1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 /*
12 * The purpose of this test is to compute metrics to characterize the properties
13 * and efficiency of the packets masks used in the generic XOR FEC code.
14 *
15 * The metrics measure the efficiency (recovery potential or residual loss) of
16 * the FEC code, under various statistical loss models for the packet/symbol
17 * loss events. Various constraints on the behavior of these metrics are
18 * verified, and compared to the reference RS (Reed-Solomon) code. This serves
19 * in some way as a basic check/benchmark for the packet masks.
20 *
21 * By an FEC code, we mean an erasure packet/symbol code, characterized by:
22 * (1) The code size parameters (k,m), where k = number of source/media packets,
23 * and m = number of FEC packets,
24 * (2) The code type: XOR or RS.
25 * In the case of XOR, the residual loss is determined via the set of packet
26 * masks (generator matrix). In the case of RS, the residual loss is determined
27 * directly from the MDS (maximum distance separable) property of RS.
28 *
29 * Currently two classes of packets masks are available (random type and bursty
30 * type), so three codes are considered below: RS, XOR-random, and XOR-bursty.
31 * The bursty class is defined up to k=12, so (k=12,m=12) is largest code size
32 * considered in this test.
33 *
34 * The XOR codes are defined via the RFC 5109 and correspond to the class of
35 * LDGM (low density generator matrix) codes, which is a subset of the LDPC
36 * (low density parity check) codes. Future implementation will consider
37 * extending our XOR codes to include LDPC codes, which explicitly include
38 * protection of FEC packets.
39 *
40 * The type of packet/symbol loss models considered in this test are:
41 * (1) Random loss: Bernoulli process, characterized by the average loss rate.
42 * (2) Bursty loss: Markov chain (Gilbert-Elliot model), characterized by two
43 * parameters: average loss rate and average burst length.
44 */
45
46 #include <math.h>
47
48 #include "testing/gtest/include/gtest/gtest.h"
49 #include "webrtc/base/scoped_ptr.h"
50 #include "webrtc/modules/rtp_rtcp/source/forward_error_correction_internal.h"
51 #include "webrtc/modules/rtp_rtcp/test/testFec/average_residual_loss_xor_codes.h"
52 #include "webrtc/test/testsupport/fileutils.h"
53
54 namespace webrtc {
55
56 // Maximum number of media packets allows for XOR (RFC 5109) code.
57 enum { kMaxNumberMediaPackets = 48 };
58
59 // Maximum number of media packets allowed for each mask type.
60 const uint16_t kMaxMediaPackets[] = {kMaxNumberMediaPackets, 12};
61
62 // Maximum gap size for characterizing the consecutiveness of the loss.
63 const int kMaxGapSize = 2 * kMaxMediaPacketsTest;
64
65 // Number of gap levels written to file/output.
66 const int kGapSizeOutput = 5;
67
68 // Maximum number of states for characterizing the residual loss distribution.
69 const int kNumStatesDistribution = 2 * kMaxMediaPacketsTest * kMaxGapSize + 1;
70
71 // The code type.
72 enum CodeType {
73 xor_random_code, // XOR with random mask type.
74 xor_bursty_code, // XOR with bursty mask type.
75 rs_code // Reed_solomon.
76 };
77
78 // The code size parameters.
79 struct CodeSizeParams {
80 int num_media_packets;
81 int num_fec_packets;
82 // Protection level: num_fec_packets / (num_media_packets + num_fec_packets).
83 float protection_level;
84 // Number of loss configurations, for a given loss number and gap number.
85 // The gap number refers to the maximum gap/hole of a loss configuration
86 // (used to measure the "consecutiveness" of the loss).
87 int configuration_density[kNumStatesDistribution];
88 };
89
90 // The type of loss models.
91 enum LossModelType {
92 kRandomLossModel,
93 kBurstyLossModel
94 };
95
96 struct LossModel {
97 LossModelType loss_type;
98 float average_loss_rate;
99 float average_burst_length;
100 };
101
102 // Average loss rates.
103 const float kAverageLossRate[] = { 0.025f, 0.05f, 0.1f, 0.25f };
104
105 // Average burst lengths. The case of |kAverageBurstLength = 1.0| refers to
106 // the random model. Note that for the random (Bernoulli) model, the average
107 // burst length is determined by the average loss rate, i.e.,
108 // AverageBurstLength = 1 / (1 - AverageLossRate) for random model.
109 const float kAverageBurstLength[] = { 1.0f, 2.0f, 4.0f };
110
111 // Total number of loss models: For each burst length case, there are
112 // a number of models corresponding to the loss rates.
113 const int kNumLossModels = (sizeof(kAverageBurstLength) /
114 sizeof(*kAverageBurstLength)) * (sizeof(kAverageLossRate) /
115 sizeof(*kAverageLossRate));
116
117 // Thresholds on the average loss rate of the packet loss model, below which
118 // certain properties of the codes are expected.
119 float loss_rate_upper_threshold = 0.20f;
120 float loss_rate_lower_threshold = 0.025f;
121
122 // Set of thresholds on the expected average recovery rate, for each code type.
123 // These are global thresholds for now; in future version we may condition them
124 // on the code length/size and protection level.
125 const float kRecoveryRateXorRandom[3] = { 0.94f, 0.50f, 0.19f };
126 const float kRecoveryRateXorBursty[3] = { 0.90f, 0.54f, 0.22f };
127
128 // Metrics for a given FEC code; each code is defined by the code type
129 // (RS, XOR-random/bursty), and the code size parameters (k,m), where
130 // k = num_media_packets, m = num_fec_packets.
131 struct MetricsFecCode {
132 // The average and variance of the residual loss, as a function of the
133 // packet/symbol loss model. The average/variance is computed by averaging
134 // over all loss configurations wrt the loss probability given by the
135 // underlying loss model.
136 double average_residual_loss[kNumLossModels];
137 double variance_residual_loss[kNumLossModels];
138 // The residual loss, as a function of the loss number and the gap number of
139 // the loss configurations. The gap number refers to the maximum gap/hole of
140 // a loss configuration (used to measure the "consecutiveness" of the loss).
141 double residual_loss_per_loss_gap[kNumStatesDistribution];
142 // The recovery rate as a function of the loss number.
