1 // Copyright (c) 2013 libmv authors.
2 //
3 // Permission is hereby granted, free of charge, to any person obtaining a copy
4 // of this software and associated documentation files (the "Software"), to
5 // deal in the Software without restriction, including without limitation the
6 // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
7 // sell copies of the Software, and to permit persons to whom the Software is
8 // furnished to do so, subject to the following conditions:
9 //
10 // The above copyright notice and this permission notice shall be included in
11 // all copies or substantial portions of the Software.
12 //
13 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
18 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
19 // IN THE SOFTWARE.
20 //
21 // Author: mierle@gmail.com (Keir Mierle)
22 //         sergey.vfx@gmail.com (Sergey Sharybin)
23 //
24 // This is an example application which contains bundle adjustment code used
25 // in the Libmv library and Blender. It reads problems from files passed via
26 // the command line and runs the bundle adjuster on the problem.
27 //
28 // File with problem a binary file, for which it is crucial to know in which
29 // order bytes of float values are stored in. This information is provided
30 // by a single character in the beginning of the file. There're two possible
31 // values of this byte:
32 //  - V, which means values in the file are stored with big endian type
33 //  - v, which means values in the file are stored with little endian type
34 //
35 // The rest of the file contains data in the following order:
36 //   - Space in which markers' coordinates are stored in
37 //   - Camera intrinsics
38 //   - Number of cameras
39 //   - Cameras
40 //   - Number of 3D points
41 //   - 3D points
42 //   - Number of markers
43 //   - Markers
44 //
45 // Markers' space could either be normalized or image (pixels). This is defined
46 // by the single character in the file. P means markers in the file is in image
47 // space, and N means markers are in normalized space.
48 //
49 // Camera intrinsics are 8 described by 8 float 8.
50 // This values goes in the following order:
51 //
52 //   - Focal length, principal point X, principal point Y, k1, k2, k3, p1, p2
53 //
54 // Every camera is described by:
55 //
56 //   - Image for which camera belongs to (single 4 bytes integer value).
57 //   - Column-major camera rotation matrix, 9 float values.
58 //   - Camera translation, 3-component vector of float values.
59 //
60 // Image number shall be greater or equal to zero. Order of cameras does not
61 // matter and gaps are possible.
62 //
63 // Every 3D point is decribed by:
64 //
65 //  - Track number point belongs to (single 4 bytes integer value).
66 //  - 3D position vector, 3-component vector of float values.
67 //
68 // Track number shall be greater or equal to zero. Order of tracks does not
69 // matter and gaps are possible.
70 //
71 // Finally every marker is described by:
72 //
73 //  - Image marker belongs to single 4 bytes integer value).
74 //  - Track marker belongs to single 4 bytes integer value).
75 //  - 2D marker position vector, (two float values).
76 //
77 // Marker's space is used a default value for refine_intrinsics command line
78 // flag. This means if there's no refine_intrinsics flag passed via command
79 // line, camera intrinsics will be refined if markers in the problem are
80 // stored in image space and camera intrinsics will not be refined if markers
81 // are in normalized space.
82 //
83 // Passing refine_intrinsics command line flag defines explicitly whether
84 // refinement of intrinsics will happen. Currently, only none and all
85 // intrinsics refinement is supported.
86 //
87 // There're existing problem files dumped from blender stored in folder
88 // ../data/libmv-ba-problems.
89 
90 #include <cstdio>
91 #include <fcntl.h>
92 #include <sstream>
93 #include <string>
94 #include <vector>
95 
96 #ifdef _MSC_VER
97 #  include <io.h>
98 #  define open _open
99 #  define close _close
100 typedef unsigned __int32 uint32_t;
101 #else
102 # include <stdint.h>
103 
104 // O_BINARY is not defined on unix like platforms, as there is no
105 // difference between binary and text files.
106 #define O_BINARY 0
107 
108 #endif
109 
110 #include "ceres/ceres.h"
111 #include "ceres/rotation.h"
112 #include "gflags/gflags.h"
113 #include "glog/logging.h"
114 
115 typedef Eigen::Matrix<double, 3, 3> Mat3;
116 typedef Eigen::Matrix<double, 6, 1> Vec6;
117 typedef Eigen::Vector3d Vec3;
118 typedef Eigen::Vector4d Vec4;
119 
120 using std::vector;
121 
122 DEFINE_string(input, "", "Input File name");
123 DEFINE_string(refine_intrinsics, "", "Camera intrinsics to be refined. "
124               "Options are: none, radial.");
125 
126 namespace {
127 
128 // A EuclideanCamera is the location and rotation of the camera
129 // viewing an image.
