058   {
1059     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1060     if (!ReadFlag(kActiveSuspendBarrier)) {
1061       // quick exit test: the barriers have already been claimed - this is
1062       // possible as there may be a race to claim and it doesn't matter
1063       // who wins.
1064       // All of the callers of this function (except the SuspendAllInternal)
1065       // will first test the kActiveSuspendBarrier flag without lock. Here
1066       // double-check whether the barrier has been passed with the
1067       // suspend_count lock.
1068       return false;
1069     }
1070 
1071     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1072       pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
1073       tlsPtr_.active_suspend_barriers[i] = nullptr;
1074     }
1075     AtomicClearFlag(kActiveSuspendBarrier);
1076   }
1077 
1078   uint32_t barrier_count = 0;
1079   for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
1080     AtomicInteger* pending_threads = pass_barriers[i];
1081     if (pending_threads != nullptr) {
1082       bool done = false;
1083       do {
1084         int32_t cur_val = pending_threads->LoadRelaxed();
1085         CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
1086         // Reduce value by 1.
1087         done = pending_threads->CompareExchangeWeakRelaxed(cur_val, cur_val - 1);
1088 #if ART_USE_FUTEXES
1089         if (done && (cur_val - 1) == 0) {  // Weak CAS may fail spuriously.
1090           futex(pending_threads->Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
1091         }
1092 #endif
1093       } while (!done);
1094       ++barrier_count;
1095     }
1096   }
1097   CHECK_GT(barrier_count, 0U);
1098   return true;
1099 }
1100 
ClearSuspendBarrier(AtomicInteger * target)1101 void Thread::ClearSuspendBarrier(AtomicInteger* target) {
1102   CHECK(ReadFlag(kActiveSuspendBarrier));
1103   bool clear_flag = true;
1104   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1105     AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
1106     if (ptr == target) {
1107       tlsPtr_.active_suspend_barriers[i] = nullptr;
1108     } else if (ptr != nullptr) {
1109       clear_flag = false;
1110     }
1111   }
1112   if (LIKELY(clear_flag)) {
1113     AtomicClearFlag(kActiveSuspendBarrier);
1114   }
1115 }
1116 
RunCheckpointFunction()1117 void Thread::RunCheckpointFunction() {
1118   Closure *checkpoints[kMaxCheckpoints];
1119 
1120   // Grab the suspend_count lock and copy the current set of
1121   // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
1122   // function will also grab this lock so we prevent a race between setting
1123   // the kCheckpointRequest flag and clearing it.
1124   {
1125     MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1126     for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1127       checkpoints[i] = tlsPtr_.checkpoint_functions[i];
1128       tlsPtr_.checkpoint_functions[i] = nullptr;
1129     }
1130     AtomicClearFlag(kCheckpointRequest);
1131   }
1132 
1133   // Outside the lock, run all the checkpoint functions that
1134   // we collected.
1135   bool found_checkpoint = false;
1136   for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1137     if (checkpoints[i] != nullptr) {
1138       ScopedTrace trace("Run checkpoint function");
1139       checkpoints[i]->Run(this);
1140       found_checkpoint = true;
1141     }
1142   }
1143   CHECK(found_checkpoint);
1144 }
1145 
RequestCheckpoint(Closure * function)1146 bool Thread::RequestCheckpoint(Closure* function) {
1147   union StateAndFlags old_state_and_flags;
1148   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1149   if (old_state_and_flags.as_struct.state != kRunnable) {
1150     return false;  // Fail, thread is suspended and so can't run a checkpoint.
1151   }
1152 
1153   uint32_t available_checkpoint = kMaxCheckpoints;
1154   for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
1155     if (tlsPtr_.checkpoint_functions[i] == nullptr) {
1156       available_checkpoint = i;
1157       break;
1158     }
1159   }
1160   if (available_checkpoint == kMaxCheckpoints) {
1161     // No checkpoint functions available, we can't run a checkpoint
1162     return false;
1163   }
1164   tlsPtr_.checkpoint_functions[available_checkpoint] = function;
1165 
1166   // Checkpoint function installed now install flag bit.
1167   // We must be runnable to request a checkpoint.
1168   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1169   union StateAndFlags new_state_and_flags;
1170   new_state_and_flags.as_int = old_state_and_flags.as_int;
1171   new_state_and_flags.as_struct.flags |= kCheckpointRequest;
1172   bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
1173       old_state_and_flags.as_int, new_state_and_flags.as_int);
1174   if (UNLIKELY(!success)) {
1175     // The thread changed state before the checkpoint was installed.
1176     CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
1177     tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
1178   } else {
1179     CHECK_EQ(ReadFlag(kCheckpointRequest), true);
1180     TriggerSuspend();
1181   }
1182   return success;
1183 }
1184 
GetFlipFunction()1185 Closure* Thread::GetFlipFunction() {
1186   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1187   Closure* func;
1188   do {
1189     func = atomic_func->LoadRelaxed();
1190     if (func == nullptr) {
1191       return nullptr;
1192     }
1193   } while (!atomic_func->CompareExchangeWeakSequentiallyConsistent(func, nullptr));
1194   DCHECK(func != nullptr);
1195   return func;
1196 }
1197 
SetFlipFunction(Closure * function)1198 void Thread::SetFlipFunction(Closure* function) {
1199   CHECK(function != nullptr);
1200   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1201   atomic_func->StoreSequentiallyConsistent(function);
1202 }
1203 
FullSuspendCheck()1204 void Thread::FullSuspendCheck() {
1205   ScopedTrace trace(__FUNCTION__);
1206   VLOG(threads) << this << " self-suspending";
1207   // Make thread appear suspended to other threads, release mutator_lock_.
1208   tls32_.suspended_at_suspend_check = true;
1209   // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
1210   ScopedThreadSuspension(this, kSuspended);
1211   tls32_.suspended_at_suspend_check = false;
1212   VLOG(threads) << this << " self-reviving";
1213 }
1214 
DumpState(std::ostream & os,const Thread * thread,pid_t tid)1215 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
1216   std::string group_name;
1217   int priority;
1218   bool is_daemon = false;
1219   Thread* self = Thread::Current();
1220 
1221   // If flip_function is not null, it means we have run a checkpoint
1222   // before the thread wakes up to execute the flip function and the
1223   // thread roots haven't been forwarded.  So the following access to
1224   // the roots (opeer or methods in the frames) would be bad. Run it
1225   // here. TODO: clean up.
1226   if (thread != nullptr) {
1227     ScopedObjectAccessUnchecked soa(self);
1228     Thread* this_thread = const_cast<Thread*>(thread);
1229     Closure* flip_func = this_thread->GetFlipFunction();
1230     if (flip_func != nullptr) {
1231       flip_func->Run(this_thread);
1232     }
1233   }
1234 
1235   // Don't do this if we are aborting since the GC may have all the threads suspended. This will
1236   // cause ScopedObjectAccessUnchecked to deadlock.
1237   if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
1238     ScopedObjectAccessUnchecked soa(self);
1239     priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
1240         ->GetInt(thread->tlsPtr_.opeer);
1241     is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
1242         ->GetBoolean(thread->tlsPtr_.opeer);
1243 
1244     mirror::Object* thread_group =
1245         soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
1246 
1247     if (thread_group != nullptr) {
1248       ArtField* group_name_field =
1249           soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
1250       mirror::String* group_name_string =
1251           reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
1252       group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
1253     }
1254   } else {
1255     priority = GetNativePriority();
1256   }
1257 
1258   std::string scheduler_group_name(GetSchedulerGroupName(tid));
1259   if (scheduler_group_name.empty()) {
1260     scheduler_group_name = "default";
1261   }
1262 
1263   if (thread != nullptr) {
1264     os << '"' << *thread->tlsPtr_.name << '"';
1265     if (is_daemon) {
1266       os << " daemon";
1267     }
1268     os << " prio=" << priority
1269        << " tid=" << thread->GetThreadId()
1270        << " " << thread->GetState();
1271     if (thread->IsStillStarting()) {
1272       os << " (still starting up)";
1273     }
1274     os << "\n";
1275   } else {
1276     os << '"' << ::art::GetThreadName(tid) << '"'
1277        << " prio=" << priority
1278        << " (not attached)\n";
1279   }
1280 
1281   if (thread != nullptr) {
1282     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1283     os << "  | group=\"" << group_name << "\""
1284        << " sCount=" << thread->tls32_.suspend_count
1285        << " dsCount=" << thread->tls32_.debug_suspend_count
1286        << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
1287        << " self=" << reinterpret_cast<const void*>(thread) << "\n";
1288   }
1289 
1290   os << "  | sysTid=" << tid
1291      << " nice=" << getpriority(PRIO_PROCESS, tid)
1292      << " cgrp=" << scheduler_group_name;
1293   if (thread != nullptr) {
1294     int policy;
1295     sched_param sp;
1296     CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
1297                        __FUNCTION__);
1298     os << " sched=" << policy << "/" << sp.sched_priority
1299        << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
1300   }
1301   os << "\n";
1302 
1303   // Grab the scheduler stats for this thread.
1304   std::string scheduler_stats;
1305   if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
1306     scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
1307   } else {
1308     scheduler_stats = "0 0 0";
1309   }
1310 
1311   char native_thread_state = '?';
1312   int utime = 0;
1313   int stime = 0;
1314   int task_cpu = 0;
1315   GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
1316 
1317   os << "  | state=" << native_thread_state
1318      << " schedstat=( " << scheduler_stats << " )"
1319      << " utm=" << utime
1320      << " stm=" << stime
1321      << " core=" << task_cpu
1322      << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
1323   if (thread != nullptr) {
1324     os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
1325         << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
1326         << PrettySize(thread->tlsPtr_.stack_size) << "\n";
1327     // Dump the held mutexes.
