1 /*
2 *******************************************************************************
3 *
4 * Copyright (C) 2005-2015, International Business Machines
5 * Corporation and others. All Rights Reserved.
6 *
7 *******************************************************************************
8 * file name: utext.cpp
9 * encoding: US-ASCII
10 * tab size: 8 (not used)
11 * indentation:4
12 *
13 * created on: 2005apr12
14 * created by: Markus W. Scherer
15 */
16
17 #include "unicode/utypes.h"
18 #include "unicode/ustring.h"
19 #include "unicode/unistr.h"
20 #include "unicode/chariter.h"
21 #include "unicode/utext.h"
22 #include "unicode/utf.h"
23 #include "unicode/utf8.h"
24 #include "unicode/utf16.h"
25 #include "ustr_imp.h"
26 #include "cmemory.h"
27 #include "cstring.h"
28 #include "uassert.h"
29 #include "putilimp.h"
30
31 U_NAMESPACE_USE
32
33 #define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex))
34
35
36 static UBool
utext_access(UText * ut,int64_t index,UBool forward)37 utext_access(UText *ut, int64_t index, UBool forward) {
38 return ut->pFuncs->access(ut, index, forward);
39 }
40
41
42
43 U_CAPI UBool U_EXPORT2
utext_moveIndex32(UText * ut,int32_t delta)44 utext_moveIndex32(UText *ut, int32_t delta) {
45 UChar32 c;
46 if (delta > 0) {
47 do {
48 if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, TRUE)) {
49 return FALSE;
50 }
51 c = ut->chunkContents[ut->chunkOffset];
52 if (U16_IS_SURROGATE(c)) {
53 c = utext_next32(ut);
54 if (c == U_SENTINEL) {
55 return FALSE;
56 }
57 } else {
58 ut->chunkOffset++;
59 }
60 } while(--delta>0);
61
62 } else if (delta<0) {
63 do {
64 if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, FALSE)) {
65 return FALSE;
66 }
67 c = ut->chunkContents[ut->chunkOffset-1];
68 if (U16_IS_SURROGATE(c)) {
69 c = utext_previous32(ut);
70 if (c == U_SENTINEL) {
71 return FALSE;
72 }
73 } else {
74 ut->chunkOffset--;
75 }
76 } while(++delta<0);
77 }
78
79 return TRUE;
80 }
81
82
83 U_CAPI int64_t U_EXPORT2
utext_nativeLength(UText * ut)84 utext_nativeLength(UText *ut) {
85 return ut->pFuncs->nativeLength(ut);
86 }
87
88
89 U_CAPI UBool U_EXPORT2
utext_isLengthExpensive(const UText * ut)90 utext_isLengthExpensive(const UText *ut) {
91 UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0;
92 return r;
93 }
94
95
96 U_CAPI int64_t U_EXPORT2
utext_getNativeIndex(const UText * ut)97 utext_getNativeIndex(const UText *ut) {
98 if(ut->chunkOffset <= ut->nativeIndexingLimit) {
99 return ut->chunkNativeStart+ut->chunkOffset;
100 } else {
101 return ut->pFuncs->mapOffsetToNative(ut);
102 }
103 }
104
105
106 U_CAPI void U_EXPORT2
utext_setNativeIndex(UText * ut,int64_t index)107 utext_setNativeIndex(UText *ut, int64_t index) {
108 if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
109 // The desired position is outside of the current chunk.
110 // Access the new position. Assume a forward iteration from here,
111 // which will also be optimimum for a single random access.
112 // Reverse iterations may suffer slightly.
113 ut->pFuncs->access(ut, index, TRUE);
114 } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) {
115 // utf-16 indexing.
116 ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart);
117 } else {
118 ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
119 }
120 // The convention is that the index must always be on a code point boundary.
121 // Adjust the index position if it is in the middle of a surrogate pair.
122 if (ut->chunkOffset<ut->chunkLength) {
123 UChar c= ut->chunkContents[ut->chunkOffset];
124 if (U16_IS_TRAIL(c)) {
125 if (ut->chunkOffset==0) {
126 ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE);
127 }
128 if (ut->chunkOffset>0) {
129 UChar lead = ut->chunkContents[ut->chunkOffset-1];
130 if (U16_IS_LEAD(lead)) {
131 ut->chunkOffset--;
132 }
133 }
134 }
135 }
136 }
137
138
139
140 U_CAPI int64_t U_EXPORT2
utext_getPreviousNativeIndex(UText * ut)141 utext_getPreviousNativeIndex(UText *ut) {
142 //
143 // Fast-path the common case.
144 // Common means current position is not at the beginning of a chunk
145 // and the preceding character is not supplementary.
146 //
147 int32_t i = ut->chunkOffset - 1;
148 int64_t result;
149 if (i >= 0) {
150 UChar c = ut->chunkContents[i];
151 if (U16_IS_TRAIL(c) == FALSE) {
152 if (i <= ut->nativeIndexingLimit) {
153 result = ut->chunkNativeStart + i;
154 } else {
155 ut->chunkOffset = i;
156 result = ut->pFuncs->mapOffsetToNative(ut);
157 ut->chunkOffset++;
158 }
159 return result;
160 }
161 }
162
163 // If at the start of text, simply return 0.
164 if (ut->chunkOffset==0 && ut->chunkNativeStart==0) {
165 return 0;
166 }
167
168 // Harder, less common cases. We are at a chunk boundary, or on a surrogate.
169 // Keep it simple, use other functions to handle the edges.
170 //
171 utext_previous32(ut);
172 result = UTEXT_GETNATIVEINDEX(ut);
173 utext_next32(ut);
174 return result;
175 }
176
177
178 //
179 // utext_current32. Get the UChar32 at the current position.
180 // UText iteration position is always on a code point boundary,
181 // never on the trail half of a surrogate pair.
182 //
183 U_CAPI UChar32 U_EXPORT2
utext_current32(UText * ut)184 utext_current32(UText *ut) {
185 UChar32 c;
186 if (ut->chunkOffset==ut->chunkLength) {
187 // Current position is just off the end of the chunk.
188 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
189 // Off the end of the text.
190 return U_SENTINEL;
191 }
192 }
193
194 c = ut->chunkContents[ut->chunkOffset];
195 if (U16_IS_LEAD(c) == FALSE) {
196 // Normal, non-supplementary case.
197 return c;
198 }
199
200 //
201 // Possible supplementary char.
202 //
203 UChar32 trail = 0;
204 UChar32 supplementaryC = c;
205 if ((ut->chunkOffset+1) < ut->chunkLength) {
206 // The trail surrogate is in the same chunk.
207 trail = ut->chunkContents[ut->chunkOffset+1];
208 } else {
209 // The trail surrogate is in a different chunk.
210 // Because we must maintain the iteration position, we need to switch forward
211 // into the new chunk, get the trail surrogate, then revert the chunk back to the
212 // original one.
213 // An edge case to be careful of: the entire text may end with an unpaired
214 // leading surrogate. The attempt to access the trail will fail, but
215 // the original position before the unpaired lead still needs to be restored.
216 int64_t nativePosition = ut->chunkNativeLimit;
217 int32_t originalOffset = ut->chunkOffset;
218 if (ut->pFuncs->access(ut, nativePosition, TRUE)) {
219 trail = ut->chunkContents[ut->chunkOffset];
220 }
221 UBool r = ut->pFuncs->access(ut, nativePosition, FALSE); // reverse iteration flag loads preceding chunk
222 U_ASSERT(r==TRUE);
223 ut->chunkOffset = originalOffset;
224 if(!r) {
225 return U_SENTINEL;
226 }
227 }
228
229 if (U16_IS_TRAIL(trail)) {
230 supplementaryC = U16_GET_SUPPLEMENTARY(c, trail);
231 }
232 return supplementaryC;
233
234 }
235
236
237 U_CAPI UChar32 U_EXPORT2
utext_char32At(UText * ut,int64_t nativeIndex)238 utext_char32At(UText *ut, int64_t nativeIndex) {
239 UChar32 c = U_SENTINEL;
240
241 // Fast path the common case.
242 if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) {
243 ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart);
244 c = ut->chunkContents[ut->chunkOffset];
245 if (U16_IS_SURROGATE(c) == FALSE) {
246 return c;
247 }
248 }
249
250
251 utext_setNativeIndex(ut, nativeIndex);
252 if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) {
253 c = ut->chunkContents[ut->chunkOffset];
254 if (U16_IS_SURROGATE(c)) {
255 // For surrogates, let current32() deal with the complications
256 // of supplementaries that may span chunk boundaries.
257 c = utext_current32(ut);
258 }
259 }
260 return c;
261 }
262
263
264 U_CAPI UChar32 U_EXPORT2
utext_next32(UText * ut)265 utext_next32(UText *ut) {
266 UChar32 c;
267
268 if (ut->chunkOffset >= ut->chunkLength) {
269 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
270 return U_SENTINEL;
271 }
272 }
273
274 c = ut->chunkContents[ut->chunkOffset++];
275 if (U16_IS_LEAD(c) == FALSE) {
276 // Normal case, not supplementary.
277 // (A trail surrogate seen here is just returned as is, as a surrogate value.
278 // It cannot be part of a pair.)
279 return c;
280 }
281
282 if (ut->chunkOffset >= ut->chunkLength) {
283 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
284 // c is an unpaired lead surrogate at the end of the text.
285 // return it as it is.
286 return c;
287 }
288 }
289 UChar32 trail = ut->chunkContents[ut->chunkOffset];
290 if (U16_IS_TRAIL(trail) == FALSE) {
291 // c was an unpaired lead surrogate, not at the end of the text.
292 // return it as it is (unpaired). Iteration position is on the
293 // following character, possibly in the next chunk, where the
294 // trail surrogate would have been if it had existed.
295 return c;
296 }
297
298 UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail);
299 ut->chunkOffset++; // move iteration position over the trail surrogate.
300 return supplementary;
301 }
302
303
304 U_CAPI UChar32 U_EXPORT2
utext_previous32(UText * ut)305 utext_previous32(UText *ut) {
306 UChar32 c;
307
308 if (ut->chunkOffset <= 0) {
309 if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) {
310 return U_SENTINEL;
311 }
312 }
313 ut->chunkOffset--;
314 c = ut->chunkContents[ut->chunkOffset];
315 if (U16_IS_TRAIL(c) == FALSE) {
316 // Normal case, not supplementary.
317 // (A lead surrogate seen here is just returned as is, as a surrogate value.
318 // It cannot be part of a pair.)
319 return c;
320 }
321
322 if (ut->chunkOffset <= 0) {
323 if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) {
324 // c is an unpaired trail surrogate at the start of the text.
325 // return it as it is.
326 return c;
327 }
328 }
329
330 UChar32 lead = ut->chunkContents[ut->chunkOffset-1];
331 if (U16_IS_LEAD(lead) == FALSE) {
332 // c was an unpaired trail surrogate, not at the end of the text.
333 // return it as it is (unpaired). Iteration position is at c
334 return c;
335 }
336
337 UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c);
338 ut->chunkOffset--; // move iteration position over the lead surrogate.
339 return supplementary;
340 }
341
342
343
344 U_CAPI UChar32 U_EXPORT2
utext_next32From(UText * ut,int64_t index)345 utext_next32From(UText *ut, int64_t index) {
346 UChar32 c = U_SENTINEL;
347
348 if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
349 // Desired position is outside of the current chunk.
350 if(!ut->pFuncs->access(ut, index, TRUE)) {
351 // no chunk available here
352 return U_SENTINEL;
353 }
354 } else if (index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) {
355 // Desired position is in chunk, with direct 1:1 native to UTF16 indexing
356 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
357 } else {
358 // Desired position is in chunk, with non-UTF16 indexing.
359 ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index);
360 }
361
362 c = ut->chunkContents[ut->chunkOffset++];
363 if (U16_IS_SURROGATE(c)) {
364 // Surrogates. Many edge cases. Use other functions that already
365 // deal with the problems.
366 utext_setNativeIndex(ut, index);
367 c = utext_next32(ut);
368 }
369 return c;
370 }
371
372
373 U_CAPI UChar32 U_EXPORT2
utext_previous32From(UText * ut,int64_t index)374 utext_previous32From(UText *ut, int64_t index) {
375 //
376 // Return the character preceding the specified index.
377 // Leave the iteration position at the start of the character that was returned.
378 //
379 UChar32 cPrev; // The character preceding cCurr, which is what we will return.
380
381 // Address the chunk containg the position preceding the incoming index
382 // A tricky edge case:
383 // We try to test the requested native index against the chunkNativeStart to determine
384 // whether the character preceding the one at the index is in the current chunk.
