1 //=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines ExprEngine's support for calls and returns.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
15 #include "PrettyStackTraceLocationContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/ParentMap.h"
19 #include "clang/Analysis/Analyses/LiveVariables.h"
20 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Support/SaveAndRestore.h"
25
26 using namespace clang;
27 using namespace ento;
28
29 #define DEBUG_TYPE "ExprEngine"
30
31 STATISTIC(NumOfDynamicDispatchPathSplits,
32 "The # of times we split the path due to imprecise dynamic dispatch info");
33
34 STATISTIC(NumInlinedCalls,
35 "The # of times we inlined a call");
36
37 STATISTIC(NumReachedInlineCountMax,
38 "The # of times we reached inline count maximum");
39
processCallEnter(CallEnter CE,ExplodedNode * Pred)40 void ExprEngine::processCallEnter(CallEnter CE, ExplodedNode *Pred) {
41 // Get the entry block in the CFG of the callee.
42 const StackFrameContext *calleeCtx = CE.getCalleeContext();
43 PrettyStackTraceLocationContext CrashInfo(calleeCtx);
44
45 const CFG *CalleeCFG = calleeCtx->getCFG();
46 const CFGBlock *Entry = &(CalleeCFG->getEntry());
47
48 // Validate the CFG.
49 assert(Entry->empty());
50 assert(Entry->succ_size() == 1);
51
52 // Get the solitary successor.
53 const CFGBlock *Succ = *(Entry->succ_begin());
54
55 // Construct an edge representing the starting location in the callee.
56 BlockEdge Loc(Entry, Succ, calleeCtx);
57
58 ProgramStateRef state = Pred->getState();
59
60 // Construct a new node and add it to the worklist.
61 bool isNew;
62 ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
63 Node->addPredecessor(Pred, G);
64 if (isNew)
65 Engine.getWorkList()->enqueue(Node);
66 }
67
68 // Find the last statement on the path to the exploded node and the
69 // corresponding Block.
70 static std::pair<const Stmt*,
getLastStmt(const ExplodedNode * Node)71 const CFGBlock*> getLastStmt(const ExplodedNode *Node) {
72 const Stmt *S = nullptr;
73 const CFGBlock *Blk = nullptr;
74 const StackFrameContext *SF =
75 Node->getLocation().getLocationContext()->getCurrentStackFrame();
76
77 // Back up through the ExplodedGraph until we reach a statement node in this
78 // stack frame.
79 while (Node) {
80 const ProgramPoint &PP = Node->getLocation();
81
82 if (PP.getLocationContext()->getCurrentStackFrame() == SF) {
83 if (Optional<StmtPoint> SP = PP.getAs<StmtPoint>()) {
84 S = SP->getStmt();
85 break;
86 } else if (Optional<CallExitEnd> CEE = PP.getAs<CallExitEnd>()) {
87 S = CEE->getCalleeContext()->getCallSite();
88 if (S)
89 break;
90
91 // If there is no statement, this is an implicitly-generated call.
92 // We'll walk backwards over it and then continue the loop to find
93 // an actual statement.
94 Optional<CallEnter> CE;
95 do {
96 Node = Node->getFirstPred();
97 CE = Node->getLocationAs<CallEnter>();
98 } while (!CE || CE->getCalleeContext() != CEE->getCalleeContext());
99
100 // Continue searching the graph.
101 } else if (Optional<BlockEdge> BE = PP.getAs<BlockEdge>()) {
102 Blk = BE->getSrc();
103 }
104 } else if (Optional<CallEnter> CE = PP.getAs<CallEnter>()) {
105 // If we reached the CallEnter for this function, it has no statements.
106 if (CE->getCalleeContext() == SF)
107 break;
108 }
109
110 if (Node->pred_empty())
111 return std::make_pair(nullptr, nullptr);
112
113 Node = *Node->pred_begin();
114 }
115
116 return std::make_pair(S, Blk);
117 }
118
119 /// Adjusts a return value when the called function's return type does not
120 /// match the caller's expression type. This can happen when a dynamic call
121 /// is devirtualized, and the overridding method has a covariant (more specific)
122 /// return type than the parent's method. For C++ objects, this means we need
123 /// to add base casts.
adjustReturnValue(SVal V,QualType ExpectedTy,QualType ActualTy,StoreManager & StoreMgr)124 static SVal adjustReturnValue(SVal V, QualType ExpectedTy, QualType ActualTy,
125 StoreManager &StoreMgr) {
126 // For now, the only adjustments we handle apply only to locations.
127 if (!V.getAs<Loc>())
128 return V;
129
130 // If the types already match, don't do any unnecessary work.
131 ExpectedTy = ExpectedTy.getCanonicalType();
132 ActualTy = ActualTy.getCanonicalType();
133 if (ExpectedTy == ActualTy)
134 return V;
135
136 // No adjustment is needed between Objective-C pointer types.
137 if (ExpectedTy->isObjCObjectPointerType() &&
138 ActualTy->isObjCObjectPointerType())
139 return V;
140
141 // C++ object pointers may need "derived-to-base" casts.