1328     os << "  | held mutexes=";
1329     for (size_t i = 0; i < kLockLevelCount; ++i) {
1330       if (i != kMonitorLock) {
1331         BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
1332         if (mutex != nullptr) {
1333           os << " \"" << mutex->GetName() << "\"";
1334           if (mutex->IsReaderWriterMutex()) {
1335             ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
1336             if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
1337               os << "(exclusive held)";
1338             } else {
1339               os << "(shared held)";
1340             }
1341           }
1342         }
1343       }
1344     }
1345     os << "\n";
1346   }
1347 }
1348 
DumpState(std::ostream & os) const1349 void Thread::DumpState(std::ostream& os) const {
1350   Thread::DumpState(os, this, GetTid());
1351 }
1352 
1353 struct StackDumpVisitor : public StackVisitor {
StackDumpVisitorart::StackDumpVisitor1354   StackDumpVisitor(std::ostream& os_in, Thread* thread_in, Context* context, bool can_allocate_in)
1355       SHARED_REQUIRES(Locks::mutator_lock_)
1356       : StackVisitor(thread_in, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
1357         os(os_in),
1358         can_allocate(can_allocate_in),
1359         last_method(nullptr),
1360         last_line_number(0),
1361         repetition_count(0),
1362         frame_count(0) {}
1363 
~StackDumpVisitorart::StackDumpVisitor1364   virtual ~StackDumpVisitor() {
1365     if (frame_count == 0) {
1366       os << "  (no managed stack frames)\n";
1367     }
1368   }
1369 
VisitFrameart::StackDumpVisitor1370   bool VisitFrame() SHARED_REQUIRES(Locks::mutator_lock_) {
1371     ArtMethod* m = GetMethod();
1372     if (m->IsRuntimeMethod()) {
1373       return true;
1374     }
1375     m = m->GetInterfaceMethodIfProxy(sizeof(void*));
1376     const int kMaxRepetition = 3;
1377     mirror::Class* c = m->GetDeclaringClass();
1378     mirror::DexCache* dex_cache = c->GetDexCache();
1379     int line_number = -1;
1380     if (dex_cache != nullptr) {  // be tolerant of bad input
1381       const DexFile& dex_file = *dex_cache->GetDexFile();
1382       line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
1383     }
1384     if (line_number == last_line_number && last_method == m) {
1385       ++repetition_count;
1386     } else {
1387       if (repetition_count >= kMaxRepetition) {
1388         os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
1389       }
1390       repetition_count = 0;
1391       last_line_number = line_number;
1392       last_method = m;
1393     }
1394     if (repetition_count < kMaxRepetition) {
1395       os << "  at " << PrettyMethod(m, false);
1396       if (m->IsNative()) {
1397         os << "(Native method)";
1398       } else {
1399         const char* source_file(m->GetDeclaringClassSourceFile());
1400         os << "(" << (source_file != nullptr ? source_file : "unavailable")
1401            << ":" << line_number << ")";
1402       }
1403       os << "\n";
1404       if (frame_count == 0) {
1405         Monitor::DescribeWait(os, GetThread());
1406       }
1407       if (can_allocate) {
1408         // Visit locks, but do not abort on errors. This would trigger a nested abort.
1409         Monitor::VisitLocks(this, DumpLockedObject, &os, false);
1410       }
1411     }
1412 
1413     ++frame_count;
1414     return true;
1415   }
1416 
DumpLockedObjectart::StackDumpVisitor1417   static void DumpLockedObject(mirror::Object* o, void* context)
1418       SHARED_REQUIRES(Locks::mutator_lock_) {
1419     std::ostream& os = *reinterpret_cast<std::ostream*>(context);
1420     os << "  - locked ";
1421     if (o == nullptr) {
1422       os << "an unknown object";
1423     } else {
1424       if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
1425           Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
1426         // Getting the identity hashcode here would result in lock inflation and suspension of the
1427         // current thread, which isn't safe if this is the only runnable thread.
1428         os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
1429                            PrettyTypeOf(o).c_str());
1430       } else {
1431         // IdentityHashCode can cause thread suspension, which would invalidate o if it moved. So
1432         // we get the pretty type beofre we call IdentityHashCode.
1433         const std::string pretty_type(PrettyTypeOf(o));
1434         os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), pretty_type.c_str());
1435       }
1436     }
1437     os << "\n";
1438   }
1439 
1440   std::ostream& os;
1441   const bool can_allocate;
1442   ArtMethod* last_method;
1443   int last_line_number;
1444   int repetition_count;
1445   int frame_count;
1446 };
1447 
ShouldShowNativeStack(const Thread * thread)1448 static bool ShouldShowNativeStack(const Thread* thread)
1449     SHARED_REQUIRES(Locks::mutator_lock_) {
1450   ThreadState state = thread->GetState();
1451 
1452   // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
1453   if (state > kWaiting && state < kStarting) {
1454     return true;
1455   }
1456 
1457   // In an Object.wait variant or Thread.sleep? That's not interesting.
1458   if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
1459     return false;
1460   }
1461 
1462   // Threads with no managed stack frames should be shown.
1463   const ManagedStack* managed_stack = thread->GetManagedStack();
1464   if (managed_stack == nullptr || (managed_stack->GetTopQuickFrame() == nullptr &&
1465       managed_stack->GetTopShadowFrame() == nullptr)) {
1466     return true;
1467   }
1468 
1469   // In some other native method? That's interesting.
1470   // We don't just check kNative because native methods will be in state kSuspended if they're
1471   // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
1472   // thread-startup states if it's early enough in their life cycle (http://b/7432159).
1473   ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
1474   return current_method != nullptr && current_method->IsNative();
1475 }
1476 
DumpJavaStack(std::ostream & os) const1477 void Thread::DumpJavaStack(std::ostream& os) const {
1478   // If flip_function is not null, it means we have run a checkpoint
1479   // before the thread wakes up to execute the flip function and the
1480   // thread roots haven't been forwarded.  So the following access to
1481   // the roots (locks or methods in the frames) would be bad. Run it
1482   // here. TODO: clean up.
1483   {
1484     Thread* this_thread = const_cast<Thread*>(this);
1485     Closure* flip_func = this_thread->GetFlipFunction();
1486     if (flip_func != nullptr) {
1487       flip_func->Run(this_thread);
1488     }
1489   }
1490 
1491   // Dumping the Java stack involves the verifier for locks. The verifier operates under the
1492   // assumption that there is no exception pending on entry. Thus, stash any pending exception.
1493   // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
1494   // thread.
1495   StackHandleScope<1> scope(Thread::Current());
1496   Handle<mirror::Throwable> exc;
1497   bool have_exception = false;
1498   if (IsExceptionPending()) {
1499     exc = scope.NewHandle(GetException());
1500     const_cast<Thread*>(this)->ClearException();
1501     have_exception = true;
1502   }
1503 
1504   std::unique_ptr<Context> context(Context::Create());
1505   StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
1506                           !tls32_.throwing_OutOfMemoryError);
1507   dumper.WalkStack();
1508 
1509   if (have_exception) {
1510     const_cast<Thread*>(this)->SetException(exc.Get());
1511   }
1512 }
1513 
DumpStack(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map) const1514 void Thread::DumpStack(std::ostream& os,
1515                        bool dump_native_stack,
1516                        BacktraceMap* backtrace_map) const {
1517   // TODO: we call this code when dying but may not have suspended the thread ourself. The
1518   //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
1519   //       the race with the thread_suspend_count_lock_).
1520   bool dump_for_abort = (gAborting > 0);
1521   bool safe_to_dump = (this == Thread::Current() || IsSuspended());
1522   if (!kIsDebugBuild) {
1523     // We always want to dump the stack for an abort, however, there is no point dumping another
1524     // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
1525     safe_to_dump = (safe_to_dump || dump_for_abort);
1526   }
1527   if (safe_to_dump) {
1528     // If we're currently in native code, dump that stack before dumping the managed stack.
1529     if (dump_native_stack && (dump_for_abort || ShouldShowNativeStack(this))) {
1530       DumpKernelStack(os, GetTid(), "  kernel: ", false);
1531       ArtMethod* method = GetCurrentMethod(nullptr, !dump_for_abort);
1532       DumpNativeStack(os, GetTid(), backtrace_map, "  native: ", method);
1533     }
1534     DumpJavaStack(os);
1535   } else {
1536     os << "Not able to dump stack of thread that isn't suspended";
1537   }
1538 }
1539 
ThreadExitCallback(void * arg)1540 void Thread::ThreadExitCallback(void* arg) {
1541   Thread* self = reinterpret_cast<Thread*>(arg);
1542   if (self->tls32_.thread_exit_check_count == 0) {
1543     LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1544         "going to use a pthread_key_create destructor?): " << *self;
1545     CHECK(is_started_);
1546 #ifdef __ANDROID__
1547     __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
1548 #else
1549     CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1550 #endif
1551     self->tls32_.thread_exit_check_count = 1;
1552   } else {
1553     LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1554   }
1555 }
1556 
Startup()1557 void Thread::Startup() {
1558   CHECK(!is_started_);
1559   is_started_ = true;
1560   {
1561     // MutexLock to keep annotalysis happy.