385 // BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the
386 // requested index is on something other than the first position of the first char.
387 //
388 if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) {
389 // Requested native index is outside of the current chunk.
390 if(!ut->pFuncs->access(ut, index, FALSE)) {
391 // no chunk available here
392 return U_SENTINEL;
393 }
394 } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) {
395 // Direct UTF-16 indexing.
396 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
397 } else {
398 ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
399 if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, FALSE)) {
400 // no chunk available here
401 return U_SENTINEL;
402 }
403 }
404
405 //
406 // Simple case with no surrogates.
407 //
408 ut->chunkOffset--;
409 cPrev = ut->chunkContents[ut->chunkOffset];
410
411 if (U16_IS_SURROGATE(cPrev)) {
412 // Possible supplementary. Many edge cases.
413 // Let other functions do the heavy lifting.
414 utext_setNativeIndex(ut, index);
415 cPrev = utext_previous32(ut);
416 }
417 return cPrev;
418 }
419
420
421 U_CAPI int32_t U_EXPORT2
utext_extract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * status)422 utext_extract(UText *ut,
423 int64_t start, int64_t limit,
424 UChar *dest, int32_t destCapacity,
425 UErrorCode *status) {
426 return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status);
427 }
428
429
430
431 U_CAPI UBool U_EXPORT2
utext_equals(const UText * a,const UText * b)432 utext_equals(const UText *a, const UText *b) {
433 if (a==NULL || b==NULL ||
434 a->magic != UTEXT_MAGIC ||
435 b->magic != UTEXT_MAGIC) {
436 // Null or invalid arguments don't compare equal to anything.
437 return FALSE;
438 }
439
440 if (a->pFuncs != b->pFuncs) {
441 // Different types of text providers.
442 return FALSE;
443 }
444
445 if (a->context != b->context) {
446 // Different sources (different strings)
447 return FALSE;
448 }
449 if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) {
450 // Different current position in the string.
451 return FALSE;
452 }
453
454 return TRUE;
455 }
456
457 U_CAPI UBool U_EXPORT2
utext_isWritable(const UText * ut)458 utext_isWritable(const UText *ut)
459 {
460 UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0;
461 return b;
462 }
463
464
465 U_CAPI void U_EXPORT2
utext_freeze(UText * ut)466 utext_freeze(UText *ut) {
467 // Zero out the WRITABLE flag.
468 ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE));
469 }
470
471
472 U_CAPI UBool U_EXPORT2
utext_hasMetaData(const UText * ut)473 utext_hasMetaData(const UText *ut)
474 {
475 UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0;
476 return b;
477 }
478
479
480
481 U_CAPI int32_t U_EXPORT2
utext_replace(UText * ut,int64_t nativeStart,int64_t nativeLimit,const UChar * replacementText,int32_t replacementLength,UErrorCode * status)482 utext_replace(UText *ut,
483 int64_t nativeStart, int64_t nativeLimit,
484 const UChar *replacementText, int32_t replacementLength,
485 UErrorCode *status)
486 {
487 if (U_FAILURE(*status)) {
488 return 0;
489 }
490 if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
491 *status = U_NO_WRITE_PERMISSION;
492 return 0;
493 }
494 int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status);
495 return i;
496 }
497
498 U_CAPI void U_EXPORT2
utext_copy(UText * ut,int64_t nativeStart,int64_t nativeLimit,int64_t destIndex,UBool move,UErrorCode * status)499 utext_copy(UText *ut,
500 int64_t nativeStart, int64_t nativeLimit,
501 int64_t destIndex,
502 UBool move,
503 UErrorCode *status)
504 {
505 if (U_FAILURE(*status)) {
506 return;
507 }
508 if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
509 *status = U_NO_WRITE_PERMISSION;
510 return;
511 }
512 ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status);
513 }
514
515
516
517 U_CAPI UText * U_EXPORT2
utext_clone(UText * dest,const UText * src,UBool deep,UBool readOnly,UErrorCode * status)518 utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) {
519 if (U_FAILURE(*status)) {
520 return dest;
521 }
522 UText *result = src->pFuncs->clone(dest, src, deep, status);
523 if (U_FAILURE(*status)) {
524 return result;
525 }
526 if (result == NULL) {
527 *status = U_MEMORY_ALLOCATION_ERROR;
528 return result;
529 }
530 if (readOnly) {
531 utext_freeze(result);
532 }
533 return result;
534 }
535
536
537
538 //------------------------------------------------------------------------------
539 //
540 // UText common functions implementation
541 //
542 //------------------------------------------------------------------------------
543
544 //
545 // UText.flags bit definitions
546 //
547 enum {
548 UTEXT_HEAP_ALLOCATED = 1, // 1 if ICU has allocated this UText struct on the heap.
549 // 0 if caller provided storage for the UText.
550
551 UTEXT_EXTRA_HEAP_ALLOCATED = 2, // 1 if ICU has allocated extra storage as a separate
552 // heap block.
553 // 0 if there is no separate allocation. Either no extra
554 // storage was requested, or it is appended to the end
555 // of the main UText storage.
556
557 UTEXT_OPEN = 4 // 1 if this UText is currently open
558 // 0 if this UText is not open.
559 };
560
561
562 //
563 // Extended form of a UText. The purpose is to aid in computing the total size required
564 // when a provider asks for a UText to be allocated with extra storage.
565
566 struct ExtendedUText {
567 UText ut;
568 UAlignedMemory extension;
569 };
570
571 static const UText emptyText = UTEXT_INITIALIZER;
572
573 U_CAPI UText * U_EXPORT2
utext_setup(UText * ut,int32_t extraSpace,UErrorCode * status)574 utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) {
575 if (U_FAILURE(*status)) {
576 return ut;
577 }
578
579 if (ut == NULL) {
580 // We need to heap-allocate storage for the new UText
581 int32_t spaceRequired = sizeof(UText);
582 if (extraSpace > 0) {
583 spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(UAlignedMemory);
584 }
585 ut = (UText *)uprv_malloc(spaceRequired);
586 if (ut == NULL) {
587 *status = U_MEMORY_ALLOCATION_ERROR;
588 return NULL;
589 } else {
590 *ut = emptyText;
591 ut->flags |= UTEXT_HEAP_ALLOCATED;
592 if (spaceRequired>0) {
593 ut->extraSize = extraSpace;
594 ut->pExtra = &((ExtendedUText *)ut)->extension;
595 }
596 }
597 } else {
598 // We have been supplied with an already existing UText.
599 // Verify that it really appears to be a UText.
600 if (ut->magic != UTEXT_MAGIC) {
601 *status = U_ILLEGAL_ARGUMENT_ERROR;
602 return ut;
603 }
604 // If the ut is already open and there's a provider supplied close
605 // function, call it.
606 if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != NULL) {
607 ut->pFuncs->close(ut);
608 }
609 ut->flags &= ~UTEXT_OPEN;
610
611 // If extra space was requested by our caller, check whether
612 // sufficient already exists, and allocate new if needed.
613 if (extraSpace > ut->extraSize) {
614 // Need more space. If there is existing separately allocated space,
615 // delete it first, then allocate new space.
616 if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
617 uprv_free(ut->pExtra);
618 ut->extraSize = 0;
619 }
620 ut->pExtra = uprv_malloc(extraSpace);
621 if (ut->pExtra == NULL) {
622 *status = U_MEMORY_ALLOCATION_ERROR;
623 } else {
624 ut->extraSize = extraSpace;
625 ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED;
626 }
627 }
628 }
629 if (U_SUCCESS(*status)) {
630 ut->flags |= UTEXT_OPEN;
631
632 // Initialize all remaining fields of the UText.
633 //
634 ut->context = NULL;
635 ut->chunkContents = NULL;
636 ut->p = NULL;
637 ut->q = NULL;
638 ut->r = NULL;
639 ut->a = 0;
640 ut->b = 0;
641 ut->c = 0;
642 ut->chunkOffset = 0;
643 ut->chunkLength = 0;
644 ut->chunkNativeStart = 0;
645 ut->chunkNativeLimit = 0;
646 ut->nativeIndexingLimit = 0;
647 ut->providerProperties = 0;
648 ut->privA = 0;
649 ut->privB = 0;
650 ut->privC = 0;
651 ut->privP = NULL;
652 if (ut->pExtra!=NULL && ut->extraSize>0)
653 uprv_memset(ut->pExtra, 0, ut->extraSize);
654
655 }
656 return ut;
657 }
658
659
660 U_CAPI UText * U_EXPORT2
utext_close(UText * ut)661 utext_close(UText *ut) {
662 if (ut==NULL ||
663 ut->magic != UTEXT_MAGIC ||
664 (ut->flags & UTEXT_OPEN) == 0)
665 {
666 // The supplied ut is not an open UText.
667 // Do nothing.
668 return ut;
669 }
670
671 // If the provider gave us a close function, call it now.
672 // This will clean up anything allocated specifically by the provider.
673 if (ut->pFuncs->close != NULL) {
674 ut->pFuncs->close(ut);
675 }
676 ut->flags &= ~UTEXT_OPEN;
677
678 // If we (the framework) allocated the UText or subsidiary storage,
679 // delete it.
680 if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
681 uprv_free(ut->pExtra);
682 ut->pExtra = NULL;
683 ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED;
684 ut->extraSize = 0;
685 }
686
687 // Zero out function table of the closed UText. This is a defensive move,
688 // inteded to cause applications that inadvertantly use a closed
689 // utext to crash with null pointer errors.
690 ut->pFuncs = NULL;
691
692 if (ut->flags & UTEXT_HEAP_ALLOCATED) {
693 // This UText was allocated by UText setup. We need to free it.
694 // Clear magic, so we can detect if the user messes up and immediately
695 // tries to reopen another UText using the deleted storage.
696 ut->magic = 0;
697 uprv_free(ut);
698 ut = NULL;
699 }
700 return ut;
701 }
702
703
704
705
706 //
707 // invalidateChunk Reset a chunk to have no contents, so that the next call
708 // to access will cause new data to load.
709 // This is needed when copy/move/replace operate directly on the
710 // backing text, potentially putting it out of sync with the
711 // contents in the chunk.
712 //
713 static void
invalidateChunk(UText * ut)714 invalidateChunk(UText *ut) {
715 ut->chunkLength = 0;
716 ut->chunkNativeLimit = 0;
717 ut->chunkNativeStart = 0;
718 ut->chunkOffset = 0;
719 ut->nativeIndexingLimit = 0;
720 }
721
722 //
723 // pinIndex Do range pinning on a native index parameter.
724 // 64 bit pinning is done in place.
725 // 32 bit truncated result is returned as a convenience for
726 // use in providers that don't need 64 bits.
727 static int32_t
pinIndex(int64_t & index,int64_t limit)728 pinIndex(int64_t &index, int64_t limit) {
729 if (index<0) {
730 index = 0;
731 } else if (index > limit) {
732 index = limit;
733 }
734 return (int32_t)index;
735 }
736
737
738 U_CDECL_BEGIN
739
740 //
741 // Pointer relocation function,
742 // a utility used by shallow clone.
743 // Adjust a pointer that refers to something within one UText (the source)
744 // to refer to the same relative offset within a another UText (the target)
745 //
adjustPointer(UText * dest,const void ** destPtr,const UText * src)746 static void adjustPointer(UText *dest, const void **destPtr, const UText *src) {
747 // convert all pointers to (char *) so that byte address arithmetic will work.
748 char *dptr = (char *)*destPtr;
749 char *dUText = (char *)dest;
750 char *sUText = (char *)src;
751
752 if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) {
753 // target ptr was to something within the src UText's pExtra storage.
754 // relocate it into the target UText's pExtra region.
755 *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra);
756 } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) {
757 // target ptr was pointing to somewhere within the source UText itself.
758 // Move it to the same offset within the target UText.
759 *destPtr = dUText + (dptr-sUText);
760 }
761 }
762
763
764 //
765 // Clone. This is a generic copy-the-utext-by-value clone function that can be
766 // used as-is with some utext types, and as a helper by other clones.
767 //
768 static UText * U_CALLCONV
shallowTextClone(UText * dest,const UText * src,UErrorCode * status)769 shallowTextClone(UText * dest, const UText * src, UErrorCode * status) {
770 if (U_FAILURE(*status)) {
771 return NULL;
772 }
773 int32_t srcExtraSize = src->extraSize;
774
775 //
776 // Use the generic text_setup to allocate storage if required.