130 //
131 // image identifies which image this camera represents.
132 // R is a 3x3 matrix representing the rotation of the camera.
133 // t is a translation vector representing its positions.
134 struct EuclideanCamera {
EuclideanCamera__anona35448500111::EuclideanCamera135   EuclideanCamera() : image(-1) {}
EuclideanCamera__anona35448500111::EuclideanCamera136   EuclideanCamera(const EuclideanCamera &c) : image(c.image), R(c.R), t(c.t) {}
137 
138   int image;
139   Mat3 R;
140   Vec3 t;
141 };
142 
143 // A Point is the 3D location of a track.
144 //
145 // track identifies which track this point corresponds to.
146 // X represents the 3D position of the track.
147 struct EuclideanPoint {
EuclideanPoint__anona35448500111::EuclideanPoint148   EuclideanPoint() : track(-1) {}
EuclideanPoint__anona35448500111::EuclideanPoint149   EuclideanPoint(const EuclideanPoint &p) : track(p.track), X(p.X) {}
150   int track;
151   Vec3 X;
152 };
153 
154 // A Marker is the 2D location of a tracked point in an image.
155 //
156 // x and y is the position of the marker in pixels from the top left corner
157 // in the image identified by an image. All markers for to the same target
158 // form a track identified by a common track number.
159 struct Marker {
160   int image;
161   int track;
162   double x, y;
163 };
164 
165 // Cameras intrinsics to be bundled.
166 //
167 // BUNDLE_RADIAL actually implies bundling of k1 and k2 coefficients only,
168 // no bundling of k3 is possible at this moment.
169 enum BundleIntrinsics {
170   BUNDLE_NO_INTRINSICS = 0,
171   BUNDLE_FOCAL_LENGTH = 1,
172   BUNDLE_PRINCIPAL_POINT = 2,
173   BUNDLE_RADIAL_K1 = 4,
174   BUNDLE_RADIAL_K2 = 8,
175   BUNDLE_RADIAL = 12,
176   BUNDLE_TANGENTIAL_P1 = 16,
177   BUNDLE_TANGENTIAL_P2 = 32,
178   BUNDLE_TANGENTIAL = 48,
179 };
180 
181 // Denotes which blocks to keep constant during bundling.
182 // For example it is useful to keep camera translations constant
183 // when bundling tripod motions.
184 enum BundleConstraints {
185   BUNDLE_NO_CONSTRAINTS = 0,
186   BUNDLE_NO_TRANSLATION = 1,
187 };
188 
189 // The intrinsics need to get combined into a single parameter block; use these
190 // enums to index instead of numeric constants.
191 enum {
192   OFFSET_FOCAL_LENGTH,
193   OFFSET_PRINCIPAL_POINT_X,
194   OFFSET_PRINCIPAL_POINT_Y,
195   OFFSET_K1,
196   OFFSET_K2,
197   OFFSET_K3,
198   OFFSET_P1,
199   OFFSET_P2,
200 };
201 
202 // Returns a pointer to the camera corresponding to a image.
CameraForImage(vector<EuclideanCamera> * all_cameras,const int image)203 EuclideanCamera *CameraForImage(vector<EuclideanCamera> *all_cameras,
204                                 const int image) {
205   if (image < 0 || image >= all_cameras->size()) {
206     return NULL;
207   }
208   EuclideanCamera *camera = &(*all_cameras)[image];
209   if (camera->image == -1) {
210     return NULL;
211   }
212   return camera;
213 }
214 
CameraForImage(const vector<EuclideanCamera> & all_cameras,const int image)215 const EuclideanCamera *CameraForImage(
216     const vector<EuclideanCamera> &all_cameras,
217     const int image) {
218   if (image < 0 || image >= all_cameras.size()) {
219     return NULL;
220   }
221   const EuclideanCamera *camera = &all_cameras[image];
222   if (camera->image == -1) {
223     return NULL;
224   }
225   return camera;
226 }
227 
228 // Returns maximal image number at which marker exists.
MaxImage(const vector<Marker> & all_markers)229 int MaxImage(const vector<Marker> &all_markers) {
230   if (all_markers.size() == 0) {
231     return -1;
232   }
233 
234   int max_image = all_markers[0].image;
235   for (int i = 1; i < all_markers.size(); i++) {
236     max_image = std::max(max_image, all_markers[i].image);
237   }
238   return max_image;
239 }
240 
241 // Returns a pointer to the point corresponding to a track.