1562     //
1563     // Note we use null for the thread because Thread::Current can
1564     // return garbage since (is_started_ == true) and
1565     // Thread::pthread_key_self_ is not yet initialized.
1566     // This was seen on glibc.
1567     MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1568     resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1569                                          *Locks::thread_suspend_count_lock_);
1570   }
1571 
1572   // Allocate a TLS slot.
1573   CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
1574                      "self key");
1575 
1576   // Double-check the TLS slot allocation.
1577   if (pthread_getspecific(pthread_key_self_) != nullptr) {
1578     LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1579   }
1580 }
1581 
FinishStartup()1582 void Thread::FinishStartup() {
1583   Runtime* runtime = Runtime::Current();
1584   CHECK(runtime->IsStarted());
1585 
1586   // Finish attaching the main thread.
1587   ScopedObjectAccess soa(Thread::Current());
1588   Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1589   Thread::Current()->AssertNoPendingException();
1590 
1591   Runtime::Current()->GetClassLinker()->RunRootClinits();
1592 }
1593 
Shutdown()1594 void Thread::Shutdown() {
1595   CHECK(is_started_);
1596   is_started_ = false;
1597   CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1598   MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1599   if (resume_cond_ != nullptr) {
1600     delete resume_cond_;
1601     resume_cond_ = nullptr;
1602   }
1603 }
1604 
Thread(bool daemon)1605 Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1606   wait_mutex_ = new Mutex("a thread wait mutex");
1607   wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1608   tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1609   tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1610   tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf)));
1611 
1612   static_assert((sizeof(Thread) % 4) == 0U,
1613                 "art::Thread has a size which is not a multiple of 4.");
1614   tls32_.state_and_flags.as_struct.flags = 0;
1615   tls32_.state_and_flags.as_struct.state = kNative;
1616   memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1617   std::fill(tlsPtr_.rosalloc_runs,
1618             tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
1619             gc::allocator::RosAlloc::GetDedicatedFullRun());
1620   for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1621     tlsPtr_.checkpoint_functions[i] = nullptr;
1622   }
1623   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1624     tlsPtr_.active_suspend_barriers[i] = nullptr;
1625   }
1626   tlsPtr_.flip_function = nullptr;
1627   tlsPtr_.thread_local_mark_stack = nullptr;
1628   tls32_.suspended_at_suspend_check = false;
1629 }
1630 
IsStillStarting() const1631 bool Thread::IsStillStarting() const {
1632   // You might think you can check whether the state is kStarting, but for much of thread startup,
1633   // the thread is in kNative; it might also be in kVmWait.
1634   // You might think you can check whether the peer is null, but the peer is actually created and
1635   // assigned fairly early on, and needs to be.
1636   // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1637   // this thread _ever_ entered kRunnable".
1638   return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1639       (*tlsPtr_.name == kThreadNameDuringStartup);
1640 }
1641 
AssertPendingException() const1642 void Thread::AssertPendingException() const {
1643   CHECK(IsExceptionPending()) << "Pending exception expected.";
1644 }
1645 
AssertPendingOOMException() const1646 void Thread::AssertPendingOOMException() const {
1647   AssertPendingException();
1648   auto* e = GetException();
1649   CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
1650       << e->Dump();
1651 }
1652 
AssertNoPendingException() const1653 void Thread::AssertNoPendingException() const {
1654   if (UNLIKELY(IsExceptionPending())) {
1655     ScopedObjectAccess soa(Thread::Current());
1656     mirror::Throwable* exception = GetException();
1657     LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1658   }
1659 }
1660 
AssertNoPendingExceptionForNewException(const char * msg) const1661 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1662   if (UNLIKELY(IsExceptionPending())) {
1663     ScopedObjectAccess soa(Thread::Current());
1664     mirror::Throwable* exception = GetException();
1665     LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
1666         << exception->Dump();
1667   }
1668 }
1669 
1670 class MonitorExitVisitor : public SingleRootVisitor {
1671  public:
MonitorExitVisitor(Thread * self)1672   explicit MonitorExitVisitor(Thread* self) : self_(self) { }
1673 
1674   // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
VisitRoot(mirror::Object * entered_monitor,const RootInfo & info ATTRIBUTE_UNUSED)1675   void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
1676       OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1677     if (self_->HoldsLock(entered_monitor)) {
1678       LOG(WARNING) << "Calling MonitorExit on object "
1679                    << entered_monitor << " (" << PrettyTypeOf(entered_monitor) << ")"
1680                    << " left locked by native thread "
1681                    << *Thread::Current() << " which is detaching";
1682       entered_monitor->MonitorExit(self_);
1683     }
1684   }
1685 
1686  private:
1687   Thread* const self_;
1688 };
1689 
Destroy()1690 void Thread::Destroy() {
1691   Thread* self = this;
1692   DCHECK_EQ(self, Thread::Current());
1693 
1694   if (tlsPtr_.jni_env != nullptr) {
1695     {
1696       ScopedObjectAccess soa(self);
1697       MonitorExitVisitor visitor(self);
1698       // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1699       tlsPtr_.jni_env->monitors.VisitRoots(&visitor, RootInfo(kRootVMInternal));
1700     }
1701     // Release locally held global references which releasing may require the mutator lock.
1702     if (tlsPtr_.jpeer != nullptr) {
1703       // If pthread_create fails we don't have a jni env here.
1704       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1705       tlsPtr_.jpeer = nullptr;
1706     }
1707     if (tlsPtr_.class_loader_override != nullptr) {
1708       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
1709       tlsPtr_.class_loader_override = nullptr;
1710     }
1711   }
1712 
1713   if (tlsPtr_.opeer != nullptr) {
1714     ScopedObjectAccess soa(self);
1715     // We may need to call user-supplied managed code, do this before final clean-up.
1716     HandleUncaughtExceptions(soa);
1717     RemoveFromThreadGroup(soa);
1718 
1719     // this.nativePeer = 0;
1720     if (Runtime::Current()->IsActiveTransaction()) {
1721       soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1722           ->SetLong<true>(tlsPtr_.opeer, 0);
1723     } else {
1724       soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1725           ->SetLong<false>(tlsPtr_.opeer, 0);
1726     }
1727     Dbg::PostThreadDeath(self);
1728 
1729     // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1730     // who is waiting.
1731     mirror::Object* lock =
1732         soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1733     // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1734     if (lock != nullptr) {
1735       StackHandleScope<1> hs(self);
1736       Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1737       ObjectLock<mirror::Object> locker(self, h_obj);
1738       locker.NotifyAll();
1739     }
1740     tlsPtr_.opeer = nullptr;
1741   }
1742 
1743   {
1744     ScopedObjectAccess soa(self);
1745     Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1746     if (kUseReadBarrier) {
1747       Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
1748     }
1749   }
1750 }
1751 
~Thread()1752 Thread::~Thread() {
1753   CHECK(tlsPtr_.class_loader_override == nullptr);
1754   CHECK(tlsPtr_.jpeer == nullptr);
1755   CHECK(tlsPtr_.opeer == nullptr);
1756   bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
1757   if (initialized) {
1758     delete tlsPtr_.jni_env;
1759     tlsPtr_.jni_env = nullptr;
1760   }
1761   CHECK_NE(GetState(), kRunnable);
1762   CHECK_NE(ReadFlag(kCheckpointRequest), true);
1763   CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1764   CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1765   CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1766   CHECK(tlsPtr_.flip_function == nullptr);
1767   CHECK_EQ(tls32_.suspended_at_suspend_check, false);
1768 
1769   // Make sure we processed all deoptimization requests.
1770   CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
1771   CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
1772       "Not all deoptimized frames have been consumed by the debugger.";
1773 
1774   // We may be deleting a still born thread.
1775   SetStateUnsafe(kTerminated);
1776 
1777   delete wait_cond_;
1778   delete wait_mutex_;
1779 
1780   if (tlsPtr_.long_jump_context != nullptr) {
1781     delete tlsPtr_.long_jump_context;
1782   }
1783 
1784   if (initialized) {
1785     CleanupCpu();
1786   }
1787 
1788   if (tlsPtr_.single_step_control != nullptr) {
1789     delete tlsPtr_.single_step_control;
1790   }
1791   delete tlsPtr_.instrumentation_stack;
1792   delete tlsPtr_.name;
1793   delete tlsPtr_.stack_trace_sample;
1794   free(tlsPtr_.nested_signal_state);
1795 
1796   Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
1797 
1798   TearDownAlternateSignalStack();
1799 }
1800 
HandleUncaughtExceptions(ScopedObjectAccess & soa)1801 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1802   if (!IsExceptionPending()) {
1803     return;
1804   }
1805   ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1806   ScopedThreadStateChange tsc(this, kNative);
1807 
1808   // Get and clear the exception.
1809   ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1810   tlsPtr_.jni_env->ExceptionClear();
1811 
1812   // If the thread has its own handler, use that.
1813   ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1814                                   tlsPtr_.jni_env->GetObjectField(peer.get(),
1815                                       WellKnownClasses::java_lang_Thread_uncaughtHandler));
1816   if (handler.get() == nullptr) {
1817     // Otherwise use the thread group's default handler.
1818     handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1819                                                   WellKnownClasses::java_lang_Thread_group));
1820   }
1821 
1822   // Call the handler.