142 const CXXRecordDecl *ExpectedClass = ExpectedTy->getPointeeCXXRecordDecl();
143 const CXXRecordDecl *ActualClass = ActualTy->getPointeeCXXRecordDecl();
144 if (ExpectedClass && ActualClass) {
145 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
146 /*DetectVirtual=*/false);
147 if (ActualClass->isDerivedFrom(ExpectedClass, Paths) &&
148 !Paths.isAmbiguous(ActualTy->getCanonicalTypeUnqualified())) {
149 return StoreMgr.evalDerivedToBase(V, Paths.front());
150 }
151 }
152
153 // Unfortunately, Objective-C does not enforce that overridden methods have
154 // covariant return types, so we can't assert that that never happens.
155 // Be safe and return UnknownVal().
156 return UnknownVal();
157 }
158
removeDeadOnEndOfFunction(NodeBuilderContext & BC,ExplodedNode * Pred,ExplodedNodeSet & Dst)159 void ExprEngine::removeDeadOnEndOfFunction(NodeBuilderContext& BC,
160 ExplodedNode *Pred,
161 ExplodedNodeSet &Dst) {
162 // Find the last statement in the function and the corresponding basic block.
163 const Stmt *LastSt = nullptr;
164 const CFGBlock *Blk = nullptr;
165 std::tie(LastSt, Blk) = getLastStmt(Pred);
166 if (!Blk || !LastSt) {
167 Dst.Add(Pred);
168 return;
169 }
170
171 // Here, we destroy the current location context. We use the current
172 // function's entire body as a diagnostic statement, with which the program
173 // point will be associated. However, we only want to use LastStmt as a
174 // reference for what to clean up if it's a ReturnStmt; otherwise, everything
175 // is dead.
176 SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC);
177 const LocationContext *LCtx = Pred->getLocationContext();
178 removeDead(Pred, Dst, dyn_cast<ReturnStmt>(LastSt), LCtx,
179 LCtx->getAnalysisDeclContext()->getBody(),
180 ProgramPoint::PostStmtPurgeDeadSymbolsKind);
181 }
182
wasDifferentDeclUsedForInlining(CallEventRef<> Call,const StackFrameContext * calleeCtx)183 static bool wasDifferentDeclUsedForInlining(CallEventRef<> Call,
184 const StackFrameContext *calleeCtx) {
185 const Decl *RuntimeCallee = calleeCtx->getDecl();
186 const Decl *StaticDecl = Call->getDecl();
187 assert(RuntimeCallee);
188 if (!StaticDecl)
189 return true;
190 return RuntimeCallee->getCanonicalDecl() != StaticDecl->getCanonicalDecl();
191 }
192
193 /// Returns true if the CXXConstructExpr \p E was intended to construct a
194 /// prvalue for the region in \p V.
195 ///
196 /// Note that we can't just test for rvalue vs. glvalue because
197 /// CXXConstructExprs embedded in DeclStmts and initializers are considered
198 /// rvalues by the AST, and the analyzer would like to treat them as lvalues.
isTemporaryPRValue(const CXXConstructExpr * E,SVal V)199 static bool isTemporaryPRValue(const CXXConstructExpr *E, SVal V) {
200 if (E->isGLValue())
201 return false;
202
203 const MemRegion *MR = V.getAsRegion();
204 if (!MR)
205 return false;
206
207 return isa<CXXTempObjectRegion>(MR);
208 }
209
210 /// The call exit is simulated with a sequence of nodes, which occur between
211 /// CallExitBegin and CallExitEnd. The following operations occur between the
212 /// two program points:
213 /// 1. CallExitBegin (triggers the start of call exit sequence)
214 /// 2. Bind the return value
215 /// 3. Run Remove dead bindings to clean up the dead symbols from the callee.
216 /// 4. CallExitEnd (switch to the caller context)
217 /// 5. PostStmt<CallExpr>
processCallExit(ExplodedNode * CEBNode)218 void ExprEngine::processCallExit(ExplodedNode *CEBNode) {
219 // Step 1 CEBNode was generated before the call.
220 PrettyStackTraceLocationContext CrashInfo(CEBNode->getLocationContext());
221 const StackFrameContext *calleeCtx =
222 CEBNode->getLocationContext()->getCurrentStackFrame();
223
224 // The parent context might not be a stack frame, so make sure we
225 // look up the first enclosing stack frame.
226 const StackFrameContext *callerCtx =
227 calleeCtx->getParent()->getCurrentStackFrame();
228
229 const Stmt *CE = calleeCtx->getCallSite();
230 ProgramStateRef state = CEBNode->getState();
231 // Find the last statement in the function and the corresponding basic block.
232 const Stmt *LastSt = nullptr;
233 const CFGBlock *Blk = nullptr;
234 std::tie(LastSt, Blk) = getLastStmt(CEBNode);
235
236 // Generate a CallEvent /before/ cleaning the state, so that we can get the
237 // correct value for 'this' (if necessary).
238 CallEventManager &CEMgr = getStateManager().getCallEventManager();
239 CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state);
240
241 // Step 2: generate node with bound return value: CEBNode -> BindedRetNode.
