1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <stdio.h>
13 #include <limits.h>
14
15 #include "vpx/vpx_encoder.h"
16 #include "vpx_dsp/bitwriter_buffer.h"
17 #include "vpx_dsp/vpx_dsp_common.h"
18 #include "vpx_mem/vpx_mem.h"
19 #include "vpx_ports/mem_ops.h"
20 #include "vpx_ports/system_state.h"
21
22 #include "vp9/common/vp9_entropy.h"
23 #include "vp9/common/vp9_entropymode.h"
24 #include "vp9/common/vp9_entropymv.h"
25 #include "vp9/common/vp9_mvref_common.h"
26 #include "vp9/common/vp9_pred_common.h"
27 #include "vp9/common/vp9_seg_common.h"
28 #include "vp9/common/vp9_tile_common.h"
29
30 #include "vp9/encoder/vp9_cost.h"
31 #include "vp9/encoder/vp9_bitstream.h"
32 #include "vp9/encoder/vp9_encodemv.h"
33 #include "vp9/encoder/vp9_mcomp.h"
34 #include "vp9/encoder/vp9_segmentation.h"
35 #include "vp9/encoder/vp9_subexp.h"
36 #include "vp9/encoder/vp9_tokenize.h"
37
38 static const struct vp9_token intra_mode_encodings[INTRA_MODES] = {
39 {0, 1}, {6, 3}, {28, 5}, {30, 5}, {58, 6}, {59, 6}, {126, 7}, {127, 7},
40 {62, 6}, {2, 2}};
41 static const struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS] =
42 {{0, 1}, {2, 2}, {3, 2}};
43 static const struct vp9_token partition_encodings[PARTITION_TYPES] =
44 {{0, 1}, {2, 2}, {6, 3}, {7, 3}};
45 static const struct vp9_token inter_mode_encodings[INTER_MODES] =
46 {{2, 2}, {6, 3}, {0, 1}, {7, 3}};
47
write_intra_mode(vpx_writer * w,PREDICTION_MODE mode,const vpx_prob * probs)48 static void write_intra_mode(vpx_writer *w, PREDICTION_MODE mode,
49 const vpx_prob *probs) {
50 vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]);
51 }
52
write_inter_mode(vpx_writer * w,PREDICTION_MODE mode,const vpx_prob * probs)53 static void write_inter_mode(vpx_writer *w, PREDICTION_MODE mode,
54 const vpx_prob *probs) {
55 assert(is_inter_mode(mode));
56 vp9_write_token(w, vp9_inter_mode_tree, probs,
57 &inter_mode_encodings[INTER_OFFSET(mode)]);
58 }
59
encode_unsigned_max(struct vpx_write_bit_buffer * wb,int data,int max)60 static void encode_unsigned_max(struct vpx_write_bit_buffer *wb,
61 int data, int max) {
62 vpx_wb_write_literal(wb, data, get_unsigned_bits(max));
63 }
64
prob_diff_update(const vpx_tree_index * tree,vpx_prob probs[],const unsigned int counts[],int n,vpx_writer * w)65 static void prob_diff_update(const vpx_tree_index *tree,
66 vpx_prob probs[/*n - 1*/],
67 const unsigned int counts[/*n - 1*/],
68 int n, vpx_writer *w) {
69 int i;
70 unsigned int branch_ct[32][2];
71
72 // Assuming max number of probabilities <= 32
73 assert(n <= 32);
74
75 vp9_tree_probs_from_distribution(tree, branch_ct, counts);
76 for (i = 0; i < n - 1; ++i)
77 vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
78 }
79
write_selected_tx_size(const VP9_COMMON * cm,const MACROBLOCKD * xd,vpx_writer * w)80 static void write_selected_tx_size(const VP9_COMMON *cm,
81 const MACROBLOCKD *xd, vpx_writer *w) {
82 TX_SIZE tx_size = xd->mi[0]->mbmi.tx_size;
83 BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
84 const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
85 const vpx_prob *const tx_probs = get_tx_probs2(max_tx_size, xd,
86 &cm->fc->tx_probs);
87 vpx_write(w, tx_size != TX_4X4, tx_probs[0]);
88 if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
89 vpx_write(w, tx_size != TX_8X8, tx_probs[1]);
90 if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
91 vpx_write(w, tx_size != TX_16X16, tx_probs[2]);
92 }
93 }
94
write_skip(const VP9_COMMON * cm,const MACROBLOCKD * xd,int segment_id,const MODE_INFO * mi,vpx_writer * w)95 static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *xd,
96 int segment_id, const MODE_INFO *mi, vpx_writer *w) {
97 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
98 return 1;
99 } else {
100 const int skip = mi->mbmi.skip;
101 vpx_write(w, skip, vp9_get_skip_prob(cm, xd));
102 return skip;
103 }
104 }
105
update_skip_probs(VP9_COMMON * cm,vpx_writer * w,FRAME_COUNTS * counts)106 static void update_skip_probs(VP9_COMMON *cm, vpx_writer *w,
107 FRAME_COUNTS *counts) {
108 int k;
109
110 for (k = 0; k < SKIP_CONTEXTS; ++k)
111 vp9_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k]);
112 }
113
update_switchable_interp_probs(VP9_COMMON * cm,vpx_writer * w,FRAME_COUNTS * counts)114 static void update_switchable_interp_probs(VP9_COMMON *cm, vpx_writer *w,
115 FRAME_COUNTS *counts) {
116 int j;
117 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
118 prob_diff_update(vp9_switchable_interp_tree,
119 cm->fc->switchable_interp_prob[j],
120 counts->switchable_interp[j], SWITCHABLE_FILTERS, w);
121 }
122
pack_mb_tokens(vpx_writer * w,TOKENEXTRA ** tp,const TOKENEXTRA * const stop,vpx_bit_depth_t bit_depth)123 static void pack_mb_tokens(vpx_writer *w,
124 TOKENEXTRA **tp, const TOKENEXTRA *const stop,
125 vpx_bit_depth_t bit_depth) {
126 TOKENEXTRA *p = *tp;
127
128 while (p < stop && p->token != EOSB_TOKEN) {
129 const int t = p->token;
130 const struct vp9_token *const a = &vp9_coef_encodings[t];
131 int i = 0;
132 int v = a->value;
133 int n = a->len;
134 #if CONFIG_VP9_HIGHBITDEPTH
135 const vp9_extra_bit *b;
136 if (bit_depth == VPX_BITS_12)
137 b = &vp9_extra_bits_high12[t];
138 else if (bit_depth == VPX_BITS_10)
139 b = &vp9_extra_bits_high10[t];
140 else
141 b = &vp9_extra_bits[t];
142 #else
143 const vp9_extra_bit *const b = &vp9_extra_bits[t];
144 (void) bit_depth;
145 #endif // CONFIG_VP9_HIGHBITDEPTH
146
147 /* skip one or two nodes */
148 if (p->skip_eob_node) {
149 n -= p->skip_eob_node;
150 i = 2 * p->skip_eob_node;
151 }
152
153 // TODO(jbb): expanding this can lead to big gains. It allows
154 // much better branch prediction and would enable us to avoid numerous
155 // lookups and compares.