PointForTrack(vector<EuclideanPoint> * all_points,const int track)242 EuclideanPoint *PointForTrack(vector<EuclideanPoint> *all_points,
243                               const int track) {
244   if (track < 0 || track >= all_points->size()) {
245     return NULL;
246   }
247   EuclideanPoint *point = &(*all_points)[track];
248   if (point->track == -1) {
249     return NULL;
250   }
251   return point;
252 }
253 
254 // Reader of binary file which makes sure possibly needed endian
255 // conversion happens when loading values like floats and integers.
256 //
257 // File's endian type is reading from a first character of file, which
258 // could either be V for big endian or v for little endian.  This
259 // means you need to design file format assuming first character
260 // denotes file endianness in this way.
261 class EndianAwareFileReader {
262  public:
EndianAwareFileReader(void)263   EndianAwareFileReader(void) : file_descriptor_(-1) {
264     // Get an endian type of the host machine.
265     union {
266       unsigned char bytes[4];
267       uint32_t value;
268     } endian_test = { { 0, 1, 2, 3 } };
269     host_endian_type_ = endian_test.value;
270     file_endian_type_ = host_endian_type_;
271   }
272 
~EndianAwareFileReader(void)273   ~EndianAwareFileReader(void) {
274     if (file_descriptor_ > 0) {
275       close(file_descriptor_);
276     }
277   }
278 
OpenFile(const std::string & file_name)279   bool OpenFile(const std::string &file_name) {
280     file_descriptor_ = open(file_name.c_str(), O_RDONLY | O_BINARY);
281     if (file_descriptor_ < 0) {
282       return false;
283     }
284     // Get an endian tpye of data in the file.
285     unsigned char file_endian_type_flag = Read<unsigned char>();
286     if (file_endian_type_flag == 'V') {
287       file_endian_type_ = kBigEndian;
288     } else if (file_endian_type_flag == 'v') {
289       file_endian_type_ = kLittleEndian;
290     } else {
291       LOG(FATAL) << "Problem file is stored in unknown endian type.";
292     }
293     return true;
294   }
295 
296   // Read value from the file, will switch endian if needed.
297   template <typename T>
Read(void) const298   T Read(void) const {
299     T value;
300     CHECK_GT(read(file_descriptor_, &value, sizeof(value)), 0);
301     // Switch endian type if file contains data in different type
302     // that current machine.
303     if (file_endian_type_ != host_endian_type_) {
304       value = SwitchEndian<T>(value);
305     }
306     return value;
307   }
308  private:
309   static const long int kLittleEndian = 0x03020100ul;
310   static const long int kBigEndian = 0x00010203ul;
311 
312   // Switch endian type between big to little.
313   template <typename T>
SwitchEndian(const T value) const314   T SwitchEndian(const T value) const {
315     if (sizeof(T) == 4) {
316       unsigned int temp_value = static_cast<unsigned int>(value);
317       return ((temp_value >> 24)) |
318              ((temp_value << 8) & 0x00ff0000) |
319              ((temp_value >> 8) & 0x0000ff00) |
320              ((temp_value << 24));
321     } else if (sizeof(T) == 1) {
322       return value;
323     } else {
324       LOG(FATAL) << "Entered non-implemented part of endian switching function.";
325     }
326   }
327 
328   int host_endian_type_;
329   int file_endian_type_;
330   int file_descriptor_;
331 };
332 
333 // Read 3x3 column-major matrix from the file
ReadMatrix3x3(const EndianAwareFileReader & file_reader,Mat3 * matrix)334 void ReadMatrix3x3(const EndianAwareFileReader &file_reader,
335                    Mat3 *matrix) {
336   for (int i = 0; i < 9; i++) {
337     (*matrix)(i % 3, i / 3) = file_reader.Read<float>();
338   }
339 }
340 
341 // Read 3-vector from file
ReadVector3(const EndianAwareFileReader & file_reader,Vec3 * vector)342 void ReadVector3(const EndianAwareFileReader &file_reader,
343                  Vec3 *vector) {
344   for (int i = 0; i < 3; i++) {
345     (*vector)(i) = file_reader.Read<float>();
346   }
347 }
348 
349 // Reads a bundle adjustment problem from the file.