1823   tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1824       WellKnownClasses::java_lang_Thread__UncaughtExceptionHandler_uncaughtException,
1825       peer.get(), exception.get());
1826 
1827   // If the handler threw, clear that exception too.
1828   tlsPtr_.jni_env->ExceptionClear();
1829 }
1830 
RemoveFromThreadGroup(ScopedObjectAccess & soa)1831 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1832   // this.group.removeThread(this);
1833   // group can be null if we're in the compiler or a test.
1834   mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1835       ->GetObject(tlsPtr_.opeer);
1836   if (ogroup != nullptr) {
1837     ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1838     ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1839     ScopedThreadStateChange tsc(soa.Self(), kNative);
1840     tlsPtr_.jni_env->CallVoidMethod(group.get(),
1841                                     WellKnownClasses::java_lang_ThreadGroup_removeThread,
1842                                     peer.get());
1843   }
1844 }
1845 
NumHandleReferences()1846 size_t Thread::NumHandleReferences() {
1847   size_t count = 0;
1848   for (HandleScope* cur = tlsPtr_.top_handle_scope; cur != nullptr; cur = cur->GetLink()) {
1849     count += cur->NumberOfReferences();
1850   }
1851   return count;
1852 }
1853 
HandleScopeContains(jobject obj) const1854 bool Thread::HandleScopeContains(jobject obj) const {
1855   StackReference<mirror::Object>* hs_entry =
1856       reinterpret_cast<StackReference<mirror::Object>*>(obj);
1857   for (HandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
1858     if (cur->Contains(hs_entry)) {
1859       return true;
1860     }
1861   }
1862   // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1863   return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1864 }
1865 
HandleScopeVisitRoots(RootVisitor * visitor,uint32_t thread_id)1866 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) {
1867   BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
1868       visitor, RootInfo(kRootNativeStack, thread_id));
1869   for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1870     for (size_t j = 0, count = cur->NumberOfReferences(); j < count; ++j) {
1871       // GetReference returns a pointer to the stack reference within the handle scope. If this
1872       // needs to be updated, it will be done by the root visitor.
1873       buffered_visitor.VisitRootIfNonNull(cur->GetHandle(j).GetReference());
1874     }
1875   }
1876 }
1877 
DecodeJObject(jobject obj) const1878 mirror::Object* Thread::DecodeJObject(jobject obj) const {
1879   if (obj == nullptr) {
1880     return nullptr;
1881   }
1882   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1883   IndirectRefKind kind = GetIndirectRefKind(ref);
1884   mirror::Object* result;
1885   bool expect_null = false;
1886   // The "kinds" below are sorted by the frequency we expect to encounter them.
1887   if (kind == kLocal) {
1888     IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1889     // Local references do not need a read barrier.
1890     result = locals.Get<kWithoutReadBarrier>(ref);
1891   } else if (kind == kHandleScopeOrInvalid) {
1892     // TODO: make stack indirect reference table lookup more efficient.
1893     // Check if this is a local reference in the handle scope.
1894     if (LIKELY(HandleScopeContains(obj))) {
1895       // Read from handle scope.
1896       result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1897       VerifyObject(result);
1898     } else {
1899       tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of invalid jobject %p", obj);
1900       expect_null = true;
1901       result = nullptr;
1902     }
1903   } else if (kind == kGlobal) {
1904     result = tlsPtr_.jni_env->vm->DecodeGlobal(ref);
1905   } else {
1906     DCHECK_EQ(kind, kWeakGlobal);
1907     result = tlsPtr_.jni_env->vm->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1908     if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
1909       // This is a special case where it's okay to return null.
1910       expect_null = true;
1911       result = nullptr;
1912     }
1913   }
1914 
1915   if (UNLIKELY(!expect_null && result == nullptr)) {
1916     tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of deleted %s %p",
1917                                    ToStr<IndirectRefKind>(kind).c_str(), obj);
1918   }
1919   return result;
1920 }
1921 
IsJWeakCleared(jweak obj) const1922 bool Thread::IsJWeakCleared(jweak obj) const {
1923   CHECK(obj != nullptr);
1924   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1925   IndirectRefKind kind = GetIndirectRefKind(ref);
1926   CHECK_EQ(kind, kWeakGlobal);
1927   return tlsPtr_.jni_env->vm->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
1928 }
1929 
1930 // Implements java.lang.Thread.interrupted.
Interrupted()1931 bool Thread::Interrupted() {
1932   MutexLock mu(Thread::Current(), *wait_mutex_);
1933   bool interrupted = IsInterruptedLocked();
1934   SetInterruptedLocked(false);
1935   return interrupted;
1936 }
1937 
1938 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()1939 bool Thread::IsInterrupted() {
1940   MutexLock mu(Thread::Current(), *wait_mutex_);
1941   return IsInterruptedLocked();
1942 }
1943 
Interrupt(Thread * self)1944 void Thread::Interrupt(Thread* self) {
1945   MutexLock mu(self, *wait_mutex_);
1946   if (interrupted_) {
1947     return;
1948   }
1949   interrupted_ = true;
1950   NotifyLocked(self);
1951 }
1952 
Notify()1953 void Thread::Notify() {
1954   Thread* self = Thread::Current();
1955   MutexLock mu(self, *wait_mutex_);
1956   NotifyLocked(self);
1957 }
1958 
NotifyLocked(Thread * self)1959 void Thread::NotifyLocked(Thread* self) {
1960   if (wait_monitor_ != nullptr) {
1961     wait_cond_->Signal(self);
1962   }
1963 }
1964 
SetClassLoaderOverride(jobject class_loader_override)1965 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
1966   if (tlsPtr_.class_loader_override != nullptr) {
1967     GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
1968   }
1969   tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
1970 }
1971 
1972 class CountStackDepthVisitor : public StackVisitor {
1973  public:
1974   explicit CountStackDepthVisitor(Thread* thread)
SHARED_REQUIRES(Locks::mutator_lock_)1975       SHARED_REQUIRES(Locks::mutator_lock_)
1976       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
1977         depth_(0), skip_depth_(0), skipping_(true) {}
1978 
VisitFrame()1979   bool VisitFrame() SHARED_REQUIRES(Locks::mutator_lock_) {
1980     // We want to skip frames up to and including the exception's constructor.
1981     // Note we also skip the frame if it doesn't have a method (namely the callee
1982     // save frame)
1983     ArtMethod* m = GetMethod();
1984     if (skipping_ && !m->IsRuntimeMethod() &&
1985         !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1986       skipping_ = false;
1987     }
1988     if (!skipping_) {
1989       if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1990         ++depth_;
1991       }
1992     } else {
1993       ++skip_depth_;
1994     }
1995     return true;
1996   }
1997 
GetDepth() const1998   int GetDepth() const {
1999     return depth_;
2000   }
2001 
GetSkipDepth() const2002   int GetSkipDepth() const {
2003     return skip_depth_;
2004   }
2005 
2006  private:
2007   uint32_t depth_;
2008   uint32_t skip_depth_;
2009   bool skipping_;
2010 
2011   DISALLOW_COPY_AND_ASSIGN(CountStackDepthVisitor);
2012 };
2013 
2014 template<bool kTransactionActive>
2015 class BuildInternalStackTraceVisitor : public StackVisitor {
2016  public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,int skip_depth)2017   BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
2018       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2019         self_(self),
2020         skip_depth_(skip_depth),
2021         count_(0),
2022         trace_(nullptr),
2023         pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
2024 
Init(int depth)2025   bool Init(int depth) SHARED_REQUIRES(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
2026     // Allocate method trace as an object array where the first element is a pointer array that
2027     // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
2028     // class of the ArtMethod pointers.
2029     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2030     StackHandleScope<1> hs(self_);
2031     mirror::Class* array_class = class_linker->GetClassRoot(ClassLinker::kObjectArrayClass);
2032     // The first element is the methods and dex pc array, the other elements are declaring classes
2033     // for the methods to ensure classes in the stack trace don't get unloaded.
2034     Handle<mirror::ObjectArray<mirror::Object>> trace(
2035         hs.NewHandle(
2036             mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
2037     if (trace.Get() == nullptr) {
2038       // Acquire uninterruptible_ in all paths.
2039       self_->StartAssertNoThreadSuspension("Building internal stack trace");
2040       self_->AssertPendingOOMException();
2041       return false;
2042     }
2043     mirror::PointerArray* methods_and_pcs = class_linker->AllocPointerArray(self_, depth * 2);
2044     const char* last_no_suspend_cause =
2045         self_->StartAssertNoThreadSuspension("Building internal stack trace");
2046     if (methods_and_pcs == nullptr) {
2047       self_->AssertPendingOOMException();
2048       return false;
2049     }
2050     trace->Set(0, methods_and_pcs);
2051     trace_ = trace.Get();
2052     // If We are called from native, use non-transactional mode.
2053     CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
2054     return true;
2055   }
2056 
RELEASE(Roles::uninterruptible_)2057   virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
2058     self_->EndAssertNoThreadSuspension(nullptr);
2059   }
2060 
VisitFrame()2061   bool VisitFrame() SHARED_REQUIRES(Locks::mutator_lock_) {
2062     if (trace_ == nullptr) {
2063       return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
2064     }
2065     if (skip_depth_ > 0) {
2066       skip_depth_--;
2067       return true;
2068     }
2069     ArtMethod* m = GetMethod();
2070     if (m->IsRuntimeMethod()) {
2071       return true;  // Ignore runtime frames (in particular callee save).