156
157 // If we have a token that's in the constrained set, the coefficient tree
158 // is split into two treed writes. The first treed write takes care of the
159 // unconstrained nodes. The second treed write takes care of the
160 // constrained nodes.
161 if (t >= TWO_TOKEN && t < EOB_TOKEN) {
162 int len = UNCONSTRAINED_NODES - p->skip_eob_node;
163 int bits = v >> (n - len);
164 vp9_write_tree(w, vp9_coef_tree, p->context_tree, bits, len, i);
165 vp9_write_tree(w, vp9_coef_con_tree,
166 vp9_pareto8_full[p->context_tree[PIVOT_NODE] - 1],
167 v, n - len, 0);
168 } else {
169 vp9_write_tree(w, vp9_coef_tree, p->context_tree, v, n, i);
170 }
171
172 if (b->base_val) {
173 const int e = p->extra, l = b->len;
174
175 if (l) {
176 const unsigned char *pb = b->prob;
177 int v = e >> 1;
178 int n = l; /* number of bits in v, assumed nonzero */
179
180 do {
181 const int bb = (v >> --n) & 1;
182 vpx_write(w, bb, *pb++);
183 } while (n);
184 }
185
186 vpx_write_bit(w, e & 1);
187 }
188 ++p;
189 }
190
191 *tp = p + (p->token == EOSB_TOKEN);
192 }
193
write_segment_id(vpx_writer * w,const struct segmentation * seg,int segment_id)194 static void write_segment_id(vpx_writer *w, const struct segmentation *seg,
195 int segment_id) {
196 if (seg->enabled && seg->update_map)
197 vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0);
198 }
199
200 // This function encodes the reference frame
write_ref_frames(const VP9_COMMON * cm,const MACROBLOCKD * xd,vpx_writer * w)201 static void write_ref_frames(const VP9_COMMON *cm, const MACROBLOCKD *xd,
202 vpx_writer *w) {
203 const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
204 const int is_compound = has_second_ref(mbmi);
205 const int segment_id = mbmi->segment_id;
206
207 // If segment level coding of this signal is disabled...
208 // or the segment allows multiple reference frame options
209 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
210 assert(!is_compound);
211 assert(mbmi->ref_frame[0] ==
212 get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
213 } else {
214 // does the feature use compound prediction or not
215 // (if not specified at the frame/segment level)
216 if (cm->reference_mode == REFERENCE_MODE_SELECT) {
217 vpx_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd));
218 } else {
219 assert(!is_compound == (cm->reference_mode == SINGLE_REFERENCE));
220 }
221
222 if (is_compound) {
223 vpx_write(w, mbmi->ref_frame[0] == GOLDEN_FRAME,
224 vp9_get_pred_prob_comp_ref_p(cm, xd));
225 } else {
226 const int bit0 = mbmi->ref_frame[0] != LAST_FRAME;
227 vpx_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd));
228 if (bit0) {
229 const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME;
230 vpx_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd));
231 }
232 }
233 }
234 }
235
pack_inter_mode_mvs(VP9_COMP * cpi,const MODE_INFO * mi,vpx_writer * w)236 static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
237 vpx_writer *w) {
238 VP9_COMMON *const cm = &cpi->common;
239 const nmv_context *nmvc = &cm->fc->nmvc;
240 const MACROBLOCK *const x = &cpi->td.mb;
241 const MACROBLOCKD *const xd = &x->e_mbd;
242 const struct segmentation *const seg = &cm->seg;
243 const MB_MODE_INFO *const mbmi = &mi->mbmi;
244 const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
245 const PREDICTION_MODE mode = mbmi->mode;
246 const int segment_id = mbmi->segment_id;
247 const BLOCK_SIZE bsize = mbmi->sb_type;
248 const int allow_hp = cm->allow_high_precision_mv;
249 const int is_inter = is_inter_block(mbmi);
250 const int is_compound = has_second_ref(mbmi);
251 int skip, ref;
252
253 if (seg->update_map) {
254 if (seg->temporal_update) {
255 const int pred_flag = mbmi->seg_id_predicted;
256 vpx_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
257 vpx_write(w, pred_flag, pred_prob);
258 if (!pred_flag)
259 write_segment_id(w, seg, segment_id);
260 } else {
261 write_segment_id(w, seg, segment_id);
262 }
263 }
264
265 skip = write_skip(cm, xd, segment_id, mi, w);
266
267 if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
268 vpx_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd));
269
270 if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
271 !(is_inter && skip)) {
272 write_selected_tx_size(cm, xd, w);
273 }
274
275 if (!is_inter) {
276 if (bsize >= BLOCK_8X8) {
277 write_intra_mode(w, mode, cm->fc->y_mode_prob[size_group_lookup[bsize]]);
278 } else {
279 int idx, idy;
280 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
281 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
282 for (idy = 0; idy < 2; idy += num_4x4_h) {
283 for (idx = 0; idx < 2; idx += num_4x4_w) {
284 const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
285 write_intra_mode(w, b_mode, cm->fc->y_mode_prob[0]);
286 }
287 }
288 }
289 write_intra_mode(w, mbmi->uv_mode, cm->fc->uv_mode_prob[mode]);
290 } else {
291 const int mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]];
292 const vpx_prob *const inter_probs = cm->fc->inter_mode_probs[mode_ctx];
293 write_ref_frames(cm, xd, w);
294
295 // If segment skip is not enabled code the mode.