350 //
351 // file_name denotes from which file to read the problem.
352 // camera_intrinsics will contain initial camera intrinsics values.
353 //
354 // all_cameras is a vector of all reconstructed cameras to be optimized,
355 // vector element with number i will contain camera for image i.
356 //
357 // all_points is a vector of all reconstructed 3D points to be optimized,
358 // vector element with number i will contain point for track i.
359 //
360 // all_markers is a vector of all tracked markers existing in
361 // the problem. Only used for reprojection error calculation, stay
362 // unchanged during optimization.
363 //
364 // Returns false if any kind of error happened during
365 // reading.
ReadProblemFromFile(const std::string & file_name,double camera_intrinsics[8],vector<EuclideanCamera> * all_cameras,vector<EuclideanPoint> * all_points,bool * is_image_space,vector<Marker> * all_markers)366 bool ReadProblemFromFile(const std::string &file_name,
367                          double camera_intrinsics[8],
368                          vector<EuclideanCamera> *all_cameras,
369                          vector<EuclideanPoint> *all_points,
370                          bool *is_image_space,
371                          vector<Marker> *all_markers) {
372   EndianAwareFileReader file_reader;
373   if (!file_reader.OpenFile(file_name)) {
374     return false;
375   }
376 
377   // Read markers' space flag.
378   unsigned char is_image_space_flag = file_reader.Read<unsigned char>();
379   if (is_image_space_flag == 'P') {
380     *is_image_space = true;
381   } else if (is_image_space_flag == 'N') {
382     *is_image_space = false;
383   } else {
384     LOG(FATAL) << "Problem file contains markers stored in unknown space.";
385   }
386 
387   // Read camera intrinsics.
388   for (int i = 0; i < 8; i++) {
389     camera_intrinsics[i] = file_reader.Read<float>();
390   }
391 
392   // Read all cameras.
393   int number_of_cameras = file_reader.Read<int>();
394   for (int i = 0; i < number_of_cameras; i++) {
395     EuclideanCamera camera;
396 
397     camera.image = file_reader.Read<int>();
398     ReadMatrix3x3(file_reader, &camera.R);
399     ReadVector3(file_reader, &camera.t);
400 
401     if (camera.image >= all_cameras->size()) {
402       all_cameras->resize(camera.image + 1);
403     }
404 
405     (*all_cameras)[camera.image].image = camera.image;
406     (*all_cameras)[camera.image].R = camera.R;
407     (*all_cameras)[camera.image].t = camera.t;
408   }
409 
410   LOG(INFO) << "Read " << number_of_cameras << " cameras.";
411 
412   // Read all reconstructed 3D points.
413   int number_of_points = file_reader.Read<int>();
414   for (int i = 0; i < number_of_points; i++) {
415     EuclideanPoint point;
416 
417     point.track = file_reader.Read<int>();
418     ReadVector3(file_reader, &point.X);
419 
420     if (point.track >= all_points->size()) {
421       all_points->resize(point.track + 1);
422     }
423 
424     (*all_points)[point.track].track = point.track;
425     (*all_points)[point.track].X = point.X;
426   }
427 
428   LOG(INFO) << "Read " << number_of_points << " points.";
429 
430   // And finally read all markers.
431   int number_of_markers = file_reader.Read<int>();
432   for (int i = 0; i < number_of_markers; i++) {
433     Marker marker;
434 
435     marker.image = file_reader.Read<int>();
436     marker.track = file_reader.Read<int>();
437     marker.x = file_reader.Read<float>();
438     marker.y = file_reader.Read<float>();
439 
440     all_markers->push_back(marker);
441   }
442 
443   LOG(INFO) << "Read " << number_of_markers << " markers.";
444 
445   return true;
446 }
447 
448 // Apply camera intrinsics to the normalized point to get image coordinates.
449 // This applies the radial lens distortion to a point which is in normalized
450 // camera coordinates (i.e. the principal point is at (0, 0)) to get image
451 // coordinates in pixels. Templated for use with autodifferentiation.
