1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/gdb-jit.h"
6 
7 #include "src/base/bits.h"
8 #include "src/base/platform/platform.h"
9 #include "src/bootstrapper.h"
10 #include "src/compiler.h"
11 #include "src/frames-inl.h"
12 #include "src/frames.h"
13 #include "src/global-handles.h"
14 #include "src/messages.h"
15 #include "src/objects.h"
16 #include "src/ostreams.h"
17 #include "src/snapshot/natives.h"
18 #include "src/splay-tree-inl.h"
19 
20 namespace v8 {
21 namespace internal {
22 namespace GDBJITInterface {
23 
24 #ifdef ENABLE_GDB_JIT_INTERFACE
25 
26 #ifdef __APPLE__
27 #define __MACH_O
28 class MachO;
29 class MachOSection;
30 typedef MachO DebugObject;
31 typedef MachOSection DebugSection;
32 #else
33 #define __ELF
34 class ELF;
35 class ELFSection;
36 typedef ELF DebugObject;
37 typedef ELFSection DebugSection;
38 #endif
39 
40 class Writer BASE_EMBEDDED {
41  public:
Writer(DebugObject * debug_object)42   explicit Writer(DebugObject* debug_object)
43       : debug_object_(debug_object),
44         position_(0),
45         capacity_(1024),
46         buffer_(reinterpret_cast<byte*>(malloc(capacity_))) {
47   }
48 
~Writer()49   ~Writer() {
50     free(buffer_);
51   }
52 
position() const53   uintptr_t position() const {
54     return position_;
55   }
56 
57   template<typename T>
58   class Slot {
59    public:
Slot(Writer * w,uintptr_t offset)60     Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { }
61 
operator ->()62     T* operator-> () {
63       return w_->RawSlotAt<T>(offset_);
64     }
65 
set(const T & value)66     void set(const T& value) {
67       *w_->RawSlotAt<T>(offset_) = value;
68     }
69 
at(int i)70     Slot<T> at(int i) {
71       return Slot<T>(w_, offset_ + sizeof(T) * i);
72     }
73 
74    private:
75     Writer* w_;
76     uintptr_t offset_;
77   };
78 
79   template<typename T>
Write(const T & val)80   void Write(const T& val) {
81     Ensure(position_ + sizeof(T));
82     *RawSlotAt<T>(position_) = val;
83     position_ += sizeof(T);
84   }
85 
86   template<typename T>
SlotAt(uintptr_t offset)87   Slot<T> SlotAt(uintptr_t offset) {
88     Ensure(offset + sizeof(T));
89     return Slot<T>(this, offset);
90   }
91 
92   template<typename T>
CreateSlotHere()93   Slot<T> CreateSlotHere() {
94     return CreateSlotsHere<T>(1);
95   }
96 
97   template<typename T>
CreateSlotsHere(uint32_t count)98   Slot<T> CreateSlotsHere(uint32_t count) {
99     uintptr_t slot_position = position_;
100     position_ += sizeof(T) * count;
101     Ensure(position_);
102     return SlotAt<T>(slot_position);
103   }
104 
Ensure(uintptr_t pos)105   void Ensure(uintptr_t pos) {
106     if (capacity_ < pos) {
107       while (capacity_ < pos) capacity_ *= 2;
108       buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_));
109     }
110   }
111 
debug_object()112   DebugObject* debug_object() { return debug_object_; }
113 
buffer()114   byte* buffer() { return buffer_; }
115 
Align(uintptr_t align)116   void Align(uintptr_t align) {
117     uintptr_t delta = position_ % align;
118     if (delta == 0) return;
119     uintptr_t padding = align - delta;
120     Ensure(position_ += padding);
121     DCHECK((position_ % align) == 0);
122   }
123 
WriteULEB128(uintptr_t value)124   void WriteULEB128(uintptr_t value) {
125     do {
126       uint8_t byte = value & 0x7F;
127       value >>= 7;
128       if (value != 0) byte |= 0x80;
129       Write<uint8_t>(byte);
130     } while (value != 0);
131   }
132 
WriteSLEB128(intptr_t value)133   void WriteSLEB128(intptr_t value) {
134     bool more = true;
135     while (more) {
136       int8_t byte = value & 0x7F;
137       bool byte_sign = byte & 0x40;
138       value >>= 7;
139 
140       if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) {
141         more = false;
142       } else {
143         byte |= 0x80;
144       }
145 
146       Write<int8_t>(byte);
147     }
148   }
149 
WriteString(const char * str)150   void WriteString(const char* str) {
151     do {
152       Write<char>(*str);
153     } while (*str++);
154   }
155 
156  private:
157   template<typename T> friend class Slot;
158 
159   template<typename T>
RawSlotAt(uintptr_t offset)160   T* RawSlotAt(uintptr_t offset) {
161     DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_);
162     return reinterpret_cast<T*>(&buffer_[offset]);
163   }
164 
165   DebugObject* debug_object_;
166   uintptr_t position_;
167   uintptr_t capacity_;
168   byte* buffer_;
169 };
170 
171 class ELFStringTable;
172 
173 template<typename THeader>
174 class DebugSectionBase : public ZoneObject {
175  public:
~DebugSectionBase()176   virtual ~DebugSectionBase() { }
177 
WriteBody(Writer::Slot<THeader> header,Writer * writer)178   virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) {
179     uintptr_t start = writer->position();
180     if (WriteBodyInternal(writer)) {
181       uintptr_t end = writer->position();
182       header->offset = static_cast<uint32_t>(start);
183 #if defined(__MACH_O)
184       header->addr = 0;
185 #endif
186       header->size = end - start;
187     }
188   }
189 
WriteBodyInternal(Writer * writer)190   virtual bool WriteBodyInternal(Writer* writer) {
191     return false;
192   }
193 
194   typedef THeader Header;
195 };
196 
197 
198 struct MachOSectionHeader {
199   char sectname[16];
200   char segname[16];
201 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
202   uint32_t addr;
203   uint32_t size;
204 #else
205   uint64_t addr;
206   uint64_t size;
207 #endif
208   uint32_t offset;
209   uint32_t align;
210   uint32_t reloff;
211   uint32_t nreloc;
212   uint32_t flags;
213   uint32_t reserved1;
214   uint32_t reserved2;
215 };
216 
217 
218 class MachOSection : public DebugSectionBase<MachOSectionHeader> {
219  public:
220   enum Type {
221     S_REGULAR = 0x0u,
222     S_ATTR_COALESCED = 0xbu,
223     S_ATTR_SOME_INSTRUCTIONS = 0x400u,
224     S_ATTR_DEBUG = 0x02000000u,
225     S_ATTR_PURE_INSTRUCTIONS = 0x80000000u
226   };
227 
MachOSection(const char * name,const char * segment,uint32_t align,uint32_t flags)228   MachOSection(const char* name, const char* segment, uint32_t align,
229                uint32_t flags)
230       : name_(name), segment_(segment), align_(align), flags_(flags) {
231     if (align_ != 0) {
232       DCHECK(base::bits::IsPowerOfTwo32(align));
233       align_ = WhichPowerOf2(align_);
234     }
235   }
236 
~MachOSection()237   virtual ~MachOSection() { }
238 
PopulateHeader(Writer::Slot<Header> header)239   virtual void PopulateHeader(Writer::Slot<Header> header) {
240     header->addr = 0;
241     header->size = 0;
242     header->offset = 0;
243     header->align = align_;
244     header->reloff = 0;
245     header->nreloc = 0;
246     header->flags = flags_;
247     header->reserved1 = 0;
248     header->reserved2 = 0;
249     memset(header->sectname, 0, sizeof(header->sectname));
250     memset(header->segname, 0, sizeof(header->segname));
251     DCHECK(strlen(name_) < sizeof(header->sectname));
252     DCHECK(strlen(segment_) < sizeof(header->segname));
253     strncpy(header->sectname, name_, sizeof(header->sectname));
254     strncpy(header->segname, segment_, sizeof(header->segname));
255   }
256 
257  private:
258   const char* name_;
259   const char* segment_;
260   uint32_t align_;
261   uint32_t flags_;
262 };
263 
264 
265 struct ELFSectionHeader {
266   uint32_t name;
267   uint32_t type;
268   uintptr_t flags;
269   uintptr_t address;
270   uintptr_t offset;
271   uintptr_t size;
272   uint32_t link;
273   uint32_t info;
274   uintptr_t alignment;
275   uintptr_t entry_size;
276 };
277 
278 
279 #if defined(__ELF)
280 class ELFSection : public DebugSectionBase<ELFSectionHeader> {
281  public:
282   enum Type {
283     TYPE_NULL = 0,
284     TYPE_PROGBITS = 1,
285     TYPE_SYMTAB = 2,
286     TYPE_STRTAB = 3,
287     TYPE_RELA = 4,
288     TYPE_HASH = 5,
289     TYPE_DYNAMIC = 6,
290     TYPE_NOTE = 7,
291     TYPE_NOBITS = 8,
292     TYPE_REL = 9,
293     TYPE_SHLIB = 10,
294     TYPE_DYNSYM = 11,
295     TYPE_LOPROC = 0x70000000,
296     TYPE_X86_64_UNWIND = 0x70000001,
297     TYPE_HIPROC = 0x7fffffff,
298     TYPE_LOUSER = 0x80000000,
299     TYPE_HIUSER = 0xffffffff
300   };
301 
302   enum Flags {
303     FLAG_WRITE = 1,
304     FLAG_ALLOC = 2,
305     FLAG_EXEC = 4
306   };
307 
308   enum SpecialIndexes {
309     INDEX_ABSOLUTE = 0xfff1
310   };
311 
ELFSection(const char * name,Type type,uintptr_t align)312   ELFSection(const char* name, Type type, uintptr_t align)
313       : name_(name), type_(type), align_(align) { }
314 
~ELFSection()315   virtual ~ELFSection() { }
316 
317   void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab);
318 
WriteBody(Writer::Slot<Header> header,Writer * w)319   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
320     uintptr_t start = w->position();
321     if (WriteBodyInternal(w)) {
322       uintptr_t end = w->position();
323       header->offset = start;
324       header->size = end - start;
325     }
326   }
327 
WriteBodyInternal(Writer * w)328   virtual bool WriteBodyInternal(Writer* w) {
329     return false;
330   }
331 
index() const332   uint16_t index() const { return index_; }
set_index(uint16_t index)333   void set_index(uint16_t index) { index_ = index; }
334 
335  protected:
PopulateHeader(Writer::Slot<Header> header)336   virtual void PopulateHeader(Writer::Slot<Header> header) {
337     header->flags = 0;
338     header->address = 0;
339     header->offset = 0;
340     header->size = 0;
341     header->link = 0;
342     header->info = 0;
343     header->entry_size = 0;
344   }
345 
346  private:
347   const char* name_;
348   Type type_;
349   uintptr_t align_;
350   uint16_t index_;
351 };
352 #endif  // defined(__ELF)
353 
354 
355 #if defined(__MACH_O)
356 class MachOTextSection : public MachOSection {
357  public:
MachOTextSection(uint32_t align,uintptr_t addr,uintptr_t size)358   MachOTextSection(uint32_t align, uintptr_t addr, uintptr_t size)
359       : MachOSection("__text", "__TEXT", align,
360                      MachOSection::S_REGULAR |