143 double recovery_rate_per_loss[2 * kMaxMediaPacketsTest + 1];
144 };
145
146 MetricsFecCode kMetricsXorRandom[kNumberCodes];
147 MetricsFecCode kMetricsXorBursty[kNumberCodes];
148 MetricsFecCode kMetricsReedSolomon[kNumberCodes];
149
150 class FecPacketMaskMetricsTest : public ::testing::Test {
151 protected:
FecPacketMaskMetricsTest()152 FecPacketMaskMetricsTest() { }
153
154 int max_num_codes_;
155 LossModel loss_model_[kNumLossModels];
156 CodeSizeParams code_params_[kNumberCodes];
157
158 uint8_t fec_packet_masks_[kMaxNumberMediaPackets][kMaxNumberMediaPackets];
159 FILE* fp_mask_;
160
161 // Measure of the gap of the loss for configuration given by |state|.
162 // This is to measure degree of consecutiveness for the loss configuration.
163 // Useful if the packets are sent out in order of sequence numbers and there
164 // is little/no re-ordering during transmission.
GapLoss(int tot_num_packets,uint8_t * state)165 int GapLoss(int tot_num_packets, uint8_t* state) {
166 int max_gap_loss = 0;
167 // Find the first loss.
168 int first_loss = 0;
169 for (int i = 0; i < tot_num_packets; i++) {
170 if (state[i] == 1) {
171 first_loss = i;
172 break;
173 }
174 }
175 int prev_loss = first_loss;
176 for (int i = first_loss + 1; i < tot_num_packets; i++) {
177 if (state[i] == 1) { // Lost state.
178 int gap_loss = (i - prev_loss) - 1;
179 if (gap_loss > max_gap_loss) {
180 max_gap_loss = gap_loss;
181 }
182 prev_loss = i;
183 }
184 }
185 return max_gap_loss;
186 }
187
188 // Returns the number of recovered media packets for the XOR code, given the
189 // packet mask |fec_packet_masks_|, for the loss state/configuration given by
190 // |state|.
RecoveredMediaPackets(int num_media_packets,int num_fec_packets,uint8_t * state)191 int RecoveredMediaPackets(int num_media_packets,
192 int num_fec_packets,
193 uint8_t* state) {
194 rtc::scoped_ptr<uint8_t[]> state_tmp(
195 new uint8_t[num_media_packets + num_fec_packets]);
196 memcpy(state_tmp.get(), state, num_media_packets + num_fec_packets);
197 int num_recovered_packets = 0;
198 bool loop_again = true;
199 while (loop_again) {
200 loop_again = false;
201 bool recovered_new_packet = false;
202 // Check if we can recover anything: loop over all possible FEC packets.
203 for (int i = 0; i < num_fec_packets; i++) {
204 if (state_tmp[i + num_media_packets] == 0) {
205 // We have this FEC packet.
206 int num_packets_in_mask = 0;
207 int num_received_packets_in_mask = 0;
208 for (int j = 0; j < num_media_packets; j++) {
209 if (fec_packet_masks_[i][j] == 1) {
210 num_packets_in_mask++;
211 if (state_tmp[j] == 0) {
212 num_received_packets_in_mask++;
213 }
214 }
215 }
216 if ((num_packets_in_mask - 1) == num_received_packets_in_mask) {
217 // We can recover the missing media packet for this FEC packet.
218 num_recovered_packets++;
219 recovered_new_packet = true;
220 int jsel = -1;
221 int check_num_recovered = 0;
222 // Update the state with newly recovered media packet.
223 for (int j = 0; j < num_media_packets; j++) {
224 if (fec_packet_masks_[i][j] == 1 && state_tmp[j] == 1) {
225 // This is the lost media packet we will recover.
226 jsel = j;
227 check_num_recovered++;
228 }
229 }
230 // Check that we can only recover 1 packet.
231 assert(check_num_recovered == 1);
232 // Update the state with the newly recovered media packet.
233 state_tmp[jsel] = 0;
234 }
235 }
236 } // Go to the next FEC packet in the loop.
237 // If we have recovered at least one new packet in this FEC loop,
238 // go through loop again, otherwise we leave loop.
239 if (recovered_new_packet) {
240 loop_again = true;
241 }
242 }
243 return num_recovered_packets;
244 }
245
246 // Compute the probability of occurence of the loss state/configuration,
247 // given by |state|, for all the loss models considered in this test.
ComputeProbabilityWeight(double * prob_weight,uint8_t * state,int tot_num_packets)248 void ComputeProbabilityWeight(double* prob_weight,
249 uint8_t* state,
250 int tot_num_packets) {
251 // Loop over the loss models.
252 for (int k = 0; k < kNumLossModels; k++) {
253 double loss_rate = static_cast<double>(
254 loss_model_[k].average_loss_rate);
255 double burst_length = static_cast<double>(
256 loss_model_[k].average_burst_length);
257 double result = 1.0;
258 if (loss_model_[k].loss_type == kRandomLossModel) {
259 for (int i = 0; i < tot_num_packets; i++) {
260 if (state[i] == 0) {
261 result *= (1.0 - loss_rate);
262 } else {
263 result *= loss_rate;
264 }
265 }
266 } else { // Gilbert-Elliot model for burst model.
267 assert(loss_model_[k].loss_type == kBurstyLossModel);
268 // Transition probabilities: from previous to current state.
269 // Prob. of previous = lost --> current = received.
270 double prob10 = 1.0 / burst_length;
271 // Prob. of previous = lost --> currrent = lost.
272 double prob11 = 1.0 - prob10;
273 // Prob. of previous = received --> current = lost.
274 double prob01 = prob10 * (loss_rate / (1.0 - loss_rate));
275 // Prob. of previous = received --> current = received.
276 double prob00 = 1.0 - prob01;
277
278 // Use stationary probability for first state/packet.
279 if (state[0] == 0) { // Received
280 result = (1.0 - loss_rate);
281 } else { // Lost
282 result = loss_rate;
283 }
284
285 // Subsequent states: use transition probabilities.
286 for (int i = 1; i < tot_num_packets; i++) {
287 // Current state is received
288 if (state[i] == 0) {
289 if (state[i-1] == 0) {
290 result *= prob00; // Previous received, current received.
291 } else {
292 result *= prob10; // Previous lost, current received.
293 }
294 } else { // Current state is lost
295 if (state[i-1] == 0) {
296 result *= prob01; // Previous received, current lost.
297 } else {
298 result *= prob11; // Previous lost, current lost.
