1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2013 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/incomplete_lq_factorization.h"
32 
33 #include "Eigen/Dense"
34 #include "ceres/compressed_row_sparse_matrix.h"
35 #include "ceres/internal/scoped_ptr.h"
36 #include "glog/logging.h"
37 #include "gtest/gtest.h"
38 
39 namespace ceres {
40 namespace internal {
41 
ExpectMatricesAreEqual(const CompressedRowSparseMatrix & expected,const CompressedRowSparseMatrix & actual,const double tolerance)42 void ExpectMatricesAreEqual(const CompressedRowSparseMatrix& expected,
43                             const CompressedRowSparseMatrix& actual,
44                             const double tolerance) {
45   EXPECT_EQ(expected.num_rows(), actual.num_rows());
46   EXPECT_EQ(expected.num_cols(), actual.num_cols());
47   for (int i = 0; i < expected.num_rows(); ++i) {
48     EXPECT_EQ(expected.rows()[i], actual.rows()[i]);
49   }
50 
51   for (int i = 0; i < actual.num_nonzeros(); ++i) {
52     EXPECT_EQ(expected.cols()[i], actual.cols()[i]);
53     EXPECT_NEAR(expected.values()[i], actual.values()[i], tolerance);
54   }
55 }
56 
TEST(IncompleteQRFactorization,OneByOneMatrix)57 TEST(IncompleteQRFactorization, OneByOneMatrix) {
58   CompressedRowSparseMatrix matrix(1, 1, 1);
59   matrix.mutable_rows()[0] = 0;
60   matrix.mutable_rows()[1] = 1;
61   matrix.mutable_cols()[0] = 0;
62   matrix.mutable_values()[0] = 2;
63 
64   scoped_ptr<CompressedRowSparseMatrix> l(
65       IncompleteLQFactorization(matrix, 1, 0.0, 1, 0.0));
66   ExpectMatricesAreEqual(matrix, *l, 1e-16);
67 }
68 
TEST(IncompleteLQFactorization,CompleteFactorization)69 TEST(IncompleteLQFactorization, CompleteFactorization) {
70   double dense_matrix[] = {
71     0.00000,  0.00000,  0.20522,  0.00000,  0.49077,  0.92835,  0.00000,  0.83825,  0.00000,  0.00000,  // NOLINT
72     0.00000,  0.00000,  0.00000,  0.62491,  0.38144,  0.00000,  0.79394,  0.79178,  0.00000,  0.44382,  // NOLINT
73     0.00000,  0.00000,  0.00000,  0.61517,  0.55941,  0.00000,  0.00000,  0.00000,  0.00000,  0.60664,  // NOLINT
74     0.00000,  0.00000,  0.00000,  0.00000,  0.45031,  0.00000,  0.64132,  0.00000,  0.38832,  0.00000,  // NOLINT
75     0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.57121,  0.00000,  0.01375,  0.70640,  0.00000,  // NOLINT
76     0.00000,  0.00000,  0.07451,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  // NOLINT
77     0.68095,  0.00000,  0.00000,  0.95473,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  // NOLINT
78     0.00000,  0.00000,  0.00000,  0.00000,  0.59374,  0.00000,  0.00000,  0.00000,  0.49139,  0.00000,  // NOLINT
79     0.91276,  0.96641,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.91797,  // NOLINT
80     0.96828,  0.00000,  0.00000,  0.72583,  0.00000,  0.00000,  0.81459,  0.00000,  0.04560,  0.00000   // NOLINT
81   };
82 
83   CompressedRowSparseMatrix matrix(10, 10, 100);
84   int* rows = matrix.mutable_rows();
85   int* cols = matrix.mutable_cols();
86   double* values = matrix.mutable_values();
87 
88   int idx = 0;
89   for (int i = 0; i < 10; ++i) {
90     rows[i] = idx;
91     for (int j = 0; j < 10; ++j) {
92       const double v = dense_matrix[i * 10 + j];
93       if (fabs(v) > 1e-6) {
94         cols[idx] = j;
95         values[idx] = v;
96         ++idx;
97       }
98     }
99   }
100   rows[10] = idx;
101 
102   scoped_ptr<CompressedRowSparseMatrix> lmatrix(
103       IncompleteLQFactorization(matrix, 10, 0.0, 10, 0.0));
104 
105   ConstMatrixRef mref(dense_matrix, 10, 10);
106 
107   // Use Cholesky factorization to compute the L matrix.
108   Matrix expected_l_matrix  = (mref * mref.transpose()).llt().matrixL();
109   Matrix actual_l_matrix;
110   lmatrix->ToDenseMatrix(&actual_l_matrix);
111 
112   EXPECT_NEAR((expected_l_matrix * expected_l_matrix.transpose() -
113                actual_l_matrix * actual_l_matrix.transpose()).norm(),
114               0.0,
115               1e-10)
116       << "expected: \n" << expected_l_matrix
117       << "\actual: \n" << actual_l_matrix;
118 }
119 
TEST(IncompleteLQFactorization,DropEntriesAndAddRow)120 TEST(IncompleteLQFactorization, DropEntriesAndAddRow) {
121   // Allocate space and then make it a zero sized matrix.