361                          MachOSection::S_ATTR_SOME_INSTRUCTIONS |
362                          MachOSection::S_ATTR_PURE_INSTRUCTIONS),
363         addr_(addr),
364         size_(size) {}
365 
366  protected:
PopulateHeader(Writer::Slot<Header> header)367   virtual void PopulateHeader(Writer::Slot<Header> header) {
368     MachOSection::PopulateHeader(header);
369     header->addr = addr_;
370     header->size = size_;
371   }
372 
373  private:
374   uintptr_t addr_;
375   uintptr_t size_;
376 };
377 #endif  // defined(__MACH_O)
378 
379 
380 #if defined(__ELF)
381 class FullHeaderELFSection : public ELFSection {
382  public:
FullHeaderELFSection(const char * name,Type type,uintptr_t align,uintptr_t addr,uintptr_t offset,uintptr_t size,uintptr_t flags)383   FullHeaderELFSection(const char* name,
384                        Type type,
385                        uintptr_t align,
386                        uintptr_t addr,
387                        uintptr_t offset,
388                        uintptr_t size,
389                        uintptr_t flags)
390       : ELFSection(name, type, align),
391         addr_(addr),
392         offset_(offset),
393         size_(size),
394         flags_(flags) { }
395 
396  protected:
PopulateHeader(Writer::Slot<Header> header)397   virtual void PopulateHeader(Writer::Slot<Header> header) {
398     ELFSection::PopulateHeader(header);
399     header->address = addr_;
400     header->offset = offset_;
401     header->size = size_;
402     header->flags = flags_;
403   }
404 
405  private:
406   uintptr_t addr_;
407   uintptr_t offset_;
408   uintptr_t size_;
409   uintptr_t flags_;
410 };
411 
412 
413 class ELFStringTable : public ELFSection {
414  public:
ELFStringTable(const char * name)415   explicit ELFStringTable(const char* name)
416       : ELFSection(name, TYPE_STRTAB, 1), writer_(NULL), offset_(0), size_(0) {
417   }
418 
Add(const char * str)419   uintptr_t Add(const char* str) {
420     if (*str == '\0') return 0;
421 
422     uintptr_t offset = size_;
423     WriteString(str);
424     return offset;
425   }
426 
AttachWriter(Writer * w)427   void AttachWriter(Writer* w) {
428     writer_ = w;
429     offset_ = writer_->position();
430 
431     // First entry in the string table should be an empty string.
432     WriteString("");
433   }
434 
DetachWriter()435   void DetachWriter() {
436     writer_ = NULL;
437   }
438 
WriteBody(Writer::Slot<Header> header,Writer * w)439   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
440     DCHECK(writer_ == NULL);
441     header->offset = offset_;
442     header->size = size_;
443   }
444 
445  private:
WriteString(const char * str)446   void WriteString(const char* str) {
447     uintptr_t written = 0;
448     do {
449       writer_->Write(*str);
450       written++;
451     } while (*str++);
452     size_ += written;
453   }
454 
455   Writer* writer_;
456 
457   uintptr_t offset_;
458   uintptr_t size_;
459 };
460 
461 
PopulateHeader(Writer::Slot<ELFSection::Header> header,ELFStringTable * strtab)462 void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header,
463                                 ELFStringTable* strtab) {
464   header->name = static_cast<uint32_t>(strtab->Add(name_));
465   header->type = type_;
466   header->alignment = align_;
467   PopulateHeader(header);
468 }
469 #endif  // defined(__ELF)
470 
471 
472 #if defined(__MACH_O)
473 class MachO BASE_EMBEDDED {
474  public:
MachO(Zone * zone)475   explicit MachO(Zone* zone) : zone_(zone), sections_(6, zone) { }
476 
AddSection(MachOSection * section)477   uint32_t AddSection(MachOSection* section) {
478     sections_.Add(section, zone_);
479     return sections_.length() - 1;
480   }
481 
Write(Writer * w,uintptr_t code_start,uintptr_t code_size)482   void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) {
483     Writer::Slot<MachOHeader> header = WriteHeader(w);
484     uintptr_t load_command_start = w->position();
485     Writer::Slot<MachOSegmentCommand> cmd = WriteSegmentCommand(w,
486                                                                 code_start,
487                                                                 code_size);
488     WriteSections(w, cmd, header, load_command_start);
489   }
490 
491  private:
492   struct MachOHeader {
493     uint32_t magic;
494     uint32_t cputype;
495     uint32_t cpusubtype;
496     uint32_t filetype;
497     uint32_t ncmds;
498     uint32_t sizeofcmds;
499     uint32_t flags;
500 #if V8_TARGET_ARCH_X64
501     uint32_t reserved;
502 #endif
503   };
504 
505   struct MachOSegmentCommand {
506     uint32_t cmd;
507     uint32_t cmdsize;
508     char segname[16];
509 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
510     uint32_t vmaddr;
511     uint32_t vmsize;
512     uint32_t fileoff;
513     uint32_t filesize;
514 #else
515     uint64_t vmaddr;
516     uint64_t vmsize;
517     uint64_t fileoff;
518     uint64_t filesize;
519 #endif
520     uint32_t maxprot;
521     uint32_t initprot;
522     uint32_t nsects;
523     uint32_t flags;
524   };
525 
526   enum MachOLoadCommandCmd {
527     LC_SEGMENT_32 = 0x00000001u,
528     LC_SEGMENT_64 = 0x00000019u
529   };
530 
531 
WriteHeader(Writer * w)532   Writer::Slot<MachOHeader> WriteHeader(Writer* w) {
533     DCHECK(w->position() == 0);
534     Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>();
535 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
536     header->magic = 0xFEEDFACEu;
537     header->cputype = 7;  // i386
538     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
539 #elif V8_TARGET_ARCH_X64
540     header->magic = 0xFEEDFACFu;
541     header->cputype = 7 | 0x01000000;  // i386 | 64-bit ABI
542     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
543     header->reserved = 0;
544 #else
545 #error Unsupported target architecture.
546 #endif
547     header->filetype = 0x1;  // MH_OBJECT
548     header->ncmds = 1;
549     header->sizeofcmds = 0;
550     header->flags = 0;
551     return header;
552   }
553 
554 
WriteSegmentCommand(Writer * w,uintptr_t code_start,uintptr_t code_size)555   Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w,
556                                                         uintptr_t code_start,
557                                                         uintptr_t code_size) {
558     Writer::Slot<MachOSegmentCommand> cmd =
559         w->CreateSlotHere<MachOSegmentCommand>();
560 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
561     cmd->cmd = LC_SEGMENT_32;
562 #else
563     cmd->cmd = LC_SEGMENT_64;
564 #endif
565     cmd->vmaddr = code_start;
566     cmd->vmsize = code_size;
567     cmd->fileoff = 0;
568     cmd->filesize = 0;
569     cmd->maxprot = 7;
570     cmd->initprot = 7;
571     cmd->flags = 0;
572     cmd->nsects = sections_.length();
573     memset(cmd->segname, 0, 16);
574     cmd->cmdsize = sizeof(MachOSegmentCommand) + sizeof(MachOSection::Header) *
575         cmd->nsects;
576     return cmd;
577   }
578 
579 
WriteSections(Writer * w,Writer::Slot<MachOSegmentCommand> cmd,Writer::Slot<MachOHeader> header,uintptr_t load_command_start)580   void WriteSections(Writer* w,
581                      Writer::Slot<MachOSegmentCommand> cmd,
582                      Writer::Slot<MachOHeader> header,
583                      uintptr_t load_command_start) {
584     Writer::Slot<MachOSection::Header> headers =
585         w->CreateSlotsHere<MachOSection::Header>(sections_.length());
586     cmd->fileoff = w->position();
587     header->sizeofcmds =
588         static_cast<uint32_t>(w->position() - load_command_start);
589     for (int section = 0; section < sections_.length(); ++section) {
590       sections_[section]->PopulateHeader(headers.at(section));
591       sections_[section]->WriteBody(headers.at(section), w);
592     }
593     cmd->filesize = w->position() - (uintptr_t)cmd->fileoff;
594   }
595 
596   Zone* zone_;
597   ZoneList<MachOSection*> sections_;
598 };
599 #endif  // defined(__MACH_O)
600 
601 
602 #if defined(__ELF)
603 class ELF BASE_EMBEDDED {
604  public:
ELF(Zone * zone)605   explicit ELF(Zone* zone) : zone_(zone), sections_(6, zone) {
606     sections_.Add(new(zone) ELFSection("", ELFSection::TYPE_NULL, 0), zone);
607     sections_.Add(new(zone) ELFStringTable(".shstrtab"), zone);
608   }
609 
Write(Writer * w)610   void Write(Writer* w) {
611     WriteHeader(w);
612     WriteSectionTable(w);
613     WriteSections(w);
614   }
615 
SectionAt(uint32_t index)616   ELFSection* SectionAt(uint32_t index) {
617     return sections_[index];
618   }
619 
AddSection(ELFSection * section)620   uint32_t AddSection(ELFSection* section) {
621     sections_.Add(section, zone_);
622     section->set_index(sections_.length() - 1);
623     return sections_.length() - 1;
624   }
625 
626  private:
627   struct ELFHeader {
628     uint8_t ident[16];
629     uint16_t type;
630     uint16_t machine;
631     uint32_t version;
632     uintptr_t entry;
633     uintptr_t pht_offset;
634     uintptr_t sht_offset;
635     uint32_t flags;
636     uint16_t header_size;
637     uint16_t pht_entry_size;
638     uint16_t pht_entry_num;
639     uint16_t sht_entry_size;
640     uint16_t sht_entry_num;
641     uint16_t sht_strtab_index;
642   };
643 
644 
WriteHeader(Writer * w)645   void WriteHeader(Writer* w) {
646     DCHECK(w->position() == 0);
647     Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>();
648 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
649      (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT))
650     const uint8_t ident[16] =
651         { 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
652 #elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \
653     (V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN)
654     const uint8_t ident[16] =
655         { 0x7f, 'E', 'L', 'F', 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
656 #elif V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN && V8_OS_LINUX
657     const uint8_t ident[16] = {0x7f, 'E', 'L', 'F', 2, 2, 1, 0,
658                                0,    0,   0,   0,   0, 0, 0, 0};
659 #else
660 #error Unsupported target architecture.
