1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11
12 #include "vp8/common/header.h"
13 #include "encodemv.h"
14 #include "vp8/common/entropymode.h"
15 #include "vp8/common/findnearmv.h"
16 #include "mcomp.h"
17 #include "vp8/common/systemdependent.h"
18 #include <assert.h>
19 #include <stdio.h>
20 #include <limits.h>
21 #include "vpx/vpx_encoder.h"
22 #include "vpx_mem/vpx_mem.h"
23 #include "bitstream.h"
24
25 #include "defaultcoefcounts.h"
26 #include "vp8/common/common.h"
27
28 const int vp8cx_base_skip_false_prob[128] =
29 {
30 255, 255, 255, 255, 255, 255, 255, 255,
31 255, 255, 255, 255, 255, 255, 255, 255,
32 255, 255, 255, 255, 255, 255, 255, 255,
33 255, 255, 255, 255, 255, 255, 255, 255,
34 255, 255, 255, 255, 255, 255, 255, 255,
35 255, 255, 255, 255, 255, 255, 255, 255,
36 255, 255, 255, 255, 255, 255, 255, 255,
37 251, 248, 244, 240, 236, 232, 229, 225,
38 221, 217, 213, 208, 204, 199, 194, 190,
39 187, 183, 179, 175, 172, 168, 164, 160,
40 157, 153, 149, 145, 142, 138, 134, 130,
41 127, 124, 120, 117, 114, 110, 107, 104,
42 101, 98, 95, 92, 89, 86, 83, 80,
43 77, 74, 71, 68, 65, 62, 59, 56,
44 53, 50, 47, 44, 41, 38, 35, 32,
45 30, 28, 26, 24, 22, 20, 18, 16,
46 };
47
48 #if defined(SECTIONBITS_OUTPUT)
49 unsigned __int64 Sectionbits[500];
50 #endif
51
52 #ifdef VP8_ENTROPY_STATS
53 int intra_mode_stats[10][10][10];
54 static unsigned int tree_update_hist [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES] [2];
55 extern unsigned int active_section;
56 #endif
57
58 #ifdef MODE_STATS
59 int count_mb_seg[4] = { 0, 0, 0, 0 };
60 #endif
61
62
update_mode(vp8_writer * const w,int n,vp8_token tok[],vp8_tree tree,vp8_prob Pnew[],vp8_prob Pcur[],unsigned int bct[][2],const unsigned int num_events[])63 static void update_mode(
64 vp8_writer *const w,
65 int n,
66 vp8_token tok [/* n */],
67 vp8_tree tree,
68 vp8_prob Pnew [/* n-1 */],
69 vp8_prob Pcur [/* n-1 */],
70 unsigned int bct [/* n-1 */] [2],
71 const unsigned int num_events[/* n */]
72 )
73 {
74 unsigned int new_b = 0, old_b = 0;
75 int i = 0;
76
77 vp8_tree_probs_from_distribution(
78 n--, tok, tree,
79 Pnew, bct, num_events,
80 256, 1
81 );
82
83 do
84 {
85 new_b += vp8_cost_branch(bct[i], Pnew[i]);
86 old_b += vp8_cost_branch(bct[i], Pcur[i]);
87 }
88 while (++i < n);
89
90 if (new_b + (n << 8) < old_b)
91 {
92 int j = 0;
93
94 vp8_write_bit(w, 1);
95
96 do
97 {
98 const vp8_prob p = Pnew[j];
99
100 vp8_write_literal(w, Pcur[j] = p ? p : 1, 8);
101 }
102 while (++j < n);
103 }
104 else
105 vp8_write_bit(w, 0);
106 }
107
update_mbintra_mode_probs(VP8_COMP * cpi)108 static void update_mbintra_mode_probs(VP8_COMP *cpi)
109 {
110 VP8_COMMON *const x = & cpi->common;
111
112 vp8_writer *const w = cpi->bc;
113
114 {
115 vp8_prob Pnew [VP8_YMODES-1];
116 unsigned int bct [VP8_YMODES-1] [2];
117
118 update_mode(
119 w, VP8_YMODES, vp8_ymode_encodings, vp8_ymode_tree,
120 Pnew, x->fc.ymode_prob, bct, (unsigned int *)cpi->mb.ymode_count
121 );
122 }
123 {
124 vp8_prob Pnew [VP8_UV_MODES-1];
125 unsigned int bct [VP8_UV_MODES-1] [2];
126
127 update_mode(
128 w, VP8_UV_MODES, vp8_uv_mode_encodings, vp8_uv_mode_tree,
129 Pnew, x->fc.uv_mode_prob, bct, (unsigned int *)cpi->mb.uv_mode_count
130 );
131 }
132 }
133
write_ymode(vp8_writer * bc,int m,const vp8_prob * p)134 static void write_ymode(vp8_writer *bc, int m, const vp8_prob *p)
135 {
136 vp8_write_token(bc, vp8_ymode_tree, p, vp8_ymode_encodings + m);
137 }
138
kfwrite_ymode(vp8_writer * bc,int m,const vp8_prob * p)139 static void kfwrite_ymode(vp8_writer *bc, int m, const vp8_prob *p)
140 {
141 vp8_write_token(bc, vp8_kf_ymode_tree, p, vp8_kf_ymode_encodings + m);
142 }
143
write_uv_mode(vp8_writer * bc,int m,const vp8_prob * p)144 static void write_uv_mode(vp8_writer *bc, int m, const vp8_prob *p)
145 {
146 vp8_write_token(bc, vp8_uv_mode_tree, p, vp8_uv_mode_encodings + m);
147 }
148
149
write_bmode(vp8_writer * bc,int m,const vp8_prob * p)150 static void write_bmode(vp8_writer *bc, int m, const vp8_prob *p)
151 {
152 vp8_write_token(bc, vp8_bmode_tree, p, vp8_bmode_encodings + m);
153 }
154
write_split(vp8_writer * bc,int x)155 static void write_split(vp8_writer *bc, int x)
156 {
157 vp8_write_token(
158 bc, vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings + x
159 );
160 }
161
vp8_pack_tokens(vp8_writer * w,const TOKENEXTRA * p,int xcount)162 void vp8_pack_tokens(vp8_writer *w, const TOKENEXTRA *p, int xcount)
163 {
164 const TOKENEXTRA *stop = p + xcount;
165 unsigned int split;
166 unsigned int shift;
167 int count = w->count;
168 unsigned int range = w->range;
169 unsigned int lowvalue = w->lowvalue;
170
171 while (p < stop)
172 {
173 const int t = p->Token;
174 vp8_token *a = vp8_coef_encodings + t;
175 const vp8_extra_bit_struct *b = vp8_extra_bits + t;
176 int i = 0;
177 const unsigned char *pp = p->context_tree;
178 int v = a->value;
179 int n = a->Len;
180
181 if (p->skip_eob_node)
182 {
183 n--;
184 i = 2;
185 }
186
187 do
188 {
189 const int bb = (v >> --n) & 1;
190 split = 1 + (((range - 1) * pp[i>>1]) >> 8);
191 i = vp8_coef_tree[i+bb];
192
193 if (bb)
194 {
195 lowvalue += split;
196 range = range - split;
197 }
198 else
199 {
200 range = split;
201 }
202
203 shift = vp8_norm[range];
204 range <<= shift;
205 count += shift;
206
207 if (count >= 0)
208 {
209 int offset = shift - count;
210
211 if ((lowvalue << (offset - 1)) & 0x80000000)
212 {
213 int x = w->pos - 1;
214
215 while (x >= 0 && w->buffer[x] == 0xff)
216 {
217 w->buffer[x] = (unsigned char)0;
218 x--;
219 }
220
221 w->buffer[x] += 1;
222 }
223
