1 #ifndef _TCUFLOAT_HPP
2 #define _TCUFLOAT_HPP
3 /*-------------------------------------------------------------------------
4  * drawElements Quality Program Tester Core
5  * ----------------------------------------
6  *
7  * Copyright 2014 The Android Open Source Project
8  *
9  * Licensed under the Apache License, Version 2.0 (the "License");
10  * you may not use this file except in compliance with the License.
11  * You may obtain a copy of the License at
12  *
13  *      http://www.apache.org/licenses/LICENSE-2.0
14  *
15  * Unless required by applicable law or agreed to in writing, software
16  * distributed under the License is distributed on an "AS IS" BASIS,
17  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18  * See the License for the specific language governing permissions and
19  * limitations under the License.
20  *
21  *//*!
22  * \file
23  * \brief Reconfigurable floating-point value template.
24  *//*--------------------------------------------------------------------*/
25 
26 #include "tcuDefs.hpp"
27 
28 // For memcpy().
29 #include <string.h>
30 
31 namespace tcu
32 {
33 
34 enum FloatFlags
35 {
36 	FLOAT_HAS_SIGN			= (1<<0),
37 	FLOAT_SUPPORT_DENORM	= (1<<1)
38 };
39 
40 /*--------------------------------------------------------------------*//*!
41  * \brief Floating-point format template
42  *
43  * This template implements arbitrary floating-point handling. Template
44  * can be used for conversion between different formats and checking
45  * various properties of floating-point values.
46  *//*--------------------------------------------------------------------*/
47 template <typename StorageType_, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
48 class Float
49 {
50 public:
51 	typedef StorageType_ StorageType;
52 
53 	enum
54 	{
55 		EXPONENT_BITS	= ExponentBits,
56 		MANTISSA_BITS	= MantissaBits,
57 		EXPONENT_BIAS	= ExponentBias,
58 		FLAGS			= Flags,
59 	};
60 
61 							Float			(void);
62 	explicit				Float			(StorageType value);
63 	explicit				Float			(float v);
64 	explicit				Float			(double v);
65 
66 	template <typename OtherStorageType, int OtherExponentBits, int OtherMantissaBits, int OtherExponentBias, deUint32 OtherFlags>
67 	static Float			convert			(const Float<OtherStorageType, OtherExponentBits, OtherMantissaBits, OtherExponentBias, OtherFlags>& src);
68 
convert(const Float<StorageType,ExponentBits,MantissaBits,ExponentBias,Flags> & src)69 	static inline Float		convert			(const Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>& src) { return src; }
70 
71 	/*--------------------------------------------------------------------*//*!
72 	 * \brief Construct floating point value
73 	 * \param sign		Sign. Must be +1/-1
74 	 * \param exponent	Exponent in range [1-ExponentBias, ExponentBias+1]
75 	 * \param mantissa	Mantissa bits with implicit leading bit explicitly set
76 	 * \return The specified float
77 	 *
78 	 * This function constructs a floating point value from its inputs.
79 	 * The normally implicit leading bit of the mantissa must be explicitly set.
80 	 * The exponent normally used for zero/subnormals is an invalid input. Such
81 	 * values are specified with the leading mantissa bit of zero and the lowest
82 	 * normal exponent (1-ExponentBias). Additionally having both exponent and
83 	 * mantissa set to zero is a shorthand notation for the correctly signed
84 	 * floating point zero. Inf and NaN must be specified directly with an
85 	 * exponent of ExponentBias+1 and the appropriate mantissa (with leading
86 	 * bit set)
87 	 *//*--------------------------------------------------------------------*/
88 	static inline Float		construct		(int sign, int exponent, StorageType mantissa);
89 
90 	/*--------------------------------------------------------------------*//*!