296 if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
297 if (bsize >= BLOCK_8X8) {
298 write_inter_mode(w, mode, inter_probs);
299 }
300 }
301
302 if (cm->interp_filter == SWITCHABLE) {
303 const int ctx = vp9_get_pred_context_switchable_interp(xd);
304 vp9_write_token(w, vp9_switchable_interp_tree,
305 cm->fc->switchable_interp_prob[ctx],
306 &switchable_interp_encodings[mbmi->interp_filter]);
307 ++cpi->interp_filter_selected[0][mbmi->interp_filter];
308 } else {
309 assert(mbmi->interp_filter == cm->interp_filter);
310 }
311
312 if (bsize < BLOCK_8X8) {
313 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
314 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
315 int idx, idy;
316 for (idy = 0; idy < 2; idy += num_4x4_h) {
317 for (idx = 0; idx < 2; idx += num_4x4_w) {
318 const int j = idy * 2 + idx;
319 const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
320 write_inter_mode(w, b_mode, inter_probs);
321 if (b_mode == NEWMV) {
322 for (ref = 0; ref < 1 + is_compound; ++ref)
323 vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
324 &mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0].as_mv,
325 nmvc, allow_hp);
326 }
327 }
328 }
329 } else {
330 if (mode == NEWMV) {
331 for (ref = 0; ref < 1 + is_compound; ++ref)
332 vp9_encode_mv(cpi, w, &mbmi->mv[ref].as_mv,
333 &mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0].as_mv, nmvc,
334 allow_hp);
335 }
336 }
337 }
338 }
339
write_mb_modes_kf(const VP9_COMMON * cm,const MACROBLOCKD * xd,MODE_INFO ** mi_8x8,vpx_writer * w)340 static void write_mb_modes_kf(const VP9_COMMON *cm, const MACROBLOCKD *xd,
341 MODE_INFO **mi_8x8, vpx_writer *w) {
342 const struct segmentation *const seg = &cm->seg;
343 const MODE_INFO *const mi = mi_8x8[0];
344 const MODE_INFO *const above_mi = xd->above_mi;
345 const MODE_INFO *const left_mi = xd->left_mi;
346 const MB_MODE_INFO *const mbmi = &mi->mbmi;
347 const BLOCK_SIZE bsize = mbmi->sb_type;
348
349 if (seg->update_map)
350 write_segment_id(w, seg, mbmi->segment_id);
351
352 write_skip(cm, xd, mbmi->segment_id, mi, w);
353
354 if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
355 write_selected_tx_size(cm, xd, w);
356
357 if (bsize >= BLOCK_8X8) {
358 write_intra_mode(w, mbmi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0));
359 } else {
360 const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
361 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
362 int idx, idy;
363
364 for (idy = 0; idy < 2; idy += num_4x4_h) {
365 for (idx = 0; idx < 2; idx += num_4x4_w) {
366 const int block = idy * 2 + idx;
367 write_intra_mode(w, mi->bmi[block].as_mode,
368 get_y_mode_probs(mi, above_mi, left_mi, block));
369 }
370 }
371 }
372
373 write_intra_mode(w, mbmi->uv_mode, vp9_kf_uv_mode_prob[mbmi->mode]);
374 }
375
write_modes_b(VP9_COMP * cpi,const TileInfo * const tile,vpx_writer * w,TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end,int mi_row,int mi_col)376 static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
377 vpx_writer *w, TOKENEXTRA **tok,
378 const TOKENEXTRA *const tok_end,
379 int mi_row, int mi_col) {
380 const VP9_COMMON *const cm = &cpi->common;
381 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
382 MODE_INFO *m;
383
384 xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
385 m = xd->mi[0];
386
387 cpi->td.mb.mbmi_ext = cpi->td.mb.mbmi_ext_base +
388 (mi_row * cm->mi_cols + mi_col);
389
390 set_mi_row_col(xd, tile,
391 mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
392 mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
393 cm->mi_rows, cm->mi_cols);
394 if (frame_is_intra_only(cm)) {
395 write_mb_modes_kf(cm, xd, xd->mi, w);
396 } else {
397 pack_inter_mode_mvs(cpi, m, w);
398 }
399
400 assert(*tok < tok_end);
401 pack_mb_tokens(w, tok, tok_end, cm->bit_depth);
402 }
403
write_partition(const VP9_COMMON * const cm,const MACROBLOCKD * const xd,int hbs,int mi_row,int mi_col,PARTITION_TYPE p,BLOCK_SIZE bsize,vpx_writer * w)404 static void write_partition(const VP9_COMMON *const cm,
405 const MACROBLOCKD *const xd,
406 int hbs, int mi_row, int mi_col,
407 PARTITION_TYPE p, BLOCK_SIZE bsize, vpx_writer *w) {
408 const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
409 const vpx_prob *const probs = xd->partition_probs[ctx];
410 const int has_rows = (mi_row + hbs) < cm->mi_rows;
411 const int has_cols = (mi_col + hbs) < cm->mi_cols;
412
413 if (has_rows && has_cols) {
414 vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]);
415 } else if (!has_rows && has_cols) {
416 assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
417 vpx_write(w, p == PARTITION_SPLIT, probs[1]);
418 } else if (has_rows && !has_cols) {
419 assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
420 vpx_write(w, p == PARTITION_SPLIT, probs[2]);
421 } else {
422 assert(p == PARTITION_SPLIT);
423 }
424 }
425
write_modes_sb(VP9_COMP * cpi,const TileInfo * const tile,vpx_writer * w,TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end,int mi_row,int mi_col,BLOCK_SIZE bsize)426 static void write_modes_sb(VP9_COMP *cpi,
427 const TileInfo *const tile, vpx_writer *w,
428 TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
429 int mi_row, int mi_col, BLOCK_SIZE bsize) {
430 const VP9_COMMON *const cm = &cpi->common;
431 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
432
433 const int bsl = b_width_log2_lookup[bsize];
434 const int bs = (1 << bsl) / 4;
435 PARTITION_TYPE partition;
436 BLOCK_SIZE subsize;
437 const MODE_INFO *m = NULL;
438
439 if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
440 return;
441