242
243 // If the callee returns an expression, bind its value to CallExpr.
244 if (CE) {
245 if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) {
246 const LocationContext *LCtx = CEBNode->getLocationContext();
247 SVal V = state->getSVal(RS, LCtx);
248
249 // Ensure that the return type matches the type of the returned Expr.
250 if (wasDifferentDeclUsedForInlining(Call, calleeCtx)) {
251 QualType ReturnedTy =
252 CallEvent::getDeclaredResultType(calleeCtx->getDecl());
253 if (!ReturnedTy.isNull()) {
254 if (const Expr *Ex = dyn_cast<Expr>(CE)) {
255 V = adjustReturnValue(V, Ex->getType(), ReturnedTy,
256 getStoreManager());
257 }
258 }
259 }
260
261 state = state->BindExpr(CE, callerCtx, V);
262 }
263
264 // Bind the constructed object value to CXXConstructExpr.
265 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
266 loc::MemRegionVal This =
267 svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx);
268 SVal ThisV = state->getSVal(This);
269
270 // If the constructed object is a temporary prvalue, get its bindings.
271 if (isTemporaryPRValue(CCE, ThisV))
272 ThisV = state->getSVal(ThisV.castAs<Loc>());
273
274 state = state->BindExpr(CCE, callerCtx, ThisV);
275 }
276 }
277
278 // Step 3: BindedRetNode -> CleanedNodes
279 // If we can find a statement and a block in the inlined function, run remove
280 // dead bindings before returning from the call. This is important to ensure
281 // that we report the issues such as leaks in the stack contexts in which
282 // they occurred.
283 ExplodedNodeSet CleanedNodes;
284 if (LastSt && Blk && AMgr.options.AnalysisPurgeOpt != PurgeNone) {
285 static SimpleProgramPointTag retValBind("ExprEngine", "Bind Return Value");
286 PostStmt Loc(LastSt, calleeCtx, &retValBind);
287 bool isNew;
288 ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew);
289 BindedRetNode->addPredecessor(CEBNode, G);
290 if (!isNew)
291 return;
292
293 NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode);
294 currBldrCtx = &Ctx;
295 // Here, we call the Symbol Reaper with 0 statement and callee location
296 // context, telling it to clean up everything in the callee's context
297 // (and its children). We use the callee's function body as a diagnostic
298 // statement, with which the program point will be associated.
299 removeDead(BindedRetNode, CleanedNodes, nullptr, calleeCtx,
300 calleeCtx->getAnalysisDeclContext()->getBody(),
301 ProgramPoint::PostStmtPurgeDeadSymbolsKind);
302 currBldrCtx = nullptr;
303 } else {
304 CleanedNodes.Add(CEBNode);
305 }
306
307 for (ExplodedNodeSet::iterator I = CleanedNodes.begin(),
308 E = CleanedNodes.end(); I != E; ++I) {
309
310 // Step 4: Generate the CallExit and leave the callee's context.
311 // CleanedNodes -> CEENode
312 CallExitEnd Loc(calleeCtx, callerCtx);
313 bool isNew;
314 ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState();
315 ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew);
316 CEENode->addPredecessor(*I, G);
317 if (!isNew)
318 return;
319
320 // Step 5: Perform the post-condition check of the CallExpr and enqueue the
321 // result onto the work list.
322 // CEENode -> Dst -> WorkList
323 NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode);
324 SaveAndRestore<const NodeBuilderContext*> NBCSave(currBldrCtx,
325 &Ctx);
326 SaveAndRestore<unsigned> CBISave(currStmtIdx, calleeCtx->getIndex());
327
328 CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState);
329
330 ExplodedNodeSet DstPostCall;
331 getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode,
332 *UpdatedCall, *this,
333 /*WasInlined=*/true);
334
335 ExplodedNodeSet Dst;
336 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
337 getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg,
338 *this,
339 /*WasInlined=*/true);
340 } else if (CE) {
341 getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE,
342 *this, /*WasInlined=*/true);
343 } else {
344 Dst.insert(DstPostCall);
345 }
346
347 // Enqueue the next element in the block.
348 for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end();
349 PSI != PSE; ++PSI) {
350 Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(),
351 calleeCtx->getIndex()+1);
352 }
353 }
354 }
355
examineStackFrames(const Decl * D,const LocationContext * LCtx,bool & IsRecursive,unsigned & StackDepth)356 void ExprEngine::examineStackFrames(const Decl *D, const LocationContext *LCtx,
357 bool &IsRecursive, unsigned &StackDepth) {
358 IsRecursive = false;
359 StackDepth = 0;
360
361 while (LCtx) {
362 if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(LCtx)) {
363 const Decl *DI = SFC->getDecl();
364
365 // Mark recursive (and mutually recursive) functions and always count
366 // them when measuring the stack depth.
367 if (DI == D) {
368 IsRecursive = true;
369 ++StackDepth;
370 LCtx = LCtx->getParent();
371 continue;
372 }
373
374 // Do not count the small functions when determining the stack depth.