452 template <typename T>
ApplyRadialDistortionCameraIntrinsics(const T & focal_length_x,const T & focal_length_y,const T & principal_point_x,const T & principal_point_y,const T & k1,const T & k2,const T & k3,const T & p1,const T & p2,const T & normalized_x,const T & normalized_y,T * image_x,T * image_y)453 inline void ApplyRadialDistortionCameraIntrinsics(const T &focal_length_x,
454                                                   const T &focal_length_y,
455                                                   const T &principal_point_x,
456                                                   const T &principal_point_y,
457                                                   const T &k1,
458                                                   const T &k2,
459                                                   const T &k3,
460                                                   const T &p1,
461                                                   const T &p2,
462                                                   const T &normalized_x,
463                                                   const T &normalized_y,
464                                                   T *image_x,
465                                                   T *image_y) {
466   T x = normalized_x;
467   T y = normalized_y;
468 
469   // Apply distortion to the normalized points to get (xd, yd).
470   T r2 = x*x + y*y;
471   T r4 = r2 * r2;
472   T r6 = r4 * r2;
473   T r_coeff = (T(1) + k1*r2 + k2*r4 + k3*r6);
474   T xd = x * r_coeff + T(2)*p1*x*y + p2*(r2 + T(2)*x*x);
475   T yd = y * r_coeff + T(2)*p2*x*y + p1*(r2 + T(2)*y*y);
476 
477   // Apply focal length and principal point to get the final image coordinates.
478   *image_x = focal_length_x * xd + principal_point_x;
479   *image_y = focal_length_y * yd + principal_point_y;
480 }
481 
482 // Cost functor which computes reprojection error of 3D point X
483 // on camera defined by angle-axis rotation and it's translation
484 // (which are in the same block due to optimization reasons).
485 //
486 // This functor uses a radial distortion model.
487 struct OpenCVReprojectionError {
OpenCVReprojectionError__anona35448500111::OpenCVReprojectionError488   OpenCVReprojectionError(const double observed_x, const double observed_y)
489       : observed_x(observed_x), observed_y(observed_y) {}
490 
491   template <typename T>
operator ()__anona35448500111::OpenCVReprojectionError492   bool operator()(const T* const intrinsics,
493                   const T* const R_t,  // Rotation denoted by angle axis
494                                        // followed with translation
495                   const T* const X,    // Point coordinates 3x1.
496                   T* residuals) const {
497     // Unpack the intrinsics.
498     const T& focal_length      = intrinsics[OFFSET_FOCAL_LENGTH];
499     const T& principal_point_x = intrinsics[OFFSET_PRINCIPAL_POINT_X];
500     const T& principal_point_y = intrinsics[OFFSET_PRINCIPAL_POINT_Y];
501     const T& k1                = intrinsics[OFFSET_K1];
502     const T& k2                = intrinsics[OFFSET_K2];
503     const T& k3                = intrinsics[OFFSET_K3];
504     const T& p1                = intrinsics[OFFSET_P1];
505     const T& p2                = intrinsics[OFFSET_P2];
506 
507     // Compute projective coordinates: x = RX + t.
508     T x[3];
509 
510     ceres::AngleAxisRotatePoint(R_t, X, x);
511     x[0] += R_t[3];
512     x[1] += R_t[4];
513     x[2] += R_t[5];
514 
515     // Compute normalized coordinates: x /= x[2].
516     T xn = x[0] / x[2];
517     T yn = x[1] / x[2];
518 
519     T predicted_x, predicted_y;
520 
521     // Apply distortion to the normalized points to get (xd, yd).
522     // TODO(keir): Do early bailouts for zero distortion; these are expensive
523     // jet operations.
524     ApplyRadialDistortionCameraIntrinsics(focal_length,
525                                           focal_length,
526                                           principal_point_x,
527                                           principal_point_y,
528                                           k1, k2, k3,
529                                           p1, p2,
530                                           xn, yn,
531                                           &predicted_x,
532                                           &predicted_y);
533 
534     // The error is the difference between the predicted and observed position.
535     residuals[0] = predicted_x - T(observed_x);
536     residuals[1] = predicted_y - T(observed_y);
537 
538     return true;
539   }
540 
541   const double observed_x;
542   const double observed_y;
543 };
544 
545 // Print a message to the log which camera intrinsics are gonna to be optimized.
