1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000-2015, Intel Corporation, all rights reserved. 14 // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. 15 // Copyright (C) 2015, OpenCV Foundation, all rights reserved. 16 // Copyright (C) 2015, Itseez Inc., all rights reserved. 17 // Third party copyrights are property of their respective owners. 18 // 19 // Redistribution and use in source and binary forms, with or without modification, 20 // are permitted provided that the following conditions are met: 21 // 22 // * Redistribution's of source code must retain the above copyright notice, 23 // this list of conditions and the following disclaimer. 24 // 25 // * Redistribution's in binary form must reproduce the above copyright notice, 26 // this list of conditions and the following disclaimer in the documentation 27 // and/or other materials provided with the distribution. 28 // 29 // * The name of the copyright holders may not be used to endorse or promote products 30 // derived from this software without specific prior written permission. 31 // 32 // This software is provided by the copyright holders and contributors "as is" and 33 // any express or implied warranties, including, but not limited to, the implied 34 // warranties of merchantability and fitness for a particular purpose are disclaimed. 35 // In no event shall the Intel Corporation or contributors be liable for any direct, 36 // indirect, incidental, special, exemplary, or consequential damages 37 // (including, but not limited to, procurement of substitute goods or services; 38 // loss of use, data, or profits; or business interruption) however caused 39 // and on any theory of liability, whether in contract, strict liability, 40 // or tort (including negligence or otherwise) arising in any way out of 41 // the use of this software, even if advised of the possibility of such damage. 42 // 43 //M*/ 44 45 #ifndef __OPENCV_CORE_HPP__ 46 #define __OPENCV_CORE_HPP__ 47 48 #ifndef __cplusplus 49 # error core.hpp header must be compiled as C++ 50 #endif 51 52 #include "opencv2/core/cvdef.h" 53 #include "opencv2/core/version.hpp" 54 #include "opencv2/core/base.hpp" 55 #include "opencv2/core/cvstd.hpp" 56 #include "opencv2/core/traits.hpp" 57 #include "opencv2/core/matx.hpp" 58 #include "opencv2/core/types.hpp" 59 #include "opencv2/core/mat.hpp" 60 #include "opencv2/core/persistence.hpp" 61 62 /** 63 @defgroup core Core functionality 64 @{ 65 @defgroup core_basic Basic structures 66 @defgroup core_c C structures and operations 67 @{ 68 @defgroup core_c_glue Connections with C++ 69 @} 70 @defgroup core_array Operations on arrays 71 @defgroup core_xml XML/YAML Persistence 72 @defgroup core_cluster Clustering 73 @defgroup core_utils Utility and system functions and macros 74 @{ 75 @defgroup core_utils_neon NEON utilities 76 @} 77 @defgroup core_opengl OpenGL interoperability 78 @defgroup core_ipp Intel IPP Asynchronous C/C++ Converters 79 @defgroup core_optim Optimization Algorithms 80 @defgroup core_directx DirectX interoperability 81 @defgroup core_eigen Eigen support 82 @defgroup core_opencl OpenCL support 83 @} 84 */ 85 86 namespace cv { 87 88 //! @addtogroup core_utils 89 //! @{ 90 91 /*! @brief Class passed to an error. 92 93 This class encapsulates all or almost all necessary 94 information about the error happened in the program. The exception is 95 usually constructed and thrown implicitly via CV_Error and CV_Error_ macros. 96 @see error 97 */ 98 class CV_EXPORTS Exception : public std::exception 99 { 100 public: 101 /*! 102 Default constructor 103 */ 104 Exception(); 105 /*! 106 Full constructor. Normally the constuctor is not called explicitly. 107 Instead, the macros CV_Error(), CV_Error_() and CV_Assert() are used. 108 */ 109 Exception(int _code, const String& _err, const String& _func, const String& _file, int _line); 110 virtual ~Exception() throw(); 111 112 /*! 113 \return the error description and the context as a text string. 114 */ 115 virtual const char *what() const throw(); 116 void formatMessage(); 117 118 String msg; ///< the formatted error message 119 120 int code; ///< error code @see CVStatus 121 String err; ///< error description 122 String func; ///< function name. Available only when the compiler supports getting it 123 String file; ///< source file name where the error has occured 124 int line; ///< line number in the source file where the error has occured 125 }; 126 127 /*! @brief Signals an error and raises the exception. 