661 #endif
662     memcpy(header->ident, ident, 16);
663     header->type = 1;
664 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
665     header->machine = 3;
666 #elif V8_TARGET_ARCH_X64
667     // Processor identification value for x64 is 62 as defined in
668     //    System V ABI, AMD64 Supplement
669     //    http://www.x86-64.org/documentation/abi.pdf
670     header->machine = 62;
671 #elif V8_TARGET_ARCH_ARM
672     // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at
673     // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf
674     header->machine = 40;
675 #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX
676     // Set to EM_PPC64, defined as 21, in Power ABI,
677     // Join the next 4 lines, omitting the spaces and double-slashes.
678     // https://www-03.ibm.com/technologyconnect/tgcm/TGCMFileServlet.wss/
679     // ABI64BitOpenPOWERv1.1_16July2015_pub.pdf?
680     // id=B81AEC1A37F5DAF185257C3E004E8845&linkid=1n0000&c_t=
681     // c9xw7v5dzsj7gt1ifgf4cjbcnskqptmr
682     header->machine = 21;
683 #else
684 #error Unsupported target architecture.
685 #endif
686     header->version = 1;
687     header->entry = 0;
688     header->pht_offset = 0;
689     header->sht_offset = sizeof(ELFHeader);  // Section table follows header.
690     header->flags = 0;
691     header->header_size = sizeof(ELFHeader);
692     header->pht_entry_size = 0;
693     header->pht_entry_num = 0;
694     header->sht_entry_size = sizeof(ELFSection::Header);
695     header->sht_entry_num = sections_.length();
696     header->sht_strtab_index = 1;
697   }
698 
WriteSectionTable(Writer * w)699   void WriteSectionTable(Writer* w) {
700     // Section headers table immediately follows file header.
701     DCHECK(w->position() == sizeof(ELFHeader));
702 
703     Writer::Slot<ELFSection::Header> headers =
704         w->CreateSlotsHere<ELFSection::Header>(sections_.length());
705 
706     // String table for section table is the first section.
707     ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1));
708     strtab->AttachWriter(w);
709     for (int i = 0, length = sections_.length();
710          i < length;
711          i++) {
712       sections_[i]->PopulateHeader(headers.at(i), strtab);
713     }
714     strtab->DetachWriter();
715   }
716 
SectionHeaderPosition(uint32_t section_index)717   int SectionHeaderPosition(uint32_t section_index) {
718     return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index;
719   }
720 
WriteSections(Writer * w)721   void WriteSections(Writer* w) {
722     Writer::Slot<ELFSection::Header> headers =
723         w->SlotAt<ELFSection::Header>(sizeof(ELFHeader));
724 
725     for (int i = 0, length = sections_.length();
726          i < length;
727          i++) {
728       sections_[i]->WriteBody(headers.at(i), w);
729     }
730   }
731 
732   Zone* zone_;
733   ZoneList<ELFSection*> sections_;
734 };
735 
736 
737 class ELFSymbol BASE_EMBEDDED {
738  public:
739   enum Type {
740     TYPE_NOTYPE = 0,
741     TYPE_OBJECT = 1,
742     TYPE_FUNC = 2,
743     TYPE_SECTION = 3,
744     TYPE_FILE = 4,
745     TYPE_LOPROC = 13,
746     TYPE_HIPROC = 15
747   };
748 
749   enum Binding {
750     BIND_LOCAL = 0,
751     BIND_GLOBAL = 1,
752     BIND_WEAK = 2,
753     BIND_LOPROC = 13,
754     BIND_HIPROC = 15
755   };
756 
ELFSymbol(const char * name,uintptr_t value,uintptr_t size,Binding binding,Type type,uint16_t section)757   ELFSymbol(const char* name,
758             uintptr_t value,
759             uintptr_t size,
760             Binding binding,
761             Type type,
762             uint16_t section)
763       : name(name),
764         value(value),
765         size(size),
766         info((binding << 4) | type),
767         other(0),
768         section(section) {
769   }
770 
binding() const771   Binding binding() const {
772     return static_cast<Binding>(info >> 4);
773   }
774 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
775      (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT))
776   struct SerializedLayout {
SerializedLayoutv8::internal::GDBJITInterface::BASE_EMBEDDED::SerializedLayout777     SerializedLayout(uint32_t name,
778                      uintptr_t value,
779                      uintptr_t size,
780                      Binding binding,
781                      Type type,
782                      uint16_t section)
783         : name(name),
784           value(value),
785           size(size),
786           info((binding << 4) | type),
787           other(0),
788           section(section) {
789     }
790 
791     uint32_t name;
792     uintptr_t value;
793     uintptr_t size;
794     uint8_t info;
795     uint8_t other;
796     uint16_t section;
797   };
798 #elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \
799     (V8_TARGET_ARCH_PPC64 && V8_OS_LINUX)
800   struct SerializedLayout {
SerializedLayoutv8::internal::GDBJITInterface::BASE_EMBEDDED::SerializedLayout801     SerializedLayout(uint32_t name,
802                      uintptr_t value,
803                      uintptr_t size,
804                      Binding binding,
805                      Type type,
806                      uint16_t section)
807         : name(name),
808           info((binding << 4) | type),
809           other(0),
810           section(section),
811           value(value),
812           size(size) {
813     }
814 
815     uint32_t name;
816     uint8_t info;
817     uint8_t other;
818     uint16_t section;
819     uintptr_t value;
820     uintptr_t size;
821   };
822 #endif
823 
Write(Writer::Slot<SerializedLayout> s,ELFStringTable * t)824   void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) {
825     // Convert symbol names from strings to indexes in the string table.
826     s->name = static_cast<uint32_t>(t->Add(name));
827     s->value = value;
828     s->size = size;
829     s->info = info;
830     s->other = other;
831     s->section = section;
832   }
833 
834  private:
835   const char* name;
836   uintptr_t value;
837   uintptr_t size;
838   uint8_t info;
839   uint8_t other;
840   uint16_t section;
841 };
842 
843 
844 class ELFSymbolTable : public ELFSection {
845  public:
ELFSymbolTable(const char * name,Zone * zone)846   ELFSymbolTable(const char* name, Zone* zone)
847       : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)),
848         locals_(1, zone),
849         globals_(1, zone) {
850   }
851 
WriteBody(Writer::Slot<Header> header,Writer * w)852   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
853     w->Align(header->alignment);
854     int total_symbols = locals_.length() + globals_.length() + 1;
855     header->offset = w->position();
856 
857     Writer::Slot<ELFSymbol::SerializedLayout> symbols =
858         w->CreateSlotsHere<ELFSymbol::SerializedLayout>(total_symbols);
859 
860     header->size = w->position() - header->offset;
861 
862     // String table for this symbol table should follow it in the section table.
863     ELFStringTable* strtab =
864         static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1));
865     strtab->AttachWriter(w);
866     symbols.at(0).set(ELFSymbol::SerializedLayout(0,
867                                                   0,
868                                                   0,
869                                                   ELFSymbol::BIND_LOCAL,
870                                                   ELFSymbol::TYPE_NOTYPE,
871                                                   0));
872     WriteSymbolsList(&locals_, symbols.at(1), strtab);
873     WriteSymbolsList(&globals_, symbols.at(locals_.length() + 1), strtab);
874     strtab->DetachWriter();
875   }
876 
Add(const ELFSymbol & symbol,Zone * zone)877   void Add(const ELFSymbol& symbol, Zone* zone) {
878     if (symbol.binding() == ELFSymbol::BIND_LOCAL) {
879       locals_.Add(symbol, zone);
880     } else {
881       globals_.Add(symbol, zone);
882     }
883   }
884 
885  protected:
PopulateHeader(Writer::Slot<Header> header)886   virtual void PopulateHeader(Writer::Slot<Header> header) {
887     ELFSection::PopulateHeader(header);
888     // We are assuming that string table will follow symbol table.