BundleIntrinsicsLogMessage(const int bundle_intrinsics)546 void BundleIntrinsicsLogMessage(const int bundle_intrinsics) {
547   if (bundle_intrinsics == BUNDLE_NO_INTRINSICS) {
548     LOG(INFO) << "Bundling only camera positions.";
549   } else {
550     std::string bundling_message = "";
551 
552 #define APPEND_BUNDLING_INTRINSICS(name, flag) \
553     if (bundle_intrinsics & flag) { \
554       if (!bundling_message.empty()) { \
555         bundling_message += ", "; \
556       } \
557       bundling_message += name; \
558     } (void)0
559 
560     APPEND_BUNDLING_INTRINSICS("f",      BUNDLE_FOCAL_LENGTH);
561     APPEND_BUNDLING_INTRINSICS("px, py", BUNDLE_PRINCIPAL_POINT);
562     APPEND_BUNDLING_INTRINSICS("k1",     BUNDLE_RADIAL_K1);
563     APPEND_BUNDLING_INTRINSICS("k2",     BUNDLE_RADIAL_K2);
564     APPEND_BUNDLING_INTRINSICS("p1",     BUNDLE_TANGENTIAL_P1);
565     APPEND_BUNDLING_INTRINSICS("p2",     BUNDLE_TANGENTIAL_P2);
566 
567     LOG(INFO) << "Bundling " << bundling_message << ".";
568   }
569 }
570 
571 // Print a message to the log containing all the camera intriniscs values.
PrintCameraIntrinsics(const char * text,const double * camera_intrinsics)572 void PrintCameraIntrinsics(const char *text, const double *camera_intrinsics) {
573   std::ostringstream intrinsics_output;
574 
575   intrinsics_output << "f=" << camera_intrinsics[OFFSET_FOCAL_LENGTH];
576 
577   intrinsics_output <<
578     " cx=" << camera_intrinsics[OFFSET_PRINCIPAL_POINT_X] <<
579     " cy=" << camera_intrinsics[OFFSET_PRINCIPAL_POINT_Y];
580 
581 #define APPEND_DISTORTION_COEFFICIENT(name, offset) \
582   { \
583     if (camera_intrinsics[offset] != 0.0) { \
584       intrinsics_output << " " name "=" << camera_intrinsics[offset];  \
585     } \
586   } (void)0
587 
588   APPEND_DISTORTION_COEFFICIENT("k1", OFFSET_K1);
589   APPEND_DISTORTION_COEFFICIENT("k2", OFFSET_K2);
590   APPEND_DISTORTION_COEFFICIENT("k3", OFFSET_K3);
591   APPEND_DISTORTION_COEFFICIENT("p1", OFFSET_P1);
592   APPEND_DISTORTION_COEFFICIENT("p2", OFFSET_P2);
593 
594 #undef APPEND_DISTORTION_COEFFICIENT
595 
596   LOG(INFO) << text << intrinsics_output.str();
597 }
598 
599 // Get a vector of camera's rotations denoted by angle axis
600 // conjuncted with translations into single block
601 //
602 // Element with index i matches to a rotation+translation for
603 // camera at image i.
PackCamerasRotationAndTranslation(const vector<Marker> & all_markers,const vector<EuclideanCamera> & all_cameras)604 vector<Vec6> PackCamerasRotationAndTranslation(
605     const vector<Marker> &all_markers,
606     const vector<EuclideanCamera> &all_cameras) {
607   vector<Vec6> all_cameras_R_t;
608   int max_image = MaxImage(all_markers);
609 
610   all_cameras_R_t.resize(max_image + 1);
611 
612   for (int i = 0; i <= max_image; i++) {
613     const EuclideanCamera *camera = CameraForImage(all_cameras, i);
614 
615     if (!camera) {
616       continue;
617     }
618 
619     ceres::RotationMatrixToAngleAxis(&camera->R(0, 0),
620                                      &all_cameras_R_t[i](0));
621     all_cameras_R_t[i].tail<3>() = camera->t;
622   }
623 
624   return all_cameras_R_t;
625 }
626 
627 // Convert cameras rotations fro mangle axis back to rotation matrix.