777 //
778 dest = utext_setup(dest, srcExtraSize, status);
779 if (U_FAILURE(*status)) {
780 return dest;
781 }
782
783 //
784 // flags (how the UText was allocated) and the pointer to the
785 // extra storage must retain the values in the cloned utext that
786 // were set up by utext_setup. Save them separately before
787 // copying the whole struct.
788 //
789 void *destExtra = dest->pExtra;
790 int32_t flags = dest->flags;
791
792
793 //
794 // Copy the whole UText struct by value.
795 // Any "Extra" storage is copied also.
796 //
797 int sizeToCopy = src->sizeOfStruct;
798 if (sizeToCopy > dest->sizeOfStruct) {
799 sizeToCopy = dest->sizeOfStruct;
800 }
801 uprv_memcpy(dest, src, sizeToCopy);
802 dest->pExtra = destExtra;
803 dest->flags = flags;
804 if (srcExtraSize > 0) {
805 uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize);
806 }
807
808 //
809 // Relocate any pointers in the target that refer to the UText itself
810 // to point to the cloned copy rather than the original source.
811 //
812 adjustPointer(dest, &dest->context, src);
813 adjustPointer(dest, &dest->p, src);
814 adjustPointer(dest, &dest->q, src);
815 adjustPointer(dest, &dest->r, src);
816 adjustPointer(dest, (const void **)&dest->chunkContents, src);
817
818 // The newly shallow-cloned UText does _not_ own the underlying storage for the text.
819 // (The source for the clone may or may not have owned the text.)
820
821 dest->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
822
823 return dest;
824 }
825
826
827 U_CDECL_END
828
829
830
831 //------------------------------------------------------------------------------
832 //
833 // UText implementation for UTF-8 char * strings (read-only)
834 // Limitation: string length must be <= 0x7fffffff in length.
835 // (length must for in an int32_t variable)
836 //
837 // Use of UText data members:
838 // context pointer to UTF-8 string
839 // utext.b is the input string length (bytes).
840 // utext.c Length scanned so far in string
841 // (for optimizing finding length of zero terminated strings.)
842 // utext.p pointer to the current buffer
843 // utext.q pointer to the other buffer.
844 //
845 //------------------------------------------------------------------------------
846
847 // Chunk size.
848 // Must be less than 85, because of byte mapping from UChar indexes to native indexes.
849 // Worst case is three native bytes to one UChar. (Supplemenaries are 4 native bytes
850 // to two UChars.)
851 //
852 enum { UTF8_TEXT_CHUNK_SIZE=32 };
853
854 //
855 // UTF8Buf Two of these structs will be set up in the UText's extra allocated space.
856 // Each contains the UChar chunk buffer, the to and from native maps, and
857 // header info.
858 //
859 // because backwards iteration fills the buffers starting at the end and
860 // working towards the front, the filled part of the buffers may not begin
861 // at the start of the available storage for the buffers.
862 //
863 // Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for
864 // the last character added being a supplementary, and thus requiring a surrogate
865 // pair. Doing this is simpler than checking for the edge case.
866 //
867
868 struct UTF8Buf {
869 int32_t bufNativeStart; // Native index of first char in UChar buf
870 int32_t bufNativeLimit; // Native index following last char in buf.
871 int32_t bufStartIdx; // First filled position in buf.
872 int32_t bufLimitIdx; // Limit of filled range in buf.
873 int32_t bufNILimit; // Limit of native indexing part of buf
874 int32_t toUCharsMapStart; // Native index corresponding to
875 // mapToUChars[0].
876 // Set to bufNativeStart when filling forwards.
877 // Set to computed value when filling backwards.
878
879 UChar buf[UTF8_TEXT_CHUNK_SIZE+4]; // The UChar buffer. Requires one extra position beyond the
880 // the chunk size, to allow for surrogate at the end.
881 // Length must be identical to mapToNative array, below,
882 // because of the way indexing works when the array is
883 // filled backwards during a reverse iteration. Thus,
884 // the additional extra size.
885 uint8_t mapToNative[UTF8_TEXT_CHUNK_SIZE+4]; // map UChar index in buf to
886 // native offset from bufNativeStart.
887 // Requires two extra slots,
888 // one for a supplementary starting in the last normal position,
889 // and one for an entry for the buffer limit position.
890 uint8_t mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from bufNativeStart to
891 // correspoding offset in filled part of buf.
892 int32_t align;
893 };
894
895 U_CDECL_BEGIN
896
897 //
898 // utf8TextLength
899 //
900 // Get the length of the string. If we don't already know it,
901 // we'll need to scan for the trailing nul.
902 //
903 static int64_t U_CALLCONV
utf8TextLength(UText * ut)904 utf8TextLength(UText *ut) {
905 if (ut->b < 0) {
906 // Zero terminated string, and we haven't scanned to the end yet.
907 // Scan it now.
908 const char *r = (const char *)ut->context + ut->c;
909 while (*r != 0) {
910 r++;
911 }
912 if ((r - (const char *)ut->context) < 0x7fffffff) {
913 ut->b = (int32_t)(r - (const char *)ut->context);
914 } else {
915 // Actual string was bigger (more than 2 gig) than we
916 // can handle. Clip it to 2 GB.
917 ut->b = 0x7fffffff;
918 }
919 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
920 }
921 return ut->b;
922 }
923
924
925
926
927
928
929 static UBool U_CALLCONV
utf8TextAccess(UText * ut,int64_t index,UBool forward)930 utf8TextAccess(UText *ut, int64_t index, UBool forward) {
931 //
932 // Apologies to those who are allergic to goto statements.
933 // Consider each goto to a labelled block to be the equivalent of
934 // call the named block as if it were a function();
935 // return;
936 //
937 const uint8_t *s8=(const uint8_t *)ut->context;
938 UTF8Buf *u8b = NULL;
939 int32_t length = ut->b; // Length of original utf-8
940 int32_t ix= (int32_t)index; // Requested index, trimmed to 32 bits.
941 int32_t mapIndex = 0;
942 if (index<0) {
943 ix=0;
944 } else if (index > 0x7fffffff) {
945 // Strings with 64 bit lengths not supported by this UTF-8 provider.
946 ix = 0x7fffffff;
947 }
948
949 // Pin requested index to the string length.
950 if (ix>length) {
951 if (length>=0) {
952 ix=length;
953 } else if (ix>=ut->c) {
954 // Zero terminated string, and requested index is beyond
955 // the region that has already been scanned.
956 // Scan up to either the end of the string or to the
957 // requested position, whichever comes first.
958 while (ut->c<ix && s8[ut->c]!=0) {
959 ut->c++;
960 }
961 // TODO: support for null terminated string length > 32 bits.
962 if (s8[ut->c] == 0) {
963 // We just found the actual length of the string.
964 // Trim the requested index back to that.
965 ix = ut->c;
966 ut->b = ut->c;
967 length = ut->c;
968 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
969 }
970 }
971 }
972
973 //
974 // Dispatch to the appropriate action for a forward iteration request.
975 //
976 if (forward) {
977 if (ix==ut->chunkNativeLimit) {
978 // Check for normal sequential iteration cases first.
979 if (ix==length) {
980 // Just reached end of string
981 // Don't swap buffers, but do set the
982 // current buffer position.
983 ut->chunkOffset = ut->chunkLength;
984 return FALSE;
985 } else {
986 // End of current buffer.
987 // check whether other buffer already has what we need.
988 UTF8Buf *altB = (UTF8Buf *)ut->q;
989 if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) {
990 goto swapBuffers;
991 }
992 }
993 }
994
995 // A random access. Desired index could be in either or niether buf.
996 // For optimizing the order of testing, first check for the index
997 // being in the other buffer. This will be the case for uses that
998 // move back and forth over a fairly limited range
999 {
1000 u8b = (UTF8Buf *)ut->q; // the alternate buffer
1001 if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) {
1002 // Requested index is in the other buffer.
1003 goto swapBuffers;
1004 }
1005 if (ix == length) {
1006 // Requested index is end-of-string.
1007 // (this is the case of randomly seeking to the end.
1008 // The case of iterating off the end is handled earlier.)
1009 if (ix == ut->chunkNativeLimit) {
1010 // Current buffer extends up to the end of the string.
1011 // Leave it as the current buffer.
1012 ut->chunkOffset = ut->chunkLength;
1013 return FALSE;
1014 }
1015 if (ix == u8b->bufNativeLimit) {
1016 // Alternate buffer extends to the end of string.
1017 // Swap it in as the current buffer.
1018 goto swapBuffersAndFail;
1019 }
1020
1021 // Neither existing buffer extends to the end of the string.
1022 goto makeStubBuffer;
1023 }
1024
1025 if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) {
1026 // Requested index is in neither buffer.
1027 goto fillForward;
1028 }
1029
1030 // Requested index is in this buffer.
1031 u8b = (UTF8Buf *)ut->p; // the current buffer
1032 mapIndex = ix - u8b->toUCharsMapStart;
1033 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1034 return TRUE;
1035
1036 }
1037 }
1038
1039
1040 //
1041 // Dispatch to the appropriate action for a
1042 // Backwards Diretion iteration request.
1043 //
1044 if (ix==ut->chunkNativeStart) {
1045 // Check for normal sequential iteration cases first.
1046 if (ix==0) {
1047 // Just reached the start of string
1048 // Don't swap buffers, but do set the
1049 // current buffer position.
1050 ut->chunkOffset = 0;
1051 return FALSE;
1052 } else {
1053 // Start of current buffer.
1054 // check whether other buffer already has what we need.
1055 UTF8Buf *altB = (UTF8Buf *)ut->q;
1056 if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) {
1057 goto swapBuffers;
1058 }
1059 }
1060 }
1061
1062 // A random access. Desired index could be in either or niether buf.
1063 // For optimizing the order of testing,
1064 // Most likely case: in the other buffer.
1065 // Second most likely: in neither buffer.
1066 // Unlikely, but must work: in the current buffer.
1067 u8b = (UTF8Buf *)ut->q; // the alternate buffer
1068 if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) {
1069 // Requested index is in the other buffer.
1070 goto swapBuffers;
1071 }
1072 // Requested index is start-of-string.
1073 // (this is the case of randomly seeking to the start.
1074 // The case of iterating off the start is handled earlier.)
1075 if (ix==0) {
1076 if (u8b->bufNativeStart==0) {
1077 // Alternate buffer contains the data for the start string.
1078 // Make it be the current buffer.
1079 goto swapBuffersAndFail;
1080 } else {
1081 // Request for data before the start of string,
1082 // neither buffer is usable.
1083 // set up a zero-length buffer.
1084 goto makeStubBuffer;
1085 }
1086 }
1087
1088 if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) {
1089 // Requested index is in neither buffer.
1090 goto fillReverse;
1091 }
1092
1093 // Requested index is in this buffer.
1094 // Set the utf16 buffer index.
1095 u8b = (UTF8Buf *)ut->p;
1096 mapIndex = ix - u8b->toUCharsMapStart;
1097 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1098 if (ut->chunkOffset==0) {
1099 // This occurs when the first character in the text is
1100 // a multi-byte UTF-8 char, and the requested index is to
1101 // one of the trailing bytes. Because there is no preceding ,
1102 // character, this access fails. We can't pick up on the
1103 // situation sooner because the requested index is not zero.
1104 return FALSE;
1105 } else {
1106 return TRUE;
1107 }
1108
1109
1110
1111 swapBuffers:
1112 // The alternate buffer (ut->q) has the string data that was requested.
1113 // Swap the primary and alternate buffers, and set the
1114 // chunk index into the new primary buffer.
1115 {
1116 u8b = (UTF8Buf *)ut->q;
1117 ut->q = ut->p;
1118 ut->p = u8b;
1119 ut->chunkContents = &u8b->buf[u8b->bufStartIdx];
1120 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx;
1121 ut->chunkNativeStart = u8b->bufNativeStart;
1122 ut->chunkNativeLimit = u8b->bufNativeLimit;
1123 ut->nativeIndexingLimit = u8b->bufNILimit;
1124
1125 // Index into the (now current) chunk
1126 // Use the map to set the chunk index. It's more trouble than it's worth
1127 // to check whether native indexing can be used.
1128 U_ASSERT(ix>=u8b->bufNativeStart);
1129 U_ASSERT(ix<=u8b->bufNativeLimit);
1130 mapIndex = ix - u8b->toUCharsMapStart;
1131 U_ASSERT(mapIndex>=0);
1132 U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars));
1133 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1134
1135 return TRUE;
1136 }
1137
1138
1139 swapBuffersAndFail:
1140 // We got a request for either the start or end of the string,
1141 // with iteration continuing in the out-of-bounds direction.