442 m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col];
443
444 partition = partition_lookup[bsl][m->mbmi.sb_type];
445 write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
446 subsize = get_subsize(bsize, partition);
447 if (subsize < BLOCK_8X8) {
448 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
449 } else {
450 switch (partition) {
451 case PARTITION_NONE:
452 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
453 break;
454 case PARTITION_HORZ:
455 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
456 if (mi_row + bs < cm->mi_rows)
457 write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col);
458 break;
459 case PARTITION_VERT:
460 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
461 if (mi_col + bs < cm->mi_cols)
462 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs);
463 break;
464 case PARTITION_SPLIT:
465 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
466 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs,
467 subsize);
468 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col,
469 subsize);
470 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
471 subsize);
472 break;
473 default:
474 assert(0);
475 }
476 }
477
478 // update partition context
479 if (bsize >= BLOCK_8X8 &&
480 (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
481 update_partition_context(xd, mi_row, mi_col, subsize, bsize);
482 }
483
write_modes(VP9_COMP * cpi,const TileInfo * const tile,vpx_writer * w,TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end)484 static void write_modes(VP9_COMP *cpi,
485 const TileInfo *const tile, vpx_writer *w,
486 TOKENEXTRA **tok, const TOKENEXTRA *const tok_end) {
487 const VP9_COMMON *const cm = &cpi->common;
488 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
489 int mi_row, mi_col;
490
491 set_partition_probs(cm, xd);
492
493 for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
494 mi_row += MI_BLOCK_SIZE) {
495 vp9_zero(xd->left_seg_context);
496 for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
497 mi_col += MI_BLOCK_SIZE)
498 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col,
499 BLOCK_64X64);
500 }
501 }
502
build_tree_distribution(VP9_COMP * cpi,TX_SIZE tx_size,vp9_coeff_stats * coef_branch_ct,vp9_coeff_probs_model * coef_probs)503 static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size,
504 vp9_coeff_stats *coef_branch_ct,
505 vp9_coeff_probs_model *coef_probs) {
506 vp9_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size];
507 unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
508 cpi->common.counts.eob_branch[tx_size];
509 int i, j, k, l, m;
510
511 for (i = 0; i < PLANE_TYPES; ++i) {
512 for (j = 0; j < REF_TYPES; ++j) {
513 for (k = 0; k < COEF_BANDS; ++k) {
514 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
515 vp9_tree_probs_from_distribution(vp9_coef_tree,
516 coef_branch_ct[i][j][k][l],
517 coef_counts[i][j][k][l]);
518 coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
519 coef_branch_ct[i][j][k][l][0][0];
520 for (m = 0; m < UNCONSTRAINED_NODES; ++m)
521 coef_probs[i][j][k][l][m] = get_binary_prob(
522 coef_branch_ct[i][j][k][l][m][0],
523 coef_branch_ct[i][j][k][l][m][1]);
524 }
525 }
526 }
527 }
528 }
529
update_coef_probs_common(vpx_writer * const bc,VP9_COMP * cpi,TX_SIZE tx_size,vp9_coeff_stats * frame_branch_ct,vp9_coeff_probs_model * new_coef_probs)530 static void update_coef_probs_common(vpx_writer* const bc, VP9_COMP *cpi,
531 TX_SIZE tx_size,
532 vp9_coeff_stats *frame_branch_ct,
533 vp9_coeff_probs_model *new_coef_probs) {
534 vp9_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size];
535 const vpx_prob upd = DIFF_UPDATE_PROB;
536 const int entropy_nodes_update = UNCONSTRAINED_NODES;
537 int i, j, k, l, t;
538 int stepsize = cpi->sf.coeff_prob_appx_step;
539
540 switch (cpi->sf.use_fast_coef_updates) {
541 case TWO_LOOP: {
542 /* dry run to see if there is any update at all needed */
543 int savings = 0;
544 int update[2] = {0, 0};
545 for (i = 0; i < PLANE_TYPES; ++i) {
546 for (j = 0; j < REF_TYPES; ++j) {
547 for (k = 0; k < COEF_BANDS; ++k) {
548 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
549 for (t = 0; t < entropy_nodes_update; ++t) {
550 vpx_prob newp = new_coef_probs[i][j][k][l][t];
551 const vpx_prob oldp = old_coef_probs[i][j][k][l][t];
552 int s;
553 int u = 0;
554 if (t == PIVOT_NODE)
555 s = vp9_prob_diff_update_savings_search_model(
556 frame_branch_ct[i][j][k][l][0],
557 old_coef_probs[i][j][k][l], &newp, upd, stepsize);
558 else
559 s = vp9_prob_diff_update_savings_search(
560 frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
561 if (s > 0 && newp != oldp)
562 u = 1;
563 if (u)
564 savings += s - (int)(vp9_cost_zero(upd));
565 else
566 savings -= (int)(vp9_cost_zero(upd));
567 update[u]++;
568 }
569 }
570 }
571 }
572 }
573
574 // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
575 /* Is coef updated at all */
576 if (update[1] == 0 || savings < 0) {
577 vpx_write_bit(bc, 0);
578 return;
579 }
580 vpx_write_bit(bc, 1);
581 for (i = 0; i < PLANE_TYPES; ++i) {
582 for (j = 0; j < REF_TYPES; ++j) {
583 for (k = 0; k < COEF_BANDS; ++k) {
584 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
585 // calc probs and branch cts for this frame only
586 for (t = 0; t < entropy_nodes_update; ++t) {
587 vpx_prob newp = new_coef_probs[i][j][k][l][t];
588 vpx_prob *oldp = old_coef_probs[i][j][k][l] + t;
589 const vpx_prob upd = DIFF_UPDATE_PROB;
590 int s;
591 int u = 0;
592 if (t == PIVOT_NODE)
593 s = vp9_prob_diff_update_savings_search_model(
594 frame_branch_ct[i][j][k][l][0],