299 }
300 }
301 }
302 }
303 prob_weight[k] = result;
304 }
305 }
306
CopyMetrics(MetricsFecCode * metrics_output,MetricsFecCode metrics_input)307 void CopyMetrics(MetricsFecCode* metrics_output,
308 MetricsFecCode metrics_input) {
309 memcpy(metrics_output->average_residual_loss,
310 metrics_input.average_residual_loss,
311 sizeof(double) * kNumLossModels);
312 memcpy(metrics_output->variance_residual_loss,
313 metrics_input.variance_residual_loss,
314 sizeof(double) * kNumLossModels);
315 memcpy(metrics_output->residual_loss_per_loss_gap,
316 metrics_input.residual_loss_per_loss_gap,
317 sizeof(double) * kNumStatesDistribution);
318 memcpy(metrics_output->recovery_rate_per_loss,
319 metrics_input.recovery_rate_per_loss,
320 sizeof(double) * 2 * kMaxMediaPacketsTest);
321 }
322
323 // Compute the residual loss per gap, by summing the
324 // |residual_loss_per_loss_gap| over all loss configurations up to loss number
325 // = |num_fec_packets|.
ComputeResidualLossPerGap(MetricsFecCode metrics,int gap_number,int num_fec_packets,int code_index)326 double ComputeResidualLossPerGap(MetricsFecCode metrics,
327 int gap_number,
328 int num_fec_packets,
329 int code_index) {
330 double residual_loss_gap = 0.0;
331 int tot_num_configs = 0;
332 for (int loss = 1; loss <= num_fec_packets; loss++) {
333 int index = gap_number * (2 * kMaxMediaPacketsTest) + loss;
334 residual_loss_gap += metrics.residual_loss_per_loss_gap[index];
335 tot_num_configs +=
336 code_params_[code_index].configuration_density[index];
337 }
338 // Normalize, to compare across code sizes.
339 if (tot_num_configs > 0) {
340 residual_loss_gap = residual_loss_gap /
341 static_cast<double>(tot_num_configs);
342 }
343 return residual_loss_gap;
344 }
345
346 // Compute the recovery rate per loss number, by summing the
347 // |residual_loss_per_loss_gap| over all gap configurations.
ComputeRecoveryRatePerLoss(MetricsFecCode * metrics,int num_media_packets,int num_fec_packets,int code_index)348 void ComputeRecoveryRatePerLoss(MetricsFecCode* metrics,
349 int num_media_packets,
350 int num_fec_packets,
351 int code_index) {
352 for (int loss = 1; loss <= num_media_packets + num_fec_packets; loss++) {
353 metrics->recovery_rate_per_loss[loss] = 0.0;
354 int tot_num_configs = 0;
355 double arl = 0.0;
356 for (int gap = 0; gap < kMaxGapSize; gap ++) {
357 int index = gap * (2 * kMaxMediaPacketsTest) + loss;
358 arl += metrics->residual_loss_per_loss_gap[index];
359 tot_num_configs +=
360 code_params_[code_index].configuration_density[index];
361 }
362 // Normalize, to compare across code sizes.
363 if (tot_num_configs > 0) {
364 arl = arl / static_cast<double>(tot_num_configs);
365 }
366 // Recovery rate for a given loss |loss| is 1 minus the scaled |arl|,
367 // where the scale factor is relative to code size/parameters.
368 double scaled_loss = static_cast<double>(loss * num_media_packets) /
369 static_cast<double>(num_media_packets + num_fec_packets);
370 metrics->recovery_rate_per_loss[loss] = 1.0 - arl / scaled_loss;
371 }
372 }
373
SetMetricsZero(MetricsFecCode * metrics)374 void SetMetricsZero(MetricsFecCode* metrics) {
375 memset(metrics->average_residual_loss, 0, sizeof(double) * kNumLossModels);
376 memset(metrics->variance_residual_loss, 0, sizeof(double) * kNumLossModels);
377 memset(metrics->residual_loss_per_loss_gap, 0,
378 sizeof(double) * kNumStatesDistribution);
379 memset(metrics->recovery_rate_per_loss, 0,
380 sizeof(double) * 2 * kMaxMediaPacketsTest + 1);
381 }
382
383 // Compute the metrics for an FEC code, given by the code type |code_type|
384 // (XOR-random/ bursty or RS), and by the code index |code_index|
385 // (which containes the code size parameters/protection length).
ComputeMetricsForCode(CodeType code_type,int code_index)386 void ComputeMetricsForCode(CodeType code_type,
387 int code_index) {
388 rtc::scoped_ptr<double[]> prob_weight(new double[kNumLossModels]);
389 memset(prob_weight.get() , 0, sizeof(double) * kNumLossModels);
390 MetricsFecCode metrics_code;
391 SetMetricsZero(&metrics_code);
392
393 int num_media_packets = code_params_[code_index].num_media_packets;
394 int num_fec_packets = code_params_[code_index].num_fec_packets;
395 int tot_num_packets = num_media_packets + num_fec_packets;
396 rtc::scoped_ptr<uint8_t[]> state(new uint8_t[tot_num_packets]);
397 memset(state.get() , 0, tot_num_packets);
398
399 int num_loss_configurations = static_cast<int>(pow(2.0f, tot_num_packets));
400 // Loop over all loss configurations for the symbol sequence of length
401 // |tot_num_packets|. In this version we process up to (k=12, m=12) codes,
402 // and get exact expressions for the residual loss.
403 // TODO(marpan): For larger codes, loop over some random sample of loss
404 // configurations, sampling driven by the underlying statistical loss model
405 // (importance sampling).
406
407 // The symbols/packets are arranged as a sequence of source/media packets
408 // followed by FEC packets. This is the sequence ordering used in the RTP.
409 // A configuration refers to a sequence of received/lost (0/1 bit) states
410 // for the string of packets/symbols. For example, for a (k=4,m=3) code
411 // (4 media packets, 3 FEC packets), with 2 losses (one media and one FEC),
412 // the loss configurations is:
413 // Media1 Media2 Media3 Media4 FEC1 FEC2 FEC3
414 // 0 0 1 0 0 1 0
415 for (int i = 1; i < num_loss_configurations; i++) {
416 // Counter for number of packets lost.
417 int num_packets_lost = 0;
418 // Counters for the number of media packets lost.
419 int num_media_packets_lost = 0;
420
421 // Map configuration number to a loss state.
422 for (int j = 0; j < tot_num_packets; j++) {
423 state[j] = 0; // Received state.
424 int bit_value = i >> (tot_num_packets - j - 1) & 1;
425 if (bit_value == 1) {
426 state[j] = 1; // Lost state.
427 num_packets_lost++;
428 if (j < num_media_packets) {
429 num_media_packets_lost++;
430 }
431 }
432 } // Done with loop over total number of packets.
433 assert(num_media_packets_lost <= num_media_packets);
434 assert(num_packets_lost <= tot_num_packets && num_packets_lost > 0);
435 double residual_loss = 0.0;
436 // Only need to compute residual loss (number of recovered packets) for
437 // configurations that have at least one media packet lost.