2072     }
2073     mirror::PointerArray* trace_methods_and_pcs = GetTraceMethodsAndPCs();
2074     trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, m, pointer_size_);
2075     trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(
2076         trace_methods_and_pcs->GetLength() / 2 + count_,
2077         m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc(),
2078         pointer_size_);
2079     // Save the declaring class of the method to ensure that the declaring classes of the methods
2080     // do not get unloaded while the stack trace is live.
2081     trace_->Set(count_ + 1, m->GetDeclaringClass());
2082     ++count_;
2083     return true;
2084   }
2085 
GetTraceMethodsAndPCs() const2086   mirror::PointerArray* GetTraceMethodsAndPCs() const SHARED_REQUIRES(Locks::mutator_lock_) {
2087     return down_cast<mirror::PointerArray*>(trace_->Get(0));
2088   }
2089 
GetInternalStackTrace() const2090   mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
2091     return trace_;
2092   }
2093 
2094  private:
2095   Thread* const self_;
2096   // How many more frames to skip.
2097   int32_t skip_depth_;
2098   // Current position down stack trace.
2099   uint32_t count_;
2100   // An object array where the first element is a pointer array that contains the ArtMethod
2101   // pointers on the stack and dex PCs. The rest of the elements are the declaring
2102   // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of
2103   // the i'th frame.
2104   mirror::ObjectArray<mirror::Object>* trace_;
2105   // For cross compilation.
2106   const size_t pointer_size_;
2107 
2108   DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
2109 };
2110 
2111 template<bool kTransactionActive>
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const2112 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2113   // Compute depth of stack
2114   CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
2115   count_visitor.WalkStack();
2116   int32_t depth = count_visitor.GetDepth();
2117   int32_t skip_depth = count_visitor.GetSkipDepth();
2118 
2119   // Build internal stack trace.
2120   BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
2121                                                                          const_cast<Thread*>(this),
2122                                                                          skip_depth);
2123   if (!build_trace_visitor.Init(depth)) {
2124     return nullptr;  // Allocation failed.
2125   }
2126   build_trace_visitor.WalkStack();
2127   mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
2128   if (kIsDebugBuild) {
2129     mirror::PointerArray* trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
2130     // Second half of trace_methods is dex PCs.
2131     for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
2132       auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
2133           i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
2134       CHECK(method != nullptr);
2135     }
2136   }
2137   return soa.AddLocalReference<jobject>(trace);
2138 }
2139 template jobject Thread::CreateInternalStackTrace<false>(
2140     const ScopedObjectAccessAlreadyRunnable& soa) const;
2141 template jobject Thread::CreateInternalStackTrace<true>(
2142     const ScopedObjectAccessAlreadyRunnable& soa) const;
2143 
IsExceptionThrownByCurrentMethod(mirror::Throwable * exception) const2144 bool Thread::IsExceptionThrownByCurrentMethod(mirror::Throwable* exception) const {
2145   CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
2146   count_visitor.WalkStack();
2147   return count_visitor.GetDepth() == exception->GetStackDepth();
2148 }
2149 
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)2150 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
2151     const ScopedObjectAccessAlreadyRunnable& soa,
2152     jobject internal,
2153     jobjectArray output_array,
2154     int* stack_depth) {
2155   // Decode the internal stack trace into the depth, method trace and PC trace.
2156   // Subtract one for the methods and PC trace.
2157   int32_t depth = soa.Decode<mirror::Array*>(internal)->GetLength() - 1;
2158   DCHECK_GE(depth, 0);
2159 
2160   ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
2161 
2162   jobjectArray result;
2163 
2164   if (output_array != nullptr) {
2165     // Reuse the array we were given.
2166     result = output_array;
2167     // ...adjusting the number of frames we'll write to not exceed the array length.
2168     const int32_t traces_length =
2169         soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
2170     depth = std::min(depth, traces_length);
2171   } else {
2172     // Create java_trace array and place in local reference table
2173     mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
2174         class_linker->AllocStackTraceElementArray(soa.Self(), depth);
2175     if (java_traces == nullptr) {
2176       return nullptr;
2177     }
2178     result = soa.AddLocalReference<jobjectArray>(java_traces);
2179   }
2180 
2181   if (stack_depth != nullptr) {
2182     *stack_depth = depth;
2183   }
2184 
2185   for (int32_t i = 0; i < depth; ++i) {
2186     mirror::ObjectArray<mirror::Object>* decoded_traces =
2187         soa.Decode<mirror::Object*>(internal)->AsObjectArray<mirror::Object>();
2188     // Methods and dex PC trace is element 0.
2189     DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
2190     mirror::PointerArray* const method_trace =
2191         down_cast<mirror::PointerArray*>(decoded_traces->Get(0));
2192     // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
2193     ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, sizeof(void*));
2194     uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
2195         i + method_trace->GetLength() / 2, sizeof(void*));
2196     int32_t line_number;
2197     StackHandleScope<3> hs(soa.Self());
2198     auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
2199     auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
2200     if (method->IsProxyMethod()) {
2201       line_number = -1;
2202       class_name_object.Assign(method->GetDeclaringClass()->GetName());
2203       // source_name_object intentionally left null for proxy methods
2204     } else {
2205       line_number = method->GetLineNumFromDexPC(dex_pc);
2206       // Allocate element, potentially triggering GC
2207       // TODO: reuse class_name_object via Class::name_?
2208       const char* descriptor = method->GetDeclaringClassDescriptor();
2209       CHECK(descriptor != nullptr);
2210       std::string class_name(PrettyDescriptor(descriptor));
2211       class_name_object.Assign(
2212           mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
2213       if (class_name_object.Get() == nullptr) {
2214         soa.Self()->AssertPendingOOMException();
2215         return nullptr;
2216       }
2217       const char* source_file = method->GetDeclaringClassSourceFile();
2218       if (source_file != nullptr) {
2219         source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
2220         if (source_name_object.Get() == nullptr) {
2221           soa.Self()->AssertPendingOOMException();
2222           return nullptr;
2223         }
2224       }
2225     }
2226     const char* method_name = method->GetInterfaceMethodIfProxy(sizeof(void*))->GetName();
2227     CHECK(method_name != nullptr);
2228     Handle<mirror::String> method_name_object(
2229         hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
2230     if (method_name_object.Get() == nullptr) {
2231       return nullptr;
2232     }
2233     mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
2234         soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
2235     if (obj == nullptr) {
2236       return nullptr;
2237     }
2238     // We are called from native: use non-transactional mode.
2239     soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
2240   }
2241   return result;
2242 }
2243 
ThrowNewExceptionF(const char * exception_class_descriptor,const char * fmt,...)2244 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
2245   va_list args;
2246   va_start(args, fmt);
2247   ThrowNewExceptionV(exception_class_descriptor, fmt, args);
2248   va_end(args);
2249 }
2250 
ThrowNewExceptionV(const char * exception_class_descriptor,const char * fmt,va_list ap)2251 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
2252                                 const char* fmt, va_list ap) {
2253   std::string msg;
2254   StringAppendV(&msg, fmt, ap);
2255   ThrowNewException(exception_class_descriptor, msg.c_str());
2256 }
2257 
ThrowNewException(const char * exception_class_descriptor,const char * msg)2258 void Thread::ThrowNewException(const char* exception_class_descriptor,
2259                                const char* msg) {
2260   // Callers should either clear or call ThrowNewWrappedException.
2261   AssertNoPendingExceptionForNewException(msg);
2262   ThrowNewWrappedException(exception_class_descriptor, msg);
2263 }
2264 
GetCurrentClassLoader(Thread * self)2265 static mirror::ClassLoader* GetCurrentClassLoader(Thread* self)
2266     SHARED_REQUIRES(Locks::mutator_lock_) {
2267   ArtMethod* method = self->GetCurrentMethod(nullptr);
2268   return method != nullptr
2269       ? method->GetDeclaringClass()->GetClassLoader()
2270       : nullptr;
2271 }
2272 
ThrowNewWrappedException(const char * exception_class_descriptor,const char * msg)2273 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
2274                                       const char* msg) {
2275   DCHECK_EQ(this, Thread::Current());
2276   ScopedObjectAccessUnchecked soa(this);
2277   StackHandleScope<3> hs(soa.Self());
2278   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
2279   ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
2280   ClearException();
2281   Runtime* runtime = Runtime::Current();
2282   auto* cl = runtime->GetClassLinker();
2283   Handle<mirror::Class> exception_class(
2284       hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
2285   if (UNLIKELY(exception_class.Get() == nullptr)) {
2286     CHECK(IsExceptionPending());
2287     LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
2288     return;
2289   }
2290 
2291   if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
2292                                                              true))) {
2293     DCHECK(IsExceptionPending());
2294     return;
2295   }
2296   DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
2297   Handle<mirror::Throwable> exception(
2298       hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
2299 
2300   // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
2301   if (exception.Get() == nullptr) {
2302     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
2303     return;
2304   }
2305 
2306   // Choose an appropriate constructor and set up the arguments.
2307   const char* signature;
2308   ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
2309   if (msg != nullptr) {
2310     // Ensure we remember this and the method over the String allocation.