889     header->link = index() + 1;
890     header->info = locals_.length() + 1;
891     header->entry_size = sizeof(ELFSymbol::SerializedLayout);
892   }
893 
894  private:
WriteSymbolsList(const ZoneList<ELFSymbol> * src,Writer::Slot<ELFSymbol::SerializedLayout> dst,ELFStringTable * strtab)895   void WriteSymbolsList(const ZoneList<ELFSymbol>* src,
896                         Writer::Slot<ELFSymbol::SerializedLayout> dst,
897                         ELFStringTable* strtab) {
898     for (int i = 0, len = src->length();
899          i < len;
900          i++) {
901       src->at(i).Write(dst.at(i), strtab);
902     }
903   }
904 
905   ZoneList<ELFSymbol> locals_;
906   ZoneList<ELFSymbol> globals_;
907 };
908 #endif  // defined(__ELF)
909 
910 
911 class LineInfo : public Malloced {
912  public:
LineInfo()913   LineInfo() : pc_info_(10) {}
914 
SetPosition(intptr_t pc,int pos,bool is_statement)915   void SetPosition(intptr_t pc, int pos, bool is_statement) {
916     AddPCInfo(PCInfo(pc, pos, is_statement));
917   }
918 
919   struct PCInfo {
PCInfov8::internal::GDBJITInterface::LineInfo::PCInfo920     PCInfo(intptr_t pc, int pos, bool is_statement)
921         : pc_(pc), pos_(pos), is_statement_(is_statement) {}
922 
923     intptr_t pc_;
924     int pos_;
925     bool is_statement_;
926   };
927 
pc_info()928   List<PCInfo>* pc_info() { return &pc_info_; }
929 
930  private:
AddPCInfo(const PCInfo & pc_info)931   void AddPCInfo(const PCInfo& pc_info) { pc_info_.Add(pc_info); }
932 
933   List<PCInfo> pc_info_;
934 };
935 
936 
937 class CodeDescription BASE_EMBEDDED {
938  public:
939 #if V8_TARGET_ARCH_X64
940   enum StackState {
941     POST_RBP_PUSH,
942     POST_RBP_SET,
943     POST_RBP_POP,
944     STACK_STATE_MAX
945   };
946 #endif
947 
CodeDescription(const char * name,Code * code,SharedFunctionInfo * shared,LineInfo * lineinfo)948   CodeDescription(const char* name, Code* code, SharedFunctionInfo* shared,
949                   LineInfo* lineinfo)
950       : name_(name), code_(code), shared_info_(shared), lineinfo_(lineinfo) {}
951 
name() const952   const char* name() const {
953     return name_;
954   }
955 
lineinfo() const956   LineInfo* lineinfo() const { return lineinfo_; }
957 
is_function() const958   bool is_function() const {
959     Code::Kind kind = code_->kind();
960     return kind == Code::FUNCTION || kind == Code::OPTIMIZED_FUNCTION;
961   }
962 
has_scope_info() const963   bool has_scope_info() const { return shared_info_ != NULL; }
964 
scope_info() const965   ScopeInfo* scope_info() const {
966     DCHECK(has_scope_info());
967     return shared_info_->scope_info();
968   }
969 
CodeStart() const970   uintptr_t CodeStart() const {
971     return reinterpret_cast<uintptr_t>(code_->instruction_start());
972   }
973 
CodeEnd() const974   uintptr_t CodeEnd() const {
975     return reinterpret_cast<uintptr_t>(code_->instruction_end());
976   }
977 
CodeSize() const978   uintptr_t CodeSize() const {
979     return CodeEnd() - CodeStart();
980   }
981 
has_script()982   bool has_script() {
983     return shared_info_ != NULL && shared_info_->script()->IsScript();
984   }
985 
script()986   Script* script() { return Script::cast(shared_info_->script()); }
987 
IsLineInfoAvailable()988   bool IsLineInfoAvailable() {
989     return has_script() && script()->source()->IsString() &&
990            script()->HasValidSource() && script()->name()->IsString() &&
991            lineinfo_ != NULL;
992   }
993 
994 #if V8_TARGET_ARCH_X64
GetStackStateStartAddress(StackState state) const995   uintptr_t GetStackStateStartAddress(StackState state) const {
996     DCHECK(state < STACK_STATE_MAX);
997     return stack_state_start_addresses_[state];
998   }
999 
SetStackStateStartAddress(StackState state,uintptr_t addr)1000   void SetStackStateStartAddress(StackState state, uintptr_t addr) {
1001     DCHECK(state < STACK_STATE_MAX);
1002     stack_state_start_addresses_[state] = addr;
1003   }
1004 #endif
1005 
GetFilename()1006   base::SmartArrayPointer<char> GetFilename() {
1007     return String::cast(script()->name())->ToCString();
1008   }
1009 
GetScriptLineNumber(int pos)1010   int GetScriptLineNumber(int pos) { return script()->GetLineNumber(pos) + 1; }
1011 
1012 
1013  private:
1014   const char* name_;
1015   Code* code_;
1016   SharedFunctionInfo* shared_info_;
1017   LineInfo* lineinfo_;
1018 #if V8_TARGET_ARCH_X64
1019   uintptr_t stack_state_start_addresses_[STACK_STATE_MAX];
1020 #endif
1021 };
1022 
1023 #if defined(__ELF)
CreateSymbolsTable(CodeDescription * desc,Zone * zone,ELF * elf,int text_section_index)1024 static void CreateSymbolsTable(CodeDescription* desc,
1025                                Zone* zone,
1026                                ELF* elf,
1027                                int text_section_index) {
1028   ELFSymbolTable* symtab = new(zone) ELFSymbolTable(".symtab", zone);
1029   ELFStringTable* strtab = new(zone) ELFStringTable(".strtab");
1030 
1031   // Symbol table should be followed by the linked string table.
1032   elf->AddSection(symtab);
1033   elf->AddSection(strtab);
1034 
1035   symtab->Add(ELFSymbol("V8 Code",
1036                         0,
1037                         0,
1038                         ELFSymbol::BIND_LOCAL,
1039                         ELFSymbol::TYPE_FILE,
1040                         ELFSection::INDEX_ABSOLUTE),
1041               zone);
1042 
1043   symtab->Add(ELFSymbol(desc->name(),
1044                         0,
1045                         desc->CodeSize(),
1046                         ELFSymbol::BIND_GLOBAL,
1047                         ELFSymbol::TYPE_FUNC,
1048                         text_section_index),
1049               zone);
1050 }
1051 #endif  // defined(__ELF)
1052 
1053 
1054 class DebugInfoSection : public DebugSection {
1055  public:
DebugInfoSection(CodeDescription * desc)1056   explicit DebugInfoSection(CodeDescription* desc)
1057 #if defined(__ELF)
1058       : ELFSection(".debug_info", TYPE_PROGBITS, 1),
1059 #else
1060       : MachOSection("__debug_info",
1061                      "__DWARF",
1062                      1,
1063                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
1064 #endif
1065         desc_(desc) { }
1066 
1067   // DWARF2 standard
1068   enum DWARF2LocationOp {
1069     DW_OP_reg0 = 0x50,
1070     DW_OP_reg1 = 0x51,
1071     DW_OP_reg2 = 0x52,
1072     DW_OP_reg3 = 0x53,
1073     DW_OP_reg4 = 0x54,
1074     DW_OP_reg5 = 0x55,
1075     DW_OP_reg6 = 0x56,
1076     DW_OP_reg7 = 0x57,
1077     DW_OP_reg8 = 0x58,
1078     DW_OP_reg9 = 0x59,
1079     DW_OP_reg10 = 0x5a,
1080     DW_OP_reg11 = 0x5b,
1081     DW_OP_reg12 = 0x5c,
1082     DW_OP_reg13 = 0x5d,
1083     DW_OP_reg14 = 0x5e,
1084     DW_OP_reg15 = 0x5f,
1085     DW_OP_reg16 = 0x60,
1086     DW_OP_reg17 = 0x61,
1087     DW_OP_reg18 = 0x62,
1088     DW_OP_reg19 = 0x63,
1089     DW_OP_reg20 = 0x64,
1090     DW_OP_reg21 = 0x65,
1091     DW_OP_reg22 = 0x66,
1092     DW_OP_reg23 = 0x67,
1093     DW_OP_reg24 = 0x68,
1094     DW_OP_reg25 = 0x69,
1095     DW_OP_reg26 = 0x6a,
1096     DW_OP_reg27 = 0x6b,
1097     DW_OP_reg28 = 0x6c,
1098     DW_OP_reg29 = 0x6d,
1099     DW_OP_reg30 = 0x6e,
1100     DW_OP_reg31 = 0x6f,
1101     DW_OP_fbreg = 0x91  // 1 param: SLEB128 offset
1102   };
1103 
1104   enum DWARF2Encoding {
1105     DW_ATE_ADDRESS = 0x1,
1106     DW_ATE_SIGNED = 0x5
1107   };
1108 
WriteBodyInternal(Writer * w)1109   bool WriteBodyInternal(Writer* w) {
1110     uintptr_t cu_start = w->position();
1111     Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>();
1112     uintptr_t start = w->position();
1113     w->Write<uint16_t>(2);  // DWARF version.
1114     w->Write<uint32_t>(0);  // Abbreviation table offset.
1115     w->Write<uint8_t>(sizeof(intptr_t));
1116 
1117     w->WriteULEB128(1);  // Abbreviation code.
1118     w->WriteString(desc_->GetFilename().get());
1119     w->Write<intptr_t>(desc_->CodeStart());
1120     w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
1121     w->Write<uint32_t>(0);
1122 
1123     uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start);
1124     w->WriteULEB128(3);
1125     w->Write<uint8_t>(kPointerSize);
1126     w->WriteString("v8value");
1127 
1128     if (desc_->has_scope_info()) {
1129       ScopeInfo* scope = desc_->scope_info();
1130       w->WriteULEB128(2);
1131       w->WriteString(desc_->name());
1132       w->Write<intptr_t>(desc_->CodeStart());
1133       w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
1134       Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>();
1135       uintptr_t fb_block_start = w->position();
1136 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
1137       w->Write<uint8_t>(DW_OP_reg5);  // The frame pointer's here on ia32
1138 #elif V8_TARGET_ARCH_X64
1139       w->Write<uint8_t>(DW_OP_reg6);  // and here on x64.
1140 #elif V8_TARGET_ARCH_ARM
1141       UNIMPLEMENTED();
1142 #elif V8_TARGET_ARCH_MIPS
1143       UNIMPLEMENTED();
1144 #elif V8_TARGET_ARCH_MIPS64
1145       UNIMPLEMENTED();
1146 #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX
1147       w->Write<uint8_t>(DW_OP_reg31);  // The frame pointer is here on PPC64.
1148 #else
1149 #error Unsupported target architecture.
1150 #endif
1151       fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start));
1152 
1153       int params = scope->ParameterCount();
1154       int slots = scope->StackLocalCount();
1155       int context_slots = scope->ContextLocalCount();
1156       // The real slot ID is internal_slots + context_slot_id.
1157       int internal_slots = Context::MIN_CONTEXT_SLOTS;
1158       int locals = scope->StackLocalCount();
1159       int current_abbreviation = 4;
1160 
1161       for (int param = 0; param < params; ++param) {
1162         w->WriteULEB128(current_abbreviation++);
1163         w->WriteString(
1164             scope->ParameterName(param)->ToCString(DISALLOW_NULLS).get());
1165         w->Write<uint32_t>(ty_offset);
1166         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1167         uintptr_t block_start = w->position();
1168         w->Write<uint8_t>(DW_OP_fbreg);
1169         w->WriteSLEB128(
1170           JavaScriptFrameConstants::kLastParameterOffset +
1171               kPointerSize * (params - param - 1));
1172         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1173       }
1174 
1175       EmbeddedVector<char, 256> buffer;
1176       StringBuilder builder(buffer.start(), buffer.length());
1177 
1178       for (int slot = 0; slot < slots; ++slot) {
1179         w->WriteULEB128(current_abbreviation++);
1180         builder.Reset();
1181         builder.AddFormatted("slot%d", slot);
1182         w->WriteString(builder.Finalize());
1183       }
1184 
1185       // See contexts.h for more information.