375 AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(DI);
376 const CFG *CalleeCFG = CalleeADC->getCFG();
377 if (CalleeCFG->getNumBlockIDs() > AMgr.options.getAlwaysInlineSize())
378 ++StackDepth;
379 }
380 LCtx = LCtx->getParent();
381 }
382
383 }
384
IsInStdNamespace(const FunctionDecl * FD)385 static bool IsInStdNamespace(const FunctionDecl *FD) {
386 const DeclContext *DC = FD->getEnclosingNamespaceContext();
387 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
388 if (!ND)
389 return false;
390
391 while (const DeclContext *Parent = ND->getParent()) {
392 if (!isa<NamespaceDecl>(Parent))
393 break;
394 ND = cast<NamespaceDecl>(Parent);
395 }
396
397 return ND->isStdNamespace();
398 }
399
400 // The GDM component containing the dynamic dispatch bifurcation info. When
401 // the exact type of the receiver is not known, we want to explore both paths -
402 // one on which we do inline it and the other one on which we don't. This is
403 // done to ensure we do not drop coverage.
404 // This is the map from the receiver region to a bool, specifying either we
405 // consider this region's information precise or not along the given path.
406 namespace {
407 enum DynamicDispatchMode {
408 DynamicDispatchModeInlined = 1,
409 DynamicDispatchModeConservative
410 };
411 }
REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap,CLANG_ENTO_PROGRAMSTATE_MAP (const MemRegion *,unsigned))412 REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap,
413 CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *,
414 unsigned))
415
416 bool ExprEngine::inlineCall(const CallEvent &Call, const Decl *D,
417 NodeBuilder &Bldr, ExplodedNode *Pred,
418 ProgramStateRef State) {
419 assert(D);
420
421 const LocationContext *CurLC = Pred->getLocationContext();
422 const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
423 const LocationContext *ParentOfCallee = CallerSFC;
424 if (Call.getKind() == CE_Block &&
425 !cast<BlockCall>(Call).isConversionFromLambda()) {
426 const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion();
427 assert(BR && "If we have the block definition we should have its region");
428 AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D);
429 ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC,
430 cast<BlockDecl>(D),
431 BR);
432 }
433
434 // This may be NULL, but that's fine.
435 const Expr *CallE = Call.getOriginExpr();
436
437 // Construct a new stack frame for the callee.
438 AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
439 const StackFrameContext *CalleeSFC =
440 CalleeADC->getStackFrame(ParentOfCallee, CallE,
441 currBldrCtx->getBlock(),
442 currStmtIdx);
443
444
445 CallEnter Loc(CallE, CalleeSFC, CurLC);
446
447 // Construct a new state which contains the mapping from actual to
448 // formal arguments.
449 State = State->enterStackFrame(Call, CalleeSFC);
450
451 bool isNew;
452 if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) {
453 N->addPredecessor(Pred, G);
454 if (isNew)
455 Engine.getWorkList()->enqueue(N);
456 }
457
458 // If we decided to inline the call, the successor has been manually
459 // added onto the work list so remove it from the node builder.
460 Bldr.takeNodes(Pred);
461
462 NumInlinedCalls++;
463
464 // Mark the decl as visited.
465 if (VisitedCallees)
466 VisitedCallees->insert(D);
467
468 return true;
469 }
470
getInlineFailedState(ProgramStateRef State,const Stmt * CallE)471 static ProgramStateRef getInlineFailedState(ProgramStateRef State,
472 const Stmt *CallE) {
473 const void *ReplayState = State->get<ReplayWithoutInlining>();
474 if (!ReplayState)
475 return nullptr;
476
477 assert(ReplayState == CallE && "Backtracked to the wrong call.");
478 (void)CallE;
479
480 return State->remove<ReplayWithoutInlining>();
481 }
482
VisitCallExpr(const CallExpr * CE,ExplodedNode * Pred,ExplodedNodeSet & dst)483 void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
484 ExplodedNodeSet &dst) {
485 // Perform the previsit of the CallExpr.
486 ExplodedNodeSet dstPreVisit;
487 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
488
489 // Get the call in its initial state. We use this as a template to perform
490 // all the checks.
491 CallEventManager &CEMgr = getStateManager().getCallEventManager();
492 CallEventRef<> CallTemplate
493 = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext());
494
495 // Evaluate the function call. We try each of the checkers
496 // to see if the can evaluate the function call.
497 ExplodedNodeSet dstCallEvaluated;
498 for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
499 I != E; ++I) {
500 evalCall(dstCallEvaluated, *I, *CallTemplate);
501 }
502
503 // Finally, perform the post-condition check of the CallExpr and store
504 // the created nodes in 'Dst'.
505 // Note that if the call was inlined, dstCallEvaluated will be empty.
506 // The post-CallExpr check will occur in processCallExit.
507 getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
508 *this);
509 }
510
evalCall(ExplodedNodeSet & Dst,ExplodedNode * Pred,const CallEvent & Call)511 void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred,
512 const CallEvent &Call) {
513 // WARNING: At this time, the state attached to 'Call' may be older than the
514 // state in 'Pred'. This is a minor optimization since CheckerManager will
515 // use an updated CallEvent instance when calling checkers, but if 'Call' is
516 // ever used directly in this function all callers should be updated to pass
517 // the most recent state. (It is probably not worth doing the work here since
518 // for some callers this will not be necessary.)