91 	 * \brief Construct floating point value. Explicit version
92 	 * \param sign		Sign. Must be +1/-1
93 	 * \param exponent	Exponent in range [-ExponentBias, ExponentBias+1]
94 	 * \param mantissa	Mantissa bits
95 	 * \return The specified float
96 	 *
97 	 * This function constructs a floating point value from its inputs with
98 	 * minimal intervention.
99 	 * The sign is turned into a sign bit and the exponent bias is added.
100 	 * See IEEE-754 for additional information on the inputs and
101 	 * the encoding of special values.
102 	 *//*--------------------------------------------------------------------*/
103 	static Float			constructBits	(int sign, int exponent, StorageType mantissaBits);
104 
bits(void) const105 	StorageType				bits			(void) const	{ return m_value;															}
106 	float					asFloat			(void) const;
107 	double					asDouble		(void) const;
108 
signBit(void) const109 	inline int				signBit			(void) const	{ return (int)(m_value >> (ExponentBits+MantissaBits)) & 1;					}
exponentBits(void) const110 	inline StorageType		exponentBits	(void) const	{ return (m_value >> MantissaBits) & ((StorageType(1)<<ExponentBits)-1);	}
mantissaBits(void) const111 	inline StorageType		mantissaBits	(void) const	{ return m_value & ((StorageType(1)<<MantissaBits)-1);						}
112 
sign(void) const113 	inline int				sign			(void) const	{ return signBit() ? -1 : 1;																			}
exponent(void) const114 	inline int				exponent		(void) const	{ return isDenorm() ? 1	- ExponentBias : (int)exponentBits() - ExponentBias;							}
mantissa(void) const115 	inline StorageType		mantissa		(void) const	{ return isZero() || isDenorm() ? mantissaBits() : (mantissaBits() | (StorageType(1)<<MantissaBits));	}
116 
isInf(void) const117 	inline bool				isInf			(void) const	{ return exponentBits() == ((1<<ExponentBits)-1)	&& mantissaBits() == 0;	}
isNaN(void) const118 	inline bool				isNaN			(void) const	{ return exponentBits() == ((1<<ExponentBits)-1)	&& mantissaBits() != 0;	}
isZero(void) const119 	inline bool				isZero			(void) const	{ return exponentBits() == 0						&& mantissaBits() == 0;	}
isDenorm(void) const120 	inline bool				isDenorm		(void) const	{ return exponentBits() == 0						&& mantissaBits() != 0;	}
121 
122 	static Float			zero			(int sign);
123 	static Float			inf				(int sign);
124 	static Float			nan				(void);
125 
126 private:
127 	StorageType				m_value;
128 } DE_WARN_UNUSED_TYPE;
129 
130 // Common floating-point types.
131 typedef Float<deUint16,  5, 10,   15, FLOAT_HAS_SIGN|FLOAT_SUPPORT_DENORM>	Float16;	//!< IEEE 754-2008 16-bit floating-point value
132 typedef Float<deUint32,  8, 23,  127, FLOAT_HAS_SIGN|FLOAT_SUPPORT_DENORM>	Float32;	//!< IEEE 754 32-bit floating-point value
133 typedef Float<deUint64, 11, 52, 1023, FLOAT_HAS_SIGN|FLOAT_SUPPORT_DENORM>	Float64;	//!< IEEE 754 64-bit floating-point value
134 
135 template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
Float(void)136 inline Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::Float (void)
137 	: m_value(0)
138 {
139 }
140 
141 template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
Float(StorageType value)142 inline Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::Float (StorageType value)
143 	: m_value(value)
144 {
145 }
146 
147 template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
Float(float value)148 inline Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::Float (float value)
149 	: m_value(0)
150 {
151 	deUint32 u32;
152 	memcpy(&u32, &value, sizeof(deUint32));
153 	*this = convert(Float32(u32));
154 }
155 
156 template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
Float(double value)157 inline Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::Float (double value)
158 	: m_value(0)
159 {
160 	deUint64 u64;
161 	memcpy(&u64, &value, sizeof(deUint64));
162 	*this = convert(Float64(u64));
163 }
164 
165 template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
asFloat(void) const166 inline float Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::asFloat (void) const
167 {
168 	float		v;
169 	deUint32	u32		= Float32::convert(*this).bits();
170 	memcpy(&v, &u32, sizeof(deUint32));
171 	return v;
172 }
173 
174 template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