595 old_coef_probs[i][j][k][l], &newp, upd, stepsize);
596 else
597 s = vp9_prob_diff_update_savings_search(
598 frame_branch_ct[i][j][k][l][t],
599 *oldp, &newp, upd);
600 if (s > 0 && newp != *oldp)
601 u = 1;
602 vpx_write(bc, u, upd);
603 if (u) {
604 /* send/use new probability */
605 vp9_write_prob_diff_update(bc, newp, *oldp);
606 *oldp = newp;
607 }
608 }
609 }
610 }
611 }
612 }
613 return;
614 }
615
616 case ONE_LOOP_REDUCED: {
617 int updates = 0;
618 int noupdates_before_first = 0;
619 for (i = 0; i < PLANE_TYPES; ++i) {
620 for (j = 0; j < REF_TYPES; ++j) {
621 for (k = 0; k < COEF_BANDS; ++k) {
622 for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
623 // calc probs and branch cts for this frame only
624 for (t = 0; t < entropy_nodes_update; ++t) {
625 vpx_prob newp = new_coef_probs[i][j][k][l][t];
626 vpx_prob *oldp = old_coef_probs[i][j][k][l] + t;
627 int s;
628 int u = 0;
629
630 if (t == PIVOT_NODE) {
631 s = vp9_prob_diff_update_savings_search_model(
632 frame_branch_ct[i][j][k][l][0],
633 old_coef_probs[i][j][k][l], &newp, upd, stepsize);
634 } else {
635 s = vp9_prob_diff_update_savings_search(
636 frame_branch_ct[i][j][k][l][t],
637 *oldp, &newp, upd);
638 }
639
640 if (s > 0 && newp != *oldp)
641 u = 1;
642 updates += u;
643 if (u == 0 && updates == 0) {
644 noupdates_before_first++;
645 continue;
646 }
647 if (u == 1 && updates == 1) {
648 int v;
649 // first update
650 vpx_write_bit(bc, 1);
651 for (v = 0; v < noupdates_before_first; ++v)
652 vpx_write(bc, 0, upd);
653 }
654 vpx_write(bc, u, upd);
655 if (u) {
656 /* send/use new probability */
657 vp9_write_prob_diff_update(bc, newp, *oldp);
658 *oldp = newp;
659 }
660 }
661 }
662 }
663 }
664 }
665 if (updates == 0) {
666 vpx_write_bit(bc, 0); // no updates
667 }
668 return;
669 }
670 default:
671 assert(0);
672 }
673 }
674
update_coef_probs(VP9_COMP * cpi,vpx_writer * w)675 static void update_coef_probs(VP9_COMP *cpi, vpx_writer* w) {
676 const TX_MODE tx_mode = cpi->common.tx_mode;
677 const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
678 TX_SIZE tx_size;
679 for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) {
680 vp9_coeff_stats frame_branch_ct[PLANE_TYPES];
681 vp9_coeff_probs_model frame_coef_probs[PLANE_TYPES];
682 if (cpi->td.counts->tx.tx_totals[tx_size] <= 20 ||
683 (tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) {
684 vpx_write_bit(w, 0);
685 } else {
686 build_tree_distribution(cpi, tx_size, frame_branch_ct,
687 frame_coef_probs);
688 update_coef_probs_common(w, cpi, tx_size, frame_branch_ct,
689 frame_coef_probs);
690 }
691 }
692 }
693
encode_loopfilter(struct loopfilter * lf,struct vpx_write_bit_buffer * wb)694 static void encode_loopfilter(struct loopfilter *lf,
695 struct vpx_write_bit_buffer *wb) {
696 int i;
697
698 // Encode the loop filter level and type
699 vpx_wb_write_literal(wb, lf->filter_level, 6);
700 vpx_wb_write_literal(wb, lf->sharpness_level, 3);
701
702 // Write out loop filter deltas applied at the MB level based on mode or
703 // ref frame (if they are enabled).
704 vpx_wb_write_bit(wb, lf->mode_ref_delta_enabled);
705
706 if (lf->mode_ref_delta_enabled) {
707 vpx_wb_write_bit(wb, lf->mode_ref_delta_update);
708 if (lf->mode_ref_delta_update) {
709 for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
710 const int delta = lf->ref_deltas[i];
711 const int changed = delta != lf->last_ref_deltas[i];
712 vpx_wb_write_bit(wb, changed);
713 if (changed) {
714 lf->last_ref_deltas[i] = delta;
715 vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6);
716 vpx_wb_write_bit(wb, delta < 0);
717 }
718 }
719
720 for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
721 const int delta = lf->mode_deltas[i];
722 const int changed = delta != lf->last_mode_deltas[i];
723 vpx_wb_write_bit(wb, changed);
724 if (changed) {
725 lf->last_mode_deltas[i] = delta;
726 vpx_wb_write_literal(wb, abs(delta) & 0x3F, 6);
727 vpx_wb_write_bit(wb, delta < 0);
728 }
729 }
730 }
731 }
732 }
733
write_delta_q(struct vpx_write_bit_buffer * wb,int delta_q)734 static void write_delta_q(struct vpx_write_bit_buffer *wb, int delta_q) {
735 if (delta_q != 0) {
736 vpx_wb_write_bit(wb, 1);
737 vpx_wb_write_literal(wb, abs(delta_q), 4);
738 vpx_wb_write_bit(wb, delta_q < 0);
739 } else {
740 vpx_wb_write_bit(wb, 0);
741 }
742 }
743
encode_quantization(const VP9_COMMON * const cm,struct vpx_write_bit_buffer * wb)744 static void encode_quantization(const VP9_COMMON *const cm,
745 struct vpx_write_bit_buffer *wb) {
746 vpx_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
747 write_delta_q(wb, cm->y_dc_delta_q);
748 write_delta_q(wb, cm->uv_dc_delta_q);
749 write_delta_q(wb, cm->uv_ac_delta_q);
750 }
751
encode_segmentation(VP9_COMMON * cm,MACROBLOCKD * xd,struct vpx_write_bit_buffer * wb)752 static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd,
753 struct vpx_write_bit_buffer *wb) {
754 int i, j;
755
756 const struct segmentation *seg = &cm->seg;
757
758 vpx_wb_write_bit(wb, seg->enabled);
759 if (!seg->enabled)
760 return;
761
762 // Segmentation map
763 vpx_wb_write_bit(wb, seg->update_map);
764 if (seg->update_map) {
765 // Select the coding strategy (temporal or spatial)
766 vp9_choose_segmap_coding_method(cm, xd);
767 // Write out probabilities used to decode unpredicted macro-block segments
768 for (i = 0; i < SEG_TREE_PROBS; i++) {
769 const int prob = seg->tree_probs[i];
770 const int update = prob != MAX_PROB;
771 vpx_wb_write_bit(wb, update);
772 if (update)
773 vpx_wb_write_literal(wb, prob, 8);
774 }
775
776 // Write out the chosen coding method.