519
520 // Run any pre-call checks using the generic call interface.
521 ExplodedNodeSet dstPreVisit;
522 getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred, Call, *this);
523
524 // Actually evaluate the function call. We try each of the checkers
525 // to see if the can evaluate the function call, and get a callback at
526 // defaultEvalCall if all of them fail.
527 ExplodedNodeSet dstCallEvaluated;
528 getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit,
529 Call, *this);
530
531 // Finally, run any post-call checks.
532 getCheckerManager().runCheckersForPostCall(Dst, dstCallEvaluated,
533 Call, *this);
534 }
535
bindReturnValue(const CallEvent & Call,const LocationContext * LCtx,ProgramStateRef State)536 ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call,
537 const LocationContext *LCtx,
538 ProgramStateRef State) {
539 const Expr *E = Call.getOriginExpr();
540 if (!E)
541 return State;
542
543 // Some method families have known return values.
544 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
545 switch (Msg->getMethodFamily()) {
546 default:
547 break;
548 case OMF_autorelease:
549 case OMF_retain:
550 case OMF_self: {
551 // These methods return their receivers.
552 return State->BindExpr(E, LCtx, Msg->getReceiverSVal());
553 }
554 }
555 } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(&Call)){
556 SVal ThisV = C->getCXXThisVal();
557
558 // If the constructed object is a temporary prvalue, get its bindings.
559 if (isTemporaryPRValue(cast<CXXConstructExpr>(E), ThisV))
560 ThisV = State->getSVal(ThisV.castAs<Loc>());
561
562 return State->BindExpr(E, LCtx, ThisV);
563 }
564
565 // Conjure a symbol if the return value is unknown.
566 QualType ResultTy = Call.getResultType();
567 SValBuilder &SVB = getSValBuilder();
568 unsigned Count = currBldrCtx->blockCount();
569 SVal R = SVB.conjureSymbolVal(nullptr, E, LCtx, ResultTy, Count);
570 return State->BindExpr(E, LCtx, R);
571 }
572
573 // Conservatively evaluate call by invalidating regions and binding
574 // a conjured return value.
conservativeEvalCall(const CallEvent & Call,NodeBuilder & Bldr,ExplodedNode * Pred,ProgramStateRef State)575 void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr,
576 ExplodedNode *Pred,
577 ProgramStateRef State) {
578 State = Call.invalidateRegions(currBldrCtx->blockCount(), State);
579 State = bindReturnValue(Call, Pred->getLocationContext(), State);
580
581 // And make the result node.
582 Bldr.generateNode(Call.getProgramPoint(), State, Pred);
583 }
584
585 enum CallInlinePolicy {
586 CIP_Allowed,
587 CIP_DisallowedOnce,
588 CIP_DisallowedAlways
589 };
590
mayInlineCallKind(const CallEvent & Call,const ExplodedNode * Pred,AnalyzerOptions & Opts)591 static CallInlinePolicy mayInlineCallKind(const CallEvent &Call,
592 const ExplodedNode *Pred,
593 AnalyzerOptions &Opts) {
594 const LocationContext *CurLC = Pred->getLocationContext();
595 const StackFrameContext *CallerSFC = CurLC->getCurrentStackFrame();
596 switch (Call.getKind()) {
597 case CE_Function:
598 case CE_Block:
599 break;
600 case CE_CXXMember:
601 case CE_CXXMemberOperator:
602 if (!Opts.mayInlineCXXMemberFunction(CIMK_MemberFunctions))
603 return CIP_DisallowedAlways;
604 break;
605 case CE_CXXConstructor: {
606 if (!Opts.mayInlineCXXMemberFunction(CIMK_Constructors))
607 return CIP_DisallowedAlways;
608
609 const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Call);
610
611 // FIXME: We don't handle constructors or destructors for arrays properly.
612 // Even once we do, we still need to be careful about implicitly-generated
613 // initializers for array fields in default move/copy constructors.
614 const MemRegion *Target = Ctor.getCXXThisVal().getAsRegion();
615 if (Target && isa<ElementRegion>(Target))
616 return CIP_DisallowedOnce;
617
618 // FIXME: This is a hack. We don't use the correct region for a new
619 // expression, so if we inline the constructor its result will just be
620 // thrown away. This short-term hack is tracked in <rdar://problem/12180598>
621 // and the longer-term possible fix is discussed in PR12014.
622 const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr();
623 if (const Stmt *Parent = CurLC->getParentMap().getParent(CtorExpr))
624 if (isa<CXXNewExpr>(Parent))
625 return CIP_DisallowedOnce;
626
627 // Inlining constructors requires including initializers in the CFG.
628 const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
629 assert(ADC->getCFGBuildOptions().AddInitializers && "No CFG initializers");
630 (void)ADC;
631
632 // If the destructor is trivial, it's always safe to inline the constructor.