asDouble(void) const175 inline double Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::asDouble (void) const
176 {
177 	double		v;
178 	deUint64	u64		= Float64::convert(*this).bits();
179 	memcpy(&v, &u64, sizeof(deUint64));
180 	return v;
181 }
182 
183 template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
zero(int sign)184 inline Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags> Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::zero (int sign)
185 {
186 	DE_ASSERT(sign == 1 || ((Flags & FLOAT_HAS_SIGN) && sign == -1));
187 	return Float(StorageType((sign > 0 ? 0ull : 1ull) << (ExponentBits+MantissaBits)));
188 }
189 
190 template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
inf(int sign)191 inline Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags> Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::inf (int sign)
192 {
193 	DE_ASSERT(sign == 1 || ((Flags & FLOAT_HAS_SIGN) && sign == -1));
194 	return Float(StorageType(((sign > 0 ? 0ull : 1ull) << (ExponentBits+MantissaBits)) | (((1ull<<ExponentBits)-1) << MantissaBits)));
195 }
196 
197 template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
nan(void)198 inline Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags> Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::nan (void)
199 {
200 	return Float(StorageType((1ull<<(ExponentBits+MantissaBits))-1));
201 }
202 
203 template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
204 Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>
construct(int sign,int exponent,StorageType mantissa)205 Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::construct
206 	(int sign, int exponent, StorageType mantissa)
207 {
208 	// Repurpose this otherwise invalid input as a shorthand notation for zero (no need for caller to care about internal representation)
209 	const bool			isShorthandZero	= exponent == 0 && mantissa == 0;
210 
211 	// Handles the typical notation for zero (min exponent, mantissa 0). Note that the exponent usually used exponent (-ExponentBias) for zero/subnormals is not used.
212 	// Instead zero/subnormals have the (normally implicit) leading mantissa bit set to zero.
213 	const bool			isDenormOrZero	= (exponent == 1 - ExponentBias) && (mantissa >> MantissaBits == 0);
214 	const StorageType	s				= StorageType((StorageType(sign < 0 ? 1 : 0)) << (StorageType(ExponentBits+MantissaBits)));
215 	const StorageType	exp				= (isShorthandZero  || isDenormOrZero) ? StorageType(0) : StorageType(exponent + ExponentBias);
216 
217 	DE_ASSERT(sign == +1 || sign == -1);
218 	DE_ASSERT(isShorthandZero || isDenormOrZero || mantissa >> MantissaBits == 1);
219 	DE_ASSERT(exp >> ExponentBits == 0);
220 
221 	return Float(StorageType(s | (exp << MantissaBits) | (mantissa & ((StorageType(1)<<MantissaBits)-1))));
222 }
223 
224 template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
225 Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>
constructBits(int sign,int exponent,StorageType mantissaBits)226 Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::constructBits
227 	(int sign, int exponent, StorageType mantissaBits)
228 {
229 	const StorageType signBit		= sign < 0 ? 1 : 0;
230 	const StorageType exponentBits	= exponent + ExponentBias;
231 
232 	DE_ASSERT(sign == +1 || sign == -1 );
233 	DE_ASSERT(exponentBits >> ExponentBits == 0);
234 	DE_ASSERT(mantissaBits >> MantissaBits == 0);
235 
236 	return Float(StorageType((signBit << (ExponentBits+MantissaBits)) | (exponentBits << MantissaBits) | (mantissaBits)));
237 }
238 
239 template <typename StorageType, int ExponentBits, int MantissaBits, int ExponentBias, deUint32 Flags>
240 template <typename OtherStorageType, int OtherExponentBits, int OtherMantissaBits, int OtherExponentBias, deUint32 OtherFlags>
241 Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>
convert(const Float<OtherStorageType,OtherExponentBits,OtherMantissaBits,OtherExponentBias,OtherFlags> & other)242 Float<StorageType, ExponentBits, MantissaBits, ExponentBias, Flags>::convert
243 	(const Float<OtherStorageType, OtherExponentBits, OtherMantissaBits, OtherExponentBias, OtherFlags>& other)
244 {
245 	if (!(Flags & FLOAT_HAS_SIGN) && other.sign() < 0)
246 	{
247 		// Negative number, truncate to zero.