128 129 By default the function prints information about the error to stderr, 130 then it either stops if cv::setBreakOnError() had been called before or raises the exception. 131 It is possible to alternate error processing by using cv::redirectError(). 132 @param exc the exception raisen. 133 @deprecated drop this version 134 */ 135 CV_EXPORTS void error( const Exception& exc ); 136 137 enum SortFlags { SORT_EVERY_ROW = 0, //!< each matrix row is sorted independently 138 SORT_EVERY_COLUMN = 1, //!< each matrix column is sorted 139 //!< independently; this flag and the previous one are 140 //!< mutually exclusive. 141 SORT_ASCENDING = 0, //!< each matrix row is sorted in the ascending 142 //!< order. 143 SORT_DESCENDING = 16 //!< each matrix row is sorted in the 144 //!< descending order; this flag and the previous one are also 145 //!< mutually exclusive. 146 }; 147 148 //! @} core_utils 149 150 //! @addtogroup core 151 //! @{ 152 153 //! Covariation flags 154 enum CovarFlags { 155 /** The output covariance matrix is calculated as: 156 \f[\texttt{scale} \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...]^T \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...],\f] 157 The covariance matrix will be nsamples x nsamples. Such an unusual covariance matrix is used 158 for fast PCA of a set of very large vectors (see, for example, the EigenFaces technique for 159 face recognition). Eigenvalues of this "scrambled" matrix match the eigenvalues of the true 160 covariance matrix. The "true" eigenvectors can be easily calculated from the eigenvectors of 161 the "scrambled" covariance matrix. */ 162 COVAR_SCRAMBLED = 0, 163 /**The output covariance matrix is calculated as: 164 \f[\texttt{scale} \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...] \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...]^T,\f] 165 covar will be a square matrix of the same size as the total number of elements in each input 166 vector. One and only one of COVAR_SCRAMBLED and COVAR_NORMAL must be specified.*/ 167 COVAR_NORMAL = 1, 168 /** If the flag is specified, the function does not calculate mean from 169 the input vectors but, instead, uses the passed mean vector. This is useful if mean has been 170 pre-calculated or known in advance, or if the covariance matrix is calculated by parts. In 171 this case, mean is not a mean vector of the input sub-set of vectors but rather the mean 172 vector of the whole set.*/ 173 COVAR_USE_AVG = 2, 174 /** If the flag is specified, the covariance matrix is scaled. In the 175 "normal" mode, scale is 1./nsamples . In the "scrambled" mode, scale is the reciprocal of the 176 total number of elements in each input vector. By default (if the flag is not specified), the 177 covariance matrix is not scaled ( scale=1 ).*/ 178 COVAR_SCALE = 4, 179 /** If the flag is 180 specified, all the input vectors are stored as rows of the samples matrix. mean should be a 181 single-row vector in this case.*/ 182 COVAR_ROWS = 8, 183 /** If the flag is 184 specified, all the input vectors are stored as columns of the samples matrix. mean should be a 185 single-column vector in this case.*/ 186 COVAR_COLS = 16 187 }; 188 189 //! k-Means flags 190 enum KmeansFlags { 191 /** Select random initial centers in each attempt.*/ 192 KMEANS_RANDOM_CENTERS = 0, 193 /** Use kmeans++ center initialization by Arthur and Vassilvitskii [Arthur2007].*/ 194 KMEANS_PP_CENTERS = 2, 195 /** During the first (and possibly the only) attempt, use the 196 user-supplied labels instead of computing them from the initial centers. For the second and 197 further attempts, use the random or semi-random centers. Use one of KMEANS_\*_CENTERS flag 198 to specify the exact method.*/ 199 KMEANS_USE_INITIAL_LABELS = 1 200 }; 201 202 //! type of line 203 enum LineTypes { 204 FILLED = -1, 205 LINE_4 = 4, //!< 4-connected line 206 LINE_8 = 8, //!< 8-connected line 207 LINE_AA = 16 //!< antialiased line 208 }; 209 210 //! Only a subset of Hershey fonts 211 //! <http://sources.isc.org/utils/misc/hershey-font.txt> are supported 212 enum HersheyFonts { 213 FONT_HERSHEY_SIMPLEX = 0, //!< normal size sans-serif font 214 FONT_HERSHEY_PLAIN = 1, //!< small size sans-serif font 215 FONT_HERSHEY_DUPLEX = 2, //!< normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX) 216 FONT_HERSHEY_COMPLEX = 3, //!< normal size serif font 217 FONT_HERSHEY_TRIPLEX = 4, //!< normal size serif font (more complex than FONT_HERSHEY_COMPLEX) 218 FONT_HERSHEY_COMPLEX_SMALL = 5, //!< smaller version of FONT_HERSHEY_COMPLEX 219 FONT_HERSHEY_SCRIPT_SIMPLEX = 6, //!