438 if (num_media_packets_lost >= 1) {
439 // Compute the number of recovered packets.
440 int num_recovered_packets = 0;
441 if (code_type == xor_random_code || code_type == xor_bursty_code) {
442 num_recovered_packets = RecoveredMediaPackets(num_media_packets,
443 num_fec_packets,
444 state.get());
445 } else {
446 // For the RS code, we can either completely recover all the packets
447 // if the loss is less than or equal to the number of FEC packets,
448 // otherwise we can recover none of the missing packets. This is the
449 // all or nothing (MDS) property of the RS code.
450 if (num_packets_lost <= num_fec_packets) {
451 num_recovered_packets = num_media_packets_lost;
452 }
453 }
454 assert(num_recovered_packets <= num_media_packets);
455 // Compute the residual loss. We only care about recovering media/source
456 // packets, so residual loss is based on lost/recovered media packets.
457 residual_loss = static_cast<double>(num_media_packets_lost -
458 num_recovered_packets);
459 // Compute the probability weights for this configuration.
460 ComputeProbabilityWeight(prob_weight.get(),
461 state.get(),
462 tot_num_packets);
463 // Update the average and variance of the residual loss.
464 for (int k = 0; k < kNumLossModels; k++) {
465 metrics_code.average_residual_loss[k] += residual_loss *
466 prob_weight[k];
467 metrics_code.variance_residual_loss[k] += residual_loss *
468 residual_loss * prob_weight[k];
469 }
470 } // Done with processing for num_media_packets_lost >= 1.
471 // Update the distribution statistics.
472 // Compute the gap of the loss (the "consecutiveness" of the loss).
473 int gap_loss = GapLoss(tot_num_packets, state.get());
474 assert(gap_loss < kMaxGapSize);
475 int index = gap_loss * (2 * kMaxMediaPacketsTest) + num_packets_lost;
476 assert(index < kNumStatesDistribution);
477 metrics_code.residual_loss_per_loss_gap[index] += residual_loss;
478 if (code_type == xor_random_code) {
479 // The configuration density is only a function of the code length and
480 // only needs to computed for the first |code_type| passed here.
481 code_params_[code_index].configuration_density[index]++;
482 }
483 } // Done with loop over configurations.
484 // Normalize the average residual loss and compute/normalize the variance.
485 for (int k = 0; k < kNumLossModels; k++) {
486 // Normalize the average residual loss by the total number of packets
487 // |tot_num_packets| (i.e., the code length). For a code with no (zero)
488 // recovery, the average residual loss for that code would be reduced like
489 // ~|average_loss_rate| * |num_media_packets| / |tot_num_packets|. This is
490 // the expected reduction in the average residual loss just from adding
491 // FEC packets to the symbol sequence.
492 metrics_code.average_residual_loss[k] =
493 metrics_code.average_residual_loss[k] /
494 static_cast<double>(tot_num_packets);
495 metrics_code.variance_residual_loss[k] =
496 metrics_code.variance_residual_loss[k] /
497 static_cast<double>(num_media_packets * num_media_packets);
498 metrics_code.variance_residual_loss[k] =
499 metrics_code.variance_residual_loss[k] -
500 (metrics_code.average_residual_loss[k] *
501 metrics_code.average_residual_loss[k]);
502 assert(metrics_code.variance_residual_loss[k] >= 0.0);
503 assert(metrics_code.average_residual_loss[k] > 0.0);
504 metrics_code.variance_residual_loss[k] =
505 sqrt(metrics_code.variance_residual_loss[k]) /
506 metrics_code.average_residual_loss[k];
507 }
508
509 // Compute marginal distribution as a function of loss parameter.
510 ComputeRecoveryRatePerLoss(&metrics_code,
511 num_media_packets,
512 num_fec_packets,
513 code_index);
514 if (code_type == rs_code) {
515 CopyMetrics(&kMetricsReedSolomon[code_index], metrics_code);
516 } else if (code_type == xor_random_code) {
517 CopyMetrics(&kMetricsXorRandom[code_index], metrics_code);
518 } else if (code_type == xor_bursty_code) {
519 CopyMetrics(&kMetricsXorBursty[code_index], metrics_code);
520 } else {
521 assert(false);
522 }
523 }
524
WriteOutMetricsAllFecCodes()525 void WriteOutMetricsAllFecCodes() {
526 std::string filename = test::OutputPath() + "data_metrics_all_codes";
527 FILE* fp = fopen(filename.c_str(), "wb");
528 // Loop through codes up to |kMaxMediaPacketsTest|.
529 int code_index = 0;
530 for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest;
531 num_media_packets++) {
532 for (int num_fec_packets = 1; num_fec_packets <= num_media_packets;
533 num_fec_packets++) {
534 fprintf(fp, "FOR CODE: (%d, %d) \n", num_media_packets,
535 num_fec_packets);
536 for (int k = 0; k < kNumLossModels; k++) {
537 float loss_rate = loss_model_[k].average_loss_rate;
538 float burst_length = loss_model_[k].average_burst_length;
539 fprintf(fp, "Loss rate = %.2f, Burst length = %.2f: %.4f %.4f %.4f"
540 " **** %.4f %.4f %.4f \n",
541 loss_rate,
542 burst_length,
543 100 * kMetricsReedSolomon[code_index].average_residual_loss[k],
544 100 * kMetricsXorRandom[code_index].average_residual_loss[k],
545 100 * kMetricsXorBursty[code_index].average_residual_loss[k],
546 kMetricsReedSolomon[code_index].variance_residual_loss[k],
547 kMetricsXorRandom[code_index].variance_residual_loss[k],
548 kMetricsXorBursty[code_index].variance_residual_loss[k]);
549 }
550 for (int gap = 0; gap < kGapSizeOutput; gap ++) {
551 double rs_residual_loss = ComputeResidualLossPerGap(
552 kMetricsReedSolomon[code_index],
553 gap,
554 num_fec_packets,
555 code_index);
556 double xor_random_residual_loss = ComputeResidualLossPerGap(
557 kMetricsXorRandom[code_index],
558 gap,
559 num_fec_packets,
560 code_index);
561 double xor_bursty_residual_loss = ComputeResidualLossPerGap(
562 kMetricsXorBursty[code_index],
563 gap,
564 num_fec_packets,
565 code_index);
566 fprintf(fp, "Residual loss as a function of gap "
567 "%d: %.4f %.4f %.4f \n",
568 gap,
569 rs_residual_loss,
570 xor_random_residual_loss,
571 xor_bursty_residual_loss);
572 }
573 fprintf(fp, "Recovery rate as a function of loss number \n");
574 for (int loss = 1; loss <= num_media_packets + num_fec_packets;
575 loss ++) {
576 fprintf(fp, "For loss number %d: %.4f %.4f %.4f \n",
577 loss,
578 kMetricsReedSolomon[code_index].