1142 // The alternate buffer already contains the data up to the
1143 // start/end.
1144 // Swap the buffers, then return failure, indicating that we couldn't
1145 // make things correct for continuing the iteration in the requested
1146 // direction. The position & buffer are correct should the
1147 // user decide to iterate in the opposite direction.
1148 u8b = (UTF8Buf *)ut->q;
1149 ut->q = ut->p;
1150 ut->p = u8b;
1151 ut->chunkContents = &u8b->buf[u8b->bufStartIdx];
1152 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx;
1153 ut->chunkNativeStart = u8b->bufNativeStart;
1154 ut->chunkNativeLimit = u8b->bufNativeLimit;
1155 ut->nativeIndexingLimit = u8b->bufNILimit;
1156
1157 // Index into the (now current) chunk
1158 // For this function (swapBuffersAndFail), the requested index
1159 // will always be at either the start or end of the chunk.
1160 if (ix==u8b->bufNativeLimit) {
1161 ut->chunkOffset = ut->chunkLength;
1162 } else {
1163 ut->chunkOffset = 0;
1164 U_ASSERT(ix == u8b->bufNativeStart);
1165 }
1166 return FALSE;
1167
1168 makeStubBuffer:
1169 // The user has done a seek/access past the start or end
1170 // of the string. Rather than loading data that is likely
1171 // to never be used, just set up a zero-length buffer at
1172 // the position.
1173 u8b = (UTF8Buf *)ut->q;
1174 u8b->bufNativeStart = ix;
1175 u8b->bufNativeLimit = ix;
1176 u8b->bufStartIdx = 0;
1177 u8b->bufLimitIdx = 0;
1178 u8b->bufNILimit = 0;
1179 u8b->toUCharsMapStart = ix;
1180 u8b->mapToNative[0] = 0;
1181 u8b->mapToUChars[0] = 0;
1182 goto swapBuffersAndFail;
1183
1184
1185
1186 fillForward:
1187 {
1188 // Move the incoming index to a code point boundary.
1189 U8_SET_CP_START(s8, 0, ix);
1190
1191 // Swap the UText buffers.
1192 // We want to fill what was previously the alternate buffer,
1193 // and make what was the current buffer be the new alternate.
1194 UTF8Buf *u8b = (UTF8Buf *)ut->q;
1195 ut->q = ut->p;
1196 ut->p = u8b;
1197
1198 int32_t strLen = ut->b;
1199 UBool nulTerminated = FALSE;
1200 if (strLen < 0) {
1201 strLen = 0x7fffffff;
1202 nulTerminated = TRUE;
1203 }
1204
1205 UChar *buf = u8b->buf;
1206 uint8_t *mapToNative = u8b->mapToNative;
1207 uint8_t *mapToUChars = u8b->mapToUChars;
1208 int32_t destIx = 0;
1209 int32_t srcIx = ix;
1210 UBool seenNonAscii = FALSE;
1211 UChar32 c = 0;
1212
1213 // Fill the chunk buffer and mapping arrays.
1214 while (destIx<UTF8_TEXT_CHUNK_SIZE) {
1215 c = s8[srcIx];
1216 if (c>0 && c<0x80) {
1217 // Special case ASCII range for speed.
1218 // zero is excluded to simplify bounds checking.
1219 buf[destIx] = (UChar)c;
1220 mapToNative[destIx] = (uint8_t)(srcIx - ix);
1221 mapToUChars[srcIx-ix] = (uint8_t)destIx;
1222 srcIx++;
1223 destIx++;
1224 } else {
1225 // General case, handle everything.
1226 if (seenNonAscii == FALSE) {
1227 seenNonAscii = TRUE;
1228 u8b->bufNILimit = destIx;
1229 }
1230
1231 int32_t cIx = srcIx;
1232 int32_t dIx = destIx;
1233 int32_t dIxSaved = destIx;
1234 U8_NEXT_OR_FFFD(s8, srcIx, strLen, c);
1235 if (c==0 && nulTerminated) {
1236 srcIx--;
1237 break;
1238 }
1239
1240 U16_APPEND_UNSAFE(buf, destIx, c);
1241 do {
1242 mapToNative[dIx++] = (uint8_t)(cIx - ix);
1243 } while (dIx < destIx);
1244
1245 do {
1246 mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved;
1247 } while (cIx < srcIx);
1248 }
1249 if (srcIx>=strLen) {
1250 break;
1251 }
1252
1253 }
1254
1255 // store Native <--> Chunk Map entries for the end of the buffer.
1256 // There is no actual character here, but the index position is valid.
1257 mapToNative[destIx] = (uint8_t)(srcIx - ix);
1258 mapToUChars[srcIx - ix] = (uint8_t)destIx;
1259
1260 // fill in Buffer descriptor
1261 u8b->bufNativeStart = ix;
1262 u8b->bufNativeLimit = srcIx;
1263 u8b->bufStartIdx = 0;
1264 u8b->bufLimitIdx = destIx;
1265 if (seenNonAscii == FALSE) {
1266 u8b->bufNILimit = destIx;
1267 }
1268 u8b->toUCharsMapStart = u8b->bufNativeStart;
1269
1270 // Set UText chunk to refer to this buffer.
1271 ut->chunkContents = buf;
1272 ut->chunkOffset = 0;
1273 ut->chunkLength = u8b->bufLimitIdx;
1274 ut->chunkNativeStart = u8b->bufNativeStart;
1275 ut->chunkNativeLimit = u8b->bufNativeLimit;
1276 ut->nativeIndexingLimit = u8b->bufNILimit;
1277
1278 // For zero terminated strings, keep track of the maximum point
1279 // scanned so far.
1280 if (nulTerminated && srcIx>ut->c) {
1281 ut->c = srcIx;
1282 if (c==0) {
1283 // We scanned to the end.
1284 // Remember the actual length.
1285 ut->b = srcIx;
1286 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1287 }
1288 }
1289 return TRUE;
1290 }
1291
1292
1293 fillReverse:
1294 {
1295 // Move the incoming index to a code point boundary.
1296 // Can only do this if the incoming index is somewhere in the interior of the string.
1297 // If index is at the end, there is no character there to look at.
1298 if (ix != ut->b) {
1299 U8_SET_CP_START(s8, 0, ix);
1300 }
1301
1302 // Swap the UText buffers.
1303 // We want to fill what was previously the alternate buffer,
1304 // and make what was the current buffer be the new alternate.
1305 UTF8Buf *u8b = (UTF8Buf *)ut->q;
1306 ut->q = ut->p;
1307 ut->p = u8b;
1308
1309 UChar *buf = u8b->buf;
1310 uint8_t *mapToNative = u8b->mapToNative;
1311 uint8_t *mapToUChars = u8b->mapToUChars;
1312 int32_t toUCharsMapStart = ix - (UTF8_TEXT_CHUNK_SIZE*3 + 1);
1313 int32_t destIx = UTF8_TEXT_CHUNK_SIZE+2; // Start in the overflow region
1314 // at end of buffer to leave room
1315 // for a surrogate pair at the
1316 // buffer start.
1317 int32_t srcIx = ix;
1318 int32_t bufNILimit = destIx;
1319 UChar32 c;
1320
1321 // Map to/from Native Indexes, fill in for the position at the end of
1322 // the buffer.
1323 //
1324 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1325 mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1326
1327 // Fill the chunk buffer
1328 // Work backwards, filling from the end of the buffer towards the front.
1329 //
1330 while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) {
1331 srcIx--;
1332 destIx--;
1333
1334 // Get last byte of the UTF-8 character
1335 c = s8[srcIx];
1336 if (c<0x80) {
1337 // Special case ASCII range for speed.
1338 buf[destIx] = (UChar)c;
1339 mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1340 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1341 } else {
1342 // General case, handle everything non-ASCII.
1343
1344 int32_t sIx = srcIx; // ix of last byte of multi-byte u8 char
1345
1346 // Get the full character from the UTF8 string.
1347 // use code derived from tbe macros in utf8.h
1348 // Leaves srcIx pointing at the first byte of the UTF-8 char.
1349 //
1350 c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -3);
1351 // leaves srcIx at first byte of the multi-byte char.
1352
1353 // Store the character in UTF-16 buffer.
1354 if (c<0x10000) {
1355 buf[destIx] = (UChar)c;
1356 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1357 } else {
1358 buf[destIx] = U16_TRAIL(c);
1359 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1360 buf[--destIx] = U16_LEAD(c);
1361 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1362 }
1363
1364 // Fill in the map from native indexes to UChars buf index.
1365 do {
1366 mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx;
1367 } while (sIx >= srcIx);
1368
1369 // Set native indexing limit to be the current position.
1370 // We are processing a non-ascii, non-native-indexing char now;
1371 // the limit will be here if the rest of the chars to be
1372 // added to this buffer are ascii.
1373 bufNILimit = destIx;
1374 }
1375 }
1376 u8b->bufNativeStart = srcIx;
1377 u8b->bufNativeLimit = ix;
1378 u8b->bufStartIdx = destIx;
1379 u8b->bufLimitIdx = UTF8_TEXT_CHUNK_SIZE+2;
1380 u8b->bufNILimit = bufNILimit - u8b->bufStartIdx;
1381 u8b->toUCharsMapStart = toUCharsMapStart;
1382
1383 ut->chunkContents = &buf[u8b->bufStartIdx];
1384 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx;
1385 ut->chunkOffset = ut->chunkLength;
1386 ut->chunkNativeStart = u8b->bufNativeStart;
1387 ut->chunkNativeLimit = u8b->bufNativeLimit;
1388 ut->nativeIndexingLimit = u8b->bufNILimit;
1389 return TRUE;
1390 }
1391
1392 }
1393
1394
1395
1396 //
1397 // This is a slightly modified copy of u_strFromUTF8,
1398 // Inserts a Replacement Char rather than failing on invalid UTF-8
1399 // Removes unnecessary features.
1400 //
1401 static UChar*
utext_strFromUTF8(UChar * dest,int32_t destCapacity,int32_t * pDestLength,const char * src,int32_t srcLength,UErrorCode * pErrorCode)1402 utext_strFromUTF8(UChar *dest,
1403 int32_t destCapacity,
1404 int32_t *pDestLength,
1405 const char* src,
1406 int32_t srcLength, // required. NUL terminated not supported.
1407 UErrorCode *pErrorCode
1408 )
1409 {
1410
1411 UChar *pDest = dest;
1412 UChar *pDestLimit = (dest!=NULL)?(dest+destCapacity):NULL;
1413 UChar32 ch=0;
1414 int32_t index = 0;
1415 int32_t reqLength = 0;
1416 uint8_t* pSrc = (uint8_t*) src;
1417
1418
1419 while((index < srcLength)&&(pDest<pDestLimit)){
1420 ch = pSrc[index++];
1421 if(ch <=0x7f){
1422 *pDest++=(UChar)ch;
1423 }else{
1424 ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
1425 if(U_IS_BMP(ch)){
1426 *(pDest++)=(UChar)ch;
1427 }else{
1428 *(pDest++)=U16_LEAD(ch);
1429 if(pDest<pDestLimit){
1430 *(pDest++)=U16_TRAIL(ch);
1431 }else{
1432 reqLength++;
1433 break;
1434 }
1435 }
1436 }
1437 }
1438 /* donot fill the dest buffer just count the UChars needed */
1439 while(index < srcLength){
1440 ch = pSrc[index++];
1441 if(ch <= 0x7f){
1442 reqLength++;
1443 }else{
1444 ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
1445 reqLength+=U16_LENGTH(ch);
1446 }
1447 }
1448
1449 reqLength+=(int32_t)(pDest - dest);
1450
1451 if(pDestLength){
1452 *pDestLength = reqLength;
1453 }
1454
1455 /* Terminate the buffer */
1456 u_terminateUChars(dest,destCapacity,reqLength,pErrorCode);
1457
1458 return dest;
1459 }
1460
1461
1462
1463 static int32_t U_CALLCONV
utf8TextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * pErrorCode)1464 utf8TextExtract(UText *ut,
1465 int64_t start, int64_t limit,
1466 UChar *dest, int32_t destCapacity,
1467 UErrorCode *pErrorCode) {
1468 if(U_FAILURE(*pErrorCode)) {
1469 return 0;
1470 }
1471 if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
1472 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
1473 return 0;
1474 }
1475 int32_t length = ut->b;
1476 int32_t start32 = pinIndex(start, length);
1477 int32_t limit32 = pinIndex(limit, length);
1478
1479 if(start32>limit32) {
1480 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
1481 return 0;
1482 }
1483
1484
1485 // adjust the incoming indexes to land on code point boundaries if needed.