1186       DCHECK(Context::MIN_CONTEXT_SLOTS == 4);
1187       DCHECK(Context::CLOSURE_INDEX == 0);
1188       DCHECK(Context::PREVIOUS_INDEX == 1);
1189       DCHECK(Context::EXTENSION_INDEX == 2);
1190       DCHECK(Context::NATIVE_CONTEXT_INDEX == 3);
1191       w->WriteULEB128(current_abbreviation++);
1192       w->WriteString(".closure");
1193       w->WriteULEB128(current_abbreviation++);
1194       w->WriteString(".previous");
1195       w->WriteULEB128(current_abbreviation++);
1196       w->WriteString(".extension");
1197       w->WriteULEB128(current_abbreviation++);
1198       w->WriteString(".native_context");
1199 
1200       for (int context_slot = 0;
1201            context_slot < context_slots;
1202            ++context_slot) {
1203         w->WriteULEB128(current_abbreviation++);
1204         builder.Reset();
1205         builder.AddFormatted("context_slot%d", context_slot + internal_slots);
1206         w->WriteString(builder.Finalize());
1207       }
1208 
1209       for (int local = 0; local < locals; ++local) {
1210         w->WriteULEB128(current_abbreviation++);
1211         w->WriteString(
1212             scope->StackLocalName(local)->ToCString(DISALLOW_NULLS).get());
1213         w->Write<uint32_t>(ty_offset);
1214         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1215         uintptr_t block_start = w->position();
1216         w->Write<uint8_t>(DW_OP_fbreg);
1217         w->WriteSLEB128(
1218           JavaScriptFrameConstants::kLocal0Offset -
1219               kPointerSize * local);
1220         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1221       }
1222 
1223       {
1224         w->WriteULEB128(current_abbreviation++);
1225         w->WriteString("__function");
1226         w->Write<uint32_t>(ty_offset);
1227         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1228         uintptr_t block_start = w->position();
1229         w->Write<uint8_t>(DW_OP_fbreg);
1230         w->WriteSLEB128(JavaScriptFrameConstants::kFunctionOffset);
1231         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1232       }
1233 
1234       {
1235         w->WriteULEB128(current_abbreviation++);
1236         w->WriteString("__context");
1237         w->Write<uint32_t>(ty_offset);
1238         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1239         uintptr_t block_start = w->position();
1240         w->Write<uint8_t>(DW_OP_fbreg);
1241         w->WriteSLEB128(StandardFrameConstants::kContextOffset);
1242         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1243       }
1244 
1245       w->WriteULEB128(0);  // Terminate the sub program.
1246     }
1247 
1248     w->WriteULEB128(0);  // Terminate the compile unit.
1249     size.set(static_cast<uint32_t>(w->position() - start));
1250     return true;
1251   }
1252 
1253  private:
1254   CodeDescription* desc_;
1255 };
1256 
1257 
1258 class DebugAbbrevSection : public DebugSection {
1259  public:
DebugAbbrevSection(CodeDescription * desc)1260   explicit DebugAbbrevSection(CodeDescription* desc)
1261 #ifdef __ELF
1262       : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1),
1263 #else
1264       : MachOSection("__debug_abbrev",
1265                      "__DWARF",
1266                      1,
1267                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
1268 #endif
1269         desc_(desc) { }
1270 
1271   // DWARF2 standard, figure 14.
1272   enum DWARF2Tags {
1273     DW_TAG_FORMAL_PARAMETER = 0x05,
1274     DW_TAG_POINTER_TYPE = 0xf,
1275     DW_TAG_COMPILE_UNIT = 0x11,
1276     DW_TAG_STRUCTURE_TYPE = 0x13,
1277     DW_TAG_BASE_TYPE = 0x24,
1278     DW_TAG_SUBPROGRAM = 0x2e,
1279     DW_TAG_VARIABLE = 0x34
1280   };
1281 
1282   // DWARF2 standard, figure 16.
1283   enum DWARF2ChildrenDetermination {
1284     DW_CHILDREN_NO = 0,
1285     DW_CHILDREN_YES = 1
1286   };
1287 
1288   // DWARF standard, figure 17.
1289   enum DWARF2Attribute {
1290     DW_AT_LOCATION = 0x2,
1291     DW_AT_NAME = 0x3,
1292     DW_AT_BYTE_SIZE = 0xb,
1293     DW_AT_STMT_LIST = 0x10,
1294     DW_AT_LOW_PC = 0x11,
1295     DW_AT_HIGH_PC = 0x12,
1296     DW_AT_ENCODING = 0x3e,
1297     DW_AT_FRAME_BASE = 0x40,
1298     DW_AT_TYPE = 0x49
1299   };
1300 
1301   // DWARF2 standard, figure 19.
1302   enum DWARF2AttributeForm {
1303     DW_FORM_ADDR = 0x1,
1304     DW_FORM_BLOCK4 = 0x4,
1305     DW_FORM_STRING = 0x8,
1306     DW_FORM_DATA4 = 0x6,
1307     DW_FORM_BLOCK = 0x9,
1308     DW_FORM_DATA1 = 0xb,
1309     DW_FORM_FLAG = 0xc,
1310     DW_FORM_REF4 = 0x13
1311   };
1312 
WriteVariableAbbreviation(Writer * w,int abbreviation_code,bool has_value,bool is_parameter)1313   void WriteVariableAbbreviation(Writer* w,
1314                                  int abbreviation_code,
1315                                  bool has_value,
1316                                  bool is_parameter) {
1317     w->WriteULEB128(abbreviation_code);
1318     w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE);
1319     w->Write<uint8_t>(DW_CHILDREN_NO);
1320     w->WriteULEB128(DW_AT_NAME);
1321     w->WriteULEB128(DW_FORM_STRING);
1322     if (has_value) {
1323       w->WriteULEB128(DW_AT_TYPE);
1324       w->WriteULEB128(DW_FORM_REF4);
1325       w->WriteULEB128(DW_AT_LOCATION);
1326       w->WriteULEB128(DW_FORM_BLOCK4);
1327     }
1328     w->WriteULEB128(0);
1329     w->WriteULEB128(0);
1330   }
1331 
WriteBodyInternal(Writer * w)1332   bool WriteBodyInternal(Writer* w) {
1333     int current_abbreviation = 1;
1334     bool extra_info = desc_->has_scope_info();
1335     DCHECK(desc_->IsLineInfoAvailable());
1336     w->WriteULEB128(current_abbreviation++);
1337     w->WriteULEB128(DW_TAG_COMPILE_UNIT);
1338     w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO);
1339     w->WriteULEB128(DW_AT_NAME);
1340     w->WriteULEB128(DW_FORM_STRING);
1341     w->WriteULEB128(DW_AT_LOW_PC);
1342     w->WriteULEB128(DW_FORM_ADDR);
1343     w->WriteULEB128(DW_AT_HIGH_PC);
1344     w->WriteULEB128(DW_FORM_ADDR);
1345     w->WriteULEB128(DW_AT_STMT_LIST);
1346     w->WriteULEB128(DW_FORM_DATA4);
1347     w->WriteULEB128(0);
1348     w->WriteULEB128(0);
1349 
1350     if (extra_info) {
1351       ScopeInfo* scope = desc_->scope_info();
1352       int params = scope->ParameterCount();
1353       int slots = scope->StackLocalCount();
1354       int context_slots = scope->ContextLocalCount();
1355       // The real slot ID is internal_slots + context_slot_id.
1356       int internal_slots = Context::MIN_CONTEXT_SLOTS;
1357       int locals = scope->StackLocalCount();
1358       // Total children is params + slots + context_slots + internal_slots +
1359       // locals + 2 (__function and __context).
1360 
1361       // The extra duplication below seems to be necessary to keep
1362       // gdb from getting upset on OSX.
1363       w->WriteULEB128(current_abbreviation++);  // Abbreviation code.
1364       w->WriteULEB128(DW_TAG_SUBPROGRAM);
1365       w->Write<uint8_t>(DW_CHILDREN_YES);
1366       w->WriteULEB128(DW_AT_NAME);
1367       w->WriteULEB128(DW_FORM_STRING);
1368       w->WriteULEB128(DW_AT_LOW_PC);
1369       w->WriteULEB128(DW_FORM_ADDR);
1370       w->WriteULEB128(DW_AT_HIGH_PC);
1371       w->WriteULEB128(DW_FORM_ADDR);
1372       w->WriteULEB128(DW_AT_FRAME_BASE);
1373       w->WriteULEB128(DW_FORM_BLOCK4);
1374       w->WriteULEB128(0);
1375       w->WriteULEB128(0);
1376 
1377       w->WriteULEB128(current_abbreviation++);
1378       w->WriteULEB128(DW_TAG_STRUCTURE_TYPE);
1379       w->Write<uint8_t>(DW_CHILDREN_NO);
1380       w->WriteULEB128(DW_AT_BYTE_SIZE);
1381       w->WriteULEB128(DW_FORM_DATA1);
1382       w->WriteULEB128(DW_AT_NAME);
1383       w->WriteULEB128(DW_FORM_STRING);
1384       w->WriteULEB128(0);
1385       w->WriteULEB128(0);
1386 
1387       for (int param = 0; param < params; ++param) {
1388         WriteVariableAbbreviation(w, current_abbreviation++, true, true);
1389       }
1390 
1391       for (int slot = 0; slot < slots; ++slot) {
1392         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
1393       }
1394 
1395       for (int internal_slot = 0;
1396            internal_slot < internal_slots;
1397            ++internal_slot) {
1398         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
1399       }
1400 
1401       for (int context_slot = 0;
1402            context_slot < context_slots;
1403            ++context_slot) {
1404         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
1405       }
1406 
1407       for (int local = 0; local < locals; ++local) {
1408         WriteVariableAbbreviation(w, current_abbreviation++, true, false);
1409       }
1410 
1411       // The function.
1412       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
1413 
1414       // The context.
1415       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
1416 
1417       w->WriteULEB128(0);  // Terminate the sibling list.
1418     }
1419 
1420     w->WriteULEB128(0);  // Terminate the table.
1421     return true;
1422   }
1423 
1424  private:
1425   CodeDescription* desc_;
1426 };
1427 
1428 
1429 class DebugLineSection : public DebugSection {
1430  public:
DebugLineSection(CodeDescription * desc)1431   explicit DebugLineSection(CodeDescription* desc)
1432 #ifdef __ELF
1433       : ELFSection(".debug_line", TYPE_PROGBITS, 1),
1434 #else
1435       : MachOSection("__debug_line",
1436                      "__DWARF",
1437                      1,
1438                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
1439 #endif
1440         desc_(desc) { }
1441 
1442   // DWARF2 standard, figure 34.
1443   enum DWARF2Opcodes {
1444     DW_LNS_COPY = 1,
1445     DW_LNS_ADVANCE_PC = 2,
1446     DW_LNS_ADVANCE_LINE = 3,
1447     DW_LNS_SET_FILE = 4,
1448     DW_LNS_SET_COLUMN = 5,
1449     DW_LNS_NEGATE_STMT = 6
1450   };
1451 
1452   // DWARF2 standard, figure 35.