579 recovery_rate_per_loss[loss],
580 kMetricsXorRandom[code_index].
581 recovery_rate_per_loss[loss],
582 kMetricsXorBursty[code_index].
583 recovery_rate_per_loss[loss]);
584 }
585 fprintf(fp, "******************\n");
586 fprintf(fp, "\n");
587 code_index++;
588 }
589 }
590 fclose(fp);
591 }
592
SetLossModels()593 void SetLossModels() {
594 int num_loss_rates = sizeof(kAverageLossRate) /
595 sizeof(*kAverageLossRate);
596 int num_burst_lengths = sizeof(kAverageBurstLength) /
597 sizeof(*kAverageBurstLength);
598 int num_loss_models = 0;
599 for (int k = 0; k < num_burst_lengths; k++) {
600 for (int k2 = 0; k2 < num_loss_rates; k2++) {
601 loss_model_[num_loss_models].average_loss_rate = kAverageLossRate[k2];
602 loss_model_[num_loss_models].average_burst_length =
603 kAverageBurstLength[k];
604 // First set of loss models are of random type.
605 if (k == 0) {
606 loss_model_[num_loss_models].loss_type = kRandomLossModel;
607 } else {
608 loss_model_[num_loss_models].loss_type = kBurstyLossModel;
609 }
610 num_loss_models++;
611 }
612 }
613 assert(num_loss_models == kNumLossModels);
614 }
615
SetCodeParams()616 void SetCodeParams() {
617 int code_index = 0;
618 for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest;
619 num_media_packets++) {
620 for (int num_fec_packets = 1; num_fec_packets <= num_media_packets;
621 num_fec_packets++) {
622 code_params_[code_index].num_media_packets = num_media_packets;
623 code_params_[code_index].num_fec_packets = num_fec_packets;
624 code_params_[code_index].protection_level =
625 static_cast<float>(num_fec_packets) /
626 static_cast<float>(num_media_packets + num_fec_packets);
627 for (int k = 0; k < kNumStatesDistribution; k++) {
628 code_params_[code_index].configuration_density[k] = 0;
629 }
630 code_index++;
631 }
632 }
633 max_num_codes_ = code_index;
634 }
635
636 // Make some basic checks on the packet masks. Return -1 if any of these
637 // checks fail.
RejectInvalidMasks(int num_media_packets,int num_fec_packets)638 int RejectInvalidMasks(int num_media_packets, int num_fec_packets) {
639 // Make sure every FEC packet protects something.
640 for (int i = 0; i < num_fec_packets; i++) {
641 int row_degree = 0;
642 for (int j = 0; j < num_media_packets; j++) {
643 if (fec_packet_masks_[i][j] == 1) {
644 row_degree++;
645 }
646 }
647 if (row_degree == 0) {
648 printf("Invalid mask: FEC packet has empty mask (does not protect "
649 "anything) %d %d %d \n", i, num_media_packets, num_fec_packets);
650 return -1;
651 }
652 }
653 // Mask sure every media packet has some protection.
654 for (int j = 0; j < num_media_packets; j++) {
655 int column_degree = 0;
656 for (int i = 0; i < num_fec_packets; i++) {
657 if (fec_packet_masks_[i][j] == 1) {
658 column_degree++;
659 }
660 }
661 if (column_degree == 0) {
662 printf("Invalid mask: Media packet has no protection at all %d %d %d "
663 "\n", j, num_media_packets, num_fec_packets);
664 return -1;
665 }
666 }
667 // Make sure we do not have two identical FEC packets.
668 for (int i = 0; i < num_fec_packets; i++) {
669 for (int i2 = i + 1; i2 < num_fec_packets; i2++) {
670 int overlap = 0;
671 for (int j = 0; j < num_media_packets; j++) {
672 if (fec_packet_masks_[i][j] == fec_packet_masks_[i2][j]) {
673 overlap++;
674 }
675 }
676 if (overlap == num_media_packets) {
677 printf("Invalid mask: Two FEC packets are identical %d %d %d %d \n",
678 i, i2, num_media_packets, num_fec_packets);
679 return -1;
680 }
681 }
682 }
683 // Avoid codes that have two media packets with full protection (all 1s in
684 // their corresponding columns). This would mean that if we lose those
685 // two packets, we can never recover them even if we receive all the other
686 // packets. Exclude the special cases of 1 or 2 FEC packets.
687 if (num_fec_packets > 2) {
688 for (int j = 0; j < num_media_packets; j++) {
689 for (int j2 = j + 1; j2 < num_media_packets; j2++) {
690 int degree = 0;
691 for (int i = 0; i < num_fec_packets; i++) {
692 if (fec_packet_masks_[i][j] == fec_packet_masks_[i][j2] &&
693 fec_packet_masks_[i][j] == 1) {
694 degree++;
695 }
696 }
697 if (degree == num_fec_packets) {
698 printf("Invalid mask: Two media packets are have full degree "
699 "%d %d %d %d \n", j, j2, num_media_packets, num_fec_packets);
700 return -1;
701 }
702 }
703 }
704 }
705 return 0;
706 }
707
GetPacketMaskConvertToBitMask(uint8_t * packet_mask,int num_media_packets,int num_fec_packets,int mask_bytes_fec_packet,CodeType code_type)708 void GetPacketMaskConvertToBitMask(uint8_t* packet_mask,
709 int num_media_packets,
710 int num_fec_packets,
711 int mask_bytes_fec_packet,
712 CodeType code_type) {
713 for (int i = 0; i < num_fec_packets; i++) {
714 for (int j = 0; j < num_media_packets; j++) {
715 const uint8_t byte_mask =
716 packet_mask[i * mask_bytes_fec_packet + j / 8];
717 const int bit_position = (7 - j % 8);
718 fec_packet_masks_[i][j] =
719 (byte_mask & (1 << bit_position)) >> bit_position;
720 fprintf(fp_mask_, "%d ", fec_packet_masks_[i][j]);
721 }
722 fprintf(fp_mask_, "\n");
723 }
724 fprintf(fp_mask_, "\n");
725 }
726
ProcessXORPacketMasks(CodeType code_type,FecMaskType fec_mask_type)727 int ProcessXORPacketMasks(CodeType code_type,
728 FecMaskType fec_mask_type) {
729 int code_index = 0;
730 // Maximum number of media packets allowed for the mask type.