1486 // adjust by no more than three, because that is the largest number of trail bytes
1487 // in a well formed UTF8 character.
1488 const uint8_t *buf = (const uint8_t *)ut->context;
1489 int i;
1490 if (start32 < ut->chunkNativeLimit) {
1491 for (i=0; i<3; i++) {
1492 if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) {
1493 break;
1494 }
1495 start32--;
1496 }
1497 }
1498
1499 if (limit32 < ut->chunkNativeLimit) {
1500 for (i=0; i<3; i++) {
1501 if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) {
1502 break;
1503 }
1504 limit32--;
1505 }
1506 }
1507
1508 // Do the actual extract.
1509 int32_t destLength=0;
1510 utext_strFromUTF8(dest, destCapacity, &destLength,
1511 (const char *)ut->context+start32, limit32-start32,
1512 pErrorCode);
1513 utf8TextAccess(ut, limit32, TRUE);
1514 return destLength;
1515 }
1516
1517 //
1518 // utf8TextMapOffsetToNative
1519 //
1520 // Map a chunk (UTF-16) offset to a native index.
1521 static int64_t U_CALLCONV
utf8TextMapOffsetToNative(const UText * ut)1522 utf8TextMapOffsetToNative(const UText *ut) {
1523 //
1524 UTF8Buf *u8b = (UTF8Buf *)ut->p;
1525 U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength);
1526 int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart;
1527 U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit);
1528 return nativeOffset;
1529 }
1530
1531 //
1532 // Map a native index to the corrsponding chunk offset
1533 //
1534 static int32_t U_CALLCONV
utf8TextMapIndexToUTF16(const UText * ut,int64_t index64)1535 utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) {
1536 U_ASSERT(index64 <= 0x7fffffff);
1537 int32_t index = (int32_t)index64;
1538 UTF8Buf *u8b = (UTF8Buf *)ut->p;
1539 U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit);
1540 U_ASSERT(index<=ut->chunkNativeLimit);
1541 int32_t mapIndex = index - u8b->toUCharsMapStart;
1542 int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1543 U_ASSERT(offset>=0 && offset<=ut->chunkLength);
1544 return offset;
1545 }
1546
1547 static UText * U_CALLCONV
utf8TextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)1548 utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status)
1549 {
1550 // First do a generic shallow clone. Does everything needed for the UText struct itself.
1551 dest = shallowTextClone(dest, src, status);
1552
1553 // For deep clones, make a copy of the string.
1554 // The copied storage is owned by the newly created clone.
1555 //
1556 // TODO: There is an isssue with using utext_nativeLength().
1557 // That function is non-const in cases where the input was NUL terminated
1558 // and the length has not yet been determined.
1559 // This function (clone()) is const.
1560 // There potentially a thread safety issue lurking here.
1561 //
1562 if (deep && U_SUCCESS(*status)) {
1563 int32_t len = (int32_t)utext_nativeLength((UText *)src);
1564 char *copyStr = (char *)uprv_malloc(len+1);
1565 if (copyStr == NULL) {
1566 *status = U_MEMORY_ALLOCATION_ERROR;
1567 } else {
1568 uprv_memcpy(copyStr, src->context, len+1);
1569 dest->context = copyStr;
1570 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1571 }
1572 }
1573 return dest;
1574 }
1575
1576
1577 static void U_CALLCONV
utf8TextClose(UText * ut)1578 utf8TextClose(UText *ut) {
1579 // Most of the work of close is done by the generic UText framework close.
1580 // All that needs to be done here is to delete the UTF8 string if the UText
1581 // owns it. This occurs if the UText was created by cloning.
1582 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1583 char *s = (char *)ut->context;
1584 uprv_free(s);
1585 ut->context = NULL;
1586 }
1587 }
1588
1589 U_CDECL_END
1590
1591
1592 static const struct UTextFuncs utf8Funcs =
1593 {
1594 sizeof(UTextFuncs),
1595 0, 0, 0, // Reserved alignment padding
1596 utf8TextClone,
1597 utf8TextLength,
1598 utf8TextAccess,
1599 utf8TextExtract,
1600 NULL, /* replace*/
1601 NULL, /* copy */
1602 utf8TextMapOffsetToNative,
1603 utf8TextMapIndexToUTF16,
1604 utf8TextClose,
1605 NULL, // spare 1
1606 NULL, // spare 2
1607 NULL // spare 3
1608 };
1609
1610
1611 static const char gEmptyString[] = {0};
1612
1613 U_CAPI UText * U_EXPORT2
utext_openUTF8(UText * ut,const char * s,int64_t length,UErrorCode * status)1614 utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) {
1615 if(U_FAILURE(*status)) {
1616 return NULL;
1617 }
1618 if(s==NULL && length==0) {
1619 s = gEmptyString;
1620 }
1621
1622 if(s==NULL || length<-1 || length>INT32_MAX) {
1623 *status=U_ILLEGAL_ARGUMENT_ERROR;
1624 return NULL;
1625 }
1626
1627 ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status);
1628 if (U_FAILURE(*status)) {
1629 return ut;
1630 }
1631
1632 ut->pFuncs = &utf8Funcs;
1633 ut->context = s;
1634 ut->b = (int32_t)length;
1635 ut->c = (int32_t)length;
1636 if (ut->c < 0) {
1637 ut->c = 0;
1638 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1639 }
1640 ut->p = ut->pExtra;
1641 ut->q = (char *)ut->pExtra + sizeof(UTF8Buf);
1642 return ut;
1643
1644 }
1645
1646
1647
1648
1649
1650
1651
1652
1653 //------------------------------------------------------------------------------
1654 //
1655 // UText implementation wrapper for Replaceable (read/write)
1656 //
1657 // Use of UText data members:
1658 // context pointer to Replaceable.
1659 // p pointer to Replaceable if it is owned by the UText.
1660 //
1661 //------------------------------------------------------------------------------
1662
1663
1664
1665 // minimum chunk size for this implementation: 3
1666 // to allow for possible trimming for code point boundaries
1667 enum { REP_TEXT_CHUNK_SIZE=10 };
1668
1669 struct ReplExtra {
1670 /*
1671 * Chunk UChars.
1672 * +1 to simplify filling with surrogate pair at the end.
1673 */
1674 UChar s[REP_TEXT_CHUNK_SIZE+1];
1675 };
1676
1677
1678 U_CDECL_BEGIN
1679
1680 static UText * U_CALLCONV
repTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)1681 repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
1682 // First do a generic shallow clone. Does everything needed for the UText struct itself.
1683 dest = shallowTextClone(dest, src, status);
1684
1685 // For deep clones, make a copy of the Replaceable.
1686 // The copied Replaceable storage is owned by the newly created UText clone.
1687 // A non-NULL pointer in UText.p is the signal to the close() function to delete
1688 // it.
1689 //
1690 if (deep && U_SUCCESS(*status)) {
1691 const Replaceable *replSrc = (const Replaceable *)src->context;
1692 dest->context = replSrc->clone();
1693 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1694
1695 // with deep clone, the copy is writable, even when the source is not.
1696 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
1697 }
1698 return dest;
1699 }
1700
1701
1702 static void U_CALLCONV
repTextClose(UText * ut)1703 repTextClose(UText *ut) {
1704 // Most of the work of close is done by the generic UText framework close.
1705 // All that needs to be done here is delete the Replaceable if the UText
1706 // owns it. This occurs if the UText was created by cloning.
1707 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1708 Replaceable *rep = (Replaceable *)ut->context;
1709 delete rep;
1710 ut->context = NULL;
1711 }
1712 }
1713
1714
1715 static int64_t U_CALLCONV
repTextLength(UText * ut)1716 repTextLength(UText *ut) {
1717 const Replaceable *replSrc = (const Replaceable *)ut->context;
1718 int32_t len = replSrc->length();
1719 return len;
1720 }
1721
1722
1723 static UBool U_CALLCONV
repTextAccess(UText * ut,int64_t index,UBool forward)1724 repTextAccess(UText *ut, int64_t index, UBool forward) {
1725 const Replaceable *rep=(const Replaceable *)ut->context;
1726 int32_t length=rep->length(); // Full length of the input text (bigger than a chunk)
1727
1728 // clip the requested index to the limits of the text.
1729 int32_t index32 = pinIndex(index, length);
1730 U_ASSERT(index<=INT32_MAX);
1731
1732
1733 /*
1734 * Compute start/limit boundaries around index, for a segment of text
1735 * to be extracted.
1736 * To allow for the possibility that our user gave an index to the trailing
1737 * half of a surrogate pair, we must request one extra preceding UChar when
1738 * going in the forward direction. This will ensure that the buffer has the
1739 * entire code point at the specified index.
1740 */
1741 if(forward) {
1742
1743 if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) {
1744 // Buffer already contains the requested position.
1745 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
1746 return TRUE;
1747 }
1748 if (index32>=length && ut->chunkNativeLimit==length) {
1749 // Request for end of string, and buffer already extends up to it.
1750 // Can't get the data, but don't change the buffer.
1751 ut->chunkOffset = length - (int32_t)ut->chunkNativeStart;
1752 return FALSE;
1753 }
1754
1755 ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1;
1756 // Going forward, so we want to have the buffer with stuff at and beyond
1757 // the requested index. The -1 gets us one code point before the
1758 // requested index also, to handle the case of the index being on
1759 // a trail surrogate of a surrogate pair.
1760 if(ut->chunkNativeLimit > length) {
1761 ut->chunkNativeLimit = length;
1762 }
1763 // unless buffer ran off end, start is index-1.
1764 ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE;
1765 if(ut->chunkNativeStart < 0) {
1766 ut->chunkNativeStart = 0;
1767 }
1768 } else {
1769 // Reverse iteration. Fill buffer with data preceding the requested index.
1770 if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) {
1771 // Requested position already in buffer.
1772 ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart;
1773 return TRUE;
1774 }
1775 if (index32==0 && ut->chunkNativeStart==0) {
1776 // Request for start, buffer already begins at start.
1777 // No data, but keep the buffer as is.
1778 ut->chunkOffset = 0;
1779 return FALSE;
1780 }
1781
1782 // Figure out the bounds of the chunk to extract for reverse iteration.
1783 // Need to worry about chunk not splitting surrogate pairs, and while still
1784 // containing the data we need.
1785 // Fix by requesting a chunk that includes an extra UChar at the end.
1786 // If this turns out to be a lead surrogate, we can lop it off and still have
1787 // the data we wanted.
1788 ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE;
1789 if (ut->chunkNativeStart < 0) {
1790 ut->chunkNativeStart = 0;
1791 }
1792
1793 ut->chunkNativeLimit = index32 + 1;
1794 if (ut->chunkNativeLimit > length) {
1795 ut->chunkNativeLimit = length;
1796 }
1797 }
1798
1799 // Extract the new chunk of text from the Replaceable source.
1800 ReplExtra *ex = (ReplExtra *)ut->pExtra;
1801 // UnicodeString with its buffer a writable alias to the chunk buffer
1802 UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/);
1803 rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer);
1804
1805 ut->chunkContents = ex->s;
1806 ut->chunkLength = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart);
1807 ut->chunkOffset = (int32_t)(index32 - ut->chunkNativeStart);
1808
1809 // Surrogate pairs from the input text must not span chunk boundaries.
1810 // If end of chunk could be the start of a surrogate, trim it off.
1811 if (ut->chunkNativeLimit < length &&
1812 U16_IS_LEAD(ex->s[ut->chunkLength-1])) {
1813 ut->chunkLength--;
1814 ut->chunkNativeLimit--;
1815 if (ut->chunkOffset > ut->chunkLength) {
1816 ut->chunkOffset = ut->chunkLength;
1817 }
1818 }
1819
1820 // if the first UChar in the chunk could be the trailing half of a surrogate pair,
1821 // trim it off.