1453   enum DWARF2ExtendedOpcode {
1454     DW_LNE_END_SEQUENCE = 1,
1455     DW_LNE_SET_ADDRESS = 2,
1456     DW_LNE_DEFINE_FILE = 3
1457   };
1458 
WriteBodyInternal(Writer * w)1459   bool WriteBodyInternal(Writer* w) {
1460     // Write prologue.
1461     Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>();
1462     uintptr_t start = w->position();
1463 
1464     // Used for special opcodes
1465     const int8_t line_base = 1;
1466     const uint8_t line_range = 7;
1467     const int8_t max_line_incr = (line_base + line_range - 1);
1468     const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1;
1469 
1470     w->Write<uint16_t>(2);  // Field version.
1471     Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>();
1472     uintptr_t prologue_start = w->position();
1473     w->Write<uint8_t>(1);  // Field minimum_instruction_length.
1474     w->Write<uint8_t>(1);  // Field default_is_stmt.
1475     w->Write<int8_t>(line_base);  // Field line_base.
1476     w->Write<uint8_t>(line_range);  // Field line_range.
1477     w->Write<uint8_t>(opcode_base);  // Field opcode_base.
1478     w->Write<uint8_t>(0);  // DW_LNS_COPY operands count.
1479     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_PC operands count.
1480     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_LINE operands count.
1481     w->Write<uint8_t>(1);  // DW_LNS_SET_FILE operands count.
1482     w->Write<uint8_t>(1);  // DW_LNS_SET_COLUMN operands count.
1483     w->Write<uint8_t>(0);  // DW_LNS_NEGATE_STMT operands count.
1484     w->Write<uint8_t>(0);  // Empty include_directories sequence.
1485     w->WriteString(desc_->GetFilename().get());  // File name.
1486     w->WriteULEB128(0);  // Current directory.
1487     w->WriteULEB128(0);  // Unknown modification time.
1488     w->WriteULEB128(0);  // Unknown file size.
1489     w->Write<uint8_t>(0);
1490     prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start));
1491 
1492     WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t));
1493     w->Write<intptr_t>(desc_->CodeStart());
1494     w->Write<uint8_t>(DW_LNS_COPY);
1495 
1496     intptr_t pc = 0;
1497     intptr_t line = 1;
1498     bool is_statement = true;
1499 
1500     List<LineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info();
1501     pc_info->Sort(&ComparePCInfo);
1502 
1503     int pc_info_length = pc_info->length();
1504     for (int i = 0; i < pc_info_length; i++) {
1505       LineInfo::PCInfo* info = &pc_info->at(i);
1506       DCHECK(info->pc_ >= pc);
1507 
1508       // Reduce bloating in the debug line table by removing duplicate line
1509       // entries (per DWARF2 standard).
1510       intptr_t  new_line = desc_->GetScriptLineNumber(info->pos_);
1511       if (new_line == line) {
1512         continue;
1513       }
1514 
1515       // Mark statement boundaries.  For a better debugging experience, mark
1516       // the last pc address in the function as a statement (e.g. "}"), so that
1517       // a user can see the result of the last line executed in the function,
1518       // should control reach the end.
1519       if ((i+1) == pc_info_length) {
1520         if (!is_statement) {
1521           w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
1522         }
1523       } else if (is_statement != info->is_statement_) {
1524         w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
1525         is_statement = !is_statement;
1526       }
1527 
1528       // Generate special opcodes, if possible.  This results in more compact
1529       // debug line tables.  See the DWARF 2.0 standard to learn more about
1530       // special opcodes.
1531       uintptr_t pc_diff = info->pc_ - pc;
1532       intptr_t line_diff = new_line - line;
1533 
1534       // Compute special opcode (see DWARF 2.0 standard)
1535       intptr_t special_opcode = (line_diff - line_base) +
1536                                 (line_range * pc_diff) + opcode_base;
1537 
1538       // If special_opcode is less than or equal to 255, it can be used as a
1539       // special opcode.  If line_diff is larger than the max line increment
1540       // allowed for a special opcode, or if line_diff is less than the minimum
1541       // line that can be added to the line register (i.e. line_base), then
1542       // special_opcode can't be used.
1543       if ((special_opcode >= opcode_base) && (special_opcode <= 255) &&
1544           (line_diff <= max_line_incr) && (line_diff >= line_base)) {
1545         w->Write<uint8_t>(special_opcode);
1546       } else {
1547         w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
1548         w->WriteSLEB128(pc_diff);
1549         w->Write<uint8_t>(DW_LNS_ADVANCE_LINE);
1550         w->WriteSLEB128(line_diff);
1551         w->Write<uint8_t>(DW_LNS_COPY);
1552       }
1553 
1554       // Increment the pc and line operands.
1555       pc += pc_diff;
1556       line += line_diff;
1557     }
1558     // Advance the pc to the end of the routine, since the end sequence opcode
1559     // requires this.
1560     w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
1561     w->WriteSLEB128(desc_->CodeSize() - pc);
1562     WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0);
1563     total_length.set(static_cast<uint32_t>(w->position() - start));
1564     return true;
1565   }
1566 
1567  private:
WriteExtendedOpcode(Writer * w,DWARF2ExtendedOpcode op,size_t operands_size)1568   void WriteExtendedOpcode(Writer* w,
1569                            DWARF2ExtendedOpcode op,
1570                            size_t operands_size) {
1571     w->Write<uint8_t>(0);
1572     w->WriteULEB128(operands_size + 1);
1573     w->Write<uint8_t>(op);
1574   }
1575 
ComparePCInfo(const LineInfo::PCInfo * a,const LineInfo::PCInfo * b)1576   static int ComparePCInfo(const LineInfo::PCInfo* a,
1577                            const LineInfo::PCInfo* b) {
1578     if (a->pc_ == b->pc_) {
1579       if (a->is_statement_ != b->is_statement_) {
1580         return b->is_statement_ ? +1 : -1;
1581       }
1582       return 0;
1583     } else if (a->pc_ > b->pc_) {
1584       return +1;
1585     } else {
1586       return -1;
1587     }
1588   }
1589 
1590   CodeDescription* desc_;
1591 };
1592 
1593 
1594 #if V8_TARGET_ARCH_X64
1595 
1596 class UnwindInfoSection : public DebugSection {
1597  public:
1598   explicit UnwindInfoSection(CodeDescription* desc);
1599   virtual bool WriteBodyInternal(Writer* w);
1600 
1601   int WriteCIE(Writer* w);
1602   void WriteFDE(Writer* w, int);
1603 
1604   void WriteFDEStateOnEntry(Writer* w);
1605   void WriteFDEStateAfterRBPPush(Writer* w);
1606   void WriteFDEStateAfterRBPSet(Writer* w);
1607   void WriteFDEStateAfterRBPPop(Writer* w);
1608 
1609   void WriteLength(Writer* w,
1610                    Writer::Slot<uint32_t>* length_slot,
1611                    int initial_position);
1612 
1613  private:
1614   CodeDescription* desc_;
1615 
1616   // DWARF3 Specification, Table 7.23
1617   enum CFIInstructions {
1618     DW_CFA_ADVANCE_LOC = 0x40,
1619     DW_CFA_OFFSET = 0x80,
1620     DW_CFA_RESTORE = 0xC0,
1621     DW_CFA_NOP = 0x00,
1622     DW_CFA_SET_LOC = 0x01,
1623     DW_CFA_ADVANCE_LOC1 = 0x02,
1624     DW_CFA_ADVANCE_LOC2 = 0x03,
1625     DW_CFA_ADVANCE_LOC4 = 0x04,
1626     DW_CFA_OFFSET_EXTENDED = 0x05,
1627     DW_CFA_RESTORE_EXTENDED = 0x06,
1628     DW_CFA_UNDEFINED = 0x07,
1629     DW_CFA_SAME_VALUE = 0x08,
1630     DW_CFA_REGISTER = 0x09,
1631     DW_CFA_REMEMBER_STATE = 0x0A,
1632     DW_CFA_RESTORE_STATE = 0x0B,
1633     DW_CFA_DEF_CFA = 0x0C,
1634     DW_CFA_DEF_CFA_REGISTER = 0x0D,
1635     DW_CFA_DEF_CFA_OFFSET = 0x0E,
1636 
1637     DW_CFA_DEF_CFA_EXPRESSION = 0x0F,
1638     DW_CFA_EXPRESSION = 0x10,
1639     DW_CFA_OFFSET_EXTENDED_SF = 0x11,
1640     DW_CFA_DEF_CFA_SF = 0x12,
1641     DW_CFA_DEF_CFA_OFFSET_SF = 0x13,
1642     DW_CFA_VAL_OFFSET = 0x14,
1643     DW_CFA_VAL_OFFSET_SF = 0x15,
1644     DW_CFA_VAL_EXPRESSION = 0x16
1645   };
1646 
1647   // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36
1648   enum RegisterMapping {
1649     // Only the relevant ones have been added to reduce clutter.
1650     AMD64_RBP = 6,
1651     AMD64_RSP = 7,
1652     AMD64_RA = 16
1653   };
1654 
1655   enum CFIConstants {
1656     CIE_ID = 0,
1657     CIE_VERSION = 1,
1658     CODE_ALIGN_FACTOR = 1,
1659     DATA_ALIGN_FACTOR = 1,
1660     RETURN_ADDRESS_REGISTER = AMD64_RA
1661   };
1662 };
1663 
1664 
WriteLength(Writer * w,Writer::Slot<uint32_t> * length_slot,int initial_position)1665 void UnwindInfoSection::WriteLength(Writer* w,
1666                                     Writer::Slot<uint32_t>* length_slot,
1667                                     int initial_position) {
1668   uint32_t align = (w->position() - initial_position) % kPointerSize;
1669 
1670   if (align != 0) {
1671     for (uint32_t i = 0; i < (kPointerSize - align); i++) {
1672       w->Write<uint8_t>(DW_CFA_NOP);
1673     }
1674   }
1675 
1676   DCHECK((w->position() - initial_position) % kPointerSize == 0);
1677   length_slot->set(static_cast<uint32_t>(w->position() - initial_position));
1678 }
1679 
1680 
UnwindInfoSection(CodeDescription * desc)1681 UnwindInfoSection::UnwindInfoSection(CodeDescription* desc)
1682 #ifdef __ELF
1683     : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1),
1684 #else
1685     : MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t),
1686                    MachOSection::S_REGULAR),
1687 #endif
1688       desc_(desc) { }
1689 
WriteCIE(Writer * w)1690 int UnwindInfoSection::WriteCIE(Writer* w) {
1691   Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>();
1692   uint32_t cie_position = static_cast<uint32_t>(w->position());
1693 
1694   // Write out the CIE header. Currently no 'common instructions' are
1695   // emitted onto the CIE; every FDE has its own set of instructions.