731 const int packet_mask_max = kMaxMediaPackets[fec_mask_type];
732 uint8_t* packet_mask = new uint8_t[packet_mask_max * kMaskSizeLBitSet];
733 // Loop through codes up to |kMaxMediaPacketsTest|.
734 for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest;
735 num_media_packets++) {
736 const int mask_bytes_fec_packet =
737 (num_media_packets > 16) ? kMaskSizeLBitSet : kMaskSizeLBitClear;
738 internal::PacketMaskTable mask_table(fec_mask_type, num_media_packets);
739 for (int num_fec_packets = 1; num_fec_packets <= num_media_packets;
740 num_fec_packets++) {
741 memset(packet_mask, 0, num_media_packets * mask_bytes_fec_packet);
742 memcpy(packet_mask, mask_table.fec_packet_mask_table()
743 [num_media_packets - 1][num_fec_packets - 1],
744 num_fec_packets * mask_bytes_fec_packet);
745 // Convert to bit mask.
746 GetPacketMaskConvertToBitMask(packet_mask,
747 num_media_packets,
748 num_fec_packets,
749 mask_bytes_fec_packet,
750 code_type);
751 if (RejectInvalidMasks(num_media_packets, num_fec_packets) < 0) {
752 return -1;
753 }
754 // Compute the metrics for this code/mask.
755 ComputeMetricsForCode(code_type,
756 code_index);
757 code_index++;
758 }
759 }
760 assert(code_index == kNumberCodes);
761 delete [] packet_mask;
762 return 0;
763 }
764
ProcessRS(CodeType code_type)765 void ProcessRS(CodeType code_type) {
766 int code_index = 0;
767 for (int num_media_packets = 1; num_media_packets <= kMaxMediaPacketsTest;
768 num_media_packets++) {
769 for (int num_fec_packets = 1; num_fec_packets <= num_media_packets;
770 num_fec_packets++) {
771 // Compute the metrics for this code type.
772 ComputeMetricsForCode(code_type,
773 code_index);
774 code_index++;
775 }
776 }
777 }
778
779 // Compute metrics for all code types and sizes.
ComputeMetricsAllCodes()780 void ComputeMetricsAllCodes() {
781 SetLossModels();
782 SetCodeParams();
783 // Get metrics for XOR code with packet masks of random type.
784 std::string filename = test::OutputPath() + "data_packet_masks";
785 fp_mask_ = fopen(filename.c_str(), "wb");
786 fprintf(fp_mask_, "MASK OF TYPE RANDOM: \n");
787 EXPECT_EQ(ProcessXORPacketMasks(xor_random_code, kFecMaskRandom), 0);
788 // Get metrics for XOR code with packet masks of bursty type.
789 fprintf(fp_mask_, "MASK OF TYPE BURSTY: \n");
790 EXPECT_EQ(ProcessXORPacketMasks(xor_bursty_code, kFecMaskBursty), 0);
791 fclose(fp_mask_);
792 // Get metrics for Reed-Solomon code.
793 ProcessRS(rs_code);
794 }
795 };
796
797 // Verify that the average residual loss, averaged over loss models
798 // appropriate to each mask type, is below some maximum acceptable level. The
799 // acceptable levels are read in from a file, and correspond to a current set
800 // of packet masks. The levels for each code may be updated over time.
TEST_F(FecPacketMaskMetricsTest,FecXorMaxResidualLoss)801 TEST_F(FecPacketMaskMetricsTest, FecXorMaxResidualLoss) {
802 SetLossModels();
803 SetCodeParams();
804 ComputeMetricsAllCodes();
805 WriteOutMetricsAllFecCodes();
806 int num_loss_rates = sizeof(kAverageLossRate) /
807 sizeof(*kAverageLossRate);
808 int num_burst_lengths = sizeof(kAverageBurstLength) /
809 sizeof(*kAverageBurstLength);
810 for (int code_index = 0; code_index < max_num_codes_; code_index++) {
811 double sum_residual_loss_random_mask_random_loss = 0.0;
812 double sum_residual_loss_bursty_mask_bursty_loss = 0.0;
813 // Compute the sum residual loss across the models, for each mask type.
814 for (int k = 0; k < kNumLossModels; k++) {
815 if (loss_model_[k].loss_type == kRandomLossModel) {
816 sum_residual_loss_random_mask_random_loss +=
817 kMetricsXorRandom[code_index].average_residual_loss[k];
818 } else if (loss_model_[k].loss_type == kBurstyLossModel) {
819 sum_residual_loss_bursty_mask_bursty_loss +=
820 kMetricsXorBursty[code_index].average_residual_loss[k];
821 }
822 }
823 float average_residual_loss_random_mask_random_loss =
824 sum_residual_loss_random_mask_random_loss / num_loss_rates;
825 float average_residual_loss_bursty_mask_bursty_loss =
826 sum_residual_loss_bursty_mask_bursty_loss /
827 (num_loss_rates * (num_burst_lengths - 1));
828 const float ref_random_mask = kMaxResidualLossRandomMask[code_index];
829 const float ref_bursty_mask = kMaxResidualLossBurstyMask[code_index];
830 EXPECT_LE(average_residual_loss_random_mask_random_loss, ref_random_mask);
831 EXPECT_LE(average_residual_loss_bursty_mask_bursty_loss, ref_bursty_mask);
832 }
833 }
834
835 // Verify the behavior of the XOR codes vs the RS codes.
836 // For random loss model with average loss rates <= the code protection level,
837 // the RS code (optimal MDS code) is more efficient than XOR codes.
838 // However, for larger loss rates (above protection level) and/or bursty
839 // loss models, the RS is not always more efficient than XOR (though in most
840 // cases it still is).
TEST_F(FecPacketMaskMetricsTest,FecXorVsRS)841 TEST_F(FecPacketMaskMetricsTest, FecXorVsRS) {
842 SetLossModels();
843 SetCodeParams();
844 for (int code_index = 0; code_index < max_num_codes_; code_index++) {
845 for (int k = 0; k < kNumLossModels; k++) {
846 float loss_rate = loss_model_[k].average_loss_rate;
847 float protection_level = code_params_[code_index].protection_level;
848 // Under these conditions we expect XOR to not be better than RS.
849 if (loss_model_[k].loss_type == kRandomLossModel &&
850 loss_rate <= protection_level) {
851 EXPECT_GE(kMetricsXorRandom[code_index].average_residual_loss[k],
852 kMetricsReedSolomon[code_index].average_residual_loss[k]);
853 EXPECT_GE(kMetricsXorBursty[code_index].average_residual_loss[k],
854 kMetricsReedSolomon[code_index].average_residual_loss[k]);
855 }
856 // TODO(marpan): There are some cases (for high loss rates and/or
857 // burst loss models) where XOR is better than RS. Is there some pattern
858 // we can identify and enforce as a constraint?