UnpackCamerasRotationAndTranslation(const vector<Marker> & all_markers,const vector<Vec6> & all_cameras_R_t,vector<EuclideanCamera> * all_cameras)628 void UnpackCamerasRotationAndTranslation(
629     const vector<Marker> &all_markers,
630     const vector<Vec6> &all_cameras_R_t,
631     vector<EuclideanCamera> *all_cameras) {
632   int max_image = MaxImage(all_markers);
633 
634   for (int i = 0; i <= max_image; i++) {
635     EuclideanCamera *camera = CameraForImage(all_cameras, i);
636 
637     if (!camera) {
638       continue;
639     }
640 
641     ceres::AngleAxisToRotationMatrix(&all_cameras_R_t[i](0),
642                                      &camera->R(0, 0));
643     camera->t = all_cameras_R_t[i].tail<3>();
644   }
645 }
646 
EuclideanBundleCommonIntrinsics(const vector<Marker> & all_markers,const int bundle_intrinsics,const int bundle_constraints,double * camera_intrinsics,vector<EuclideanCamera> * all_cameras,vector<EuclideanPoint> * all_points)647 void EuclideanBundleCommonIntrinsics(const vector<Marker> &all_markers,
648                                      const int bundle_intrinsics,
649                                      const int bundle_constraints,
650                                      double *camera_intrinsics,
651                                      vector<EuclideanCamera> *all_cameras,
652                                      vector<EuclideanPoint> *all_points) {
653   PrintCameraIntrinsics("Original intrinsics: ", camera_intrinsics);
654 
655   ceres::Problem::Options problem_options;
656   ceres::Problem problem(problem_options);
657 
658   // Convert cameras rotations to angle axis and merge with translation
659   // into single parameter block for maximal minimization speed
660   //
661   // Block for minimization has got the following structure:
662   //   <3 elements for angle-axis> <3 elements for translation>
663   vector<Vec6> all_cameras_R_t =
664     PackCamerasRotationAndTranslation(all_markers, *all_cameras);
665 
666   // Parameterization used to restrict camera motion for modal solvers.
667   ceres::SubsetParameterization *constant_transform_parameterization = NULL;
668   if (bundle_constraints & BUNDLE_NO_TRANSLATION) {
669       std::vector<int> constant_translation;
670 
671       // First three elements are rotation, last three are translation.
672       constant_translation.push_back(3);
673       constant_translation.push_back(4);
674       constant_translation.push_back(5);
675 
676       constant_transform_parameterization =
677         new ceres::SubsetParameterization(6, constant_translation);
678   }
679 
680   int num_residuals = 0;
681   bool have_locked_camera = false;
682   for (int i = 0; i < all_markers.size(); ++i) {
683     const Marker &marker = all_markers[i];
684     EuclideanCamera *camera = CameraForImage(all_cameras, marker.image);
685     EuclideanPoint *point = PointForTrack(all_points, marker.track);
686     if (camera == NULL || point == NULL) {
687       continue;
688     }
689 
690     // Rotation of camera denoted in angle axis followed with
691     // camera translaiton.
692     double *current_camera_R_t = &all_cameras_R_t[camera->image](0);
693 
694     problem.AddResidualBlock(new ceres::AutoDiffCostFunction<
695         OpenCVReprojectionError, 2, 8, 6, 3>(
696             new OpenCVReprojectionError(
697                 marker.x,
698                 marker.y)),
699         NULL,
700         camera_intrinsics,
701         current_camera_R_t,
702         &point->X(0));
703 
704     // We lock the first camera to better deal with scene orientation ambiguity.
705     if (!have_locked_camera) {
706       problem.SetParameterBlockConstant(current_camera_R_t);
707       have_locked_camera = true;
708     }
709 
710     if (bundle_constraints & BUNDLE_NO_TRANSLATION) {
711       problem.SetParameterization(current_camera_R_t,
712                                   constant_transform_parameterization);
713     }
714 
715     num_residuals++;
716   }
717   LOG(INFO) << "Number of residuals: " << num_residuals;
718 
719   if (!num_residuals) {
720     LOG(INFO) << "Skipping running minimizer with zero residuals";
721     return;
722   }
723 
724   BundleIntrinsicsLogMessage(bundle_intrinsics);
725 
726   if (bundle_intrinsics == BUNDLE_NO_INTRINSICS) {
727     // No camera intrinsics are being refined,
728     // set the whole parameter block as constant for best performance.
729     problem.SetParameterBlockConstant(camera_intrinsics);
730   } else {
731     // Set the camera intrinsics that are not to be bundled as
732     // constant using some macro trickery.