1696 
1697   w->Write<uint32_t>(CIE_ID);
1698   w->Write<uint8_t>(CIE_VERSION);
1699   w->Write<uint8_t>(0);  // Null augmentation string.
1700   w->WriteSLEB128(CODE_ALIGN_FACTOR);
1701   w->WriteSLEB128(DATA_ALIGN_FACTOR);
1702   w->Write<uint8_t>(RETURN_ADDRESS_REGISTER);
1703 
1704   WriteLength(w, &cie_length_slot, cie_position);
1705 
1706   return cie_position;
1707 }
1708 
1709 
WriteFDE(Writer * w,int cie_position)1710 void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) {
1711   // The only FDE for this function. The CFA is the current RBP.
1712   Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>();
1713   int fde_position = static_cast<uint32_t>(w->position());
1714   w->Write<int32_t>(fde_position - cie_position + 4);
1715 
1716   w->Write<uintptr_t>(desc_->CodeStart());
1717   w->Write<uintptr_t>(desc_->CodeSize());
1718 
1719   WriteFDEStateOnEntry(w);
1720   WriteFDEStateAfterRBPPush(w);
1721   WriteFDEStateAfterRBPSet(w);
1722   WriteFDEStateAfterRBPPop(w);
1723 
1724   WriteLength(w, &fde_length_slot, fde_position);
1725 }
1726 
1727 
WriteFDEStateOnEntry(Writer * w)1728 void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) {
1729   // The first state, just after the control has been transferred to the the
1730   // function.
1731 
1732   // RBP for this function will be the value of RSP after pushing the RBP
1733   // for the previous function. The previous RBP has not been pushed yet.
1734   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
1735   w->WriteULEB128(AMD64_RSP);
1736   w->WriteSLEB128(-kPointerSize);
1737 
1738   // The RA is stored at location CFA + kCallerPCOffset. This is an invariant,
1739   // and hence omitted from the next states.
1740   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1741   w->WriteULEB128(AMD64_RA);
1742   w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset);
1743 
1744   // The RBP of the previous function is still in RBP.
1745   w->Write<uint8_t>(DW_CFA_SAME_VALUE);
1746   w->WriteULEB128(AMD64_RBP);
1747 
1748   // Last location described by this entry.
1749   w->Write<uint8_t>(DW_CFA_SET_LOC);
1750   w->Write<uint64_t>(
1751       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH));
1752 }
1753 
1754 
WriteFDEStateAfterRBPPush(Writer * w)1755 void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) {
1756   // The second state, just after RBP has been pushed.
1757 
1758   // RBP / CFA for this function is now the current RSP, so just set the
1759   // offset from the previous rule (from -8) to 0.
1760   w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET);
1761   w->WriteULEB128(0);
1762 
1763   // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant
1764   // in this and the next state, and hence omitted in the next state.
1765   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1766   w->WriteULEB128(AMD64_RBP);
1767   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
1768 
1769   // Last location described by this entry.
1770   w->Write<uint8_t>(DW_CFA_SET_LOC);
1771   w->Write<uint64_t>(
1772       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET));
1773 }
1774 
1775 
WriteFDEStateAfterRBPSet(Writer * w)1776 void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) {
1777   // The third state, after the RBP has been set.
1778 
1779   // The CFA can now directly be set to RBP.
1780   w->Write<uint8_t>(DW_CFA_DEF_CFA);
1781   w->WriteULEB128(AMD64_RBP);
1782   w->WriteULEB128(0);
1783 
1784   // Last location described by this entry.
1785   w->Write<uint8_t>(DW_CFA_SET_LOC);
1786   w->Write<uint64_t>(
1787       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP));
1788 }
1789 
1790 
WriteFDEStateAfterRBPPop(Writer * w)1791 void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) {
1792   // The fourth (final) state. The RBP has been popped (just before issuing a
1793   // return).
1794 
1795   // The CFA can is now calculated in the same way as in the first state.
1796   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
1797   w->WriteULEB128(AMD64_RSP);
1798   w->WriteSLEB128(-kPointerSize);
1799 
1800   // The RBP
1801   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1802   w->WriteULEB128(AMD64_RBP);
1803   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
1804 
1805   // Last location described by this entry.
1806   w->Write<uint8_t>(DW_CFA_SET_LOC);
1807   w->Write<uint64_t>(desc_->CodeEnd());
1808 }
1809 
1810 
WriteBodyInternal(Writer * w)1811 bool UnwindInfoSection::WriteBodyInternal(Writer* w) {
1812   uint32_t cie_position = WriteCIE(w);
1813   WriteFDE(w, cie_position);
1814   return true;
1815 }
1816 
1817 
1818 #endif  // V8_TARGET_ARCH_X64
1819 
CreateDWARFSections(CodeDescription * desc,Zone * zone,DebugObject * obj)1820 static void CreateDWARFSections(CodeDescription* desc,
1821                                 Zone* zone,
1822                                 DebugObject* obj) {
1823   if (desc->IsLineInfoAvailable()) {
1824     obj->AddSection(new(zone) DebugInfoSection(desc));
1825     obj->AddSection(new(zone) DebugAbbrevSection(desc));
1826     obj->AddSection(new(zone) DebugLineSection(desc));
1827   }
1828 #if V8_TARGET_ARCH_X64
1829   obj->AddSection(new(zone) UnwindInfoSection(desc));
1830 #endif
1831 }
1832 
1833 
1834 // -------------------------------------------------------------------
1835 // Binary GDB JIT Interface as described in
1836 //   http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
1837 extern "C" {
1838   typedef enum {
1839     JIT_NOACTION = 0,
1840     JIT_REGISTER_FN,
1841     JIT_UNREGISTER_FN
1842   } JITAction;
1843 
1844   struct JITCodeEntry {
1845     JITCodeEntry* next_;
1846     JITCodeEntry* prev_;
1847     Address symfile_addr_;
1848     uint64_t symfile_size_;
1849   };
1850 
1851   struct JITDescriptor {
1852     uint32_t version_;
1853     uint32_t action_flag_;
1854     JITCodeEntry* relevant_entry_;
1855     JITCodeEntry* first_entry_;
1856   };
1857 
1858   // GDB will place breakpoint into this function.
1859   // To prevent GCC from inlining or removing it we place noinline attribute
1860   // and inline assembler statement inside.
__jit_debug_register_code()1861   void __attribute__((noinline)) __jit_debug_register_code() {
1862     __asm__("");
1863   }
1864 
1865   // GDB will inspect contents of this descriptor.
1866   // Static initialization is necessary to prevent GDB from seeing
1867   // uninitialized descriptor.
1868   JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
1869 
1870 #ifdef OBJECT_PRINT
__gdb_print_v8_object(Object * object)1871   void __gdb_print_v8_object(Object* object) {
1872     OFStream os(stdout);
1873     object->Print(os);
1874     os << std::flush;
1875   }
1876 #endif
1877 }
1878 
1879 
CreateCodeEntry(Address symfile_addr,uintptr_t symfile_size)1880 static JITCodeEntry* CreateCodeEntry(Address symfile_addr,
1881                                      uintptr_t symfile_size) {
1882   JITCodeEntry* entry = static_cast<JITCodeEntry*>(
1883       malloc(sizeof(JITCodeEntry) + symfile_size));
1884 
1885   entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1);
1886   entry->symfile_size_ = symfile_size;
1887   MemCopy(entry->symfile_addr_, symfile_addr, symfile_size);
1888 
1889   entry->prev_ = entry->next_ = NULL;
1890 
1891   return entry;
1892 }
1893 
1894 
DestroyCodeEntry(JITCodeEntry * entry)1895 static void DestroyCodeEntry(JITCodeEntry* entry) {
1896   free(entry);
1897 }
1898 
1899 
RegisterCodeEntry(JITCodeEntry * entry)1900 static void RegisterCodeEntry(JITCodeEntry* entry) {
1901   entry->next_ = __jit_debug_descriptor.first_entry_;
1902   if (entry->next_ != NULL) entry->next_->prev_ = entry;
1903   __jit_debug_descriptor.first_entry_ =
1904       __jit_debug_descriptor.relevant_entry_ = entry;
1905 
1906   __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN;
1907   __jit_debug_register_code();
1908 }
1909 
1910 
UnregisterCodeEntry(JITCodeEntry * entry)1911 static void UnregisterCodeEntry(JITCodeEntry* entry) {
1912   if (entry->prev_ != NULL) {
1913     entry->prev_->next_ = entry->next_;
1914   } else {
1915     __jit_debug_descriptor.first_entry_ = entry->next_;
1916   }
1917 
1918   if (entry->next_ != NULL) {
1919     entry->next_->prev_ = entry->prev_;
1920   }
1921 
1922   __jit_debug_descriptor.relevant_entry_ = entry;
1923   __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN;
1924   __jit_debug_register_code();
1925 }
1926 
1927 
CreateELFObject(CodeDescription * desc,Isolate * isolate)1928 static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) {
1929 #ifdef __MACH_O
1930   Zone zone;
1931   MachO mach_o(&zone);
1932   Writer w(&mach_o);
1933 
1934   mach_o.AddSection(new(&zone) MachOTextSection(kCodeAlignment,
1935                                                 desc->CodeStart(),
1936                                                 desc->CodeSize()));
1937 
1938   CreateDWARFSections(desc, &zone, &mach_o);
1939 
1940   mach_o.Write(&w, desc->CodeStart(), desc->CodeSize());
1941 #else
1942   Zone zone;
1943   ELF elf(&zone);
1944   Writer w(&elf);
1945 
1946   int text_section_index = elf.AddSection(
1947       new(&zone) FullHeaderELFSection(
1948           ".text",
1949           ELFSection::TYPE_NOBITS,
1950           kCodeAlignment,
1951           desc->CodeStart(),
1952           0,
1953           desc->CodeSize(),
1954           ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC));
1955 
1956   CreateSymbolsTable(desc, &zone, &elf, text_section_index);
1957 
1958   CreateDWARFSections(desc, &zone, &elf);
1959 
1960   elf.Write(&w);
1961 #endif
1962 
1963   return CreateCodeEntry(w.buffer(), w.position());
1964 }
1965 
1966 
1967 struct AddressRange {
1968   Address start;
1969   Address end;
1970 };
1971 
1972 struct SplayTreeConfig {
1973   typedef AddressRange Key;
1974   typedef JITCodeEntry* Value;
1975   static const AddressRange kNoKey;
NoValuev8::internal::GDBJITInterface::SplayTreeConfig1976   static Value NoValue() { return NULL; }
Comparev8::internal::GDBJITInterface::SplayTreeConfig1977   static int Compare(const AddressRange& a, const AddressRange& b) {
1978     // ptrdiff_t probably doesn't fit in an int.