859 }
860 }
861 }
862
863 // Verify the trend (change) in the average residual loss, as a function of
864 // loss rate, of the XOR code relative to the RS code.
865 // The difference between XOR and RS should not get worse as we increase
866 // the average loss rate.
TEST_F(FecPacketMaskMetricsTest,FecTrendXorVsRsLossRate)867 TEST_F(FecPacketMaskMetricsTest, FecTrendXorVsRsLossRate) {
868 SetLossModels();
869 SetCodeParams();
870 // TODO(marpan): Examine this further to see if the condition can be strictly
871 // satisfied (i.e., scale = 1.0) for all codes with different/better masks.
872 double scale = 0.90;
873 int num_loss_rates = sizeof(kAverageLossRate) /
874 sizeof(*kAverageLossRate);
875 int num_burst_lengths = sizeof(kAverageBurstLength) /
876 sizeof(*kAverageBurstLength);
877 for (int code_index = 0; code_index < max_num_codes_; code_index++) {
878 for (int i = 0; i < num_burst_lengths; i++) {
879 for (int j = 0; j < num_loss_rates - 1; j++) {
880 int k = num_loss_rates * i + j;
881 // For XOR random.
882 if (kMetricsXorRandom[code_index].average_residual_loss[k] >
883 kMetricsReedSolomon[code_index].average_residual_loss[k]) {
884 double diff_rs_xor_random_loss1 =
885 (kMetricsXorRandom[code_index].average_residual_loss[k] -
886 kMetricsReedSolomon[code_index].average_residual_loss[k]) /
887 kMetricsXorRandom[code_index].average_residual_loss[k];
888 double diff_rs_xor_random_loss2 =
889 (kMetricsXorRandom[code_index].average_residual_loss[k+1] -
890 kMetricsReedSolomon[code_index].average_residual_loss[k+1]) /
891 kMetricsXorRandom[code_index].average_residual_loss[k+1];
892 EXPECT_GE(diff_rs_xor_random_loss1, scale * diff_rs_xor_random_loss2);
893 }
894 // TODO(marpan): Investigate the cases for the bursty mask where
895 // this trend is not strictly satisfied.
896 }
897 }
898 }
899 }
900
901 // Verify the average residual loss behavior via the protection level and
902 // the code length. The average residual loss for a given (k1,m1) code
903 // should generally be higher than that of another code (k2,m2), which has
904 // either of the two conditions satisfied:
905 // 1) higher protection & code length at least as large: (k2+m2) >= (k1+m1),
906 // 2) equal protection and larger code length: (k2+m2) > (k1+m1).
907 // Currently does not hold for some cases of the XOR code with random mask.
TEST_F(FecPacketMaskMetricsTest,FecBehaviorViaProtectionLevelAndLength)908 TEST_F(FecPacketMaskMetricsTest, FecBehaviorViaProtectionLevelAndLength) {
909 SetLossModels();
910 SetCodeParams();
911 for (int code_index1 = 0; code_index1 < max_num_codes_; code_index1++) {
912 float protection_level1 = code_params_[code_index1].protection_level;
913 int length1 = code_params_[code_index1].num_media_packets +
914 code_params_[code_index1].num_fec_packets;
915 for (int code_index2 = 0; code_index2 < max_num_codes_; code_index2++) {
916 float protection_level2 = code_params_[code_index2].protection_level;
917 int length2 = code_params_[code_index2].num_media_packets +
918 code_params_[code_index2].num_fec_packets;
919 // Codes with higher protection are more efficient, conditioned on the
920 // length of the code (higher protection but shorter length codes are
921 // generally not more efficient). For two codes with equal protection,
922 // the longer code is generally more efficient. For high loss rate
923 // models, this condition may be violated for some codes with equal or
924 // very close protection levels. High loss rate case is excluded below.
925 if ((protection_level2 > protection_level1 && length2 >= length1) ||
926 (protection_level2 == protection_level1 && length2 > length1)) {
927 for (int k = 0; k < kNumLossModels; k++) {
928 float loss_rate = loss_model_[k].average_loss_rate;
929 if (loss_rate < loss_rate_upper_threshold) {
930 EXPECT_LT(
931 kMetricsReedSolomon[code_index2].average_residual_loss[k],
932 kMetricsReedSolomon[code_index1].average_residual_loss[k]);
933 // TODO(marpan): There are some corner cases where this is not
934 // satisfied with the current packet masks. Look into updating
935 // these cases to see if this behavior should/can be satisfied,
936 // with overall lower residual loss for those XOR codes.
937 // EXPECT_LT(
938 // kMetricsXorBursty[code_index2].average_residual_loss[k],
939 // kMetricsXorBursty[code_index1].average_residual_loss[k]);
940 // EXPECT_LT(
941 // kMetricsXorRandom[code_index2].average_residual_loss[k],
942 // kMetricsXorRandom[code_index1].average_residual_loss[k]);
943 }
944 }
945 }
946 }
947 }
948 }
949
950 // Verify the beheavior of the variance of the XOR codes.
951 // The partial recovery of the XOR versus the all or nothing behavior of the RS
952 // code means that the variance of the residual loss for XOR should generally
953 // not be worse than RS.
TEST_F(FecPacketMaskMetricsTest,FecVarianceBehaviorXorVsRs)954 TEST_F(FecPacketMaskMetricsTest, FecVarianceBehaviorXorVsRs) {
955 SetLossModels();
956 SetCodeParams();
957 // The condition is not strictly satisfied with the current masks,
958 // i.e., for some codes, the variance of XOR may be slightly higher than RS.
959 // TODO(marpan): Examine this further to see if the condition can be strictly
960 // satisfied (i.e., scale = 1.0) for all codes with different/better masks.
961 double scale = 0.95;
962 for (int code_index = 0; code_index < max_num_codes_; code_index++) {
963 for (int k = 0; k < kNumLossModels; k++) {
964 EXPECT_LE(scale *
965 kMetricsXorRandom[code_index].variance_residual_loss[k],
966 kMetricsReedSolomon[code_index].variance_residual_loss[k]);
967 EXPECT_LE(scale *
968 kMetricsXorBursty[code_index].variance_residual_loss[k],
969 kMetricsReedSolomon[code_index].variance_residual_loss[k]);
970 }
971 }
972 }
973
974 // For the bursty mask type, the residual loss must be strictly zero for all
975 // consecutive losses (i.e, gap = 0) with number of losses <= num_fec_packets.