1822 if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) {
1823 ++(ut->chunkContents);
1824 ++(ut->chunkNativeStart);
1825 --(ut->chunkLength);
1826 --(ut->chunkOffset);
1827 }
1828
1829 // adjust the index/chunkOffset to a code point boundary
1830 U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset);
1831
1832 // Use fast indexing for get/setNativeIndex()
1833 ut->nativeIndexingLimit = ut->chunkLength;
1834
1835 return TRUE;
1836 }
1837
1838
1839
1840 static int32_t U_CALLCONV
repTextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * status)1841 repTextExtract(UText *ut,
1842 int64_t start, int64_t limit,
1843 UChar *dest, int32_t destCapacity,
1844 UErrorCode *status) {
1845 const Replaceable *rep=(const Replaceable *)ut->context;
1846 int32_t length=rep->length();
1847
1848 if(U_FAILURE(*status)) {
1849 return 0;
1850 }
1851 if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
1852 *status=U_ILLEGAL_ARGUMENT_ERROR;
1853 }
1854 if(start>limit) {
1855 *status=U_INDEX_OUTOFBOUNDS_ERROR;
1856 return 0;
1857 }
1858
1859 int32_t start32 = pinIndex(start, length);
1860 int32_t limit32 = pinIndex(limit, length);
1861
1862 // adjust start, limit if they point to trail half of surrogates
1863 if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) &&
1864 U_IS_SUPPLEMENTARY(rep->char32At(start32))){
1865 start32--;
1866 }
1867 if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) &&
1868 U_IS_SUPPLEMENTARY(rep->char32At(limit32))){
1869 limit32--;
1870 }
1871
1872 length=limit32-start32;
1873 if(length>destCapacity) {
1874 limit32 = start32 + destCapacity;
1875 }
1876 UnicodeString buffer(dest, 0, destCapacity); // writable alias
1877 rep->extractBetween(start32, limit32, buffer);
1878 repTextAccess(ut, limit32, TRUE);
1879
1880 return u_terminateUChars(dest, destCapacity, length, status);
1881 }
1882
1883 static int32_t U_CALLCONV
repTextReplace(UText * ut,int64_t start,int64_t limit,const UChar * src,int32_t length,UErrorCode * status)1884 repTextReplace(UText *ut,
1885 int64_t start, int64_t limit,
1886 const UChar *src, int32_t length,
1887 UErrorCode *status) {
1888 Replaceable *rep=(Replaceable *)ut->context;
1889 int32_t oldLength;
1890
1891 if(U_FAILURE(*status)) {
1892 return 0;
1893 }
1894 if(src==NULL && length!=0) {
1895 *status=U_ILLEGAL_ARGUMENT_ERROR;
1896 return 0;
1897 }
1898 oldLength=rep->length(); // will subtract from new length
1899 if(start>limit ) {
1900 *status=U_INDEX_OUTOFBOUNDS_ERROR;
1901 return 0;
1902 }
1903
1904 int32_t start32 = pinIndex(start, oldLength);
1905 int32_t limit32 = pinIndex(limit, oldLength);
1906
1907 // Snap start & limit to code point boundaries.
1908 if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) &&
1909 start32>0 && U16_IS_LEAD(rep->charAt(start32-1)))
1910 {
1911 start32--;
1912 }
1913 if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) &&
1914 U16_IS_TRAIL(rep->charAt(limit32)))
1915 {
1916 limit32++;
1917 }
1918
1919 // Do the actual replace operation using methods of the Replaceable class
1920 UnicodeString replStr((UBool)(length<0), src, length); // read-only alias
1921 rep->handleReplaceBetween(start32, limit32, replStr);
1922 int32_t newLength = rep->length();
1923 int32_t lengthDelta = newLength - oldLength;
1924
1925 // Is the UText chunk buffer OK?
1926 if (ut->chunkNativeLimit > start32) {
1927 // this replace operation may have impacted the current chunk.
1928 // invalidate it, which will force a reload on the next access.
1929 invalidateChunk(ut);
1930 }
1931
1932 // set the iteration position to the end of the newly inserted replacement text.
1933 int32_t newIndexPos = limit32 + lengthDelta;
1934 repTextAccess(ut, newIndexPos, TRUE);
1935
1936 return lengthDelta;
1937 }
1938
1939
1940 static void U_CALLCONV
repTextCopy(UText * ut,int64_t start,int64_t limit,int64_t destIndex,UBool move,UErrorCode * status)1941 repTextCopy(UText *ut,
1942 int64_t start, int64_t limit,
1943 int64_t destIndex,
1944 UBool move,
1945 UErrorCode *status)
1946 {
1947 Replaceable *rep=(Replaceable *)ut->context;
1948 int32_t length=rep->length();
1949
1950 if(U_FAILURE(*status)) {
1951 return;
1952 }
1953 if (start>limit || (start<destIndex && destIndex<limit))
1954 {
1955 *status=U_INDEX_OUTOFBOUNDS_ERROR;
1956 return;
1957 }
1958
1959 int32_t start32 = pinIndex(start, length);
1960 int32_t limit32 = pinIndex(limit, length);
1961 int32_t destIndex32 = pinIndex(destIndex, length);
1962
1963 // TODO: snap input parameters to code point boundaries.
1964
1965 if(move) {
1966 // move: copy to destIndex, then replace original with nothing
1967 int32_t segLength=limit32-start32;
1968 rep->copy(start32, limit32, destIndex32);
1969 if(destIndex32<start32) {
1970 start32+=segLength;
1971 limit32+=segLength;
1972 }
1973 rep->handleReplaceBetween(start32, limit32, UnicodeString());
1974 } else {
1975 // copy
1976 rep->copy(start32, limit32, destIndex32);
1977 }
1978
1979 // If the change to the text touched the region in the chunk buffer,
1980 // invalidate the buffer.
1981 int32_t firstAffectedIndex = destIndex32;
1982 if (move && start32<firstAffectedIndex) {
1983 firstAffectedIndex = start32;
1984 }
1985 if (firstAffectedIndex < ut->chunkNativeLimit) {
1986 // changes may have affected range covered by the chunk
1987 invalidateChunk(ut);
1988 }
1989
1990 // Put iteration position at the newly inserted (moved) block,
1991 int32_t nativeIterIndex = destIndex32 + limit32 - start32;
1992 if (move && destIndex32>start32) {
1993 // moved a block of text towards the end of the string.
1994 nativeIterIndex = destIndex32;
1995 }
1996
1997 // Set position, reload chunk if needed.
1998 repTextAccess(ut, nativeIterIndex, TRUE);
1999 }
2000
2001 static const struct UTextFuncs repFuncs =
2002 {
2003 sizeof(UTextFuncs),
2004 0, 0, 0, // Reserved alignment padding
2005 repTextClone,
2006 repTextLength,
2007 repTextAccess,
2008 repTextExtract,
2009 repTextReplace,
2010 repTextCopy,
2011 NULL, // MapOffsetToNative,
2012 NULL, // MapIndexToUTF16,
2013 repTextClose,
2014 NULL, // spare 1
2015 NULL, // spare 2
2016 NULL // spare 3
2017 };
2018
2019
2020 U_CAPI UText * U_EXPORT2
utext_openReplaceable(UText * ut,Replaceable * rep,UErrorCode * status)2021 utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status)
2022 {
2023 if(U_FAILURE(*status)) {
2024 return NULL;
2025 }
2026 if(rep==NULL) {
2027 *status=U_ILLEGAL_ARGUMENT_ERROR;
2028 return NULL;
2029 }
2030 ut = utext_setup(ut, sizeof(ReplExtra), status);
2031 if(U_FAILURE(*status)) {
2032 return ut;
2033 }
2034
2035 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2036 if(rep->hasMetaData()) {
2037 ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA);
2038 }
2039
2040 ut->pFuncs = &repFuncs;
2041 ut->context = rep;
2042 return ut;
2043 }
2044
2045 U_CDECL_END
2046
2047
2048
2049
2050
2051
2052
2053
2054 //------------------------------------------------------------------------------
2055 //
2056 // UText implementation for UnicodeString (read/write) and
2057 // for const UnicodeString (read only)
2058 // (same implementation, only the flags are different)
2059 //
2060 // Use of UText data members:
2061 // context pointer to UnicodeString
2062 // p pointer to UnicodeString IF this UText owns the string
2063 // and it must be deleted on close(). NULL otherwise.
2064 //
2065 //------------------------------------------------------------------------------
2066
2067 U_CDECL_BEGIN
2068
2069
2070 static UText * U_CALLCONV
unistrTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)2071 unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
2072 // First do a generic shallow clone. Does everything needed for the UText struct itself.
2073 dest = shallowTextClone(dest, src, status);
2074
2075 // For deep clones, make a copy of the UnicodeSring.
2076 // The copied UnicodeString storage is owned by the newly created UText clone.
2077 // A non-NULL pointer in UText.p is the signal to the close() function to delete
2078 // the UText.
2079 //
2080 if (deep && U_SUCCESS(*status)) {
2081 const UnicodeString *srcString = (const UnicodeString *)src->context;
2082 dest->context = new UnicodeString(*srcString);
2083 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2084
2085 // with deep clone, the copy is writable, even when the source is not.
2086 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2087 }
2088 return dest;
2089 }
2090
2091 static void U_CALLCONV
unistrTextClose(UText * ut)2092 unistrTextClose(UText *ut) {
2093 // Most of the work of close is done by the generic UText framework close.
2094 // All that needs to be done here is delete the UnicodeString if the UText
2095 // owns it. This occurs if the UText was created by cloning.
2096 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2097 UnicodeString *str = (UnicodeString *)ut->context;
2098 delete str;
2099 ut->context = NULL;
2100 }
2101 }
2102
2103
2104 static int64_t U_CALLCONV
unistrTextLength(UText * t)2105 unistrTextLength(UText *t) {
2106 return ((const UnicodeString *)t->context)->length();
2107 }
2108
2109
2110 static UBool U_CALLCONV
unistrTextAccess(UText * ut,int64_t index,UBool forward)2111 unistrTextAccess(UText *ut, int64_t index, UBool forward) {
2112 int32_t length = ut->chunkLength;
2113 ut->chunkOffset = pinIndex(index, length);
2114
2115 // Check whether request is at the start or end
2116 UBool retVal = (forward && index<length) || (!forward && index>0);
2117 return retVal;
2118 }
2119
2120
2121
2122 static int32_t U_CALLCONV
unistrTextExtract(UText * t,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * pErrorCode)2123 unistrTextExtract(UText *t,
2124 int64_t start, int64_t limit,
2125 UChar *dest, int32_t destCapacity,
2126 UErrorCode *pErrorCode) {
2127 const UnicodeString *us=(const UnicodeString *)t->context;
2128 int32_t length=us->length();
2129
2130 if(U_FAILURE(*pErrorCode)) {
2131 return 0;
2132 }
2133 if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
2134 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2135 }
2136 if(start<0 || start>limit) {
2137 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2138 return 0;
2139 }
2140
2141 int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length;
2142 int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length;
2143
2144 length=limit32-start32;
2145 if (destCapacity>0 && dest!=NULL) {
2146 int32_t trimmedLength = length;
2147 if(trimmedLength>destCapacity) {
2148 trimmedLength=destCapacity;
2149 }
2150 us->extract(start32, trimmedLength, dest);
2151 t->chunkOffset = start32+trimmedLength;
2152 } else {
2153 t->chunkOffset = start32;
2154 }
2155 u_terminateUChars(dest, destCapacity, length, pErrorCode);
2156 return length;
2157 }
2158
2159 static int32_t U_CALLCONV
unistrTextReplace(UText * ut,int64_t start,int64_t limit,const UChar * src,int32_t length,UErrorCode * pErrorCode)2160 unistrTextReplace(UText *ut,
2161 int64_t start, int64_t limit,
2162 const UChar *src, int32_t length,
2163 UErrorCode *pErrorCode) {
2164 UnicodeString *us=(UnicodeString *)ut->context;
2165 int32_t oldLength;
2166
2167 if(U_FAILURE(*pErrorCode)) {
2168 return 0;
2169 }
2170 if(src==NULL && length!=0) {
2171 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2172 }
2173 if(start>limit) {
2174 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2175 return 0;
2176 }
2177 oldLength=us->length();
2178 int32_t start32 = pinIndex(start, oldLength);
2179 int32_t limit32 = pinIndex(limit, oldLength);
2180 if (start32 < oldLength) {
2181 start32 = us->getChar32Start(start32);
2182 }
2183 if (limit32 < oldLength) {
2184 limit32 = us->getChar32Start(limit32);
2185 }
2186
2187 // replace
2188 us->replace(start32, limit32-start32, src, length);
2189 int32_t newLength = us->length();
2190
2191 // Update the chunk description.
2192 ut->chunkContents = us->getBuffer();
2193 ut->chunkLength = newLength;
2194 ut->chunkNativeLimit = newLength;
2195 ut->nativeIndexingLimit = newLength;
2196
2197 // Set iteration position to the point just following the newly inserted text.