633 if (Ctor.getDecl()->getParent()->hasTrivialDestructor())
634 break;
635
636 // For other types, only inline constructors if destructor inlining is
637 // also enabled.
638 if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
639 return CIP_DisallowedAlways;
640
641 // FIXME: This is a hack. We don't handle temporary destructors
642 // right now, so we shouldn't inline their constructors.
643 if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete)
644 if (!Target || !isa<DeclRegion>(Target))
645 return CIP_DisallowedOnce;
646
647 break;
648 }
649 case CE_CXXDestructor: {
650 if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
651 return CIP_DisallowedAlways;
652
653 // Inlining destructors requires building the CFG correctly.
654 const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
655 assert(ADC->getCFGBuildOptions().AddImplicitDtors && "No CFG destructors");
656 (void)ADC;
657
658 const CXXDestructorCall &Dtor = cast<CXXDestructorCall>(Call);
659
660 // FIXME: We don't handle constructors or destructors for arrays properly.
661 const MemRegion *Target = Dtor.getCXXThisVal().getAsRegion();
662 if (Target && isa<ElementRegion>(Target))
663 return CIP_DisallowedOnce;
664
665 break;
666 }
667 case CE_CXXAllocator:
668 if (Opts.mayInlineCXXAllocator())
669 break;
670 // Do not inline allocators until we model deallocators.
671 // This is unfortunate, but basically necessary for smart pointers and such.
672 return CIP_DisallowedAlways;
673 case CE_ObjCMessage:
674 if (!Opts.mayInlineObjCMethod())
675 return CIP_DisallowedAlways;
676 if (!(Opts.getIPAMode() == IPAK_DynamicDispatch ||
677 Opts.getIPAMode() == IPAK_DynamicDispatchBifurcate))
678 return CIP_DisallowedAlways;
679 break;
680 }
681
682 return CIP_Allowed;
683 }
684
685 /// Returns true if the given C++ class contains a member with the given name.
hasMember(const ASTContext & Ctx,const CXXRecordDecl * RD,StringRef Name)686 static bool hasMember(const ASTContext &Ctx, const CXXRecordDecl *RD,
687 StringRef Name) {
688 const IdentifierInfo &II = Ctx.Idents.get(Name);
689 DeclarationName DeclName = Ctx.DeclarationNames.getIdentifier(&II);
690 if (!RD->lookup(DeclName).empty())
691 return true;
692
693 CXXBasePaths Paths(false, false, false);
694 if (RD->lookupInBases(
695 [DeclName](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
696 return CXXRecordDecl::FindOrdinaryMember(Specifier, Path, DeclName);
697 },
698 Paths))
699 return true;
700
701 return false;
702 }
703
704 /// Returns true if the given C++ class is a container or iterator.
705 ///
706 /// Our heuristic for this is whether it contains a method named 'begin()' or a
707 /// nested type named 'iterator' or 'iterator_category'.
isContainerClass(const ASTContext & Ctx,const CXXRecordDecl * RD)708 static bool isContainerClass(const ASTContext &Ctx, const CXXRecordDecl *RD) {
709 return hasMember(Ctx, RD, "begin") ||
710 hasMember(Ctx, RD, "iterator") ||
711 hasMember(Ctx, RD, "iterator_category");
712 }
713
714 /// Returns true if the given function refers to a method of a C++ container
715 /// or iterator.
716 ///
717 /// We generally do a poor job modeling most containers right now, and might
718 /// prefer not to inline their methods.
isContainerMethod(const ASTContext & Ctx,const FunctionDecl * FD)719 static bool isContainerMethod(const ASTContext &Ctx,
720 const FunctionDecl *FD) {
721 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
722 return isContainerClass(Ctx, MD->getParent());
723 return false;
724 }
725
726 /// Returns true if the given function is the destructor of a class named
727 /// "shared_ptr".
isCXXSharedPtrDtor(const FunctionDecl * FD)728 static bool isCXXSharedPtrDtor(const FunctionDecl *FD) {
729 const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(FD);
730 if (!Dtor)
731 return false;
732
733 const CXXRecordDecl *RD = Dtor->getParent();
734 if (const IdentifierInfo *II = RD->getDeclName().getAsIdentifierInfo())
735 if (II->isStr("shared_ptr"))
736 return true;
737
738 return false;
739 }
740
741 /// Returns true if the function in \p CalleeADC may be inlined in general.
742 ///
743 /// This checks static properties of the function, such as its signature and
744 /// CFG, to determine whether the analyzer should ever consider inlining it,
745 /// in any context.
mayInlineDecl(AnalysisDeclContext * CalleeADC,AnalyzerOptions & Opts)746 static bool mayInlineDecl(AnalysisDeclContext *CalleeADC,
747 AnalyzerOptions &Opts) {
748 // FIXME: Do not inline variadic calls.
749 if (CallEvent::isVariadic(CalleeADC->getDecl()))
750 return false;
751
752 // Check certain C++-related inlining policies.
753 ASTContext &Ctx = CalleeADC->getASTContext();
754 if (Ctx.getLangOpts().CPlusPlus) {
755 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeADC->getDecl())) {
756 // Conditionally control the inlining of template functions.