< hand-writing style font 220 FONT_HERSHEY_SCRIPT_COMPLEX = 7, //!< more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX 221 FONT_ITALIC = 16 //!< flag for italic font 222 }; 223 224 enum ReduceTypes { REDUCE_SUM = 0, //!< the output is the sum of all rows/columns of the matrix. 225 REDUCE_AVG = 1, //!< the output is the mean vector of all rows/columns of the matrix. 226 REDUCE_MAX = 2, //!< the output is the maximum (column/row-wise) of all rows/columns of the matrix. 227 REDUCE_MIN = 3 //!< the output is the minimum (column/row-wise) of all rows/columns of the matrix. 228 }; 229 230 231 /** @brief Swaps two matrices 232 */ 233 CV_EXPORTS void swap(Mat& a, Mat& b); 234 /** @overload */ 235 CV_EXPORTS void swap( UMat& a, UMat& b ); 236 237 //! @} core 238 239 //! @addtogroup core_array 240 //! @{ 241 242 /** @brief Computes the source location of an extrapolated pixel. 243 244 The function computes and returns the coordinate of a donor pixel corresponding to the specified 245 extrapolated pixel when using the specified extrapolation border mode. For example, if you use 246 cv::BORDER_WRAP mode in the horizontal direction, cv::BORDER_REFLECT_101 in the vertical direction and 247 want to compute value of the "virtual" pixel Point(-5, 100) in a floating-point image img , it 248 looks like: 249 @code{.cpp} 250 float val = img.at<float>(borderInterpolate(100, img.rows, cv::BORDER_REFLECT_101), 251 borderInterpolate(-5, img.cols, cv::BORDER_WRAP)); 252 @endcode 253 Normally, the function is not called directly. It is used inside filtering functions and also in 254 copyMakeBorder. 255 @param p 0-based coordinate of the extrapolated pixel along one of the axes, likely \<0 or \>= len 256 @param len Length of the array along the corresponding axis. 257 @param borderType Border type, one of the cv::BorderTypes, except for cv::BORDER_TRANSPARENT and 258 cv::BORDER_ISOLATED . When borderType==cv::BORDER_CONSTANT , the function always returns -1, regardless 259 of p and len. 260 261 @sa copyMakeBorder 262 */ 263 CV_EXPORTS_W int borderInterpolate(int p, int len, int borderType); 264 265 /** @brief Forms a border around an image. 266 267 The function copies the source image into the middle of the destination image. The areas to the 268 left, to the right, above and below the copied source image will be filled with extrapolated 269 pixels. This is not what filtering functions based on it do (they extrapolate pixels on-fly), but 270 what other more complex functions, including your own, may do to simplify image boundary handling. 271 272 The function supports the mode when src is already in the middle of dst . In this case, the 273 function does not copy src itself but simply constructs the border, for example: 274 275 @code{.cpp} 276 // let border be the same in all directions 277 int border=2; 278 // constructs a larger image to fit both the image and the border 279 Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth()); 280 // select the middle part of it w/o copying data 281 Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows)); 282 // convert image from RGB to grayscale 283 cvtColor(rgb, gray, COLOR_RGB2GRAY); 284 // form a border in-place 285 copyMakeBorder(gray, gray_buf, border, border, 286 border, border, BORDER_REPLICATE); 287 // now do some custom filtering ... 288 ... 289 @endcode 290 @note When the source image is a part (ROI) of a bigger image, the function will try to use the 291 pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as 292 if src was not a ROI, use borderType | BORDER_ISOLATED. 293 294 @param src Source image. 295 @param dst Destination image of the same type as src and the size Size(src.cols+left+right, 296 src.rows+top+bottom) . 297 @param top 298 @param bottom 299 @param left 300 @param right Parameter specifying how many pixels in each direction from the source image rectangle 301 to extrapolate. For example, top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs 302 to be built. 303 @param borderType Border type. See borderInterpolate for details. 304 @param value Border value if borderType==BORDER_CONSTANT . 305 306 @sa borderInterpolate 307 */ 308 CV_EXPORTS_W void copyMakeBorder(InputArray src, OutputArray dst, 309 int top, int bottom, int left, int right, 310 int borderType, const Scalar& value = Scalar() ); 311 312 /** @brief Calculates the per-element sum of two arrays or an array and a scalar. 