1979     if (a.start < b.start) return -1;
1980     if (a.start == b.start) return 0;
1981     return 1;
1982   }
1983 };
1984 
1985 const AddressRange SplayTreeConfig::kNoKey = {0, 0};
1986 typedef SplayTree<SplayTreeConfig> CodeMap;
1987 
GetCodeMap()1988 static CodeMap* GetCodeMap() {
1989   static CodeMap* code_map = NULL;
1990   if (code_map == NULL) code_map = new CodeMap();
1991   return code_map;
1992 }
1993 
1994 
HashCodeAddress(Address addr)1995 static uint32_t HashCodeAddress(Address addr) {
1996   static const uintptr_t kGoldenRatio = 2654435761u;
1997   uintptr_t offset = OffsetFrom(addr);
1998   return static_cast<uint32_t>((offset >> kCodeAlignmentBits) * kGoldenRatio);
1999 }
2000 
2001 
GetLineMap()2002 static HashMap* GetLineMap() {
2003   static HashMap* line_map = NULL;
2004   if (line_map == NULL) line_map = new HashMap(&HashMap::PointersMatch);
2005   return line_map;
2006 }
2007 
2008 
PutLineInfo(Address addr,LineInfo * info)2009 static void PutLineInfo(Address addr, LineInfo* info) {
2010   HashMap* line_map = GetLineMap();
2011   HashMap::Entry* e = line_map->LookupOrInsert(addr, HashCodeAddress(addr));
2012   if (e->value != NULL) delete static_cast<LineInfo*>(e->value);
2013   e->value = info;
2014 }
2015 
2016 
GetLineInfo(Address addr)2017 static LineInfo* GetLineInfo(Address addr) {
2018   void* value = GetLineMap()->Remove(addr, HashCodeAddress(addr));
2019   return static_cast<LineInfo*>(value);
2020 }
2021 
2022 
AddUnwindInfo(CodeDescription * desc)2023 static void AddUnwindInfo(CodeDescription* desc) {
2024 #if V8_TARGET_ARCH_X64
2025   if (desc->is_function()) {
2026     // To avoid propagating unwinding information through
2027     // compilation pipeline we use an approximation.
2028     // For most use cases this should not affect usability.
2029     static const int kFramePointerPushOffset = 1;
2030     static const int kFramePointerSetOffset = 4;
2031     static const int kFramePointerPopOffset = -3;
2032 
2033     uintptr_t frame_pointer_push_address =
2034         desc->CodeStart() + kFramePointerPushOffset;
2035 
2036     uintptr_t frame_pointer_set_address =
2037         desc->CodeStart() + kFramePointerSetOffset;
2038 
2039     uintptr_t frame_pointer_pop_address =
2040         desc->CodeEnd() + kFramePointerPopOffset;
2041 
2042     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
2043                                     frame_pointer_push_address);
2044     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
2045                                     frame_pointer_set_address);
2046     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
2047                                     frame_pointer_pop_address);
2048   } else {
2049     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
2050                                     desc->CodeStart());
2051     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
2052                                     desc->CodeStart());
2053     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
2054                                     desc->CodeEnd());
2055   }
2056 #endif  // V8_TARGET_ARCH_X64
2057 }
2058 
2059 
2060 static base::LazyMutex mutex = LAZY_MUTEX_INITIALIZER;
2061 
2062 
2063 // Remove entries from the splay tree that intersect the given address range,
2064 // and deregister them from GDB.
RemoveJITCodeEntries(CodeMap * map,const AddressRange & range)2065 static void RemoveJITCodeEntries(CodeMap* map, const AddressRange& range) {
2066   DCHECK(range.start < range.end);
2067   CodeMap::Locator cur;
2068   if (map->FindGreatestLessThan(range, &cur) || map->FindLeast(&cur)) {
2069     // Skip entries that are entirely less than the range of interest.
2070     while (cur.key().end <= range.start) {
2071       // CodeMap::FindLeastGreaterThan succeeds for entries whose key is greater
2072       // than _or equal to_ the given key, so we have to advance our key to get
2073       // the next one.
2074       AddressRange new_key;
2075       new_key.start = cur.key().end;
2076       new_key.end = 0;
2077       if (!map->FindLeastGreaterThan(new_key, &cur)) return;
2078     }
2079     // Evict intersecting ranges.
2080     while (cur.key().start < range.end) {
2081       AddressRange old_range = cur.key();
2082       JITCodeEntry* old_entry = cur.value();
2083 
2084       UnregisterCodeEntry(old_entry);
2085       DestroyCodeEntry(old_entry);
2086 
2087       CHECK(map->Remove(old_range));
2088       if (!map->FindLeastGreaterThan(old_range, &cur)) return;
2089     }
2090   }
2091 }
2092 
2093 
2094 // Insert the entry into the splay tree and register it with GDB.
AddJITCodeEntry(CodeMap * map,const AddressRange & range,JITCodeEntry * entry,bool dump_if_enabled,const char * name_hint)2095 static void AddJITCodeEntry(CodeMap* map, const AddressRange& range,
2096                             JITCodeEntry* entry, bool dump_if_enabled,
2097                             const char* name_hint) {
2098 #if defined(DEBUG) && !V8_OS_WIN
2099   static int file_num = 0;
2100   if (FLAG_gdbjit_dump && dump_if_enabled) {
2101     static const int kMaxFileNameSize = 64;
2102     char file_name[64];
2103 
2104     SNPrintF(Vector<char>(file_name, kMaxFileNameSize), "/tmp/elfdump%s%d.o",
2105              (name_hint != NULL) ? name_hint : "", file_num++);
2106     WriteBytes(file_name, entry->symfile_addr_,
2107                static_cast<int>(entry->symfile_size_));
2108   }
2109 #endif
2110 
2111   CodeMap::Locator cur;
2112   CHECK(map->Insert(range, &cur));
2113   cur.set_value(entry);
2114 
2115   RegisterCodeEntry(entry);
2116 }
2117 
2118 
AddCode(const char * name,Code * code,SharedFunctionInfo * shared,LineInfo * lineinfo)2119 static void AddCode(const char* name, Code* code, SharedFunctionInfo* shared,
2120                     LineInfo* lineinfo) {
2121   DisallowHeapAllocation no_gc;
2122 
2123   CodeMap* code_map = GetCodeMap();
2124   AddressRange range;
2125   range.start = code->address();
2126   range.end = code->address() + code->CodeSize();
2127   RemoveJITCodeEntries(code_map, range);
2128 
2129   CodeDescription code_desc(name, code, shared, lineinfo);
2130 
2131   if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) {
2132     delete lineinfo;
2133     return;
2134   }
2135 
2136   AddUnwindInfo(&code_desc);
2137   Isolate* isolate = code->GetIsolate();
2138   JITCodeEntry* entry = CreateELFObject(&code_desc, isolate);
2139 
2140   delete lineinfo;
2141 
2142   const char* name_hint = NULL;
2143   bool should_dump = false;
2144   if (FLAG_gdbjit_dump) {
2145     if (strlen(FLAG_gdbjit_dump_filter) == 0) {
2146       name_hint = name;
2147       should_dump = true;
2148     } else if (name != NULL) {
2149       name_hint = strstr(name, FLAG_gdbjit_dump_filter);
2150       should_dump = (name_hint != NULL);
2151     }
2152   }
2153   AddJITCodeEntry(code_map, range, entry, should_dump, name_hint);
2154 }
2155 
2156 
EventHandler(const v8::JitCodeEvent * event)2157 void EventHandler(const v8::JitCodeEvent* event) {
2158   if (!FLAG_gdbjit) return;
2159   base::LockGuard<base::Mutex> lock_guard(mutex.Pointer());
2160   switch (event->type) {
2161     case v8::JitCodeEvent::CODE_ADDED: {
2162       Address addr = reinterpret_cast<Address>(event->code_start);
2163       Code* code = Code::GetCodeFromTargetAddress(addr);
2164       LineInfo* lineinfo = GetLineInfo(addr);
2165       EmbeddedVector<char, 256> buffer;
2166       StringBuilder builder(buffer.start(), buffer.length());
2167       builder.AddSubstring(event->name.str, static_cast<int>(event->name.len));
2168       // It's called UnboundScript in the API but it's a SharedFunctionInfo.
2169       SharedFunctionInfo* shared =
2170           event->script.IsEmpty() ? NULL : *Utils::OpenHandle(*event->script);
2171       AddCode(builder.Finalize(), code, shared, lineinfo);
2172       break;
2173     }
2174     case v8::JitCodeEvent::CODE_MOVED:
2175       // Enabling the GDB JIT interface should disable code compaction.
2176       UNREACHABLE();
2177       break;
2178     case v8::JitCodeEvent::CODE_REMOVED:
2179       // Do nothing.  Instead, adding code causes eviction of any entry whose
2180       // address range intersects the address range of the added code.
2181       break;
2182     case v8::JitCodeEvent::CODE_ADD_LINE_POS_INFO: {
2183       LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
2184       line_info->SetPosition(static_cast<intptr_t>(event->line_info.offset),
2185                              static_cast<int>(event->line_info.pos),
2186                              event->line_info.position_type ==
2187                                  v8::JitCodeEvent::STATEMENT_POSITION);
2188       break;
2189     }
2190     case v8::JitCodeEvent::CODE_START_LINE_INFO_RECORDING: {
2191       v8::JitCodeEvent* mutable_event = const_cast<v8::JitCodeEvent*>(event);
2192       mutable_event->user_data = new LineInfo();
2193       break;
2194     }
2195     case v8::JitCodeEvent::CODE_END_LINE_INFO_RECORDING: {
2196       LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
2197       PutLineInfo(reinterpret_cast<Address>(event->code_start), line_info);
2198       break;
2199     }
2200   }
2201 }
2202 #endif
2203 }  // namespace GDBJITInterface
2204 }  // namespace internal
2205 }  // namespace v8
2206