757 if (!Opts.mayInlineTemplateFunctions())
758 if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
759 return false;
760
761 // Conditionally control the inlining of C++ standard library functions.
762 if (!Opts.mayInlineCXXStandardLibrary())
763 if (Ctx.getSourceManager().isInSystemHeader(FD->getLocation()))
764 if (IsInStdNamespace(FD))
765 return false;
766
767 // Conditionally control the inlining of methods on objects that look
768 // like C++ containers.
769 if (!Opts.mayInlineCXXContainerMethods())
770 if (!Ctx.getSourceManager().isInMainFile(FD->getLocation()))
771 if (isContainerMethod(Ctx, FD))
772 return false;
773
774 // Conditionally control the inlining of the destructor of C++ shared_ptr.
775 // We don't currently do a good job modeling shared_ptr because we can't
776 // see the reference count, so treating as opaque is probably the best
777 // idea.
778 if (!Opts.mayInlineCXXSharedPtrDtor())
779 if (isCXXSharedPtrDtor(FD))
780 return false;
781
782 }
783 }
784
785 // It is possible that the CFG cannot be constructed.
786 // Be safe, and check if the CalleeCFG is valid.
787 const CFG *CalleeCFG = CalleeADC->getCFG();
788 if (!CalleeCFG)
789 return false;
790
791 // Do not inline large functions.
792 if (CalleeCFG->getNumBlockIDs() > Opts.getMaxInlinableSize())
793 return false;
794
795 // It is possible that the live variables analysis cannot be
796 // run. If so, bail out.
797 if (!CalleeADC->getAnalysis<RelaxedLiveVariables>())
798 return false;
799
800 return true;
801 }
802
shouldInlineCall(const CallEvent & Call,const Decl * D,const ExplodedNode * Pred)803 bool ExprEngine::shouldInlineCall(const CallEvent &Call, const Decl *D,
804 const ExplodedNode *Pred) {
805 if (!D)
806 return false;
807
808 AnalysisManager &AMgr = getAnalysisManager();
809 AnalyzerOptions &Opts = AMgr.options;
810 AnalysisDeclContextManager &ADCMgr = AMgr.getAnalysisDeclContextManager();
811 AnalysisDeclContext *CalleeADC = ADCMgr.getContext(D);
812
813 // Temporary object destructor processing is currently broken, so we never
814 // inline them.
815 // FIXME: Remove this once temp destructors are working.
816 if (isa<CXXDestructorCall>(Call)) {
817 if ((*currBldrCtx->getBlock())[currStmtIdx].getAs<CFGTemporaryDtor>())
818 return false;
819 }
820
821 // The auto-synthesized bodies are essential to inline as they are
822 // usually small and commonly used. Note: we should do this check early on to
823 // ensure we always inline these calls.
824 if (CalleeADC->isBodyAutosynthesized())
825 return true;
826
827 if (!AMgr.shouldInlineCall())
828 return false;
829
830 // Check if this function has been marked as non-inlinable.
831 Optional<bool> MayInline = Engine.FunctionSummaries->mayInline(D);
832 if (MayInline.hasValue()) {
833 if (!MayInline.getValue())
834 return false;
835
836 } else {
837 // We haven't actually checked the static properties of this function yet.
838 // Do that now, and record our decision in the function summaries.
839 if (mayInlineDecl(CalleeADC, Opts)) {
840 Engine.FunctionSummaries->markMayInline(D);
841 } else {
842 Engine.FunctionSummaries->markShouldNotInline(D);
843 return false;
844 }
845 }
846
847 // Check if we should inline a call based on its kind.
848 // FIXME: this checks both static and dynamic properties of the call, which
849 // means we're redoing a bit of work that could be cached in the function
850 // summary.
851 CallInlinePolicy CIP = mayInlineCallKind(Call, Pred, Opts);
852 if (CIP != CIP_Allowed) {
853 if (CIP == CIP_DisallowedAlways) {
854 assert(!MayInline.hasValue() || MayInline.getValue());
855 Engine.FunctionSummaries->markShouldNotInline(D);
856 }
857 return false;
858 }
859
860 const CFG *CalleeCFG = CalleeADC->getCFG();
861
862 // Do not inline if recursive or we've reached max stack frame count.
863 bool IsRecursive = false;
864 unsigned StackDepth = 0;
865 examineStackFrames(D, Pred->getLocationContext(), IsRecursive, StackDepth);
866 if ((StackDepth >= Opts.InlineMaxStackDepth) &&
867 ((CalleeCFG->getNumBlockIDs() > Opts.getAlwaysInlineSize())
868 || IsRecursive))
869 return false;
870
871 // Do not inline large functions too many times.