313 314 The function add calculates: 315 - Sum of two arrays when both input arrays have the same size and the same number of channels: 316 \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f] 317 - Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of 318 elements as `src1.channels()`: 319 \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f] 320 - Sum of a scalar and an array when src1 is constructed from Scalar or has the same number of 321 elements as `src2.channels()`: 322 \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} + \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f] 323 where `I` is a multi-dimensional index of array elements. In case of multi-channel arrays, each 324 channel is processed independently. 325 326 The first function in the list above can be replaced with matrix expressions: 327 @code{.cpp} 328 dst = src1 + src2; 329 dst += src1; // equivalent to add(dst, src1, dst); 330 @endcode 331 The input arrays and the output array can all have the same or different depths. For example, you 332 can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit 333 floating-point array. Depth of the output array is determined by the dtype parameter. In the second 334 and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can 335 be set to the default -1. In this case, the output array will have the same depth as the input 336 array, be it src1, src2 or both. 337 @note Saturation is not applied when the output array has the depth CV_32S. You may even get 338 result of an incorrect sign in the case of overflow. 339 @param src1 first input array or a scalar. 340 @param src2 second input array or a scalar. 341 @param dst output array that has the same size and number of channels as the input array(s); the 342 depth is defined by dtype or src1/src2. 343 @param mask optional operation mask - 8-bit single channel array, that specifies elements of the 344 output array to be changed. 345 @param dtype optional depth of the output array (see the discussion below). 346 @sa subtract, addWeighted, scaleAdd, Mat::convertTo 347 */ 348 CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst, 349 InputArray mask = noArray(), int dtype = -1); 350 351 /** @brief Calculates the per-element difference between two arrays or array and a scalar. 352 353 The function subtract calculates: 354 - Difference between two arrays, when both input arrays have the same size and the same number of 355 channels: 356 \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f] 357 - Difference between an array and a scalar, when src2 is constructed from Scalar or has the same 358 number of elements as `src1.channels()`: 359 \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f] 360 - Difference between a scalar and an array, when src1 is constructed from Scalar or has the same 361 number of elements as `src2.channels()`: 362 \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} - \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f] 363 - The reverse difference between a scalar and an array in the case of `SubRS`: 364 \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src2} - \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0\f] 365 where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each 366 channel is processed independently. 367 368 The first function in the list above can be replaced with matrix expressions: 369 @code{.cpp} 370 dst = src1 - src2; 371 dst -= src1; // equivalent to subtract(dst, src1, dst); 372 @endcode 373 The input arrays and the output array can all have the same or different depths. For example, you 374 can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of 375 the output array is determined by dtype parameter. In the second and third cases above, as well as 376 in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this 377 case the output array will have the same depth as the input array, be it src1, src2 or both. 378 @note Saturation is not applied when the output array has the depth CV_32S. You may even get 379 result of an incorrect sign in the case of overflow. 380 @param src1 first input array or a scalar. 381 @param src2 second input array or a scalar. 382 @param dst output array of the same size and the same number of channels as the input array. 383 @param mask optional operation mask; this is an 8-bit single channel array that specifies elements 384 of the output array to be changed. 385 @param dtype optional depth of the output array 386 @sa add, addWeighted, scaleAdd, Mat::convertTo 387 */ 388 CV_EXPORTS_W void subtract(InputArray src1, InputArray src2, OutputArray dst, 389 InputArray mask = noArray(), int dtype = -1); 390 391 392 /** @brief Calculates the per-element scaled product of two arrays. 