777 vpx_wb_write_bit(wb, seg->temporal_update);
778 if (seg->temporal_update) {
779 for (i = 0; i < PREDICTION_PROBS; i++) {
780 const int prob = seg->pred_probs[i];
781 const int update = prob != MAX_PROB;
782 vpx_wb_write_bit(wb, update);
783 if (update)
784 vpx_wb_write_literal(wb, prob, 8);
785 }
786 }
787 }
788
789 // Segmentation data
790 vpx_wb_write_bit(wb, seg->update_data);
791 if (seg->update_data) {
792 vpx_wb_write_bit(wb, seg->abs_delta);
793
794 for (i = 0; i < MAX_SEGMENTS; i++) {
795 for (j = 0; j < SEG_LVL_MAX; j++) {
796 const int active = segfeature_active(seg, i, j);
797 vpx_wb_write_bit(wb, active);
798 if (active) {
799 const int data = get_segdata(seg, i, j);
800 const int data_max = vp9_seg_feature_data_max(j);
801
802 if (vp9_is_segfeature_signed(j)) {
803 encode_unsigned_max(wb, abs(data), data_max);
804 vpx_wb_write_bit(wb, data < 0);
805 } else {
806 encode_unsigned_max(wb, data, data_max);
807 }
808 }
809 }
810 }
811 }
812 }
813
encode_txfm_probs(VP9_COMMON * cm,vpx_writer * w,FRAME_COUNTS * counts)814 static void encode_txfm_probs(VP9_COMMON *cm, vpx_writer *w,
815 FRAME_COUNTS *counts) {
816 // Mode
817 vpx_write_literal(w, VPXMIN(cm->tx_mode, ALLOW_32X32), 2);
818 if (cm->tx_mode >= ALLOW_32X32)
819 vpx_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
820
821 // Probabilities
822 if (cm->tx_mode == TX_MODE_SELECT) {
823 int i, j;
824 unsigned int ct_8x8p[TX_SIZES - 3][2];
825 unsigned int ct_16x16p[TX_SIZES - 2][2];
826 unsigned int ct_32x32p[TX_SIZES - 1][2];
827
828
829 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
830 tx_counts_to_branch_counts_8x8(counts->tx.p8x8[i], ct_8x8p);
831 for (j = 0; j < TX_SIZES - 3; j++)
832 vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p8x8[i][j], ct_8x8p[j]);
833 }
834
835 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
836 tx_counts_to_branch_counts_16x16(counts->tx.p16x16[i], ct_16x16p);
837 for (j = 0; j < TX_SIZES - 2; j++)
838 vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p16x16[i][j],
839 ct_16x16p[j]);
840 }
841
842 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
843 tx_counts_to_branch_counts_32x32(counts->tx.p32x32[i], ct_32x32p);
844 for (j = 0; j < TX_SIZES - 1; j++)
845 vp9_cond_prob_diff_update(w, &cm->fc->tx_probs.p32x32[i][j],
846 ct_32x32p[j]);
847 }
848 }
849 }
850
write_interp_filter(INTERP_FILTER filter,struct vpx_write_bit_buffer * wb)851 static void write_interp_filter(INTERP_FILTER filter,
852 struct vpx_write_bit_buffer *wb) {
853 const int filter_to_literal[] = { 1, 0, 2, 3 };
854
855 vpx_wb_write_bit(wb, filter == SWITCHABLE);
856 if (filter != SWITCHABLE)
857 vpx_wb_write_literal(wb, filter_to_literal[filter], 2);
858 }
859
fix_interp_filter(VP9_COMMON * cm,FRAME_COUNTS * counts)860 static void fix_interp_filter(VP9_COMMON *cm, FRAME_COUNTS *counts) {
861 if (cm->interp_filter == SWITCHABLE) {
862 // Check to see if only one of the filters is actually used
863 int count[SWITCHABLE_FILTERS];
864 int i, j, c = 0;
865 for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
866 count[i] = 0;
867 for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
868 count[i] += counts->switchable_interp[j][i];
869 c += (count[i] > 0);
870 }
871 if (c == 1) {
872 // Only one filter is used. So set the filter at frame level
873 for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
874 if (count[i]) {
875 cm->interp_filter = i;
876 break;
877 }
878 }
879 }
880 }
881 }
882
write_tile_info(const VP9_COMMON * const cm,struct vpx_write_bit_buffer * wb)883 static void write_tile_info(const VP9_COMMON *const cm,
884 struct vpx_write_bit_buffer *wb) {
885 int min_log2_tile_cols, max_log2_tile_cols, ones;
886 vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
887
888 // columns
889 ones = cm->log2_tile_cols - min_log2_tile_cols;
890 while (ones--)
891 vpx_wb_write_bit(wb, 1);
892
893 if (cm->log2_tile_cols < max_log2_tile_cols)
894 vpx_wb_write_bit(wb, 0);
895
896 // rows
897 vpx_wb_write_bit(wb, cm->log2_tile_rows != 0);
898 if (cm->log2_tile_rows != 0)
899 vpx_wb_write_bit(wb, cm->log2_tile_rows != 1);
900 }
901
get_refresh_mask(VP9_COMP * cpi)902 static int get_refresh_mask(VP9_COMP *cpi) {
903 if (vp9_preserve_existing_gf(cpi)) {
904 // We have decided to preserve the previously existing golden frame as our
905 // new ARF frame. However, in the short term we leave it in the GF slot and,
906 // if we're updating the GF with the current decoded frame, we save it
907 // instead to the ARF slot.
908 // Later, in the function vp9_encoder.c:vp9_update_reference_frames() we
909 // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it
910 // there so that it can be done outside of the recode loop.
911 // Note: This is highly specific to the use of ARF as a forward reference,
912 // and this needs to be generalized as other uses are implemented
913 // (like RTC/temporal scalability).
