1 // Copyright 2014 PDFium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
6 // Original code is licensed as follows:
7 /*
8 * Copyright 2007 ZXing authors
9 *
10 * Licensed under the Apache License, Version 2.0 (the "License");
11 * you may not use this file except in compliance with the License.
12 * You may obtain a copy of the License at
13 *
14 * http://www.apache.org/licenses/LICENSE-2.0
15 *
16 * Unless required by applicable law or agreed to in writing, software
17 * distributed under the License is distributed on an "AS IS" BASIS,
18 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19 * See the License for the specific language governing permissions and
20 * limitations under the License.
21 */
22
23 #include "xfa/src/fxbarcode/barcode.h"
24 #include "BC_ReedSolomonGF256.h"
25 #include "BC_ReedSolomonGF256Poly.h"
26 #include "BC_ReedSolomonDecoder.h"
CBC_ReedSolomonDecoder(CBC_ReedSolomonGF256 * field)27 CBC_ReedSolomonDecoder::CBC_ReedSolomonDecoder(CBC_ReedSolomonGF256* field) {
28 m_field = field;
29 }
~CBC_ReedSolomonDecoder()30 CBC_ReedSolomonDecoder::~CBC_ReedSolomonDecoder() {}
Decode(CFX_Int32Array * received,int32_t twoS,int32_t & e)31 void CBC_ReedSolomonDecoder::Decode(CFX_Int32Array* received,
32 int32_t twoS,
33 int32_t& e) {
34 CBC_ReedSolomonGF256Poly poly;
35 poly.Init(m_field, received, e);
36 BC_EXCEPTION_CHECK_ReturnVoid(e);
37 CFX_Int32Array syndromeCoefficients;
38 syndromeCoefficients.SetSize(twoS);
39 FX_BOOL dataMatrix = FALSE;
40 FX_BOOL noError = TRUE;
41 for (int32_t i = 0; i < twoS; i++) {
42 int32_t eval = poly.EvaluateAt(m_field->Exp(dataMatrix ? i + 1 : i));
43 syndromeCoefficients[twoS - 1 - i] = eval;
44 if (eval != 0) {
45 noError = FALSE;
46 }
47 }
48 if (noError) {
49 return;
50 }
51 CBC_ReedSolomonGF256Poly syndrome;
52 syndrome.Init(m_field, &syndromeCoefficients, e);
53 BC_EXCEPTION_CHECK_ReturnVoid(e);
54 CBC_ReedSolomonGF256Poly* rsg = m_field->BuildMonomial(twoS, 1, e);
55 BC_EXCEPTION_CHECK_ReturnVoid(e);
56 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp(rsg);
57 CFX_PtrArray* pa = RunEuclideanAlgorithm(temp.get(), &syndrome, twoS, e);
58 BC_EXCEPTION_CHECK_ReturnVoid(e);
59 CBC_AutoPtr<CFX_PtrArray> sigmaOmega(pa);
60 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sigma(
61 (CBC_ReedSolomonGF256Poly*)(*sigmaOmega)[0]);
62 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> omega(
63 (CBC_ReedSolomonGF256Poly*)(*sigmaOmega)[1]);
64 CFX_Int32Array* ia1 = FindErrorLocations(sigma.get(), e);
65 BC_EXCEPTION_CHECK_ReturnVoid(e);
66 CBC_AutoPtr<CFX_Int32Array> errorLocations(ia1);
67 CFX_Int32Array* ia2 =
68 FindErrorMagnitudes(omega.get(), errorLocations.get(), dataMatrix, e);
69 BC_EXCEPTION_CHECK_ReturnVoid(e);
70 CBC_AutoPtr<CFX_Int32Array> errorMagnitudes(ia2);
71 for (int32_t k = 0; k < errorLocations->GetSize(); k++) {
72 int32_t position =
73 received->GetSize() - 1 - m_field->Log((*errorLocations)[k], e);
74 BC_EXCEPTION_CHECK_ReturnVoid(e);
75 if (position < 0) {
76 e = BCExceptionBadErrorLocation;
77 BC_EXCEPTION_CHECK_ReturnVoid(e);
78 }
79 (*received)[position] = CBC_ReedSolomonGF256::AddOrSubtract(
80 (*received)[position], (*errorMagnitudes)[k]);
81 }
82 }
RunEuclideanAlgorithm(CBC_ReedSolomonGF256Poly * a,CBC_ReedSolomonGF256Poly * b,int32_t R,int32_t & e)83 CFX_PtrArray* CBC_ReedSolomonDecoder::RunEuclideanAlgorithm(
84 CBC_ReedSolomonGF256Poly* a,
85 CBC_ReedSolomonGF256Poly* b,
86 int32_t R,
87 int32_t& e) {
88 if (a->GetDegree() < b->GetDegree()) {
89 CBC_ReedSolomonGF256Poly* temp = a;