224 validate_buffer(w->buffer + w->pos,
225 1,
226 w->buffer_end,
227 w->error);
228
229 w->buffer[w->pos++] = (lowvalue >> (24 - offset));
230 lowvalue <<= offset;
231 shift = count;
232 lowvalue &= 0xffffff;
233 count -= 8 ;
234 }
235
236 lowvalue <<= shift;
237 }
238 while (n);
239
240
241 if (b->base_val)
242 {
243 const int e = p->Extra, L = b->Len;
244
245 if (L)
246 {
247 const unsigned char *proba = b->prob;
248 const int v2 = e >> 1;
249 int n2 = L; /* number of bits in v2, assumed nonzero */
250 i = 0;
251
252 do
253 {
254 const int bb = (v2 >> --n2) & 1;
255 split = 1 + (((range - 1) * proba[i>>1]) >> 8);
256 i = b->tree[i+bb];
257
258 if (bb)
259 {
260 lowvalue += split;
261 range = range - split;
262 }
263 else
264 {
265 range = split;
266 }
267
268 shift = vp8_norm[range];
269 range <<= shift;
270 count += shift;
271
272 if (count >= 0)
273 {
274 int offset = shift - count;
275
276 if ((lowvalue << (offset - 1)) & 0x80000000)
277 {
278 int x = w->pos - 1;
279
280 while (x >= 0 && w->buffer[x] == 0xff)
281 {
282 w->buffer[x] = (unsigned char)0;
283 x--;
284 }
285
286 w->buffer[x] += 1;
287 }
288
289 validate_buffer(w->buffer + w->pos,
290 1,
291 w->buffer_end,
292 w->error);
293
294 w->buffer[w->pos++] = (lowvalue >> (24 - offset));
295 lowvalue <<= offset;
296 shift = count;
297 lowvalue &= 0xffffff;
298 count -= 8 ;
299 }
300
301 lowvalue <<= shift;
302 }
303 while (n2);
304 }
305
306
307 {
308
309 split = (range + 1) >> 1;
310
311 if (e & 1)
312 {
313 lowvalue += split;
314 range = range - split;
315 }
316 else
317 {
318 range = split;
319 }
320
321 range <<= 1;
322
323 if ((lowvalue & 0x80000000))
324 {
325 int x = w->pos - 1;
326
327 while (x >= 0 && w->buffer[x] == 0xff)
328 {
329 w->buffer[x] = (unsigned char)0;
330 x--;
331 }
332
333 w->buffer[x] += 1;
334
335 }
336
337 lowvalue <<= 1;
338
339 if (!++count)
340 {
341 count = -8;
342
343 validate_buffer(w->buffer + w->pos,
344 1,
345 w->buffer_end,
346 w->error);
347
348 w->buffer[w->pos++] = (lowvalue >> 24);
349 lowvalue &= 0xffffff;
350 }
351 }
352
353 }
354
355 ++p;
356 }
357
358 w->count = count;
359 w->lowvalue = lowvalue;
360 w->range = range;
361
362 }
363
write_partition_size(unsigned char * cx_data,int size)364 static void write_partition_size(unsigned char *cx_data, int size)
365 {
366 signed char csize;
367
368 csize = size & 0xff;
369 *cx_data = csize;
370 csize = (size >> 8) & 0xff;
371 *(cx_data + 1) = csize;
372 csize = (size >> 16) & 0xff;
373 *(cx_data + 2) = csize;
374
375 }
376
pack_tokens_into_partitions(VP8_COMP * cpi,unsigned char * cx_data,unsigned char * cx_data_end,int num_part)377 static void pack_tokens_into_partitions(VP8_COMP *cpi, unsigned char *cx_data,
378 unsigned char * cx_data_end,
379 int num_part)
380 {
381
382 int i;
383 unsigned char *ptr = cx_data;
384 unsigned char *ptr_end = cx_data_end;
385 vp8_writer * w;
386
387 for (i = 0; i < num_part; i++)
388 {
389 int mb_row;
390
391 w = cpi->bc + i + 1;
392
393 vp8_start_encode(w, ptr, ptr_end);
394
395 for (mb_row = i; mb_row < cpi->common.mb_rows; mb_row += num_part)
396 {
397 const TOKENEXTRA *p = cpi->tplist[mb_row].start;
398 const TOKENEXTRA *stop = cpi->tplist[mb_row].stop;
399 int tokens = (int)(stop - p);
400
401 vp8_pack_tokens(w, p, tokens);
402 }
403
404 vp8_stop_encode(w);
405 ptr += w->pos;
406 }
407 }
408
409
410 #if CONFIG_MULTITHREAD
pack_mb_row_tokens(VP8_COMP * cpi,vp8_writer * w)411 static void pack_mb_row_tokens(VP8_COMP *cpi, vp8_writer *w)
412 {
413 int mb_row;
414
415 for (mb_row = 0; mb_row < cpi->common.mb_rows; mb_row++)
416 {
417 const TOKENEXTRA *p = cpi->tplist[mb_row].start;
418 const TOKENEXTRA *stop = cpi->tplist[mb_row].stop;
419 int tokens = (int)(stop - p);
420
421 vp8_pack_tokens(w, p, tokens);
422 }
423
424 }
425 #endif // CONFIG_MULTITHREAD
426
write_mv_ref(vp8_writer * w,MB_PREDICTION_MODE m,const vp8_prob * p)427 static void write_mv_ref
428 (
429 vp8_writer *w, MB_PREDICTION_MODE m, const vp8_prob *p
430 )
431 {
432 #if CONFIG_DEBUG
433 assert(NEARESTMV <= m && m <= SPLITMV);
434 #endif
435 vp8_write_token(w, vp8_mv_ref_tree, p,
436 vp8_mv_ref_encoding_array + (m - NEARESTMV));
437 }
438
write_sub_mv_ref(vp8_writer * w,B_PREDICTION_MODE m,const vp8_prob * p)439 static void write_sub_mv_ref
440 (
441 vp8_writer *w, B_PREDICTION_MODE m, const vp8_prob *p
442 )
443 {
444 #if CONFIG_DEBUG
445 assert(LEFT4X4 <= m && m <= NEW4X4);
446 #endif
447 vp8_write_token(w, vp8_sub_mv_ref_tree, p,
448 vp8_sub_mv_ref_encoding_array + (m - LEFT4X4));
449 }
450
write_mv(vp8_writer * w,const MV * mv,const int_mv * ref,const MV_CONTEXT * mvc)451 static void write_mv
452 (
453 vp8_writer *w, const MV *mv, const int_mv *ref, const MV_CONTEXT *mvc
454 )
455 {
456 MV e;
457 e.row = mv->row - ref->as_mv.row;
458 e.col = mv->col - ref->as_mv.col;
459
460 vp8_encode_motion_vector(w, &e, mvc);
461 }
462
write_mb_features(vp8_writer * w,const MB_MODE_INFO * mi,const MACROBLOCKD * x)463 static void write_mb_features(vp8_writer *w, const MB_MODE_INFO *mi, const MACROBLOCKD *x)
464 {
465 /* Encode the MB segment id. */
466 if (x->segmentation_enabled && x->update_mb_segmentation_map)
467 {
468 switch (mi->segment_id)
469 {
470 case 0:
471 vp8_write(w, 0, x->mb_segment_tree_probs[0]);
472 vp8_write(w, 0, x->mb_segment_tree_probs[1]);
473 break;
474 case 1:
475 vp8_write(w, 0, x->mb_segment_tree_probs[0]);
476 vp8_write(w, 1, x->mb_segment_tree_probs[1]);
477 break;
478 case 2:
479 vp8_write(w, 1, x->mb_segment_tree_probs[0]);
480 vp8_write(w, 0, x->mb_segment_tree_probs[2]);
481 break;
482 case 3:
483 vp8_write(w, 1, x->mb_segment_tree_probs[0]);