914 return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
915 (cpi->refresh_golden_frame << cpi->alt_fb_idx);
916 } else {
917 int arf_idx = cpi->alt_fb_idx;
918 if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
919 const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
920 arf_idx = gf_group->arf_update_idx[gf_group->index];
921 }
922 return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
923 (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
924 (cpi->refresh_alt_ref_frame << arf_idx);
925 }
926 }
927
encode_tiles(VP9_COMP * cpi,uint8_t * data_ptr)928 static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
929 VP9_COMMON *const cm = &cpi->common;
930 vpx_writer residual_bc;
931 int tile_row, tile_col;
932 TOKENEXTRA *tok_end;
933 size_t total_size = 0;
934 const int tile_cols = 1 << cm->log2_tile_cols;
935 const int tile_rows = 1 << cm->log2_tile_rows;
936
937 memset(cm->above_seg_context, 0,
938 sizeof(*cm->above_seg_context) * mi_cols_aligned_to_sb(cm->mi_cols));
939
940 for (tile_row = 0; tile_row < tile_rows; tile_row++) {
941 for (tile_col = 0; tile_col < tile_cols; tile_col++) {
942 int tile_idx = tile_row * tile_cols + tile_col;
943 TOKENEXTRA *tok = cpi->tile_tok[tile_row][tile_col];
944
945 tok_end = cpi->tile_tok[tile_row][tile_col] +
946 cpi->tok_count[tile_row][tile_col];
947
948 if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
949 vpx_start_encode(&residual_bc, data_ptr + total_size + 4);
950 else
951 vpx_start_encode(&residual_bc, data_ptr + total_size);
952
953 write_modes(cpi, &cpi->tile_data[tile_idx].tile_info,
954 &residual_bc, &tok, tok_end);
955 assert(tok == tok_end);
956 vpx_stop_encode(&residual_bc);
957 if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
958 // size of this tile
959 mem_put_be32(data_ptr + total_size, residual_bc.pos);
960 total_size += 4;
961 }
962
963 total_size += residual_bc.pos;
964 }
965 }
966
967 return total_size;
968 }
969
write_render_size(const VP9_COMMON * cm,struct vpx_write_bit_buffer * wb)970 static void write_render_size(const VP9_COMMON *cm,
971 struct vpx_write_bit_buffer *wb) {
972 const int scaling_active = cm->width != cm->render_width ||
973 cm->height != cm->render_height;
974 vpx_wb_write_bit(wb, scaling_active);
975 if (scaling_active) {
976 vpx_wb_write_literal(wb, cm->render_width - 1, 16);
977 vpx_wb_write_literal(wb, cm->render_height - 1, 16);
978 }
979 }
980
write_frame_size(const VP9_COMMON * cm,struct vpx_write_bit_buffer * wb)981 static void write_frame_size(const VP9_COMMON *cm,
982 struct vpx_write_bit_buffer *wb) {
983 vpx_wb_write_literal(wb, cm->width - 1, 16);
984 vpx_wb_write_literal(wb, cm->height - 1, 16);
985
986 write_render_size(cm, wb);
987 }
988
write_frame_size_with_refs(VP9_COMP * cpi,struct vpx_write_bit_buffer * wb)989 static void write_frame_size_with_refs(VP9_COMP *cpi,
990 struct vpx_write_bit_buffer *wb) {
991 VP9_COMMON *const cm = &cpi->common;
992 int found = 0;
993
994 MV_REFERENCE_FRAME ref_frame;
995 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
996 YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
997
998 // Set "found" to 0 for temporal svc and for spatial svc key frame
999 if (cpi->use_svc &&
1000 ((cpi->svc.number_temporal_layers > 1 &&
1001 cpi->oxcf.rc_mode == VPX_CBR) ||
1002 (cpi->svc.number_spatial_layers > 1 &&
1003 cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame) ||
1004 (is_two_pass_svc(cpi) &&
1005 cpi->svc.encode_empty_frame_state == ENCODING &&
1006 cpi->svc.layer_context[0].frames_from_key_frame <
1007 cpi->svc.number_temporal_layers + 1))) {
1008 found = 0;
1009 } else if (cfg != NULL) {
1010 found = cm->width == cfg->y_crop_width &&
1011 cm->height == cfg->y_crop_height;
1012 }
1013 vpx_wb_write_bit(wb, found);
1014 if (found) {
1015 break;
1016 }
1017 }
1018
1019 if (!found) {
1020 vpx_wb_write_literal(wb, cm->width - 1, 16);
1021 vpx_wb_write_literal(wb, cm->height - 1, 16);
1022 }
1023
1024 write_render_size(cm, wb);
1025 }
1026
write_sync_code(struct vpx_write_bit_buffer * wb)1027 static void write_sync_code(struct vpx_write_bit_buffer *wb) {
1028 vpx_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
1029 vpx_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
1030 vpx_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
1031 }
1032
write_profile(BITSTREAM_PROFILE profile,struct vpx_write_bit_buffer * wb)1033 static void write_profile(BITSTREAM_PROFILE profile,
1034 struct vpx_write_bit_buffer *wb) {
1035 switch (profile) {
1036 case PROFILE_0:
1037 vpx_wb_write_literal(wb, 0, 2);
1038 break;
1039 case PROFILE_1:
1040 vpx_wb_write_literal(wb, 2, 2);
1041 break;
1042 case PROFILE_2:
1043 vpx_wb_write_literal(wb, 1, 2);
1044 break;
1045 case PROFILE_3:
1046 vpx_wb_write_literal(wb, 6, 3);
1047 break;
1048 default:
1049 assert(0);
1050 }
1051 }
1052
write_bitdepth_colorspace_sampling(VP9_COMMON * const cm,struct vpx_write_bit_buffer * wb)1053 static void write_bitdepth_colorspace_sampling(
1054 VP9_COMMON *const cm, struct vpx_write_bit_buffer *wb) {
1055 if (cm->profile >= PROFILE_2) {
1056 assert(cm->bit_depth > VPX_BITS_8);
1057 vpx_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1);
1058 }
1059 vpx_wb_write_literal(wb, cm->color_space, 3);
1060 if (cm->color_space != VPX_CS_SRGB) {
1061 // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
1062 vpx_wb_write_bit(wb, cm->color_range);
1063 if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
1064 assert(cm->subsampling_x != 1 || cm->subsampling_y != 1);
1065 vpx_wb_write_bit(wb, cm->subsampling_x);
1066 vpx_wb_write_bit(wb, cm->subsampling_y);
1067 vpx_wb_write_bit(wb, 0); // unused
1068 } else {
1069 assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
1070 }
1071 } else {
1072 assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3);
1073 vpx_wb_write_bit(wb, 0); // unused
1074 }
1075 }
1076
write_uncompressed_header(VP9_COMP * cpi,struct vpx_write_bit_buffer * wb)1077 static void write_uncompressed_header(VP9_COMP *cpi,
1078 struct vpx_write_bit_buffer *wb) {
1079 VP9_COMMON *const cm = &cpi->common;
1080 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
1081
1082 vpx_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
1083
1084 write_profile(cm->profile, wb);
1085
1086 vpx_wb_write_bit(wb, 0); // show_existing_frame
1087 vpx_wb_write_bit(wb, cm->frame_type);
1088 vpx_wb_write_bit(wb, cm->show_frame);
1089 vpx_wb_write_bit(wb, cm->error_resilient_mode);
1090
1091 if (cm->frame_type == KEY_FRAME) {
1092 write_sync_code(wb);
1093 write_bitdepth_colorspace_sampling(cm, wb);
1094 write_frame_size(cm, wb);
1095 } else {
1096 // In spatial svc if it's not error_resilient_mode then we need to code all
1097 // visible frames as invisible. But we need to keep the show_frame flag so
1098 // that the publisher could know whether it is supposed to be visible.