872 if ((Engine.FunctionSummaries->getNumTimesInlined(D) >
873 Opts.getMaxTimesInlineLarge()) &&
874 CalleeCFG->getNumBlockIDs() >=
875 Opts.getMinCFGSizeTreatFunctionsAsLarge()) {
876 NumReachedInlineCountMax++;
877 return false;
878 }
879
880 if (HowToInline == Inline_Minimal &&
881 (CalleeCFG->getNumBlockIDs() > Opts.getAlwaysInlineSize()
882 || IsRecursive))
883 return false;
884
885 Engine.FunctionSummaries->bumpNumTimesInlined(D);
886
887 return true;
888 }
889
isTrivialObjectAssignment(const CallEvent & Call)890 static bool isTrivialObjectAssignment(const CallEvent &Call) {
891 const CXXInstanceCall *ICall = dyn_cast<CXXInstanceCall>(&Call);
892 if (!ICall)
893 return false;
894
895 const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(ICall->getDecl());
896 if (!MD)
897 return false;
898 if (!(MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()))
899 return false;
900
901 return MD->isTrivial();
902 }
903
defaultEvalCall(NodeBuilder & Bldr,ExplodedNode * Pred,const CallEvent & CallTemplate)904 void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred,
905 const CallEvent &CallTemplate) {
906 // Make sure we have the most recent state attached to the call.
907 ProgramStateRef State = Pred->getState();
908 CallEventRef<> Call = CallTemplate.cloneWithState(State);
909
910 // Special-case trivial assignment operators.
911 if (isTrivialObjectAssignment(*Call)) {
912 performTrivialCopy(Bldr, Pred, *Call);
913 return;
914 }
915
916 // Try to inline the call.
917 // The origin expression here is just used as a kind of checksum;
918 // this should still be safe even for CallEvents that don't come from exprs.
919 const Expr *E = Call->getOriginExpr();
920
921 ProgramStateRef InlinedFailedState = getInlineFailedState(State, E);
922 if (InlinedFailedState) {
923 // If we already tried once and failed, make sure we don't retry later.
924 State = InlinedFailedState;
925 } else {
926 RuntimeDefinition RD = Call->getRuntimeDefinition();
927 const Decl *D = RD.getDecl();
928 if (shouldInlineCall(*Call, D, Pred)) {
929 if (RD.mayHaveOtherDefinitions()) {
930 AnalyzerOptions &Options = getAnalysisManager().options;
931
932 // Explore with and without inlining the call.
933 if (Options.getIPAMode() == IPAK_DynamicDispatchBifurcate) {
934 BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred);
935 return;
936 }
937
938 // Don't inline if we're not in any dynamic dispatch mode.
939 if (Options.getIPAMode() != IPAK_DynamicDispatch) {
940 conservativeEvalCall(*Call, Bldr, Pred, State);
941 return;
942 }
943 }
944
945 // We are not bifurcating and we do have a Decl, so just inline.
946 if (inlineCall(*Call, D, Bldr, Pred, State))
947 return;
948 }
949 }
950
951 // If we can't inline it, handle the return value and invalidate the regions.
952 conservativeEvalCall(*Call, Bldr, Pred, State);
953 }
954
BifurcateCall(const MemRegion * BifurReg,const CallEvent & Call,const Decl * D,NodeBuilder & Bldr,ExplodedNode * Pred)955 void ExprEngine::BifurcateCall(const MemRegion *BifurReg,
956 const CallEvent &Call, const Decl *D,
957 NodeBuilder &Bldr, ExplodedNode *Pred) {
958 assert(BifurReg);
959 BifurReg = BifurReg->StripCasts();
960
961 // Check if we've performed the split already - note, we only want
962 // to split the path once per memory region.
963 ProgramStateRef State = Pred->getState();
964 const unsigned *BState =
965 State->get<DynamicDispatchBifurcationMap>(BifurReg);
966 if (BState) {
967 // If we are on "inline path", keep inlining if possible.
968 if (*BState == DynamicDispatchModeInlined)
969 if (inlineCall(Call, D, Bldr, Pred, State))
970 return;
971 // If inline failed, or we are on the path where we assume we
972 // don't have enough info about the receiver to inline, conjure the
973 // return value and invalidate the regions.
974 conservativeEvalCall(Call, Bldr, Pred, State);
975 return;
976 }
977
978 // If we got here, this is the first time we process a message to this
979 // region, so split the path.
980 ProgramStateRef IState =
981 State->set<DynamicDispatchBifurcationMap>(BifurReg,
982 DynamicDispatchModeInlined);
983 inlineCall(Call, D, Bldr, Pred, IState);
984
985 ProgramStateRef NoIState =
986 State->set<DynamicDispatchBifurcationMap>(BifurReg,
987 DynamicDispatchModeConservative);
988 conservativeEvalCall(Call, Bldr, Pred, NoIState);
989
990 NumOfDynamicDispatchPathSplits++;
991 return;
992 }
993
994
VisitReturnStmt(const ReturnStmt * RS,ExplodedNode * Pred,ExplodedNodeSet & Dst)995 void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
996 ExplodedNodeSet &Dst) {
997
998 ExplodedNodeSet dstPreVisit;
999 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
1000
1001 StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
1002
1003 if (RS->getRetValue()) {
1004 for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
1005 ei = dstPreVisit.end(); it != ei; ++it) {
1006 B.generateNode(RS, *it, (*it)->getState());
1007 }
1008 }
1009 }
1010