484 vp8_write(w, 1, x->mb_segment_tree_probs[2]);
485 break;
486
487 /* TRAP.. This should not happen */
488 default:
489 vp8_write(w, 0, x->mb_segment_tree_probs[0]);
490 vp8_write(w, 0, x->mb_segment_tree_probs[1]);
491 break;
492 }
493 }
494 }
vp8_convert_rfct_to_prob(VP8_COMP * const cpi)495 void vp8_convert_rfct_to_prob(VP8_COMP *const cpi)
496 {
497 const int *const rfct = cpi->mb.count_mb_ref_frame_usage;
498 const int rf_intra = rfct[INTRA_FRAME];
499 const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
500
501 /* Calculate the probabilities used to code the ref frame based on usage */
502 if (!(cpi->prob_intra_coded = rf_intra * 255 / (rf_intra + rf_inter)))
503 cpi->prob_intra_coded = 1;
504
505 cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
506
507 if (!cpi->prob_last_coded)
508 cpi->prob_last_coded = 1;
509
510 cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
511 ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
512
513 if (!cpi->prob_gf_coded)
514 cpi->prob_gf_coded = 1;
515
516 }
517
pack_inter_mode_mvs(VP8_COMP * const cpi)518 static void pack_inter_mode_mvs(VP8_COMP *const cpi)
519 {
520 VP8_COMMON *const pc = & cpi->common;
521 vp8_writer *const w = cpi->bc;
522 const MV_CONTEXT *mvc = pc->fc.mvc;
523
524
525 MODE_INFO *m = pc->mi;
526 const int mis = pc->mode_info_stride;
527 int mb_row = -1;
528
529 int prob_skip_false = 0;
530
531 cpi->mb.partition_info = cpi->mb.pi;
532
533 vp8_convert_rfct_to_prob(cpi);
534
535 #ifdef VP8_ENTROPY_STATS
536 active_section = 1;
537 #endif
538
539 if (pc->mb_no_coeff_skip)
540 {
541 int total_mbs = pc->mb_rows * pc->mb_cols;
542
543 prob_skip_false = (total_mbs - cpi->mb.skip_true_count ) * 256 / total_mbs;
544
545 if (prob_skip_false <= 1)
546 prob_skip_false = 1;
547
548 if (prob_skip_false > 255)
549 prob_skip_false = 255;
550
551 cpi->prob_skip_false = prob_skip_false;
552 vp8_write_literal(w, prob_skip_false, 8);
553 }
554
555 vp8_write_literal(w, cpi->prob_intra_coded, 8);
556 vp8_write_literal(w, cpi->prob_last_coded, 8);
557 vp8_write_literal(w, cpi->prob_gf_coded, 8);
558
559 update_mbintra_mode_probs(cpi);
560
561 vp8_write_mvprobs(cpi);
562
563 while (++mb_row < pc->mb_rows)
564 {
565 int mb_col = -1;
566
567 while (++mb_col < pc->mb_cols)
568 {
569 const MB_MODE_INFO *const mi = & m->mbmi;
570 const MV_REFERENCE_FRAME rf = mi->ref_frame;
571 const MB_PREDICTION_MODE mode = mi->mode;
572
573 MACROBLOCKD *xd = &cpi->mb.e_mbd;
574
575 /* Distance of Mb to the various image edges.
576 * These specified to 8th pel as they are always compared to MV
577 * values that are in 1/8th pel units
578 */
579 xd->mb_to_left_edge = -((mb_col * 16) << 3);
580 xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
581 xd->mb_to_top_edge = -((mb_row * 16) << 3);
582 xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
583
584 #ifdef VP8_ENTROPY_STATS
585 active_section = 9;
586 #endif
587
588 if (cpi->mb.e_mbd.update_mb_segmentation_map)
589 write_mb_features(w, mi, &cpi->mb.e_mbd);
590
591 if (pc->mb_no_coeff_skip)
592 vp8_encode_bool(w, m->mbmi.mb_skip_coeff, prob_skip_false);
593
594 if (rf == INTRA_FRAME)
595 {
596 vp8_write(w, 0, cpi->prob_intra_coded);
597 #ifdef VP8_ENTROPY_STATS
598 active_section = 6;
599 #endif
600 write_ymode(w, mode, pc->fc.ymode_prob);
601
602 if (mode == B_PRED)
603 {
604 int j = 0;
605
606 do
607 write_bmode(w, m->bmi[j].as_mode, pc->fc.bmode_prob);
608 while (++j < 16);
609 }
610
611 write_uv_mode(w, mi->uv_mode, pc->fc.uv_mode_prob);
612 }
613 else /* inter coded */
614 {
615 int_mv best_mv;
616 vp8_prob mv_ref_p [VP8_MVREFS-1];
617
618 vp8_write(w, 1, cpi->prob_intra_coded);
619
620 if (rf == LAST_FRAME)
621 vp8_write(w, 0, cpi->prob_last_coded);
622 else
623 {
624 vp8_write(w, 1, cpi->prob_last_coded);
625 vp8_write(w, (rf == GOLDEN_FRAME) ? 0 : 1, cpi->prob_gf_coded);
626 }
627
628 {
629 int_mv n1, n2;
630 int ct[4];
631
632 vp8_find_near_mvs(xd, m, &n1, &n2, &best_mv, ct, rf, cpi->common.ref_frame_sign_bias);
633 vp8_clamp_mv2(&best_mv, xd);
634
635 vp8_mv_ref_probs(mv_ref_p, ct);
636
637 #ifdef VP8_ENTROPY_STATS
638 accum_mv_refs(mode, ct);
639 #endif
640
641 }
642
643 #ifdef VP8_ENTROPY_STATS
644 active_section = 3;
645 #endif
646
647 write_mv_ref(w, mode, mv_ref_p);
648
649 switch (mode) /* new, split require MVs */
650 {
651 case NEWMV:
652
653 #ifdef VP8_ENTROPY_STATS
654 active_section = 5;
655 #endif
656
657 write_mv(w, &mi->mv.as_mv, &best_mv, mvc);
658 break;
659
660 case SPLITMV:
661 {
662 int j = 0;
663
664 #ifdef MODE_STATS
665 ++count_mb_seg [mi->partitioning];
666 #endif
667
668 write_split(w, mi->partitioning);
669
670 do
671 {
672 B_PREDICTION_MODE blockmode;
673 int_mv blockmv;
674 const int *const L = vp8_mbsplits [mi->partitioning];
675 int k = -1; /* first block in subset j */
676 int mv_contz;
677 int_mv leftmv, abovemv;
678
679 blockmode = cpi->mb.partition_info->bmi[j].mode;
680 blockmv = cpi->mb.partition_info->bmi[j].mv;
681 #if CONFIG_DEBUG
682 while (j != L[++k])
683 if (k >= 16)
684 assert(0);
685 #else
686 while (j != L[++k]);
687 #endif
688 leftmv.as_int = left_block_mv(m, k);
689 abovemv.as_int = above_block_mv(m, k, mis);
690 mv_contz = vp8_mv_cont(&leftmv, &abovemv);
691
692 write_sub_mv_ref(w, blockmode, vp8_sub_mv_ref_prob2 [mv_contz]);
693
694 if (blockmode == NEW4X4)
695 {
696 #ifdef VP8_ENTROPY_STATS
697 active_section = 11;
698 #endif
699 write_mv(w, &blockmv.as_mv, &best_mv, (const MV_CONTEXT *) mvc);
700 }
701 }
702 while (++j < cpi->mb.partition_info->count);
703 }
704 break;
705 default:
706 break;