1099 // So we will code the show_frame flag as it is. Then code the intra_only
1100 // bit here. This will make the bitstream incompatible. In the player we
1101 // will change to show_frame flag to 0, then add an one byte frame with
1102 // show_existing_frame flag which tells the decoder which frame we want to
1103 // show.
1104 if (!cm->show_frame)
1105 vpx_wb_write_bit(wb, cm->intra_only);
1106
1107 if (!cm->error_resilient_mode)
1108 vpx_wb_write_literal(wb, cm->reset_frame_context, 2);
1109
1110 if (cm->intra_only) {
1111 write_sync_code(wb);
1112
1113 // Note for profile 0, 420 8bpp is assumed.
1114 if (cm->profile > PROFILE_0) {
1115 write_bitdepth_colorspace_sampling(cm, wb);
1116 }
1117
1118 vpx_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
1119 write_frame_size(cm, wb);
1120 } else {
1121 MV_REFERENCE_FRAME ref_frame;
1122 vpx_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
1123 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
1124 assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX);
1125 vpx_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame),
1126 REF_FRAMES_LOG2);
1127 vpx_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
1128 }
1129
1130 write_frame_size_with_refs(cpi, wb);
1131
1132 vpx_wb_write_bit(wb, cm->allow_high_precision_mv);
1133
1134 fix_interp_filter(cm, cpi->td.counts);
1135 write_interp_filter(cm->interp_filter, wb);
1136 }
1137 }
1138
1139 if (!cm->error_resilient_mode) {
1140 vpx_wb_write_bit(wb, cm->refresh_frame_context);
1141 vpx_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
1142 }
1143
1144 vpx_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
1145
1146 encode_loopfilter(&cm->lf, wb);
1147 encode_quantization(cm, wb);
1148 encode_segmentation(cm, xd, wb);
1149
1150 write_tile_info(cm, wb);
1151 }
1152
write_compressed_header(VP9_COMP * cpi,uint8_t * data)1153 static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
1154 VP9_COMMON *const cm = &cpi->common;
1155 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
1156 FRAME_CONTEXT *const fc = cm->fc;
1157 FRAME_COUNTS *counts = cpi->td.counts;
1158 vpx_writer header_bc;
1159
1160 vpx_start_encode(&header_bc, data);
1161
1162 if (xd->lossless)
1163 cm->tx_mode = ONLY_4X4;
1164 else
1165 encode_txfm_probs(cm, &header_bc, counts);
1166
1167 update_coef_probs(cpi, &header_bc);
1168 update_skip_probs(cm, &header_bc, counts);
1169
1170 if (!frame_is_intra_only(cm)) {
1171 int i;
1172
1173 for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
1174 prob_diff_update(vp9_inter_mode_tree, cm->fc->inter_mode_probs[i],
1175 counts->inter_mode[i], INTER_MODES, &header_bc);
1176
1177 if (cm->interp_filter == SWITCHABLE)
1178 update_switchable_interp_probs(cm, &header_bc, counts);
1179
1180 for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
1181 vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
1182 counts->intra_inter[i]);
1183
1184 if (cpi->allow_comp_inter_inter) {
1185 const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
1186 const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
1187
1188 vpx_write_bit(&header_bc, use_compound_pred);
1189 if (use_compound_pred) {
1190 vpx_write_bit(&header_bc, use_hybrid_pred);
1191 if (use_hybrid_pred)
1192 for (i = 0; i < COMP_INTER_CONTEXTS; i++)
1193 vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
1194 counts->comp_inter[i]);
1195 }
1196 }
1197
1198 if (cm->reference_mode != COMPOUND_REFERENCE) {
1199 for (i = 0; i < REF_CONTEXTS; i++) {
1200 vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
1201 counts->single_ref[i][0]);
1202 vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
1203 counts->single_ref[i][1]);
1204 }
1205 }
1206
1207 if (cm->reference_mode != SINGLE_REFERENCE)
1208 for (i = 0; i < REF_CONTEXTS; i++)
1209 vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
1210 counts->comp_ref[i]);
1211
1212 for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
1213 prob_diff_update(vp9_intra_mode_tree, cm->fc->y_mode_prob[i],
1214 counts->y_mode[i], INTRA_MODES, &header_bc);
1215
1216 for (i = 0; i < PARTITION_CONTEXTS; ++i)
1217 prob_diff_update(vp9_partition_tree, fc->partition_prob[i],
1218 counts->partition[i], PARTITION_TYPES, &header_bc);
1219
1220 vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc,
1221 &counts->mv);
1222 }
1223
1224 vpx_stop_encode(&header_bc);
1225 assert(header_bc.pos <= 0xffff);
1226
1227 return header_bc.pos;
1228 }
1229
vp9_pack_bitstream(VP9_COMP * cpi,uint8_t * dest,size_t * size)1230 void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) {
1231 uint8_t *data = dest;
1232 size_t first_part_size, uncompressed_hdr_size;
1233 struct vpx_write_bit_buffer wb = {data, 0};
1234 struct vpx_write_bit_buffer saved_wb;
1235
1236 write_uncompressed_header(cpi, &wb);
1237 saved_wb = wb;
1238 vpx_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size
1239
1240 uncompressed_hdr_size = vpx_wb_bytes_written(&wb);
1241 data += uncompressed_hdr_size;
1242
1243 vpx_clear_system_state();
1244
1245 first_part_size = write_compressed_header(cpi, data);
1246 data += first_part_size;
1247 // TODO(jbb): Figure out what to do if first_part_size > 16 bits.
1248 vpx_wb_write_literal(&saved_wb, (int)first_part_size, 16);
1249
1250 data += encode_tiles(cpi, data);
1251
1252 *size = data - dest;
1253 }
1254