90 a = b;
91 b = temp;
92 }
93 CBC_ReedSolomonGF256Poly* rsg1 = a->Clone(e);
94 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
95 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> rLast(rsg1);
96 CBC_ReedSolomonGF256Poly* rsg2 = b->Clone(e);
97 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
98 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> r(rsg2);
99 CBC_ReedSolomonGF256Poly* rsg3 = m_field->GetOne()->Clone(e);
100 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
101 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sLast(rsg3);
102 CBC_ReedSolomonGF256Poly* rsg4 = m_field->GetZero()->Clone(e);
103 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
104 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> s(rsg4);
105 CBC_ReedSolomonGF256Poly* rsg5 = m_field->GetZero()->Clone(e);
106 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
107 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> tLast(rsg5);
108 CBC_ReedSolomonGF256Poly* rsg6 = m_field->GetOne()->Clone(e);
109 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
110 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> t(rsg6);
111 while (r->GetDegree() >= R / 2) {
112 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> rLastLast = rLast;
113 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sLastLast = sLast;
114 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> tLastlast = tLast;
115 rLast = r;
116 sLast = s;
117 tLast = t;
118 if (rLast->IsZero()) {
119 e = BCExceptionR_I_1IsZero;
120 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
121 }
122 CBC_ReedSolomonGF256Poly* rsg7 = rLastLast->Clone(e);
123 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
124 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> rTemp(rsg7);
125 r = rTemp;
126 CBC_ReedSolomonGF256Poly* rsg8 = m_field->GetZero()->Clone(e);
127 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
128 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> q(rsg8);
129 int32_t denominatorLeadingTerm = rLast->GetCoefficients(rLast->GetDegree());
130 int32_t dltInverse = m_field->Inverse(denominatorLeadingTerm, e);
131 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
132 while (r->GetDegree() >= rLast->GetDegree() && !(r->IsZero())) {
133 int32_t degreeDiff = r->GetDegree() - rLast->GetDegree();
134 int32_t scale =
135 m_field->Multiply(r->GetCoefficients(r->GetDegree()), dltInverse);
136 CBC_ReedSolomonGF256Poly* rsgp1 =
137 m_field->BuildMonomial(degreeDiff, scale, e);
138 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
139 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> build(rsgp1);
140 CBC_ReedSolomonGF256Poly* rsgp2 = q->AddOrSubtract(build.get(), e);
141 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
142 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp(rsgp2);
143 q = temp;
144 CBC_ReedSolomonGF256Poly* rsgp3 =
145 rLast->MultiplyByMonomial(degreeDiff, scale, e);
146 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
147 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> multiply(rsgp3);
148 CBC_ReedSolomonGF256Poly* rsgp4 = r->AddOrSubtract(multiply.get(), e);
149 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
150 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp3(rsgp4);
151 r = temp3;
152 }
153 CBC_ReedSolomonGF256Poly* rsg9 = q->Multiply(sLast.get(), e);
154 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
155 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp1(rsg9);