976 // This is a design property of the bursty mask type.
TEST_F(FecPacketMaskMetricsTest,FecXorBurstyPerfectRecoveryConsecutiveLoss)977 TEST_F(FecPacketMaskMetricsTest, FecXorBurstyPerfectRecoveryConsecutiveLoss) {
978 SetLossModels();
979 SetCodeParams();
980 for (int code_index = 0; code_index < max_num_codes_; code_index++) {
981 int num_fec_packets = code_params_[code_index].num_fec_packets;
982 for (int loss = 1; loss <= num_fec_packets; loss++) {
983 int index = loss; // |gap| is zero.
984 EXPECT_EQ(kMetricsXorBursty[code_index].
985 residual_loss_per_loss_gap[index], 0.0);
986 }
987 }
988 }
989
990 // The XOR codes with random mask type are generally better than the ones with
991 // bursty mask type, for random loss models at low loss rates.
992 // The XOR codes with bursty mask types are generally better than the one with
993 // random mask type, for bursty loss models and/or high loss rates.
994 // TODO(marpan): Enable this test when some of the packet masks are updated.
995 // Some isolated cases of the codes don't pass this currently.
996 /*
997 TEST_F(FecPacketMaskMetricsTest, FecXorRandomVsBursty) {
998 SetLossModels();
999 SetCodeParams();
1000 for (int code_index = 0; code_index < max_num_codes_; code_index++) {
1001 double sum_residual_loss_random_mask_random_loss = 0.0;
1002 double sum_residual_loss_bursty_mask_random_loss = 0.0;
1003 double sum_residual_loss_random_mask_bursty_loss = 0.0;
1004 double sum_residual_loss_bursty_mask_bursty_loss = 0.0;
1005 // Compute the sum residual loss across the models, for each mask type.
1006 for (int k = 0; k < kNumLossModels; k++) {
1007 float loss_rate = loss_model_[k].average_loss_rate;
1008 if (loss_model_[k].loss_type == kRandomLossModel &&
1009 loss_rate < loss_rate_upper_threshold) {
1010 sum_residual_loss_random_mask_random_loss +=
1011 kMetricsXorRandom[code_index].average_residual_loss[k];
1012 sum_residual_loss_bursty_mask_random_loss +=
1013 kMetricsXorBursty[code_index].average_residual_loss[k];
1014 } else if (loss_model_[k].loss_type == kBurstyLossModel &&
1015 loss_rate > loss_rate_lower_threshold) {
1016 sum_residual_loss_random_mask_bursty_loss +=
1017 kMetricsXorRandom[code_index].average_residual_loss[k];
1018 sum_residual_loss_bursty_mask_bursty_loss +=
1019 kMetricsXorBursty[code_index].average_residual_loss[k];
1020 }
1021 }
1022 EXPECT_LE(sum_residual_loss_random_mask_random_loss,
1023 sum_residual_loss_bursty_mask_random_loss);
1024 EXPECT_LE(sum_residual_loss_bursty_mask_bursty_loss,
1025 sum_residual_loss_random_mask_bursty_loss);
1026 }
1027 }
1028 */
1029
1030 // Verify that the average recovery rate for each code is equal or above some
1031 // threshold, for certain loss number conditions.
TEST_F(FecPacketMaskMetricsTest,FecRecoveryRateUnderLossConditions)1032 TEST_F(FecPacketMaskMetricsTest, FecRecoveryRateUnderLossConditions) {
1033 SetLossModels();
1034 SetCodeParams();
1035 for (int code_index = 0; code_index < max_num_codes_; code_index++) {
1036 int num_media_packets = code_params_[code_index].num_media_packets;
1037 int num_fec_packets = code_params_[code_index].num_fec_packets;
1038 // Perfect recovery (|recovery_rate_per_loss| == 1) is expected for
1039 // |loss_number| = 1, for all codes.
1040 int loss_number = 1;
1041 EXPECT_EQ(kMetricsReedSolomon[code_index].
1042 recovery_rate_per_loss[loss_number], 1.0);
1043 EXPECT_EQ(kMetricsXorRandom[code_index].
1044 recovery_rate_per_loss[loss_number], 1.0);
1045 EXPECT_EQ(kMetricsXorBursty[code_index].
1046 recovery_rate_per_loss[loss_number], 1.0);
1047 // For |loss_number| = |num_fec_packets| / 2, we expect the following:
1048 // Perfect recovery for RS, and recovery for XOR above the threshold.
1049 loss_number = num_fec_packets / 2 > 0 ? num_fec_packets / 2 : 1;
1050 EXPECT_EQ(kMetricsReedSolomon[code_index].
1051 recovery_rate_per_loss[loss_number], 1.0);
1052 EXPECT_GE(kMetricsXorRandom[code_index].
1053 recovery_rate_per_loss[loss_number], kRecoveryRateXorRandom[0]);
1054 EXPECT_GE(kMetricsXorBursty[code_index].
1055 recovery_rate_per_loss[loss_number], kRecoveryRateXorBursty[0]);
1056 // For |loss_number| = |num_fec_packets|, we expect the following:
1057 // Perfect recovery for RS, and recovery for XOR above the threshold.
1058 loss_number = num_fec_packets;
1059 EXPECT_EQ(kMetricsReedSolomon[code_index].
1060 recovery_rate_per_loss[loss_number], 1.0);
1061 EXPECT_GE(kMetricsXorRandom[code_index].
1062 recovery_rate_per_loss[loss_number], kRecoveryRateXorRandom[1]);
1063 EXPECT_GE(kMetricsXorBursty[code_index].
1064 recovery_rate_per_loss[loss_number], kRecoveryRateXorBursty[1]);
1065 // For |loss_number| = |num_fec_packets| + 1, we expect the following:
1066 // Zero recovery for RS, but non-zero recovery for XOR.
1067 if (num_fec_packets > 1 && num_media_packets > 2) {
1068 loss_number = num_fec_packets + 1;
1069 EXPECT_EQ(kMetricsReedSolomon[code_index].
1070 recovery_rate_per_loss[loss_number], 0.0);
1071 EXPECT_GE(kMetricsXorRandom[code_index].
1072 recovery_rate_per_loss[loss_number],
1073 kRecoveryRateXorRandom[2]);
1074 EXPECT_GE(kMetricsXorBursty[code_index].
1075 recovery_rate_per_loss[loss_number],
1076 kRecoveryRateXorBursty[2]);
1077 }
1078 }
1079 }
1080
1081 } // namespace webrtc
1082