393 394 The function multiply calculates the per-element product of two arrays: 395 396 \f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I) \cdot \texttt{src2} (I))\f] 397 398 There is also a @ref MatrixExpressions -friendly variant of the first function. See Mat::mul . 399 400 For a not-per-element matrix product, see gemm . 401 402 @note Saturation is not applied when the output array has the depth 403 CV_32S. You may even get result of an incorrect sign in the case of 404 overflow. 405 @param src1 first input array. 406 @param src2 second input array of the same size and the same type as src1. 407 @param dst output array of the same size and type as src1. 408 @param scale optional scale factor. 409 @param dtype optional depth of the output array 410 @sa add, subtract, divide, scaleAdd, addWeighted, accumulate, accumulateProduct, accumulateSquare, 411 Mat::convertTo 412 */ 413 CV_EXPORTS_W void multiply(InputArray src1, InputArray src2, 414 OutputArray dst, double scale = 1, int dtype = -1); 415 416 /** @brief Performs per-element division of two arrays or a scalar by an array. 417 418 The functions divide divide one array by another: 419 \f[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\f] 420 or a scalar by an array when there is no src1 : 421 \f[\texttt{dst(I) = saturate(scale/src2(I))}\f] 422 423 When src2(I) is zero, dst(I) will also be zero. Different channels of 424 multi-channel arrays are processed independently. 425 426 @note Saturation is not applied when the output array has the depth CV_32S. You may even get 427 result of an incorrect sign in the case of overflow. 428 @param src1 first input array. 429 @param src2 second input array of the same size and type as src1. 430 @param scale scalar factor. 431 @param dst output array of the same size and type as src2. 432 @param dtype optional depth of the output array; if -1, dst will have depth src2.depth(), but in 433 case of an array-by-array division, you can only pass -1 when src1.depth()==src2.depth(). 434 @sa multiply, add, subtract 435 */ 436 CV_EXPORTS_W void divide(InputArray src1, InputArray src2, OutputArray dst, 437 double scale = 1, int dtype = -1); 438 439 /** @overload */ 440 CV_EXPORTS_W void divide(double scale, InputArray src2, 441 OutputArray dst, int dtype = -1); 442 443 /** @brief Calculates the sum of a scaled array and another array. 444 445 The function scaleAdd is one of the classical primitive linear algebra operations, known as DAXPY 446 or SAXPY in [BLAS](http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms). It calculates 447 the sum of a scaled array and another array: 448 \f[\texttt{dst} (I)= \texttt{scale} \cdot \texttt{src1} (I) + \texttt{src2} (I)\f] 449 The function can also be emulated with a matrix expression, for example: 450 @code{.cpp} 451 Mat A(3, 3, CV_64F); 452 ... 453 A.row(0) = A.row(1)*2 + A.row(2); 454 @endcode 455 @param src1 first input array. 456 @param alpha scale factor for the first array. 457 @param src2 second input array of the same size and type as src1. 458 @param dst output array of the same size and type as src1. 459 @sa add, addWeighted, subtract, Mat::dot, Mat::convertTo 460 */ 461 CV_EXPORTS_W void scaleAdd(InputArray src1, double alpha, InputArray src2, OutputArray dst); 462 463 /** @brief Calculates the weighted sum of two arrays. 464 465 The function addWeighted calculates the weighted sum of two arrays as follows: 466 \f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma} )\f] 467 where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each 468 channel is processed independently. 469 The function can be replaced with a matrix expression: 470 @code{.cpp} 471 dst = src1*alpha + src2*beta + gamma; 472 @endcode 473 @note Saturation is not applied when the output array has the depth CV_32S. You may even get 474 result of an incorrect sign in the case of overflow. 475 @param src1 first input array. 476 @param alpha weight of the first array elements. 477 @param src2 second input array of the same size and channel number as src1. 478 @param beta weight of the second array elements. 479 @param gamma scalar added to each sum. 480 @param dst output array that has the same size and number of channels as the input arrays. 481 @param dtype optional depth of the output array; when both input arrays have the same depth, dtype 482 can be set to -1, which will be equivalent to src1.depth(). 