2198 int32_t lengthDelta = newLength - oldLength;
2199 ut->chunkOffset = limit32 + lengthDelta;
2200
2201 return lengthDelta;
2202 }
2203
2204 static void U_CALLCONV
unistrTextCopy(UText * ut,int64_t start,int64_t limit,int64_t destIndex,UBool move,UErrorCode * pErrorCode)2205 unistrTextCopy(UText *ut,
2206 int64_t start, int64_t limit,
2207 int64_t destIndex,
2208 UBool move,
2209 UErrorCode *pErrorCode) {
2210 UnicodeString *us=(UnicodeString *)ut->context;
2211 int32_t length=us->length();
2212
2213 if(U_FAILURE(*pErrorCode)) {
2214 return;
2215 }
2216 int32_t start32 = pinIndex(start, length);
2217 int32_t limit32 = pinIndex(limit, length);
2218 int32_t destIndex32 = pinIndex(destIndex, length);
2219
2220 if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) {
2221 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2222 return;
2223 }
2224
2225 if(move) {
2226 // move: copy to destIndex, then replace original with nothing
2227 int32_t segLength=limit32-start32;
2228 us->copy(start32, limit32, destIndex32);
2229 if(destIndex32<start32) {
2230 start32+=segLength;
2231 }
2232 us->replace(start32, segLength, NULL, 0);
2233 } else {
2234 // copy
2235 us->copy(start32, limit32, destIndex32);
2236 }
2237
2238 // update chunk description, set iteration position.
2239 ut->chunkContents = us->getBuffer();
2240 if (move==FALSE) {
2241 // copy operation, string length grows
2242 ut->chunkLength += limit32-start32;
2243 ut->chunkNativeLimit = ut->chunkLength;
2244 ut->nativeIndexingLimit = ut->chunkLength;
2245 }
2246
2247 // Iteration position to end of the newly inserted text.
2248 ut->chunkOffset = destIndex32+limit32-start32;
2249 if (move && destIndex32>start32) {
2250 ut->chunkOffset = destIndex32;
2251 }
2252
2253 }
2254
2255 static const struct UTextFuncs unistrFuncs =
2256 {
2257 sizeof(UTextFuncs),
2258 0, 0, 0, // Reserved alignment padding
2259 unistrTextClone,
2260 unistrTextLength,
2261 unistrTextAccess,
2262 unistrTextExtract,
2263 unistrTextReplace,
2264 unistrTextCopy,
2265 NULL, // MapOffsetToNative,
2266 NULL, // MapIndexToUTF16,
2267 unistrTextClose,
2268 NULL, // spare 1
2269 NULL, // spare 2
2270 NULL // spare 3
2271 };
2272
2273
2274
2275 U_CDECL_END
2276
2277
2278 U_CAPI UText * U_EXPORT2
utext_openUnicodeString(UText * ut,UnicodeString * s,UErrorCode * status)2279 utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
2280 ut = utext_openConstUnicodeString(ut, s, status);
2281 if (U_SUCCESS(*status)) {
2282 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2283 }
2284 return ut;
2285 }
2286
2287
2288
2289 U_CAPI UText * U_EXPORT2
utext_openConstUnicodeString(UText * ut,const UnicodeString * s,UErrorCode * status)2290 utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) {
2291 if (U_SUCCESS(*status) && s->isBogus()) {
2292 // The UnicodeString is bogus, but we still need to detach the UText
2293 // from whatever it was hooked to before, if anything.
2294 utext_openUChars(ut, NULL, 0, status);
2295 *status = U_ILLEGAL_ARGUMENT_ERROR;
2296 return ut;
2297 }
2298 ut = utext_setup(ut, 0, status);
2299 // note: use the standard (writable) function table for UnicodeString.
2300 // The flag settings disable writing, so having the functions in
2301 // the table is harmless.
2302 if (U_SUCCESS(*status)) {
2303 ut->pFuncs = &unistrFuncs;
2304 ut->context = s;
2305 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2306 ut->chunkContents = s->getBuffer();
2307 ut->chunkLength = s->length();
2308 ut->chunkNativeStart = 0;
2309 ut->chunkNativeLimit = ut->chunkLength;
2310 ut->nativeIndexingLimit = ut->chunkLength;
2311 }
2312 return ut;
2313 }
2314
2315 //------------------------------------------------------------------------------
2316 //
2317 // UText implementation for const UChar * strings
2318 //
2319 // Use of UText data members:
2320 // context pointer to UnicodeString
2321 // a length. -1 if not yet known.
2322 //
2323 // TODO: support 64 bit lengths.
2324 //
2325 //------------------------------------------------------------------------------
2326
2327 U_CDECL_BEGIN
2328
2329
2330 static UText * U_CALLCONV
ucstrTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)2331 ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) {
2332 // First do a generic shallow clone.
2333 dest = shallowTextClone(dest, src, status);
2334
2335 // For deep clones, make a copy of the string.
2336 // The copied storage is owned by the newly created clone.
2337 // A non-NULL pointer in UText.p is the signal to the close() function to delete
2338 // it.
2339 //
2340 if (deep && U_SUCCESS(*status)) {
2341 U_ASSERT(utext_nativeLength(dest) < INT32_MAX);
2342 int32_t len = (int32_t)utext_nativeLength(dest);
2343
2344 // The cloned string IS going to be NUL terminated, whether or not the original was.
2345 const UChar *srcStr = (const UChar *)src->context;
2346 UChar *copyStr = (UChar *)uprv_malloc((len+1) * sizeof(UChar));
2347 if (copyStr == NULL) {
2348 *status = U_MEMORY_ALLOCATION_ERROR;
2349 } else {
2350 int64_t i;
2351 for (i=0; i<len; i++) {
2352 copyStr[i] = srcStr[i];
2353 }
2354 copyStr[len] = 0;
2355 dest->context = copyStr;
2356 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2357 }
2358 }
2359 return dest;
2360 }
2361
2362
2363 static void U_CALLCONV
ucstrTextClose(UText * ut)2364 ucstrTextClose(UText *ut) {
2365 // Most of the work of close is done by the generic UText framework close.
2366 // All that needs to be done here is delete the string if the UText
2367 // owns it. This occurs if the UText was created by cloning.
2368 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2369 UChar *s = (UChar *)ut->context;
2370 uprv_free(s);
2371 ut->context = NULL;
2372 }
2373 }
2374
2375
2376
2377 static int64_t U_CALLCONV
ucstrTextLength(UText * ut)2378 ucstrTextLength(UText *ut) {
2379 if (ut->a < 0) {
2380 // null terminated, we don't yet know the length. Scan for it.
2381 // Access is not convenient for doing this
2382 // because the current interation postion can't be changed.
2383 const UChar *str = (const UChar *)ut->context;
2384 for (;;) {
2385 if (str[ut->chunkNativeLimit] == 0) {
2386 break;
2387 }
2388 ut->chunkNativeLimit++;
2389 }
2390 ut->a = ut->chunkNativeLimit;
2391 ut->chunkLength = (int32_t)ut->chunkNativeLimit;
2392 ut->nativeIndexingLimit = ut->chunkLength;
2393 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2394 }
2395 return ut->a;
2396 }
2397
2398
2399 static UBool U_CALLCONV
ucstrTextAccess(UText * ut,int64_t index,UBool forward)2400 ucstrTextAccess(UText *ut, int64_t index, UBool forward) {
2401 const UChar *str = (const UChar *)ut->context;
2402
2403 // pin the requested index to the bounds of the string,
2404 // and set current iteration position.
2405 if (index<0) {
2406 index = 0;
2407 } else if (index < ut->chunkNativeLimit) {
2408 // The request data is within the chunk as it is known so far.
2409 // Put index on a code point boundary.
2410 U16_SET_CP_START(str, 0, index);
2411 } else if (ut->a >= 0) {
2412 // We know the length of this string, and the user is requesting something
2413 // at or beyond the length. Pin the requested index to the length.
2414 index = ut->a;
2415 } else {
2416 // Null terminated string, length not yet known, and the requested index
2417 // is beyond where we have scanned so far.
2418 // Scan to 32 UChars beyond the requested index. The strategy here is
2419 // to avoid fully scanning a long string when the caller only wants to
2420 // see a few characters at its beginning.
2421 int32_t scanLimit = (int32_t)index + 32;
2422 if ((index + 32)>INT32_MAX || (index + 32)<0 ) { // note: int64 expression
2423 scanLimit = INT32_MAX;
2424 }
2425
2426 int32_t chunkLimit = (int32_t)ut->chunkNativeLimit;
2427 for (; chunkLimit<scanLimit; chunkLimit++) {
2428 if (str[chunkLimit] == 0) {
2429 // We found the end of the string. Remember it, pin the requested index to it,
2430 // and bail out of here.
2431 ut->a = chunkLimit;
2432 ut->chunkLength = chunkLimit;
2433 ut->nativeIndexingLimit = chunkLimit;
2434 if (index >= chunkLimit) {
2435 index = chunkLimit;
2436 } else {
2437 U16_SET_CP_START(str, 0, index);
2438 }
2439
2440 ut->chunkNativeLimit = chunkLimit;
2441 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2442 goto breakout;
2443 }
2444 }
2445 // We scanned through the next batch of UChars without finding the end.
2446 U16_SET_CP_START(str, 0, index);
2447 if (chunkLimit == INT32_MAX) {
2448 // Scanned to the limit of a 32 bit length.
2449 // Forceably trim the overlength string back so length fits in int32
2450 // TODO: add support for 64 bit strings.
2451 ut->a = chunkLimit;
2452 ut->chunkLength = chunkLimit;
2453 ut->nativeIndexingLimit = chunkLimit;
2454 if (index > chunkLimit) {
2455 index = chunkLimit;
2456 }
2457 ut->chunkNativeLimit = chunkLimit;
2458 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2459 } else {
2460 // The endpoint of a chunk must not be left in the middle of a surrogate pair.
2461 // If the current end is on a lead surrogate, back the end up by one.
2462 // It doesn't matter if the end char happens to be an unpaired surrogate,
2463 // and it's simpler not to worry about it.
2464 if (U16_IS_LEAD(str[chunkLimit-1])) {
2465 --chunkLimit;
2466 }
2467 // Null-terminated chunk with end still unknown.
2468 // Update the chunk length to reflect what has been scanned thus far.
2469 // That the full length is still unknown is (still) flagged by
2470 // ut->a being < 0.
2471 ut->chunkNativeLimit = chunkLimit;
2472 ut->nativeIndexingLimit = chunkLimit;
2473 ut->chunkLength = chunkLimit;
2474 }
2475
2476 }
2477 breakout:
2478 U_ASSERT(index<=INT32_MAX);
2479 ut->chunkOffset = (int32_t)index;
2480
2481 // Check whether request is at the start or end
2482 UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index>0);
2483 return retVal;
2484 }
2485
2486
2487
2488 static int32_t U_CALLCONV
ucstrTextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * pErrorCode)2489 ucstrTextExtract(UText *ut,
2490 int64_t start, int64_t limit,
2491 UChar *dest, int32_t destCapacity,
2492 UErrorCode *pErrorCode)
2493 {
2494 if(U_FAILURE(*pErrorCode)) {
2495 return 0;
2496 }
2497 if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) {
2498 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2499 return 0;
2500 }
2501
2502 //const UChar *s=(const UChar *)ut->context;
2503 int32_t si, di;
2504
2505 int32_t start32;
2506 int32_t limit32;
2507
2508 // Access the start. Does two things we need:
2509 // Pins 'start' to the length of the string, if it came in out-of-bounds.
2510 // Snaps 'start' to the beginning of a code point.
2511 ucstrTextAccess(ut, start, TRUE);
2512 const UChar *s=ut->chunkContents;
2513 start32 = ut->chunkOffset;
2514
2515 int32_t strLength=(int32_t)ut->a;
2516 if (strLength >= 0) {
2517 limit32 = pinIndex(limit, strLength);
2518 } else {
2519 limit32 = pinIndex(limit, INT32_MAX);
2520 }
2521 di = 0;
2522 for (si=start32; si<limit32; si++) {
2523 if (strLength<0 && s[si]==0) {
2524 // Just hit the end of a null-terminated string.
2525 ut->a = si; // set string length for this UText
2526 ut->chunkNativeLimit = si;
2527 ut->chunkLength = si;
2528 ut->nativeIndexingLimit = si;
2529 strLength = si;
2530 break;
2531 }
2532 U_ASSERT(di>=0); /* to ensure di never exceeds INT32_MAX, which must not happen logically */
2533 if (di<destCapacity) {
2534 // only store if there is space.