122   CompressedRowSparseMatrix matrix(10, 10, 100);
123   matrix.set_num_rows(0);
124 
125   vector<pair<int, double> > scratch(10);
126 
127   Vector dense_vector(10);
128   dense_vector(0) = 5;
129   dense_vector(1) = 1;
130   dense_vector(2) = 2;
131   dense_vector(3) = 3;
132   dense_vector(4) = 1;
133   dense_vector(5) = 4;
134 
135   // Add a row with just one entry.
136   DropEntriesAndAddRow(dense_vector, 1, 1, 0, &scratch, &matrix);
137   EXPECT_EQ(matrix.num_rows(), 1);
138   EXPECT_EQ(matrix.num_cols(), 10);
139   EXPECT_EQ(matrix.num_nonzeros(), 1);
140   EXPECT_EQ(matrix.values()[0], 5.0);
141   EXPECT_EQ(matrix.cols()[0], 0);
142 
143   // Add a row with six entries
144   DropEntriesAndAddRow(dense_vector, 6, 10, 0, &scratch, &matrix);
145   EXPECT_EQ(matrix.num_rows(), 2);
146   EXPECT_EQ(matrix.num_cols(), 10);
147   EXPECT_EQ(matrix.num_nonzeros(), 7);
148   for (int idx = matrix.rows()[1]; idx < matrix.rows()[2]; ++idx) {
149     EXPECT_EQ(matrix.cols()[idx], idx - matrix.rows()[1]);
150     EXPECT_EQ(matrix.values()[idx], dense_vector(idx - matrix.rows()[1]));
151   }
152 
153   // Add the top 3 entries.
154   DropEntriesAndAddRow(dense_vector, 6, 3, 0, &scratch, &matrix);
155   EXPECT_EQ(matrix.num_rows(), 3);
156   EXPECT_EQ(matrix.num_cols(), 10);
157   EXPECT_EQ(matrix.num_nonzeros(), 10);
158 
159   EXPECT_EQ(matrix.cols()[matrix.rows()[2]], 0);
160   EXPECT_EQ(matrix.cols()[matrix.rows()[2] + 1], 3);
161   EXPECT_EQ(matrix.cols()[matrix.rows()[2] + 2], 5);
162 
163   EXPECT_EQ(matrix.values()[matrix.rows()[2]], 5);
164   EXPECT_EQ(matrix.values()[matrix.rows()[2] + 1], 3);
165   EXPECT_EQ(matrix.values()[matrix.rows()[2] + 2], 4);
166 
167   // Only keep entries greater than 1.0;
168   DropEntriesAndAddRow(dense_vector, 6, 6, 0.2, &scratch, &matrix);
169   EXPECT_EQ(matrix.num_rows(), 4);
170   EXPECT_EQ(matrix.num_cols(), 10);
171   EXPECT_EQ(matrix.num_nonzeros(), 14);
172 
173   EXPECT_EQ(matrix.cols()[matrix.rows()[3]], 0);
174   EXPECT_EQ(matrix.cols()[matrix.rows()[3] + 1], 2);
175   EXPECT_EQ(matrix.cols()[matrix.rows()[3] + 2], 3);
176   EXPECT_EQ(matrix.cols()[matrix.rows()[3] + 3], 5);
177 
178   EXPECT_EQ(matrix.values()[matrix.rows()[3]], 5);
179   EXPECT_EQ(matrix.values()[matrix.rows()[3] + 1], 2);
180   EXPECT_EQ(matrix.values()[matrix.rows()[3] + 2], 3);
181   EXPECT_EQ(matrix.values()[matrix.rows()[3] + 3], 4);
182 
183   // Only keep the top 2 entries greater than 1.0
184   DropEntriesAndAddRow(dense_vector, 6, 2, 0.2, &scratch, &matrix);
185   EXPECT_EQ(matrix.num_rows(), 5);
186   EXPECT_EQ(matrix.num_cols(), 10);
187   EXPECT_EQ(matrix.num_nonzeros(), 16);
188 
189   EXPECT_EQ(matrix.cols()[matrix.rows()[4]], 0);
190   EXPECT_EQ(matrix.cols()[matrix.rows()[4] + 1], 5);
191 
192   EXPECT_EQ(matrix.values()[matrix.rows()[4]], 5);
193   EXPECT_EQ(matrix.values()[matrix.rows()[4] + 1], 4);
194 }
195 
196 
197 }  // namespace internal
198 }  // namespace ceres
199