707 }
708 }
709
710 ++m;
711 cpi->mb.partition_info++;
712 }
713
714 ++m; /* skip L prediction border */
715 cpi->mb.partition_info++;
716 }
717 }
718
719
write_kfmodes(VP8_COMP * cpi)720 static void write_kfmodes(VP8_COMP *cpi)
721 {
722 vp8_writer *const bc = cpi->bc;
723 const VP8_COMMON *const c = & cpi->common;
724 /* const */
725 MODE_INFO *m = c->mi;
726
727 int mb_row = -1;
728 int prob_skip_false = 0;
729
730 if (c->mb_no_coeff_skip)
731 {
732 int total_mbs = c->mb_rows * c->mb_cols;
733
734 prob_skip_false = (total_mbs - cpi->mb.skip_true_count ) * 256 / total_mbs;
735
736 if (prob_skip_false <= 1)
737 prob_skip_false = 1;
738
739 if (prob_skip_false >= 255)
740 prob_skip_false = 255;
741
742 cpi->prob_skip_false = prob_skip_false;
743 vp8_write_literal(bc, prob_skip_false, 8);
744 }
745
746 while (++mb_row < c->mb_rows)
747 {
748 int mb_col = -1;
749
750 while (++mb_col < c->mb_cols)
751 {
752 const int ym = m->mbmi.mode;
753
754 if (cpi->mb.e_mbd.update_mb_segmentation_map)
755 write_mb_features(bc, &m->mbmi, &cpi->mb.e_mbd);
756
757 if (c->mb_no_coeff_skip)
758 vp8_encode_bool(bc, m->mbmi.mb_skip_coeff, prob_skip_false);
759
760 kfwrite_ymode(bc, ym, vp8_kf_ymode_prob);
761
762 if (ym == B_PRED)
763 {
764 const int mis = c->mode_info_stride;
765 int i = 0;
766
767 do
768 {
769 const B_PREDICTION_MODE A = above_block_mode(m, i, mis);
770 const B_PREDICTION_MODE L = left_block_mode(m, i);
771 const int bm = m->bmi[i].as_mode;
772
773 #ifdef VP8_ENTROPY_STATS
774 ++intra_mode_stats [A] [L] [bm];
775 #endif
776
777 write_bmode(bc, bm, vp8_kf_bmode_prob [A] [L]);
778 }
779 while (++i < 16);
780 }
781
782 write_uv_mode(bc, (m++)->mbmi.uv_mode, vp8_kf_uv_mode_prob);
783 }
784
785 m++; /* skip L prediction border */
786 }
787 }
788
789 #if 0
790 /* This function is used for debugging probability trees. */
791 static void print_prob_tree(vp8_prob
792 coef_probs[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES])
793 {
794 /* print coef probability tree */
795 int i,j,k,l;
796 FILE* f = fopen("enc_tree_probs.txt", "a");
797 fprintf(f, "{\n");
798 for (i = 0; i < BLOCK_TYPES; i++)
799 {
800 fprintf(f, " {\n");
801 for (j = 0; j < COEF_BANDS; j++)
802 {
803 fprintf(f, " {\n");
804 for (k = 0; k < PREV_COEF_CONTEXTS; k++)
805 {
806 fprintf(f, " {");
807 for (l = 0; l < ENTROPY_NODES; l++)
808 {
809 fprintf(f, "%3u, ",
810 (unsigned int)(coef_probs [i][j][k][l]));
811 }
812 fprintf(f, " }\n");
813 }
814 fprintf(f, " }\n");
815 }
816 fprintf(f, " }\n");
817 }
818 fprintf(f, "}\n");
819 fclose(f);
820 }
821 #endif
822
sum_probs_over_prev_coef_context(const unsigned int probs[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS],unsigned int * out)823 static void sum_probs_over_prev_coef_context(
824 const unsigned int probs[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS],
825 unsigned int* out)
826 {
827 int i, j;
828 for (i=0; i < MAX_ENTROPY_TOKENS; ++i)
829 {
830 for (j=0; j < PREV_COEF_CONTEXTS; ++j)
831 {
832 const unsigned int tmp = out[i];
833 out[i] += probs[j][i];
834 /* check for wrap */
835 if (out[i] < tmp)
836 out[i] = UINT_MAX;
837 }
838 }
839 }
840
prob_update_savings(const unsigned int * ct,const vp8_prob oldp,const vp8_prob newp,const vp8_prob upd)841 static int prob_update_savings(const unsigned int *ct,
842 const vp8_prob oldp, const vp8_prob newp,
843 const vp8_prob upd)
844 {
845 const int old_b = vp8_cost_branch(ct, oldp);
846 const int new_b = vp8_cost_branch(ct, newp);
847 const int update_b = 8 +
848 ((vp8_cost_one(upd) - vp8_cost_zero(upd)) >> 8);
849
850 return old_b - new_b - update_b;
851 }
852
independent_coef_context_savings(VP8_COMP * cpi)853 static int independent_coef_context_savings(VP8_COMP *cpi)
854 {
855 MACROBLOCK *const x = & cpi->mb;
856 int savings = 0;
857 int i = 0;
858 do
859 {
860 int j = 0;
861 do
862 {
863 int k = 0;
864 unsigned int prev_coef_count_sum[MAX_ENTROPY_TOKENS] = {0};
865 int prev_coef_savings[MAX_ENTROPY_TOKENS] = {0};
866 const unsigned int (*probs)[MAX_ENTROPY_TOKENS];
867 /* Calculate new probabilities given the constraint that
868 * they must be equal over the prev coef contexts
869 */
870
871 probs = (const unsigned int (*)[MAX_ENTROPY_TOKENS])
872 x->coef_counts[i][j];
873
874 /* Reset to default probabilities at key frames */
875 if (cpi->common.frame_type == KEY_FRAME)
876 probs = default_coef_counts[i][j];
877
878 sum_probs_over_prev_coef_context(probs, prev_coef_count_sum);
879
880 do
881 {
882 /* at every context */
883
884 /* calc probs and branch cts for this frame only */
885 int t = 0; /* token/prob index */
886
887 vp8_tree_probs_from_distribution(
888 MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
889 cpi->frame_coef_probs[i][j][k],
890 cpi->frame_branch_ct [i][j][k],
891 prev_coef_count_sum,
892 256, 1);
893
894 do
895 {
896 const unsigned int *ct = cpi->frame_branch_ct [i][j][k][t];
897 const vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
898 const vp8_prob oldp = cpi->common.fc.coef_probs [i][j][k][t];
899 const vp8_prob upd = vp8_coef_update_probs [i][j][k][t];
900 const int s = prob_update_savings(ct, oldp, newp, upd);
901
902 if (cpi->common.frame_type != KEY_FRAME ||
903 (cpi->common.frame_type == KEY_FRAME && newp != oldp))
904 prev_coef_savings[t] += s;
905 }
906 while (++t < ENTROPY_NODES);
907 }
908 while (++k < PREV_COEF_CONTEXTS);
909 k = 0;
910 do
911 {
912 /* We only update probabilities if we can save bits, except
913 * for key frames where we have to update all probabilities
914 * to get the equal probabilities across the prev coef
915 * contexts.