156 CBC_ReedSolomonGF256Poly* rsg10 = temp1->AddOrSubtract(sLastLast.get(), e);
157 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
158 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp2(rsg10);
159 s = temp2;
160 CBC_ReedSolomonGF256Poly* rsg11 = q->Multiply(tLast.get(), e);
161 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
162 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp5(rsg11);
163 CBC_ReedSolomonGF256Poly* rsg12 = temp5->AddOrSubtract(tLastlast.get(), e);
164 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
165 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp6(rsg12);
166 t = temp6;
167 }
168 int32_t sigmaTildeAtZero = t->GetCoefficients(0);
169 if (sigmaTildeAtZero == 0) {
170 e = BCExceptionIsZero;
171 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
172 }
173 int32_t inverse = m_field->Inverse(sigmaTildeAtZero, e);
174 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
175 CBC_ReedSolomonGF256Poly* rsg13 = t->Multiply(inverse, e);
176 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
177 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sigma(rsg13);
178 CBC_ReedSolomonGF256Poly* rsg14 = r->Multiply(inverse, e);
179 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
180 CBC_AutoPtr<CBC_ReedSolomonGF256Poly> omega(rsg14);
181 CFX_PtrArray* temp = new CFX_PtrArray;
182 temp->Add(sigma.release());
183 temp->Add(omega.release());
184 return temp;
185 }
FindErrorLocations(CBC_ReedSolomonGF256Poly * errorLocator,int32_t & e)186 CFX_Int32Array* CBC_ReedSolomonDecoder::FindErrorLocations(
187 CBC_ReedSolomonGF256Poly* errorLocator,
188 int32_t& e) {
189 int32_t numErrors = errorLocator->GetDegree();
190 if (numErrors == 1) {
191 CBC_AutoPtr<CFX_Int32Array> temp(new CFX_Int32Array);
192 temp->Add(errorLocator->GetCoefficients(1));
193 return temp.release();
194 }
195 CFX_Int32Array* tempT = new CFX_Int32Array;
196 tempT->SetSize(numErrors);
197 CBC_AutoPtr<CFX_Int32Array> result(tempT);
198 int32_t ie = 0;
199 for (int32_t i = 1; i < 256 && ie < numErrors; i++) {
200 if (errorLocator->EvaluateAt(i) == 0) {
201 (*result)[ie] = m_field->Inverse(i, ie);
202 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
203 ie++;
204 }
205 }
206 if (ie != numErrors) {
207 e = BCExceptionDegreeNotMatchRoots;
208 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
209 }
210 return result.release();
211 }
FindErrorMagnitudes(CBC_ReedSolomonGF256Poly * errorEvaluator,CFX_Int32Array * errorLocations,FX_BOOL dataMatrix,int32_t & e)212 CFX_Int32Array* CBC_ReedSolomonDecoder::FindErrorMagnitudes(
213 CBC_ReedSolomonGF256Poly* errorEvaluator,
214 CFX_Int32Array* errorLocations,
215 FX_BOOL dataMatrix,
216 int32_t& e) {
217 int32_t s = errorLocations->GetSize();
218 CFX_Int32Array* temp = new CFX_Int32Array;
219 temp->SetSize(s);
220 CBC_AutoPtr<CFX_Int32Array> result(temp);
221 for (int32_t i = 0; i < s; i++) {
222 int32_t xiInverse = m_field->Inverse(errorLocations->operator[](i), e);
223 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
224 int32_t denominator = 1;
225 for (int32_t j = 0; j < s; j++) {
226 if (i != j) {
227 denominator = m_field->Multiply(
228 denominator, CBC_ReedSolomonGF256::AddOrSubtract(
229 1, m_field->Multiply(errorLocations->operator[](j),
230 xiInverse)));
231 }
232 }
233 int32_t temp = m_field->Inverse(denominator, temp);
234 BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
235 (*result)[i] =
236 m_field->Multiply(errorEvaluator->EvaluateAt(xiInverse), temp);
237 }
238 return result.release();
239 }
240