483 @sa add, subtract, scaleAdd, Mat::convertTo 484 */ 485 CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2, 486 double beta, double gamma, OutputArray dst, int dtype = -1); 487 488 /** @brief Scales, calculates absolute values, and converts the result to 8-bit. 489 490 On each element of the input array, the function convertScaleAbs 491 performs three operations sequentially: scaling, taking an absolute 492 value, conversion to an unsigned 8-bit type: 493 \f[\texttt{dst} (I)= \texttt{saturate\_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} + \texttt{beta} |)\f] 494 In case of multi-channel arrays, the function processes each channel 495 independently. When the output is not 8-bit, the operation can be 496 emulated by calling the Mat::convertTo method (or by using matrix 497 expressions) and then by calculating an absolute value of the result. 498 For example: 499 @code{.cpp} 500 Mat_<float> A(30,30); 501 randu(A, Scalar(-100), Scalar(100)); 502 Mat_<float> B = A*5 + 3; 503 B = abs(B); 504 // Mat_<float> B = abs(A*5+3) will also do the job, 505 // but it will allocate a temporary matrix 506 @endcode 507 @param src input array. 508 @param dst output array. 509 @param alpha optional scale factor. 510 @param beta optional delta added to the scaled values. 511 @sa Mat::convertTo, cv::abs(const Mat&) 512 */ 513 CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst, 514 double alpha = 1, double beta = 0); 515 516 /** @brief Performs a look-up table transform of an array. 517 518 The function LUT fills the output array with values from the look-up table. Indices of the entries 519 are taken from the input array. That is, the function processes each element of src as follows: 520 \f[\texttt{dst} (I) \leftarrow \texttt{lut(src(I) + d)}\f] 521 where 522 \f[d = \fork{0}{if \texttt{src} has depth \texttt{CV\_8U}}{128}{if \texttt{src} has depth \texttt{CV\_8S}}\f] 523 @param src input array of 8-bit elements. 524 @param lut look-up table of 256 elements; in case of multi-channel input array, the table should 525 either have a single channel (in this case the same table is used for all channels) or the same 526 number of channels as in the input array. 527 @param dst output array of the same size and number of channels as src, and the same depth as lut. 528 @sa convertScaleAbs, Mat::convertTo 529 */ 530 CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst); 531 532 /** @brief Calculates the sum of array elements. 533 534 The functions sum calculate and return the sum of array elements, 535 independently for each channel. 536 @param src input array that must have from 1 to 4 channels. 537 @sa countNonZero, mean, meanStdDev, norm, minMaxLoc, reduce 538 */ 539 CV_EXPORTS_AS(sumElems) Scalar sum(InputArray src); 540 541 /** @brief Counts non-zero array elements. 542 543 The function returns the number of non-zero elements in src : 544 \f[\sum _{I: \; \texttt{src} (I) \ne0 } 1\f] 545 @param src single-channel array. 546 @sa mean, meanStdDev, norm, minMaxLoc, calcCovarMatrix 547 */ 548 CV_EXPORTS_W int countNonZero( InputArray src ); 549 550 /** @brief Returns the list of locations of non-zero pixels 551 552 Given a binary matrix (likely returned from an operation such 553 as threshold(), compare(), >, ==, etc, return all of 554 the non-zero indices as a cv::Mat or std::vector<cv::Point> (x,y) 555 For example: 556 @code{.cpp} 557 cv::Mat binaryImage; // input, binary image 558 cv::Mat locations; // output, locations of non-zero pixels 559 cv::findNonZero(binaryImage, locations); 560 561 // access pixel coordinates 562 Point pnt = locations.at<Point>(i); 563 @endcode 564 or 565 @code{.cpp} 566 cv::Mat binaryImage; // input, binary image 567 vector<Point> locations; // output, locations of non-zero pixels 568 cv::findNonZero(binaryImage, locations); 569 570 // access pixel coordinates 571 Point pnt = locations[i]; 572 @endcode 573 @param src single-channel array (type CV_8UC1) 574 @param idx the output array, type of cv::Mat or std::vector<Point>, corresponding to non-zero indices in the input 575 */ 576 CV_EXPORTS_W void findNonZero( InputArray src, OutputArray idx ); 577 578 /** @brief Calculates an average (mean) of array elements. 579 580 The function mean calculates the mean value M of array elements, 581 independently for each channel, and return it: 582 \f[\begin{array}{l} N = \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c = \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}\f] 583 When all the mask elements are 0's, the functions return Scalar::all(0) 584 @param src input array that should have from 1 to 4 channels so that the result can be stored in 585 Scalar_ . 