2535 dest[di] = s[si];
2536 } else {
2537 if (strLength>=0) {
2538 // We have filled the destination buffer, and the string length is known.
2539 // Cut the loop short. There is no need to scan string termination.
2540 di = limit32 - start32;
2541 si = limit32;
2542 break;
2543 }
2544 }
2545 di++;
2546 }
2547
2548 // If the limit index points to a lead surrogate of a pair,
2549 // add the corresponding trail surrogate to the destination.
2550 if (si>0 && U16_IS_LEAD(s[si-1]) &&
2551 ((si<strLength || strLength<0) && U16_IS_TRAIL(s[si])))
2552 {
2553 if (di<destCapacity) {
2554 // store only if there is space in the output buffer.
2555 dest[di++] = s[si++];
2556 }
2557 }
2558
2559 // Put iteration position at the point just following the extracted text
2560 ut->chunkOffset = uprv_min(strLength, start32 + destCapacity);
2561
2562 // Add a terminating NUL if space in the buffer permits,
2563 // and set the error status as required.
2564 u_terminateUChars(dest, destCapacity, di, pErrorCode);
2565 return di;
2566 }
2567
2568 static const struct UTextFuncs ucstrFuncs =
2569 {
2570 sizeof(UTextFuncs),
2571 0, 0, 0, // Reserved alignment padding
2572 ucstrTextClone,
2573 ucstrTextLength,
2574 ucstrTextAccess,
2575 ucstrTextExtract,
2576 NULL, // Replace
2577 NULL, // Copy
2578 NULL, // MapOffsetToNative,
2579 NULL, // MapIndexToUTF16,
2580 ucstrTextClose,
2581 NULL, // spare 1
2582 NULL, // spare 2
2583 NULL, // spare 3
2584 };
2585
2586 U_CDECL_END
2587
2588 static const UChar gEmptyUString[] = {0};
2589
2590 U_CAPI UText * U_EXPORT2
utext_openUChars(UText * ut,const UChar * s,int64_t length,UErrorCode * status)2591 utext_openUChars(UText *ut, const UChar *s, int64_t length, UErrorCode *status) {
2592 if (U_FAILURE(*status)) {
2593 return NULL;
2594 }
2595 if(s==NULL && length==0) {
2596 s = gEmptyUString;
2597 }
2598 if (s==NULL || length < -1 || length>INT32_MAX) {
2599 *status = U_ILLEGAL_ARGUMENT_ERROR;
2600 return NULL;
2601 }
2602 ut = utext_setup(ut, 0, status);
2603 if (U_SUCCESS(*status)) {
2604 ut->pFuncs = &ucstrFuncs;
2605 ut->context = s;
2606 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2607 if (length==-1) {
2608 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2609 }
2610 ut->a = length;
2611 ut->chunkContents = s;
2612 ut->chunkNativeStart = 0;
2613 ut->chunkNativeLimit = length>=0? length : 0;
2614 ut->chunkLength = (int32_t)ut->chunkNativeLimit;
2615 ut->chunkOffset = 0;
2616 ut->nativeIndexingLimit = ut->chunkLength;
2617 }
2618 return ut;
2619 }
2620
2621
2622 //------------------------------------------------------------------------------
2623 //
2624 // UText implementation for text from ICU CharacterIterators
2625 //
2626 // Use of UText data members:
2627 // context pointer to the CharacterIterator
2628 // a length of the full text.
2629 // p pointer to buffer 1
2630 // b start index of local buffer 1 contents
2631 // q pointer to buffer 2
2632 // c start index of local buffer 2 contents
2633 // r pointer to the character iterator if the UText owns it.
2634 // Null otherwise.
2635 //
2636 //------------------------------------------------------------------------------
2637 #define CIBufSize 16
2638
2639 U_CDECL_BEGIN
2640 static void U_CALLCONV
charIterTextClose(UText * ut)2641 charIterTextClose(UText *ut) {
2642 // Most of the work of close is done by the generic UText framework close.
2643 // All that needs to be done here is delete the CharacterIterator if the UText
2644 // owns it. This occurs if the UText was created by cloning.
2645 CharacterIterator *ci = (CharacterIterator *)ut->r;
2646 delete ci;
2647 ut->r = NULL;
2648 }
2649
2650 static int64_t U_CALLCONV
charIterTextLength(UText * ut)2651 charIterTextLength(UText *ut) {
2652 return (int32_t)ut->a;
2653 }
2654
2655 static UBool U_CALLCONV
charIterTextAccess(UText * ut,int64_t index,UBool forward)2656 charIterTextAccess(UText *ut, int64_t index, UBool forward) {
2657 CharacterIterator *ci = (CharacterIterator *)ut->context;
2658
2659 int32_t clippedIndex = (int32_t)index;
2660 if (clippedIndex<0) {
2661 clippedIndex=0;
2662 } else if (clippedIndex>=ut->a) {
2663 clippedIndex=(int32_t)ut->a;
2664 }
2665 int32_t neededIndex = clippedIndex;
2666 if (!forward && neededIndex>0) {
2667 // reverse iteration, want the position just before what was asked for.
2668 neededIndex--;
2669 } else if (forward && neededIndex==ut->a && neededIndex>0) {
2670 // Forward iteration, don't ask for something past the end of the text.
2671 neededIndex--;
2672 }
2673
2674 // Find the native index of the start of the buffer containing what we want.
2675 neededIndex -= neededIndex % CIBufSize;
2676
2677 UChar *buf = NULL;
2678 UBool needChunkSetup = TRUE;
2679 int i;
2680 if (ut->chunkNativeStart == neededIndex) {
2681 // The buffer we want is already the current chunk.
2682 needChunkSetup = FALSE;
2683 } else if (ut->b == neededIndex) {
2684 // The first buffer (buffer p) has what we need.
2685 buf = (UChar *)ut->p;
2686 } else if (ut->c == neededIndex) {
2687 // The second buffer (buffer q) has what we need.
2688 buf = (UChar *)ut->q;
2689 } else {
2690 // Neither buffer already has what we need.
2691 // Load new data from the character iterator.
2692 // Use the buf that is not the current buffer.
2693 buf = (UChar *)ut->p;
2694 if (ut->p == ut->chunkContents) {
2695 buf = (UChar *)ut->q;
2696 }
2697 ci->setIndex(neededIndex);
2698 for (i=0; i<CIBufSize; i++) {
2699 buf[i] = ci->nextPostInc();
2700 if (i+neededIndex > ut->a) {
2701 break;
2702 }
2703 }
2704 }
2705
2706 // We have a buffer with the data we need.
2707 // Set it up as the current chunk, if it wasn't already.
2708 if (needChunkSetup) {
2709 ut->chunkContents = buf;
2710 ut->chunkLength = CIBufSize;
2711 ut->chunkNativeStart = neededIndex;
2712 ut->chunkNativeLimit = neededIndex + CIBufSize;
2713 if (ut->chunkNativeLimit > ut->a) {
2714 ut->chunkNativeLimit = ut->a;
2715 ut->chunkLength = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chunkNativeStart);
2716 }
2717 ut->nativeIndexingLimit = ut->chunkLength;
2718 U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize);
2719 }
2720 ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart;
2721 UBool success = (forward? ut->chunkOffset<ut->chunkLength : ut->chunkOffset>0);
2722 return success;
2723 }
2724
2725 static UText * U_CALLCONV
charIterTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)2726 charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status) {
2727 if (U_FAILURE(*status)) {
2728 return NULL;
2729 }
2730
2731 if (deep) {
2732 // There is no CharacterIterator API for cloning the underlying text storage.
2733 *status = U_UNSUPPORTED_ERROR;
2734 return NULL;
2735 } else {
2736 CharacterIterator *srcCI =(CharacterIterator *)src->context;
2737 srcCI = srcCI->clone();
2738 dest = utext_openCharacterIterator(dest, srcCI, status);
2739 if (U_FAILURE(*status)) {
2740 return dest;
2741 }
2742 // cast off const on getNativeIndex.
2743 // For CharacterIterator based UTexts, this is safe, the operation is const.
2744 int64_t ix = utext_getNativeIndex((UText *)src);
2745 utext_setNativeIndex(dest, ix);
2746 dest->r = srcCI; // flags that this UText owns the CharacterIterator
2747 }
2748 return dest;
2749 }
2750
2751 static int32_t U_CALLCONV
charIterTextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * status)2752 charIterTextExtract(UText *ut,
2753 int64_t start, int64_t limit,
2754 UChar *dest, int32_t destCapacity,
2755 UErrorCode *status)
2756 {
2757 if(U_FAILURE(*status)) {
2758 return 0;
2759 }
2760 if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) {
2761 *status=U_ILLEGAL_ARGUMENT_ERROR;
2762 return 0;
2763 }
2764 int32_t length = (int32_t)ut->a;
2765 int32_t start32 = pinIndex(start, length);
2766 int32_t limit32 = pinIndex(limit, length);
2767 int32_t desti = 0;
2768 int32_t srci;
2769 int32_t copyLimit;
2770
2771 CharacterIterator *ci = (CharacterIterator *)ut->context;
2772 ci->setIndex32(start32); // Moves ix to lead of surrogate pair, if needed.
2773 srci = ci->getIndex();
2774 copyLimit = srci;
2775 while (srci<limit32) {
2776 UChar32 c = ci->next32PostInc();
2777 int32_t len = U16_LENGTH(c);
2778 U_ASSERT(desti+len>0); /* to ensure desti+len never exceeds MAX_INT32, which must not happen logically */
2779 if (desti+len <= destCapacity) {
2780 U16_APPEND_UNSAFE(dest, desti, c);
2781 copyLimit = srci+len;
2782 } else {
2783 desti += len;
2784 *status = U_BUFFER_OVERFLOW_ERROR;
2785 }
2786 srci += len;
2787 }
2788
2789 charIterTextAccess(ut, copyLimit, TRUE);
2790
2791 u_terminateUChars(dest, destCapacity, desti, status);
2792 return desti;
2793 }
2794
2795 static const struct UTextFuncs charIterFuncs =
2796 {
2797 sizeof(UTextFuncs),
2798 0, 0, 0, // Reserved alignment padding
2799 charIterTextClone,
2800 charIterTextLength,
2801 charIterTextAccess,
2802 charIterTextExtract,
2803 NULL, // Replace
2804 NULL, // Copy
2805 NULL, // MapOffsetToNative,
2806 NULL, // MapIndexToUTF16,
2807 charIterTextClose,
2808 NULL, // spare 1
2809 NULL, // spare 2
2810 NULL // spare 3
2811 };
2812 U_CDECL_END
2813
2814
2815 U_CAPI UText * U_EXPORT2
utext_openCharacterIterator(UText * ut,CharacterIterator * ci,UErrorCode * status)2816 utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status) {
2817 if (U_FAILURE(*status)) {
2818 return NULL;
2819 }
2820
2821 if (ci->startIndex() > 0) {
2822 // No support for CharacterIterators that do not start indexing from zero.
2823 *status = U_UNSUPPORTED_ERROR;
2824 return NULL;
2825 }
2826
2827 // Extra space in UText for 2 buffers of CIBufSize UChars each.
2828 int32_t extraSpace = 2 * CIBufSize * sizeof(UChar);
2829 ut = utext_setup(ut, extraSpace, status);
2830 if (U_SUCCESS(*status)) {
2831 ut->pFuncs = &charIterFuncs;
2832 ut->context = ci;
2833 ut->providerProperties = 0;
2834 ut->a = ci->endIndex(); // Length of text
2835 ut->p = ut->pExtra; // First buffer
2836 ut->b = -1; // Native index of first buffer contents
2837 ut->q = (UChar*)ut->pExtra+CIBufSize; // Second buffer
2838 ut->c = -1; // Native index of second buffer contents
2839
2840 // Initialize current chunk contents to be empty.
2841 // First access will fault something in.
2842 // Note: The initial nativeStart and chunkOffset must sum to zero
2843 // so that getNativeIndex() will correctly compute to zero
2844 // if no call to Access() has ever been made. They can't be both
2845 // zero without Access() thinking that the chunk is valid.
2846 ut->chunkContents = (UChar *)ut->p;
2847 ut->chunkNativeStart = -1;
2848 ut->chunkOffset = 1;
2849 ut->chunkNativeLimit = 0;
2850 ut->chunkLength = 0;
2851 ut->nativeIndexingLimit = ut->chunkOffset; // enables native indexing
2852 }
2853 return ut;
2854 }
2855