916 */
917 if (prev_coef_savings[k] > 0 ||
918 cpi->common.frame_type == KEY_FRAME)
919 savings += prev_coef_savings[k];
920 }
921 while (++k < ENTROPY_NODES);
922 }
923 while (++j < COEF_BANDS);
924 }
925 while (++i < BLOCK_TYPES);
926 return savings;
927 }
928
default_coef_context_savings(VP8_COMP * cpi)929 static int default_coef_context_savings(VP8_COMP *cpi)
930 {
931 MACROBLOCK *const x = & cpi->mb;
932 int savings = 0;
933 int i = 0;
934 do
935 {
936 int j = 0;
937 do
938 {
939 int k = 0;
940 do
941 {
942 /* at every context */
943
944 /* calc probs and branch cts for this frame only */
945 int t = 0; /* token/prob index */
946
947 vp8_tree_probs_from_distribution(
948 MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
949 cpi->frame_coef_probs [i][j][k],
950 cpi->frame_branch_ct [i][j][k],
951 x->coef_counts [i][j][k],
952 256, 1
953 );
954
955 do
956 {
957 const unsigned int *ct = cpi->frame_branch_ct [i][j][k][t];
958 const vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
959 const vp8_prob oldp = cpi->common.fc.coef_probs [i][j][k][t];
960 const vp8_prob upd = vp8_coef_update_probs [i][j][k][t];
961 const int s = prob_update_savings(ct, oldp, newp, upd);
962
963 if (s > 0)
964 {
965 savings += s;
966 }
967 }
968 while (++t < ENTROPY_NODES);
969 }
970 while (++k < PREV_COEF_CONTEXTS);
971 }
972 while (++j < COEF_BANDS);
973 }
974 while (++i < BLOCK_TYPES);
975 return savings;
976 }
977
vp8_calc_ref_frame_costs(int * ref_frame_cost,int prob_intra,int prob_last,int prob_garf)978 void vp8_calc_ref_frame_costs(int *ref_frame_cost,
979 int prob_intra,
980 int prob_last,
981 int prob_garf
982 )
983 {
984 assert(prob_intra >= 0);
985 assert(prob_intra <= 255);
986 assert(prob_last >= 0);
987 assert(prob_last <= 255);
988 assert(prob_garf >= 0);
989 assert(prob_garf <= 255);
990 ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(prob_intra);
991 ref_frame_cost[LAST_FRAME] = vp8_cost_one(prob_intra)
992 + vp8_cost_zero(prob_last);
993 ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(prob_intra)
994 + vp8_cost_one(prob_last)
995 + vp8_cost_zero(prob_garf);
996 ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(prob_intra)
997 + vp8_cost_one(prob_last)
998 + vp8_cost_one(prob_garf);
999
1000 }
1001
vp8_estimate_entropy_savings(VP8_COMP * cpi)1002 int vp8_estimate_entropy_savings(VP8_COMP *cpi)
1003 {
1004 int savings = 0;
1005
1006 const int *const rfct = cpi->mb.count_mb_ref_frame_usage;
1007 const int rf_intra = rfct[INTRA_FRAME];
1008 const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
1009 int new_intra, new_last, new_garf, oldtotal, newtotal;
1010 int ref_frame_cost[MAX_REF_FRAMES];
1011
1012 vp8_clear_system_state();
1013
1014 if (cpi->common.frame_type != KEY_FRAME)
1015 {
1016 if (!(new_intra = rf_intra * 255 / (rf_intra + rf_inter)))
1017 new_intra = 1;
1018
1019 new_last = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
1020
1021 new_garf = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
1022 ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
1023
1024
1025 vp8_calc_ref_frame_costs(ref_frame_cost,new_intra,new_last,new_garf);
1026
1027 newtotal =
1028 rfct[INTRA_FRAME] * ref_frame_cost[INTRA_FRAME] +
1029 rfct[LAST_FRAME] * ref_frame_cost[LAST_FRAME] +
1030 rfct[GOLDEN_FRAME] * ref_frame_cost[GOLDEN_FRAME] +
1031 rfct[ALTREF_FRAME] * ref_frame_cost[ALTREF_FRAME];
1032
1033
1034 /* old costs */
1035 vp8_calc_ref_frame_costs(ref_frame_cost,cpi->prob_intra_coded,
1036 cpi->prob_last_coded,cpi->prob_gf_coded);
1037
1038 oldtotal =
1039 rfct[INTRA_FRAME] * ref_frame_cost[INTRA_FRAME] +
1040 rfct[LAST_FRAME] * ref_frame_cost[LAST_FRAME] +
1041 rfct[GOLDEN_FRAME] * ref_frame_cost[GOLDEN_FRAME] +
1042 rfct[ALTREF_FRAME] * ref_frame_cost[ALTREF_FRAME];
1043
1044 savings += (oldtotal - newtotal) / 256;
1045 }
1046
1047
1048 if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
1049 savings += independent_coef_context_savings(cpi);
1050 else
1051 savings += default_coef_context_savings(cpi);
1052
1053
1054 return savings;
1055 }
1056
1057 #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
vp8_update_coef_context(VP8_COMP * cpi)1058 int vp8_update_coef_context(VP8_COMP *cpi)
1059 {
1060 int savings = 0;
1061
1062
1063 if (cpi->common.frame_type == KEY_FRAME)
1064 {
1065 /* Reset to default counts/probabilities at key frames */
1066 vp8_copy(cpi->mb.coef_counts, default_coef_counts);
1067 }
1068
1069 if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
1070 savings += independent_coef_context_savings(cpi);
1071 else
1072 savings += default_coef_context_savings(cpi);
1073
1074 return savings;
1075 }
1076 #endif
1077
vp8_update_coef_probs(VP8_COMP * cpi)1078 void vp8_update_coef_probs(VP8_COMP *cpi)
1079 {
1080 int i = 0;
1081 #if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
1082 vp8_writer *const w = cpi->bc;
1083 #endif
1084 int savings = 0;
1085
1086 vp8_clear_system_state();
1087
1088 do
1089 {
1090 int j = 0;
1091
1092 do
1093 {
1094 int k = 0;
1095 int prev_coef_savings[ENTROPY_NODES] = {0};
1096 if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
1097 {
1098 for (k = 0; k < PREV_COEF_CONTEXTS; ++k)
1099 {
1100 int t; /* token/prob index */
1101 for (t = 0; t < ENTROPY_NODES; ++t)
1102 {
1103 const unsigned int *ct = cpi->frame_branch_ct [i][j]
1104 [k][t];
1105 const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t];
1106 const vp8_prob oldp = cpi->common.fc.coef_probs[i][j]
1107 [k][t];
1108 const vp8_prob upd = vp8_coef_update_probs[i][j][k][t];
1109
1110 prev_coef_savings[t] +=
1111 prob_update_savings(ct, oldp, newp, upd);
1112 }
1113 }
1114 k = 0;
1115 }
1116 do
1117 {
1118 /* note: use result from vp8_estimate_entropy_savings, so no
1119 * need to call vp8_tree_probs_from_distribution here.