2311     msg_string.reset(
2312         soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
2313     if (UNLIKELY(msg_string.get() == nullptr)) {
2314       CHECK(IsExceptionPending());  // OOME.
2315       return;
2316     }
2317     if (cause.get() == nullptr) {
2318       signature = "(Ljava/lang/String;)V";
2319     } else {
2320       signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
2321     }
2322   } else {
2323     if (cause.get() == nullptr) {
2324       signature = "()V";
2325     } else {
2326       signature = "(Ljava/lang/Throwable;)V";
2327     }
2328   }
2329   ArtMethod* exception_init_method =
2330       exception_class->FindDeclaredDirectMethod("<init>", signature, cl->GetImagePointerSize());
2331 
2332   CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
2333       << PrettyDescriptor(exception_class_descriptor);
2334 
2335   if (UNLIKELY(!runtime->IsStarted())) {
2336     // Something is trying to throw an exception without a started runtime, which is the common
2337     // case in the compiler. We won't be able to invoke the constructor of the exception, so set
2338     // the exception fields directly.
2339     if (msg != nullptr) {
2340       exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
2341     }
2342     if (cause.get() != nullptr) {
2343       exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
2344     }
2345     ScopedLocalRef<jobject> trace(GetJniEnv(),
2346                                   Runtime::Current()->IsActiveTransaction()
2347                                       ? CreateInternalStackTrace<true>(soa)
2348                                       : CreateInternalStackTrace<false>(soa));
2349     if (trace.get() != nullptr) {
2350       exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
2351     }
2352     SetException(exception.Get());
2353   } else {
2354     jvalue jv_args[2];
2355     size_t i = 0;
2356 
2357     if (msg != nullptr) {
2358       jv_args[i].l = msg_string.get();
2359       ++i;
2360     }
2361     if (cause.get() != nullptr) {
2362       jv_args[i].l = cause.get();
2363       ++i;
2364     }
2365     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
2366     InvokeWithJValues(soa, ref.get(), soa.EncodeMethod(exception_init_method), jv_args);
2367     if (LIKELY(!IsExceptionPending())) {
2368       SetException(exception.Get());
2369     }
2370   }
2371 }
2372 
ThrowOutOfMemoryError(const char * msg)2373 void Thread::ThrowOutOfMemoryError(const char* msg) {
2374   LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
2375       msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
2376   if (!tls32_.throwing_OutOfMemoryError) {
2377     tls32_.throwing_OutOfMemoryError = true;
2378     ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
2379     tls32_.throwing_OutOfMemoryError = false;
2380   } else {
2381     Dump(LOG(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
2382     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
2383   }
2384 }
2385 
CurrentFromGdb()2386 Thread* Thread::CurrentFromGdb() {
2387   return Thread::Current();
2388 }
2389 
DumpFromGdb() const2390 void Thread::DumpFromGdb() const {
2391   std::ostringstream ss;
2392   Dump(ss);
2393   std::string str(ss.str());
2394   // log to stderr for debugging command line processes
2395   std::cerr << str;
2396 #ifdef __ANDROID__
2397   // log to logcat for debugging frameworks processes
2398   LOG(INFO) << str;
2399 #endif
2400 }
2401 
2402 // Explicitly instantiate 32 and 64bit thread offset dumping support.
2403 template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
2404 template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
2405 
2406 template<size_t ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)2407 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
2408 #define DO_THREAD_OFFSET(x, y) \
2409     if (offset == x.Uint32Value()) { \
2410       os << y; \
2411       return; \
2412     }
2413   DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
2414   DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
2415   DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
2416   DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
2417   DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
2418   DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
2419   DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
2420   DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
2421   DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
2422   DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
2423   DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
2424   DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
2425 #undef DO_THREAD_OFFSET
2426 
2427 #define JNI_ENTRY_POINT_INFO(x) \
2428     if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2429       os << #x; \
2430       return; \
2431     }
2432   JNI_ENTRY_POINT_INFO(pDlsymLookup)
2433 #undef JNI_ENTRY_POINT_INFO
2434 
2435 #define QUICK_ENTRY_POINT_INFO(x) \
2436     if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2437       os << #x; \
2438       return; \
2439     }
2440   QUICK_ENTRY_POINT_INFO(pAllocArray)
2441   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
2442   QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
2443   QUICK_ENTRY_POINT_INFO(pAllocObject)
2444   QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
2445   QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
2446   QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
2447   QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
2448   QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
2449   QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
2450   QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
2451   QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
2452   QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
2453   QUICK_ENTRY_POINT_INFO(pCheckCast)
2454   QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
2455   QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
2456   QUICK_ENTRY_POINT_INFO(pInitializeType)
2457   QUICK_ENTRY_POINT_INFO(pResolveString)
2458   QUICK_ENTRY_POINT_INFO(pSet8Instance)
2459   QUICK_ENTRY_POINT_INFO(pSet8Static)
2460   QUICK_ENTRY_POINT_INFO(pSet16Instance)
2461   QUICK_ENTRY_POINT_INFO(pSet16Static)
2462   QUICK_ENTRY_POINT_INFO(pSet32Instance)
2463   QUICK_ENTRY_POINT_INFO(pSet32Static)
2464   QUICK_ENTRY_POINT_INFO(pSet64Instance)
2465   QUICK_ENTRY_POINT_INFO(pSet64Static)
2466   QUICK_ENTRY_POINT_INFO(pSetObjInstance)
2467   QUICK_ENTRY_POINT_INFO(pSetObjStatic)
2468   QUICK_ENTRY_POINT_INFO(pGetByteInstance)
2469   QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
2470   QUICK_ENTRY_POINT_INFO(pGetByteStatic)
2471   QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
2472   QUICK_ENTRY_POINT_INFO(pGetShortInstance)
2473   QUICK_ENTRY_POINT_INFO(pGetCharInstance)
2474   QUICK_ENTRY_POINT_INFO(pGetShortStatic)
2475   QUICK_ENTRY_POINT_INFO(pGetCharStatic)
2476   QUICK_ENTRY_POINT_INFO(pGet32Instance)
2477   QUICK_ENTRY_POINT_INFO(pGet32Static)
2478   QUICK_ENTRY_POINT_INFO(pGet64Instance)
2479   QUICK_ENTRY_POINT_INFO(pGet64Static)
2480   QUICK_ENTRY_POINT_INFO(pGetObjInstance)
2481   QUICK_ENTRY_POINT_INFO(pGetObjStatic)
2482   QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
2483   QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
2484   QUICK_ENTRY_POINT_INFO(pAputObject)
2485   QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
2486   QUICK_ENTRY_POINT_INFO(pJniMethodStart)
2487   QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
2488   QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
2489   QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
2490   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
2491   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
2492   QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
2493   QUICK_ENTRY_POINT_INFO(pLockObject)
2494   QUICK_ENTRY_POINT_INFO(pUnlockObject)
2495   QUICK_ENTRY_POINT_INFO(pCmpgDouble)
2496   QUICK_ENTRY_POINT_INFO(pCmpgFloat)
2497   QUICK_ENTRY_POINT_INFO(pCmplDouble)
2498   QUICK_ENTRY_POINT_INFO(pCmplFloat)
2499   QUICK_ENTRY_POINT_INFO(pCos)
2500   QUICK_ENTRY_POINT_INFO(pSin)
2501   QUICK_ENTRY_POINT_INFO(pAcos)
2502   QUICK_ENTRY_POINT_INFO(pAsin)
2503   QUICK_ENTRY_POINT_INFO(pAtan)
2504   QUICK_ENTRY_POINT_INFO(pAtan2)
2505   QUICK_ENTRY_POINT_INFO(pCbrt)
2506   QUICK_ENTRY_POINT_INFO(pCosh)
2507   QUICK_ENTRY_POINT_INFO(pExp)
2508   QUICK_ENTRY_POINT_INFO(pExpm1)
2509   QUICK_ENTRY_POINT_INFO(pHypot)
2510   QUICK_ENTRY_POINT_INFO(pLog)
2511   QUICK_ENTRY_POINT_INFO(pLog10)
2512   QUICK_ENTRY_POINT_INFO(pNextAfter)
2513   QUICK_ENTRY_POINT_INFO(pSinh)
2514   QUICK_ENTRY_POINT_INFO(pTan)
2515   QUICK_ENTRY_POINT_INFO(pTanh)
2516   QUICK_ENTRY_POINT_INFO(pFmod)
2517   QUICK_ENTRY_POINT_INFO(pL2d)
2518   QUICK_ENTRY_POINT_INFO(pFmodf)
2519   QUICK_ENTRY_POINT_INFO(pL2f)
2520   QUICK_ENTRY_POINT_INFO(pD2iz)
2521   QUICK_ENTRY_POINT_INFO(pF2iz)
2522   QUICK_ENTRY_POINT_INFO(pIdivmod)
2523   QUICK_ENTRY_POINT_INFO(pD2l)
2524   QUICK_ENTRY_POINT_INFO(pF2l)
2525   QUICK_ENTRY_POINT_INFO(pLdiv)
2526   QUICK_ENTRY_POINT_INFO(pLmod)
2527   QUICK_ENTRY_POINT_INFO(pLmul)
2528   QUICK_ENTRY_POINT_INFO(pShlLong)
2529   QUICK_ENTRY_POINT_INFO(pShrLong)
2530   QUICK_ENTRY_POINT_INFO(pUshrLong)
2531   QUICK_ENTRY_POINT_INFO(pIndexOf)
2532   QUICK_ENTRY_POINT_INFO(pStringCompareTo)
2533   QUICK_ENTRY_POINT_INFO(pMemcpy)
2534   QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
2535   QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
2536   QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
2537   QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
2538   QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
2539   QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
2540   QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
2541   QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
2542   QUICK_ENTRY_POINT_INFO(pTestSuspend)
2543   QUICK_ENTRY_POINT_INFO(pDeliverException)
2544   QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
2545   QUICK_ENTRY_POINT_INFO(pThrowDivZero)
2546   QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
2547   QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
2548   QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
2549   QUICK_ENTRY_POINT_INFO(pDeoptimize)
2550   QUICK_ENTRY_POINT_INFO(pA64Load)
2551   QUICK_ENTRY_POINT_INFO(pA64Store)
2552   QUICK_ENTRY_POINT_INFO(pNewEmptyString)
2553   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
2554   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
2555   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
2556   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
2557   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
2558   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
2559   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
2560   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
2561   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
2562   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
2563   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
2564   QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
2565   QUICK_ENTRY_POINT_INFO(pNewStringFromString)
2566   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
2567   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
2568   QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
2569   QUICK_ENTRY_POINT_INFO(pReadBarrierMark)
2570   QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
2571   QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
2572 #undef QUICK_ENTRY_POINT_INFO
2573 
2574   os << offset;
2575 }
2576 
QuickDeliverException()2577 void Thread::QuickDeliverException() {
2578   // Get exception from thread.