586 @param mask optional operation mask. 587 @sa countNonZero, meanStdDev, norm, minMaxLoc 588 */ 589 CV_EXPORTS_W Scalar mean(InputArray src, InputArray mask = noArray()); 590 591 /** Calculates a mean and standard deviation of array elements. 592 593 The function meanStdDev calculates the mean and the standard deviation M 594 of array elements independently for each channel and returns it via the 595 output parameters: 596 \f[\begin{array}{l} N = \sum _{I, \texttt{mask} (I) \ne 0} 1 \\ \texttt{mean} _c = \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c = \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c - \texttt{mean} _c \right )^2}{N}} \end{array}\f] 597 When all the mask elements are 0's, the functions return 598 mean=stddev=Scalar::all(0). 599 @note The calculated standard deviation is only the diagonal of the 600 complete normalized covariance matrix. If the full matrix is needed, you 601 can reshape the multi-channel array M x N to the single-channel array 602 M\*N x mtx.channels() (only possible when the matrix is continuous) and 603 then pass the matrix to calcCovarMatrix . 604 @param src input array that should have from 1 to 4 channels so that the results can be stored in 605 Scalar_ 's. 606 @param mean output parameter: calculated mean value. 607 @param stddev output parameter: calculateded standard deviation. 608 @param mask optional operation mask. 609 @sa countNonZero, mean, norm, minMaxLoc, calcCovarMatrix 610 */ 611 CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev, 612 InputArray mask=noArray()); 613 614 /** @brief Calculates an absolute array norm, an absolute difference norm, or a 615 relative difference norm. 616 617 The functions norm calculate an absolute norm of src1 (when there is no 618 src2 ): 619 620 \f[norm = \forkthree{\|\texttt{src1}\|_{L_{\infty}} = \max _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM\_INF}\) } 621 { \| \texttt{src1} \| _{L_1} = \sum _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM\_L1}\) } 622 { \| \texttt{src1} \| _{L_2} = \sqrt{\sum_I \texttt{src1}(I)^2} }{if \(\texttt{normType} = \texttt{NORM\_L2}\) }\f] 623 624 or an absolute or relative difference norm if src2 is there: 625 626 \f[norm = \forkthree{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} = \max _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM\_INF}\) } 627 { \| \texttt{src1} - \texttt{src2} \| _{L_1} = \sum _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM\_L1}\) } 628 { \| \texttt{src1} - \texttt{src2} \| _{L_2} = \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if \(\texttt{normType} = \texttt{NORM\_L2}\) }\f] 629 630 or 631 632 \f[norm = \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} }{\|\texttt{src2}\|_{L_{\infty}} }}{if \(\texttt{normType} = \texttt{NORM\_RELATIVE\_INF}\) } 633 { \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if \(\texttt{normType} = \texttt{NORM\_RELATIVE\_L1}\) } 634 { \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if \(\texttt{normType} = \texttt{NORM\_RELATIVE\_L2}\) }\f] 635 636 The functions norm return the calculated norm. 637 638 When the mask parameter is specified and it is not empty, the norm is 639 calculated only over the region specified by the mask. 640 641 A multi-channel input arrays are treated as a single-channel, that is, 642 the results for all channels are combined. 643 644 @param src1 first input array. 645 @param normType type of the norm (see cv::NormTypes). 646 @param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type. 647 */ 648 CV_EXPORTS_W double norm(InputArray src1, int normType = NORM_L2, InputArray mask = noArray()); 649 650 /** @overload 651 @param src1 first input array. 652 @param src2 second input array of the same size and the same type as src1. 653 @param normType type of the norm (cv::NormTypes). 654 @param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type. 655 */ 656 CV_EXPORTS_W double norm(InputArray src1, InputArray src2, 657 int normType = NORM_L2, InputArray mask = noArray()); 658 /** @overload 659 @param src first input array. 660 @param normType type of the norm (see cv::NormTypes). 