1120 */
1121
1122 /* at every context */
1123
1124 /* calc probs and branch cts for this frame only */
1125 int t = 0; /* token/prob index */
1126
1127 do
1128 {
1129 const vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
1130
1131 vp8_prob *Pold = cpi->common.fc.coef_probs [i][j][k] + t;
1132 const vp8_prob upd = vp8_coef_update_probs [i][j][k][t];
1133
1134 int s = prev_coef_savings[t];
1135 int u = 0;
1136
1137 if (!(cpi->oxcf.error_resilient_mode &
1138 VPX_ERROR_RESILIENT_PARTITIONS))
1139 {
1140 s = prob_update_savings(
1141 cpi->frame_branch_ct [i][j][k][t],
1142 *Pold, newp, upd);
1143 }
1144
1145 if (s > 0)
1146 u = 1;
1147
1148 /* Force updates on key frames if the new is different,
1149 * so that we can be sure we end up with equal probabilities
1150 * over the prev coef contexts.
1151 */
1152 if ((cpi->oxcf.error_resilient_mode &
1153 VPX_ERROR_RESILIENT_PARTITIONS) &&
1154 cpi->common.frame_type == KEY_FRAME && newp != *Pold)
1155 u = 1;
1156
1157 #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
1158 cpi->update_probs[i][j][k][t] = u;
1159 #else
1160 vp8_write(w, u, upd);
1161 #endif
1162
1163
1164 #ifdef VP8_ENTROPY_STATS
1165 ++ tree_update_hist [i][j][k][t] [u];
1166 #endif
1167
1168 if (u)
1169 {
1170 /* send/use new probability */
1171
1172 *Pold = newp;
1173 #if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
1174 vp8_write_literal(w, newp, 8);
1175 #endif
1176
1177 savings += s;
1178
1179 }
1180
1181 }
1182 while (++t < ENTROPY_NODES);
1183
1184 /* Accum token counts for generation of default statistics */
1185 #ifdef VP8_ENTROPY_STATS
1186 t = 0;
1187
1188 do
1189 {
1190 context_counters [i][j][k][t] += cpi->coef_counts [i][j][k][t];
1191 }
1192 while (++t < MAX_ENTROPY_TOKENS);
1193
1194 #endif
1195
1196 }
1197 while (++k < PREV_COEF_CONTEXTS);
1198 }
1199 while (++j < COEF_BANDS);
1200 }
1201 while (++i < BLOCK_TYPES);
1202
1203 }
1204
1205 #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
pack_coef_probs(VP8_COMP * cpi)1206 static void pack_coef_probs(VP8_COMP *cpi)
1207 {
1208 int i = 0;
1209 vp8_writer *const w = cpi->bc;
1210
1211 do
1212 {
1213 int j = 0;
1214
1215 do
1216 {
1217 int k = 0;
1218
1219 do
1220 {
1221 int t = 0; /* token/prob index */
1222
1223 do
1224 {
1225 const vp8_prob newp = cpi->common.fc.coef_probs [i][j][k][t];
1226 const vp8_prob upd = vp8_coef_update_probs [i][j][k][t];
1227
1228 const char u = cpi->update_probs[i][j][k][t] ;
1229
1230 vp8_write(w, u, upd);
1231
1232 if (u)
1233 {
1234 /* send/use new probability */
1235 vp8_write_literal(w, newp, 8);
1236 }
1237 }
1238 while (++t < ENTROPY_NODES);
1239 }
1240 while (++k < PREV_COEF_CONTEXTS);
1241 }
1242 while (++j < COEF_BANDS);
1243 }
1244 while (++i < BLOCK_TYPES);
1245 }
1246 #endif
1247
1248 #ifdef PACKET_TESTING
1249 FILE *vpxlogc = 0;
1250 #endif
1251
put_delta_q(vp8_writer * bc,int delta_q)1252 static void put_delta_q(vp8_writer *bc, int delta_q)
1253 {
1254 if (delta_q != 0)
1255 {
1256 vp8_write_bit(bc, 1);
1257 vp8_write_literal(bc, abs(delta_q), 4);
1258
1259 if (delta_q < 0)
1260 vp8_write_bit(bc, 1);
1261 else
1262 vp8_write_bit(bc, 0);
1263 }
1264 else
1265 vp8_write_bit(bc, 0);
1266 }
1267
vp8_pack_bitstream(VP8_COMP * cpi,unsigned char * dest,unsigned char * dest_end,unsigned long * size)1268 void vp8_pack_bitstream(VP8_COMP *cpi, unsigned char *dest, unsigned char * dest_end, unsigned long *size)
1269 {
1270 int i, j;
1271 VP8_HEADER oh;
1272 VP8_COMMON *const pc = & cpi->common;
1273 vp8_writer *const bc = cpi->bc;
1274 MACROBLOCKD *const xd = & cpi->mb.e_mbd;
1275 int extra_bytes_packed = 0;
1276
1277 unsigned char *cx_data = dest;
1278 unsigned char *cx_data_end = dest_end;
1279 const int *mb_feature_data_bits;
1280
1281 oh.show_frame = (int) pc->show_frame;
1282 oh.type = (int)pc->frame_type;
1283 oh.version = pc->version;
1284 oh.first_partition_length_in_bytes = 0;
1285
1286 mb_feature_data_bits = vp8_mb_feature_data_bits;
1287
1288 bc[0].error = &pc->error;
1289
1290 validate_buffer(cx_data, 3, cx_data_end, &cpi->common.error);
1291 cx_data += 3;
1292
1293 #if defined(SECTIONBITS_OUTPUT)
1294 Sectionbits[active_section = 1] += sizeof(VP8_HEADER) * 8 * 256;
1295 #endif
1296
1297 /* every keyframe send startcode, width, height, scale factor, clamp
1298 * and color type
1299 */
1300 if (oh.type == KEY_FRAME)
1301 {
1302 int v;
1303
1304 validate_buffer(cx_data, 7, cx_data_end, &cpi->common.error);
1305
1306 /* Start / synch code */
1307 cx_data[0] = 0x9D;
1308 cx_data[1] = 0x01;
1309 cx_data[2] = 0x2a;
1310
1311 v = (pc->horiz_scale << 14) | pc->Width;
1312 cx_data[3] = v;
1313 cx_data[4] = v >> 8;
1314
1315 v = (pc->vert_scale << 14) | pc->Height;
1316 cx_data[5] = v;
1317 cx_data[6] = v >> 8;
1318
1319
1320 extra_bytes_packed = 7;
1321 cx_data += extra_bytes_packed ;
1322
1323 vp8_start_encode(bc, cx_data, cx_data_end);
1324
1325 /* signal clr type */
1326 vp8_write_bit(bc, 0);
1327 vp8_write_bit(bc, pc->clamp_type);
1328
1329 }
1330 else
1331 vp8_start_encode(bc, cx_data, cx_data_end);
1332
1333
1334 /* Signal whether or not Segmentation is enabled */
