1 /*
2  *  Copyright 2015 The WebRTC Project Authors. All rights reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #ifndef WEBRTC_BASE_ARRAY_VIEW_H_
12 #define WEBRTC_BASE_ARRAY_VIEW_H_
13 
14 #include "webrtc/base/checks.h"
15 
16 namespace rtc {
17 
18 // Many functions read from or write to arrays. The obvious way to do this is
19 // to use two arguments, a pointer to the first element and an element count:
20 //
21 //   bool Contains17(const int* arr, size_t size) {
22 //     for (size_t i = 0; i < size; ++i) {
23 //       if (arr[i] == 17)
24 //         return true;
25 //     }
26 //     return false;
27 //   }
28 //
29 // This is flexible, since it doesn't matter how the array is stored (C array,
30 // std::vector, rtc::Buffer, ...), but it's error-prone because the caller has
31 // to correctly specify the array length:
32 //
33 //   Contains17(arr, arraysize(arr));  // C array
34 //   Contains17(&arr[0], arr.size());  // std::vector
35 //   Contains17(arr, size);            // pointer + size
36 //   ...
37 //
38 // It's also kind of messy to have two separate arguments for what is
39 // conceptually a single thing.
40 //
41 // Enter rtc::ArrayView<T>. It contains a T pointer (to an array it doesn't
42 // own) and a count, and supports the basic things you'd expect, such as
43 // indexing and iteration. It allows us to write our function like this:
44 //
45 //   bool Contains17(rtc::ArrayView<const int> arr) {
46 //     for (auto e : arr) {
47 //       if (e == 17)
48 //         return true;
49 //     }
50 //     return false;
51 //   }
52 //
53 // And even better, because a bunch of things will implicitly convert to
54 // ArrayView, we can call it like this:
55 //
56 //   Contains17(arr);                             // C array
57 //   Contains17(arr);                             // std::vector
58 //   Contains17(rtc::ArrayView<int>(arr, size));  // pointer + size
59 //   ...
60 //
61 // One important point is that ArrayView<T> and ArrayView<const T> are
62 // different types, which allow and don't allow mutation of the array elements,
63 // respectively. The implicit conversions work just like you'd hope, so that
64 // e.g. vector<int> will convert to either ArrayView<int> or ArrayView<const
65 // int>, but const vector<int> will convert only to ArrayView<const int>.
66 // (ArrayView itself can be the source type in such conversions, so
67 // ArrayView<int> will convert to ArrayView<const int>.)
68 //
69 // Note: ArrayView is tiny (just a pointer and a count) and trivially copyable,
70 // so it's probably cheaper to pass it by value than by const reference.
71 template <typename T>
72 class ArrayView final {
73  public:
74   // Construct an empty ArrayView.
ArrayView()75   ArrayView() : ArrayView(static_cast<T*>(nullptr), 0) {}
76 
77   // Construct an ArrayView for a (pointer,size) pair.
78   template <typename U>
ArrayView(U * data,size_t size)79   ArrayView(U* data, size_t size)
80       : data_(size == 0 ? nullptr : data), size_(size) {
81     CheckInvariant();
82   }
83 
84   // Construct an ArrayView for an array.
85   template <typename U, size_t N>
ArrayView(U (& array)[N])86   ArrayView(U (&array)[N]) : ArrayView(&array[0], N) {}
87 
88   // Construct an ArrayView for any type U that has a size() method whose
89   // return value converts implicitly to size_t, and a data() method whose
90   // return value converts implicitly to T*. In particular, this means we allow
91   // conversion from ArrayView<T> to ArrayView<const T>, but not the other way
92   // around. Other allowed conversions include std::vector<T> to ArrayView<T>
93   // or ArrayView<const T>, const std::vector<T> to ArrayView<const T>, and
94   // rtc::Buffer to ArrayView<uint8_t> (with the same const behavior as
95   // std::vector).
96   template <typename U>
ArrayView(U & u)97   ArrayView(U& u) : ArrayView(u.data(), u.size()) {}
98 
99   // Indexing, size, and iteration. These allow mutation even if the ArrayView
100   // is const, because the ArrayView doesn't own the array. (To prevent
101   // mutation, use ArrayView<const T>.)
size()102   size_t size() const { return size_; }
empty()103   bool empty() const { return size_ == 0; }
data()104   T* data() const { return data_; }
105   T& operator[](size_t idx) const {
106     RTC_DCHECK_LT(idx, size_);
107     RTC_DCHECK(data_);  // Follows from size_ > idx and the class invariant.
108     return data_[idx];
109   }
begin()110   T* begin() const { return data_; }
end()111   T* end() const { return data_ + size_; }
cbegin()112   const T* cbegin() const { return data_; }
cend()113   const T* cend() const { return data_ + size_; }
114 
115   // Comparing two ArrayViews compares their (pointer,size) pairs; it does
116   // *not* dereference the pointers.
117   friend bool operator==(const ArrayView& a, const ArrayView& b) {
118     return a.data_ == b.data_ && a.size_ == b.size_;
119   }
120   friend bool operator!=(const ArrayView& a, const ArrayView& b) {
121     return !(a == b);
122   }
123 
124  private:
125   // Invariant: !data_ iff size_ == 0.
CheckInvariant()126   void CheckInvariant() const { RTC_DCHECK_EQ(!data_, size_ == 0); }
127   T* data_;
128   size_t size_;
129 };
130 
131 }  // namespace rtc
132 
133 #endif  // WEBRTC_BASE_ARRAY_VIEW_H_
134