248 		return zero(+1);
249 	}
250 	else if (other.isInf())
251 	{
252 		return inf(other.sign());
253 	}
254 	else if (other.isNaN())
255 	{
256 		return nan();
257 	}
258 	else if (other.isZero())
259 	{
260 		return zero(other.sign());
261 	}
262 	else
263 	{
264 		const int			eMin	= 1 - ExponentBias;
265 		const int			eMax	= ((1<<ExponentBits)-2) - ExponentBias;
266 
267 		const StorageType	s		= StorageType((StorageType(other.signBit())) << (StorageType(ExponentBits+MantissaBits))); // \note Not sign, but sign bit.
268 		int					e		= other.exponent();
269 		deUint64			m		= other.mantissa();
270 
271 		// Normalize denormalized values prior to conversion.
272 		while (!(m & (1ull<<OtherMantissaBits)))
273 		{
274 			m <<= 1;
275 			e  -= 1;
276 		}
277 
278 		if (e < eMin)
279 		{
280 			// Underflow.
281 			if ((Flags & FLOAT_SUPPORT_DENORM) && (eMin-e-1 <= MantissaBits))
282 			{
283 				// Shift and round (RTE).
284 				int			bitDiff	= (OtherMantissaBits-MantissaBits) + (eMin-e);
285 				deUint64	half	= (1ull << (bitDiff - 1)) - 1;
286 				deUint64	bias	= (m >> bitDiff) & 1;
287 
288 				return Float(StorageType(s | (m + half + bias) >> bitDiff));
289 			}
290 			else
291 				return zero(other.sign());
292 		}
293 		else
294 		{
295 			// Remove leading 1.
296 			m = m & ~(1ull<<OtherMantissaBits);
297 
298 			if (MantissaBits < OtherMantissaBits)
299 			{
300 				// Round mantissa (round to nearest even).
301 				int			bitDiff	= OtherMantissaBits-MantissaBits;
302 				deUint64	half	= (1ull << (bitDiff - 1)) - 1;
303 				deUint64	bias	= (m >> bitDiff) & 1;
304 
305 				m = (m + half + bias) >> bitDiff;
306 
307 				if (m & (1ull<<MantissaBits))
308 				{
309 					// Overflow in mantissa.
310 					m  = 0;
311 					e += 1;
312 				}
313 			}
314 			else
315 			{
316 				int bitDiff = MantissaBits-OtherMantissaBits;
317 				m = m << bitDiff;
318 			}
319 
320 			if (e > eMax)
321 			{
322 				// Overflow.
323 				return inf(other.sign());
324 			}
325 			else
326 			{
327 				DE_ASSERT(de::inRange(e, eMin, eMax));
328 				DE_ASSERT(((e + ExponentBias) & ~((1ull<<ExponentBits)-1)) == 0);
329 				DE_ASSERT((m & ~((1ull<<MantissaBits)-1)) == 0);
330 
331 				return Float(StorageType(s | (StorageType(e + ExponentBias) << MantissaBits) | m));
332 			}
333 		}
334 	}
335 }
336 
337 } // tcu
338 
339 #endif // _TCUFLOAT_HPP
340