2579   mirror::Throwable* exception = GetException();
2580   CHECK(exception != nullptr);
2581   bool is_deoptimization = (exception == GetDeoptimizationException());
2582   if (!is_deoptimization) {
2583     // This is a real exception: let the instrumentation know about it.
2584     instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
2585     if (instrumentation->HasExceptionCaughtListeners() &&
2586         IsExceptionThrownByCurrentMethod(exception)) {
2587       // Instrumentation may cause GC so keep the exception object safe.
2588       StackHandleScope<1> hs(this);
2589       HandleWrapper<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
2590       instrumentation->ExceptionCaughtEvent(this, exception);
2591     }
2592     // Does instrumentation need to deoptimize the stack?
2593     // Note: we do this *after* reporting the exception to instrumentation in case it
2594     // now requires deoptimization. It may happen if a debugger is attached and requests
2595     // new events (single-step, breakpoint, ...) when the exception is reported.
2596     is_deoptimization = Dbg::IsForcedInterpreterNeededForException(this);
2597     if (is_deoptimization) {
2598       // Save the exception into the deoptimization context so it can be restored
2599       // before entering the interpreter.
2600       PushDeoptimizationContext(
2601           JValue(), /*is_reference */ false, /* from_code */ false, exception);
2602     }
2603   }
2604   // Don't leave exception visible while we try to find the handler, which may cause class
2605   // resolution.
2606   ClearException();
2607   QuickExceptionHandler exception_handler(this, is_deoptimization);
2608   if (is_deoptimization) {
2609     exception_handler.DeoptimizeStack();
2610   } else {
2611     exception_handler.FindCatch(exception);
2612   }
2613   exception_handler.UpdateInstrumentationStack();
2614   exception_handler.DoLongJump();
2615 }
2616 
GetLongJumpContext()2617 Context* Thread::GetLongJumpContext() {
2618   Context* result = tlsPtr_.long_jump_context;
2619   if (result == nullptr) {
2620     result = Context::Create();
2621   } else {
2622     tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
2623     result->Reset();
2624   }
2625   return result;
2626 }
2627 
2628 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
2629 //       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
2630 struct CurrentMethodVisitor FINAL : public StackVisitor {
CurrentMethodVisitorart::FINAL2631   CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
2632       SHARED_REQUIRES(Locks::mutator_lock_)
2633       : StackVisitor(thread, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2634         this_object_(nullptr),
2635         method_(nullptr),
2636         dex_pc_(0),
2637         abort_on_error_(abort_on_error) {}
VisitFrameart::FINAL2638   bool VisitFrame() OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
2639     ArtMethod* m = GetMethod();
2640     if (m->IsRuntimeMethod()) {
2641       // Continue if this is a runtime method.
2642       return true;
2643     }
2644     if (context_ != nullptr) {
2645       this_object_ = GetThisObject();
2646     }
2647     method_ = m;
2648     dex_pc_ = GetDexPc(abort_on_error_);
2649     return false;
2650   }
2651   mirror::Object* this_object_;
2652   ArtMethod* method_;
2653   uint32_t dex_pc_;
2654   const bool abort_on_error_;
2655 };
2656 
GetCurrentMethod(uint32_t * dex_pc,bool abort_on_error) const2657 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
2658   CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
2659   visitor.WalkStack(false);
2660   if (dex_pc != nullptr) {
2661     *dex_pc = visitor.dex_pc_;
2662   }
2663   return visitor.method_;
2664 }
2665 
HoldsLock(mirror::Object * object) const2666 bool Thread::HoldsLock(mirror::Object* object) const {
2667   if (object == nullptr) {
2668     return false;
2669   }
2670   return object->GetLockOwnerThreadId() == GetThreadId();
2671 }
2672 
2673 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
2674 template <typename RootVisitor>
2675 class ReferenceMapVisitor : public StackVisitor {
2676  public:
ReferenceMapVisitor(Thread * thread,Context * context,RootVisitor & visitor)2677   ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
2678       SHARED_REQUIRES(Locks::mutator_lock_)
2679         // We are visiting the references in compiled frames, so we do not need
2680         // to know the inlined frames.
2681       : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
2682         visitor_(visitor) {}
2683 
VisitFrame()2684   bool VisitFrame() SHARED_REQUIRES(Locks::mutator_lock_) {
2685     if (false) {
2686       LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
2687                 << StringPrintf("@ PC:%04x", GetDexPc());
2688     }
2689     ShadowFrame* shadow_frame = GetCurrentShadowFrame();
2690     if (shadow_frame != nullptr) {
2691       VisitShadowFrame(shadow_frame);
2692     } else {
2693       VisitQuickFrame();
2694     }
2695     return true;
2696   }
2697 
VisitShadowFrame(ShadowFrame * shadow_frame)2698   void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_REQUIRES(Locks::mutator_lock_) {
2699     ArtMethod* m = shadow_frame->GetMethod();
2700     VisitDeclaringClass(m);
2701     DCHECK(m != nullptr);
2702     size_t num_regs = shadow_frame->NumberOfVRegs();
2703     DCHECK(m->IsNative() || shadow_frame->HasReferenceArray());
2704     // handle scope for JNI or References for interpreter.
2705     for (size_t reg = 0; reg < num_regs; ++reg) {
2706       mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2707       if (ref != nullptr) {
2708         mirror::Object* new_ref = ref;
2709         visitor_(&new_ref, reg, this);
2710         if (new_ref != ref) {
2711           shadow_frame->SetVRegReference(reg, new_ref);
2712         }
2713       }
2714     }
2715     // Mark lock count map required for structured locking checks.
2716     shadow_frame->GetLockCountData().VisitMonitors(visitor_, -1, this);
2717   }
2718 
2719  private:
2720   // Visiting the declaring class is necessary so that we don't unload the class of a method that
2721   // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
2722   // the threads do not all hold the heap bitmap lock for parallel GC.
VisitDeclaringClass(ArtMethod * method)2723   void VisitDeclaringClass(ArtMethod* method)
2724       SHARED_REQUIRES(Locks::mutator_lock_)
2725       NO_THREAD_SAFETY_ANALYSIS {
2726     mirror::Class* klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
2727     // klass can be null for runtime methods.
2728     if (klass != nullptr) {
2729       if (kVerifyImageObjectsMarked) {
2730         gc::Heap* const heap = Runtime::Current()->GetHeap();
2731         gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
2732                                                                                 /*fail_ok*/true);
2733         if (space != nullptr && space->IsImageSpace()) {
2734           bool failed = false;
2735           if (!space->GetLiveBitmap()->Test(klass)) {
2736             failed = true;
2737             LOG(INTERNAL_FATAL) << "Unmarked object in image " << *space;
2738           } else if (!heap->GetLiveBitmap()->Test(klass)) {
2739             failed = true;
2740             LOG(INTERNAL_FATAL) << "Unmarked object in image through live bitmap " << *space;
2741           }
2742           if (failed) {
2743             GetThread()->Dump(LOG(INTERNAL_FATAL));
2744             space->AsImageSpace()->DumpSections(LOG(INTERNAL_FATAL));
2745             LOG(INTERNAL_FATAL) << "Method@" << method->GetDexMethodIndex() << ":" << method
2746                                 << " klass@" << klass;
2747             // Pretty info last in case it crashes.
2748             LOG(FATAL) << "Method " << PrettyMethod(method) << " klass " << PrettyClass(klass);
2749           }
2750         }
2751       }
2752       mirror::Object* new_ref = klass;
2753       visitor_(&new_ref, -1, this);
2754       if (new_ref != klass) {
2755         method->CASDeclaringClass(klass, new_ref->AsClass());
2756       }
2757     }
2758   }
2759 
VisitQuickFrame()2760   void VisitQuickFrame() SHARED_REQUIRES(Locks::mutator_lock_) {
2761     ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
2762     DCHECK(cur_quick_frame != nullptr);
2763     ArtMethod* m = *cur_quick_frame;
2764     VisitDeclaringClass(m);
2765 
2766     // Process register map (which native and runtime methods don't have)
2767     if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
2768       const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
2769       DCHECK(method_header->IsOptimized());
2770       auto* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
2771           reinterpret_cast<uintptr_t>(cur_quick_frame));
2772       uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
2773       CodeInfo code_info = method_header->GetOptimizedCodeInfo();
2774       CodeInfoEncoding encoding = code_info.ExtractEncoding();
2775       StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
2776       DCHECK(map.IsValid());
2777       // Visit stack entries that hold pointers.