733 
734     std::vector<int> constant_intrinsics;
735 #define MAYBE_SET_CONSTANT(bundle_enum, offset) \
736     if (!(bundle_intrinsics & bundle_enum)) { \
737       constant_intrinsics.push_back(offset); \
738     }
739     MAYBE_SET_CONSTANT(BUNDLE_FOCAL_LENGTH,    OFFSET_FOCAL_LENGTH);
740     MAYBE_SET_CONSTANT(BUNDLE_PRINCIPAL_POINT, OFFSET_PRINCIPAL_POINT_X);
741     MAYBE_SET_CONSTANT(BUNDLE_PRINCIPAL_POINT, OFFSET_PRINCIPAL_POINT_Y);
742     MAYBE_SET_CONSTANT(BUNDLE_RADIAL_K1,       OFFSET_K1);
743     MAYBE_SET_CONSTANT(BUNDLE_RADIAL_K2,       OFFSET_K2);
744     MAYBE_SET_CONSTANT(BUNDLE_TANGENTIAL_P1,   OFFSET_P1);
745     MAYBE_SET_CONSTANT(BUNDLE_TANGENTIAL_P2,   OFFSET_P2);
746 #undef MAYBE_SET_CONSTANT
747 
748     // Always set K3 constant, it's not used at the moment.
749     constant_intrinsics.push_back(OFFSET_K3);
750 
751     ceres::SubsetParameterization *subset_parameterization =
752       new ceres::SubsetParameterization(8, constant_intrinsics);
753 
754     problem.SetParameterization(camera_intrinsics, subset_parameterization);
755   }
756 
757   // Configure the solver.
758   ceres::Solver::Options options;
759   options.use_nonmonotonic_steps = true;
760   options.preconditioner_type = ceres::SCHUR_JACOBI;
761   options.linear_solver_type = ceres::ITERATIVE_SCHUR;
762   options.use_inner_iterations = true;
763   options.max_num_iterations = 100;
764   options.minimizer_progress_to_stdout = true;
765 
766   // Solve!
767   ceres::Solver::Summary summary;
768   ceres::Solve(options, &problem, &summary);
769 
770   std::cout << "Final report:\n" << summary.FullReport();
771 
772   // Copy rotations and translations back.
773   UnpackCamerasRotationAndTranslation(all_markers,
774                                       all_cameras_R_t,
775                                       all_cameras);
776 
777   PrintCameraIntrinsics("Final intrinsics: ", camera_intrinsics);
778 }
779 }  // namespace
780 
main(int argc,char ** argv)781 int main(int argc, char **argv) {
782   google::ParseCommandLineFlags(&argc, &argv, true);
783   google::InitGoogleLogging(argv[0]);
784 
785   if (FLAGS_input.empty()) {
786     LOG(ERROR) << "Usage: libmv_bundle_adjuster --input=blender_problem";
787     return EXIT_FAILURE;
788   }
789 
790   double camera_intrinsics[8];
791   vector<EuclideanCamera> all_cameras;
792   vector<EuclideanPoint> all_points;
793   bool is_image_space;
794   vector<Marker> all_markers;
795 
796   if (!ReadProblemFromFile(FLAGS_input,
797                            camera_intrinsics,
798                            &all_cameras,
799                            &all_points,
800                            &is_image_space,
801                            &all_markers)) {
802     LOG(ERROR) << "Error reading problem file";
803     return EXIT_FAILURE;
804   }
805 
806   // If there's no refine_intrinsics passed via command line
807   // (in this case FLAGS_refine_intrinsics will be an empty string)
808   // we use problem's settings to detect whether intrinsics
809   // shall be refined or not.
810   //
811   // Namely, if problem has got markers stored in image (pixel)
812   // space, we do full intrinsics refinement. If markers are
813   // stored in normalized space, and refine_intrinsics is not
814   // set, no refining will happen.
815   //
816   // Using command line argument refine_intrinsics will explicitly
817   // declare which intrinsics need to be refined and in this case
818   // refining flags does not depend on problem at all.
819   int bundle_intrinsics = BUNDLE_NO_INTRINSICS;
820   if (FLAGS_refine_intrinsics.empty()) {
821     if (is_image_space) {
822       bundle_intrinsics = BUNDLE_FOCAL_LENGTH | BUNDLE_RADIAL;
823     }
824   } else {
825     if (FLAGS_refine_intrinsics == "radial") {
826       bundle_intrinsics = BUNDLE_FOCAL_LENGTH | BUNDLE_RADIAL;
827     } else if (FLAGS_refine_intrinsics != "none") {
828       LOG(ERROR) << "Unsupported value for refine-intrinsics";
829       return EXIT_FAILURE;
830     }
831   }
832 
833   // Run the bundler.
834   EuclideanBundleCommonIntrinsics(all_markers,
835                                   bundle_intrinsics,
836                                   BUNDLE_NO_CONSTRAINTS,
837                                   camera_intrinsics,
838                                   &all_cameras,
839                                   &all_points);
840 
841   return EXIT_SUCCESS;
842 }
843