1335 vp8_write_bit(bc, xd->segmentation_enabled);
1336
1337 /* Indicate which features are enabled */
1338 if (xd->segmentation_enabled)
1339 {
1340 /* Signal whether or not the segmentation map is being updated. */
1341 vp8_write_bit(bc, xd->update_mb_segmentation_map);
1342 vp8_write_bit(bc, xd->update_mb_segmentation_data);
1343
1344 if (xd->update_mb_segmentation_data)
1345 {
1346 signed char Data;
1347
1348 vp8_write_bit(bc, xd->mb_segement_abs_delta);
1349
1350 /* For each segmentation feature (Quant and loop filter level) */
1351 for (i = 0; i < MB_LVL_MAX; i++)
1352 {
1353 /* For each of the segments */
1354 for (j = 0; j < MAX_MB_SEGMENTS; j++)
1355 {
1356 Data = xd->segment_feature_data[i][j];
1357
1358 /* Frame level data */
1359 if (Data)
1360 {
1361 vp8_write_bit(bc, 1);
1362
1363 if (Data < 0)
1364 {
1365 Data = - Data;
1366 vp8_write_literal(bc, Data, mb_feature_data_bits[i]);
1367 vp8_write_bit(bc, 1);
1368 }
1369 else
1370 {
1371 vp8_write_literal(bc, Data, mb_feature_data_bits[i]);
1372 vp8_write_bit(bc, 0);
1373 }
1374 }
1375 else
1376 vp8_write_bit(bc, 0);
1377 }
1378 }
1379 }
1380
1381 if (xd->update_mb_segmentation_map)
1382 {
1383 /* Write the probs used to decode the segment id for each mb */
1384 for (i = 0; i < MB_FEATURE_TREE_PROBS; i++)
1385 {
1386 int Data = xd->mb_segment_tree_probs[i];
1387
1388 if (Data != 255)
1389 {
1390 vp8_write_bit(bc, 1);
1391 vp8_write_literal(bc, Data, 8);
1392 }
1393 else
1394 vp8_write_bit(bc, 0);
1395 }
1396 }
1397 }
1398
1399 vp8_write_bit(bc, pc->filter_type);
1400 vp8_write_literal(bc, pc->filter_level, 6);
1401 vp8_write_literal(bc, pc->sharpness_level, 3);
1402
1403 /* Write out loop filter deltas applied at the MB level based on mode
1404 * or ref frame (if they are enabled).
1405 */
1406 vp8_write_bit(bc, xd->mode_ref_lf_delta_enabled);
1407
1408 if (xd->mode_ref_lf_delta_enabled)
1409 {
1410 /* Do the deltas need to be updated */
1411 int send_update = xd->mode_ref_lf_delta_update
1412 || cpi->oxcf.error_resilient_mode;
1413
1414 vp8_write_bit(bc, send_update);
1415 if (send_update)
1416 {
1417 int Data;
1418
1419 /* Send update */
1420 for (i = 0; i < MAX_REF_LF_DELTAS; i++)
1421 {
1422 Data = xd->ref_lf_deltas[i];
1423
1424 /* Frame level data */
1425 if (xd->ref_lf_deltas[i] != xd->last_ref_lf_deltas[i]
1426 || cpi->oxcf.error_resilient_mode)
1427 {
1428 xd->last_ref_lf_deltas[i] = xd->ref_lf_deltas[i];
1429 vp8_write_bit(bc, 1);
1430
1431 if (Data > 0)
1432 {
1433 vp8_write_literal(bc, (Data & 0x3F), 6);
1434 vp8_write_bit(bc, 0); /* sign */
1435 }
1436 else
1437 {
1438 Data = -Data;
1439 vp8_write_literal(bc, (Data & 0x3F), 6);
1440 vp8_write_bit(bc, 1); /* sign */
1441 }
1442 }
1443 else
1444 vp8_write_bit(bc, 0);
1445 }
1446
1447 /* Send update */
1448 for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
1449 {
1450 Data = xd->mode_lf_deltas[i];
1451
1452 if (xd->mode_lf_deltas[i] != xd->last_mode_lf_deltas[i]
1453 || cpi->oxcf.error_resilient_mode)
1454 {
1455 xd->last_mode_lf_deltas[i] = xd->mode_lf_deltas[i];
1456 vp8_write_bit(bc, 1);
1457
1458 if (Data > 0)
1459 {
1460 vp8_write_literal(bc, (Data & 0x3F), 6);
1461 vp8_write_bit(bc, 0); /* sign */
1462 }
1463 else
1464 {
1465 Data = -Data;
1466 vp8_write_literal(bc, (Data & 0x3F), 6);
1467 vp8_write_bit(bc, 1); /* sign */
1468 }
1469 }
1470 else
1471 vp8_write_bit(bc, 0);
1472 }
1473 }
1474 }
1475
1476 /* signal here is multi token partition is enabled */
1477 vp8_write_literal(bc, pc->multi_token_partition, 2);
1478
1479 /* Frame Qbaseline quantizer index */
1480 vp8_write_literal(bc, pc->base_qindex, 7);
1481
1482 /* Transmit Dc, Second order and Uv quantizer delta information */
1483 put_delta_q(bc, pc->y1dc_delta_q);
1484 put_delta_q(bc, pc->y2dc_delta_q);
1485 put_delta_q(bc, pc->y2ac_delta_q);
1486 put_delta_q(bc, pc->uvdc_delta_q);
1487 put_delta_q(bc, pc->uvac_delta_q);
1488
1489 /* When there is a key frame all reference buffers are updated using
1490 * the new key frame
1491 */
1492 if (pc->frame_type != KEY_FRAME)
1493 {
1494 /* Should the GF or ARF be updated using the transmitted frame
1495 * or buffer
1496 */
1497 vp8_write_bit(bc, pc->refresh_golden_frame);
1498 vp8_write_bit(bc, pc->refresh_alt_ref_frame);
1499
1500 /* If not being updated from current frame should either GF or ARF
1501 * be updated from another buffer
1502 */
1503 if (!pc->refresh_golden_frame)
1504 vp8_write_literal(bc, pc->copy_buffer_to_gf, 2);
1505
1506 if (!pc->refresh_alt_ref_frame)
1507 vp8_write_literal(bc, pc->copy_buffer_to_arf, 2);
1508
1509 /* Indicate reference frame sign bias for Golden and ARF frames
1510 * (always 0 for last frame buffer)
1511 */
1512 vp8_write_bit(bc, pc->ref_frame_sign_bias[GOLDEN_FRAME]);
1513 vp8_write_bit(bc, pc->ref_frame_sign_bias[ALTREF_FRAME]);
1514 }
1515
1516 #if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
1517 if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
1518 {
1519 if (pc->frame_type == KEY_FRAME)
1520 pc->refresh_entropy_probs = 1;
1521 else
1522 pc->refresh_entropy_probs = 0;
1523 }
1524 #endif
1525