2778       size_t number_of_bits = map.GetNumberOfStackMaskBits(encoding.stack_map_encoding);
2779       for (size_t i = 0; i < number_of_bits; ++i) {
2780         if (map.GetStackMaskBit(encoding.stack_map_encoding, i)) {
2781           auto* ref_addr = vreg_base + i;
2782           mirror::Object* ref = ref_addr->AsMirrorPtr();
2783           if (ref != nullptr) {
2784             mirror::Object* new_ref = ref;
2785             visitor_(&new_ref, -1, this);
2786             if (ref != new_ref) {
2787               ref_addr->Assign(new_ref);
2788             }
2789           }
2790         }
2791       }
2792       // Visit callee-save registers that hold pointers.
2793       uint32_t register_mask = map.GetRegisterMask(encoding.stack_map_encoding);
2794       for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
2795         if (register_mask & (1 << i)) {
2796           mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
2797           if (*ref_addr != nullptr) {
2798             visitor_(ref_addr, -1, this);
2799           }
2800         }
2801       }
2802     }
2803   }
2804 
2805   // Visitor for when we visit a root.
2806   RootVisitor& visitor_;
2807 };
2808 
2809 class RootCallbackVisitor {
2810  public:
RootCallbackVisitor(RootVisitor * visitor,uint32_t tid)2811   RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
2812 
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const2813   void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
2814       SHARED_REQUIRES(Locks::mutator_lock_) {
2815     visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
2816   }
2817 
2818  private:
2819   RootVisitor* const visitor_;
2820   const uint32_t tid_;
2821 };
2822 
VisitRoots(RootVisitor * visitor)2823 void Thread::VisitRoots(RootVisitor* visitor) {
2824   const uint32_t thread_id = GetThreadId();
2825   visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
2826   if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2827     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
2828                        RootInfo(kRootNativeStack, thread_id));
2829   }
2830   visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
2831   tlsPtr_.jni_env->locals.VisitRoots(visitor, RootInfo(kRootJNILocal, thread_id));
2832   tlsPtr_.jni_env->monitors.VisitRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
2833   HandleScopeVisitRoots(visitor, thread_id);
2834   if (tlsPtr_.debug_invoke_req != nullptr) {
2835     tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
2836   }
2837   // Visit roots for deoptimization.
2838   if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
2839     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
2840     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitor_to_callback);
2841     for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
2842          record != nullptr;
2843          record = record->GetLink()) {
2844       for (ShadowFrame* shadow_frame = record->GetShadowFrame();
2845            shadow_frame != nullptr;
2846            shadow_frame = shadow_frame->GetLink()) {
2847         mapper.VisitShadowFrame(shadow_frame);
2848       }
2849     }
2850   }
2851   for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
2852        record != nullptr;
2853        record = record->GetLink()) {
2854     if (record->IsReference()) {
2855       visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
2856                                   RootInfo(kRootThreadObject, thread_id));
2857     }
2858     visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
2859                                 RootInfo(kRootThreadObject, thread_id));
2860   }
2861   if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
2862     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
2863     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitor_to_callback);
2864     for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
2865          record != nullptr;
2866          record = record->GetNext()) {
2867       mapper.VisitShadowFrame(record->GetShadowFrame());
2868     }
2869   }
2870   for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
2871     verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
2872   }
2873   // Visit roots on this thread's stack
2874   Context* context = GetLongJumpContext();
2875   RootCallbackVisitor visitor_to_callback(visitor, thread_id);
2876   ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitor_to_callback);
2877   mapper.WalkStack();
2878   ReleaseLongJumpContext(context);
2879   for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2880     visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
2881   }
2882 }
2883 
2884 class VerifyRootVisitor : public SingleRootVisitor {
2885  public:
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)2886   void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
2887       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
2888     VerifyObject(root);
2889   }
2890 };
2891 
VerifyStackImpl()2892 void Thread::VerifyStackImpl() {
2893   VerifyRootVisitor visitor;
2894   std::unique_ptr<Context> context(Context::Create());
2895   RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
2896   ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
2897   mapper.WalkStack();
2898 }
2899 
2900 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()2901 void Thread::SetStackEndForStackOverflow() {
2902   // During stack overflow we allow use of the full stack.
2903   if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2904     // However, we seem to have already extended to use the full stack.
2905     LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2906                << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
2907     DumpStack(LOG(ERROR));
2908     LOG(FATAL) << "Recursive stack overflow.";
2909   }
2910 
2911   tlsPtr_.stack_end = tlsPtr_.stack_begin;
2912 
2913   // Remove the stack overflow protection if is it set up.
2914   bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
2915   if (implicit_stack_check) {
2916     if (!UnprotectStack()) {
2917       LOG(ERROR) << "Unable to remove stack protection for stack overflow";
2918     }
2919   }
2920 }
2921 
SetTlab(uint8_t * start,uint8_t * end)2922 void Thread::SetTlab(uint8_t* start, uint8_t* end) {
2923   DCHECK_LE(start, end);
2924   tlsPtr_.thread_local_start = start;
2925   tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
2926   tlsPtr_.thread_local_end = end;
2927   tlsPtr_.thread_local_objects = 0;
2928 }
2929 
HasTlab() const2930 bool Thread::HasTlab() const {
2931   bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2932   if (has_tlab) {
2933     DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2934   } else {
2935     DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2936   }
2937   return has_tlab;
2938 }
2939 
operator <<(std::ostream & os,const Thread & thread)2940 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2941   thread.ShortDump(os);
2942   return os;
2943 }
2944 
ProtectStack(bool fatal_on_error)2945 bool Thread::ProtectStack(bool fatal_on_error) {
2946   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2947   VLOG(threads) << "Protecting stack at " << pregion;
2948   if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
2949     if (fatal_on_error) {
2950       LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
2951           "Reason: "
2952           << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
2953     }
2954     return false;
2955   }
2956   return true;
2957 }
2958 
UnprotectStack()2959 bool Thread::UnprotectStack() {
2960   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2961   VLOG(threads) << "Unprotecting stack at " << pregion;
2962   return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
2963 }
2964 
ActivateSingleStepControl(SingleStepControl * ssc)2965 void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
2966   CHECK(Dbg::IsDebuggerActive());
2967   CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
2968   CHECK(ssc != nullptr);
2969   tlsPtr_.single_step_control = ssc;
2970 }
2971 
DeactivateSingleStepControl()2972 void Thread::DeactivateSingleStepControl() {
2973   CHECK(Dbg::IsDebuggerActive());
2974   CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
2975   SingleStepControl* ssc = GetSingleStepControl();
2976   tlsPtr_.single_step_control = nullptr;
2977   delete ssc;
2978 }
2979 
SetDebugInvokeReq(DebugInvokeReq * req)2980 void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
2981   CHECK(Dbg::IsDebuggerActive());
2982   CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
2983   CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
2984   CHECK(req != nullptr);
2985   tlsPtr_.debug_invoke_req = req;
2986 }
2987 
ClearDebugInvokeReq()2988 void Thread::ClearDebugInvokeReq() {
2989   CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
2990   CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
2991   DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
2992   tlsPtr_.debug_invoke_req = nullptr;
2993   delete req;
2994 }
2995 
PushVerifier(verifier::MethodVerifier * verifier)2996 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
2997   verifier->link_ = tlsPtr_.method_verifier;
2998   tlsPtr_.method_verifier = verifier;
2999 }
3000 
PopVerifier(verifier::MethodVerifier * verifier)3001 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
3002   CHECK_EQ(tlsPtr_.method_verifier, verifier);
3003   tlsPtr_.method_verifier = verifier->link_;
3004 }
3005 
NumberOfHeldMutexes() const3006 size_t Thread::NumberOfHeldMutexes() const {
3007   size_t count = 0;
3008   for (BaseMutex* mu : tlsPtr_.held_mutexes) {
3009     count += mu != nullptr ? 1 : 0;
3010   }
3011   return count;
3012 }
3013 
DeoptimizeWithDeoptimizationException(JValue * result)3014 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
3015   DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
3016   ClearException();
3017   ShadowFrame* shadow_frame =
3018       PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
3019   mirror::Throwable* pending_exception = nullptr;
3020   bool from_code = false;
3021   PopDeoptimizationContext(result, &pending_exception, &from_code);
3022   CHECK(!from_code) << "Deoptimizing from code should be done with single frame deoptimization";
3023   SetTopOfStack(nullptr);
3024   SetTopOfShadowStack(shadow_frame);
3025 
3026   // Restore the exception that was pending before deoptimization then interpret the
3027   // deoptimized frames.
3028   if (pending_exception != nullptr) {
3029     SetException(pending_exception);
3030   }
3031   interpreter::EnterInterpreterFromDeoptimize(this, shadow_frame, from_code, result);
3032 }
3033 
SetException(mirror::Throwable * new_exception)3034 void Thread::SetException(mirror::Throwable* new_exception) {
3035   CHECK(new_exception != nullptr);
3036   // TODO: DCHECK(!IsExceptionPending());
3037   tlsPtr_.exception = new_exception;
3038   // LOG(ERROR) << new_exception->Dump();
3039 }
3040 
3041 }  // namespace art
3042