1526 vp8_write_bit(bc, pc->refresh_entropy_probs);
1527
1528 if (pc->frame_type != KEY_FRAME)
1529 vp8_write_bit(bc, pc->refresh_last_frame);
1530
1531 #ifdef VP8_ENTROPY_STATS
1532
1533 if (pc->frame_type == INTER_FRAME)
1534 active_section = 0;
1535 else
1536 active_section = 7;
1537
1538 #endif
1539
1540 vp8_clear_system_state();
1541
1542 #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
1543 pack_coef_probs(cpi);
1544 #else
1545 if (pc->refresh_entropy_probs == 0)
1546 {
1547 /* save a copy for later refresh */
1548 memcpy(&cpi->common.lfc, &cpi->common.fc, sizeof(cpi->common.fc));
1549 }
1550
1551 vp8_update_coef_probs(cpi);
1552 #endif
1553
1554 #ifdef VP8_ENTROPY_STATS
1555 active_section = 2;
1556 #endif
1557
1558 /* Write out the mb_no_coeff_skip flag */
1559 vp8_write_bit(bc, pc->mb_no_coeff_skip);
1560
1561 if (pc->frame_type == KEY_FRAME)
1562 {
1563 write_kfmodes(cpi);
1564
1565 #ifdef VP8_ENTROPY_STATS
1566 active_section = 8;
1567 #endif
1568 }
1569 else
1570 {
1571 pack_inter_mode_mvs(cpi);
1572
1573 #ifdef VP8_ENTROPY_STATS
1574 active_section = 1;
1575 #endif
1576 }
1577
1578 vp8_stop_encode(bc);
1579
1580 cx_data += bc->pos;
1581
1582 oh.first_partition_length_in_bytes = cpi->bc->pos;
1583
1584 /* update frame tag */
1585 {
1586 int v = (oh.first_partition_length_in_bytes << 5) |
1587 (oh.show_frame << 4) |
1588 (oh.version << 1) |
1589 oh.type;
1590
1591 dest[0] = v;
1592 dest[1] = v >> 8;
1593 dest[2] = v >> 16;
1594 }
1595
1596 *size = VP8_HEADER_SIZE + extra_bytes_packed + cpi->bc->pos;
1597
1598 cpi->partition_sz[0] = *size;
1599
1600 #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
1601 {
1602 const int num_part = (1 << pc->multi_token_partition);
1603 unsigned char * dp = cpi->partition_d[0] + cpi->partition_sz[0];
1604
1605 if (num_part > 1)
1606 {
1607 /* write token part sizes (all but last) if more than 1 */
1608 validate_buffer(dp, 3 * (num_part - 1), cpi->partition_d_end[0],
1609 &pc->error);
1610
1611 cpi->partition_sz[0] += 3*(num_part-1);
1612
1613 for(i = 1; i < num_part; i++)
1614 {
1615 write_partition_size(dp, cpi->partition_sz[i]);
1616 dp += 3;
1617 }
1618 }
1619
1620 if (!cpi->output_partition)
1621 {
1622 /* concatenate partition buffers */
1623 for(i = 0; i < num_part; i++)
1624 {
1625 memmove(dp, cpi->partition_d[i+1], cpi->partition_sz[i+1]);
1626 cpi->partition_d[i+1] = dp;
1627 dp += cpi->partition_sz[i+1];
1628 }
1629 }
1630
1631 /* update total size */
1632 *size = 0;
1633 for(i = 0; i < num_part+1; i++)
1634 {
1635 *size += cpi->partition_sz[i];
1636 }
1637 }
1638 #else
1639 if (pc->multi_token_partition != ONE_PARTITION)
1640 {
1641 int num_part = 1 << pc->multi_token_partition;
1642
1643 /* partition size table at the end of first partition */
1644 cpi->partition_sz[0] += 3 * (num_part - 1);
1645 *size += 3 * (num_part - 1);
1646
1647 validate_buffer(cx_data, 3 * (num_part - 1), cx_data_end,
1648 &pc->error);
1649
1650 for(i = 1; i < num_part + 1; i++)
1651 {
1652 cpi->bc[i].error = &pc->error;
1653 }
1654
1655 pack_tokens_into_partitions(cpi, cx_data + 3 * (num_part - 1),
1656 cx_data_end, num_part);
1657
1658 for(i = 1; i < num_part; i++)
1659 {
1660 cpi->partition_sz[i] = cpi->bc[i].pos;
1661 write_partition_size(cx_data, cpi->partition_sz[i]);
1662 cx_data += 3;
1663 *size += cpi->partition_sz[i]; /* add to total */
1664 }
1665
1666 /* add last partition to total size */
1667 cpi->partition_sz[i] = cpi->bc[i].pos;
1668 *size += cpi->partition_sz[i];
1669 }
1670 else
1671 {
1672 bc[1].error = &pc->error;
1673
1674 vp8_start_encode(&cpi->bc[1], cx_data, cx_data_end);
1675
1676 #if CONFIG_MULTITHREAD
1677 if (cpi->b_multi_threaded)
1678 pack_mb_row_tokens(cpi, &cpi->bc[1]);
1679 else
1680 #endif // CONFIG_MULTITHREAD
1681 vp8_pack_tokens(&cpi->bc[1], cpi->tok, cpi->tok_count);
1682
1683 vp8_stop_encode(&cpi->bc[1]);
1684
1685 *size += cpi->bc[1].pos;
1686 cpi->partition_sz[1] = cpi->bc[1].pos;
1687 }
1688 #endif
1689 }
1690
1691 #ifdef VP8_ENTROPY_STATS
print_tree_update_probs()1692 void print_tree_update_probs()
1693 {
1694 int i, j, k, l;
1695 FILE *f = fopen("context.c", "a");
1696 int Sum;
1697 fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n");
1698 fprintf(f, "const vp8_prob tree_update_probs[BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES] = {\n");
1699
1700 for (i = 0; i < BLOCK_TYPES; i++)
1701 {
1702 fprintf(f, " { \n");
1703
1704 for (j = 0; j < COEF_BANDS; j++)
1705 {
1706 fprintf(f, " {\n");
1707
1708 for (k = 0; k < PREV_COEF_CONTEXTS; k++)
1709 {
1710 fprintf(f, " {");
1711
1712 for (l = 0; l < ENTROPY_NODES; l++)
1713 {
1714 Sum = tree_update_hist[i][j][k][l][0] + tree_update_hist[i][j][k][l][1];
1715
1716 if (Sum > 0)
1717 {
1718 if (((tree_update_hist[i][j][k][l][0] * 255) / Sum) > 0)
1719 fprintf(f, "%3ld, ", (tree_update_hist[i][j][k][l][0] * 255) / Sum);
1720 else
1721 fprintf(f, "%3ld, ", 1);
1722 }
1723 else
1724 fprintf(f, "%3ld, ", 128);
1725 }
1726
1727 fprintf(f, "},\n");
1728 }
1729
1730 fprintf(f, " },\n");
1731 }
1732
1733 fprintf(f, " },\n");
1734 }
1735
1736 fprintf(f, "};\n");
1737 fclose(f);
1738 }
1739 #endif
1740