661 */ 662 CV_EXPORTS double norm( const SparseMat& src, int normType ); 663 664 /** @brief computes PSNR image/video quality metric 665 666 see http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio for details 667 @todo document 668 */ 669 CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2); 670 671 /** @brief naive nearest neighbor finder 672 673 see http://en.wikipedia.org/wiki/Nearest_neighbor_search 674 @todo document 675 */ 676 CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2, 677 OutputArray dist, int dtype, OutputArray nidx, 678 int normType = NORM_L2, int K = 0, 679 InputArray mask = noArray(), int update = 0, 680 bool crosscheck = false); 681 682 /** @brief Normalizes the norm or value range of an array. 683 684 The functions normalize scale and shift the input array elements so that 685 \f[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\f] 686 (where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that 687 \f[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\f] 688 689 when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be 690 normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this 691 sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or 692 min-max but modify the whole array, you can use norm and Mat::convertTo. 693 694 In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this, 695 the range transformation for sparse matrices is not allowed since it can shift the zero level. 696 697 @param src input array. 698 @param dst output array of the same size as src . 699 @param alpha norm value to normalize to or the lower range boundary in case of the range 700 normalization. 701 @param beta upper range boundary in case of the range normalization; it is not used for the norm 702 normalization. 703 @param norm_type normalization type (see cv::NormTypes). 704 @param dtype when negative, the output array has the same type as src; otherwise, it has the same 705 number of channels as src and the depth =CV_MAT_DEPTH(dtype). 706 @param mask optional operation mask. 707 @sa norm, Mat::convertTo, SparseMat::convertTo 708 */ 709 CV_EXPORTS_W void normalize( InputArray src, InputOutputArray dst, double alpha = 1, double beta = 0, 710 int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray()); 711 712 /** @overload 713 @param src input array. 714 @param dst output array of the same size as src . 715 @param alpha norm value to normalize to or the lower range boundary in case of the range 716 normalization. 717 @param normType normalization type (see cv::NormTypes). 718 */ 719 CV_EXPORTS void normalize( const SparseMat& src, SparseMat& dst, double alpha, int normType ); 720 721 /** @brief Finds the global minimum and maximum in an array. 722 723 The functions minMaxLoc find the minimum and maximum element values and their positions. The 724 extremums are searched across the whole array or, if mask is not an empty array, in the specified 725 array region. 726 727 The functions do not work with multi-channel arrays. If you need to find minimum or maximum 728 elements across all the channels, use Mat::reshape first to reinterpret the array as 729 single-channel. Or you may extract the particular channel using either extractImageCOI , or 730 mixChannels , or split . 731 @param src input single-channel array. 732 @param minVal pointer to the returned minimum value; NULL is used if not required. 733 @param maxVal pointer to the returned maximum value; NULL is used if not required. 734 @param minLoc pointer to the returned minimum location (in 2D case); NULL is used if not required. 735 @param maxLoc pointer to the returned maximum location (in 2D case); NULL is used if not required. 736 @param mask optional mask used to select a sub-array. 737 @sa max, min, compare, inRange, extractImageCOI, mixChannels, split, Mat::reshape 738 */ 739 CV_EXPORTS_W void minMaxLoc(InputArray src, CV_OUT double* minVal, 740 CV_OUT double* maxVal = 0, CV_OUT Point* minLoc = 0, 741 CV_OUT Point* maxLoc = 0, InputArray mask = noArray()); 742 743 744 /** @brief Finds the global minimum and maximum in an array 745 746 The function minMaxIdx finds the minimum and maximum element values and their positions. The 747 extremums are searched across the whole array or, if mask is not an empty array, in the specified 748 array region. The function does not work with multi-channel arrays. If you need to find minimum or 749 maximum elements across all the channels, use Mat::reshape first to reinterpret the array as 750 single-channel. Or you may extract the particular channel using either extractImageCOI , or 751 mixChannels , or split . In case of a sparse matrix, the minimum is found among non-zero elements 752 only. 753 @note When minIdx is not NULL, it must have at least 2 elements (as well as maxIdx), even if src is 754 a single-row or single-column matrix. In OpenCV (following MATLAB) each array has at least 2 755 dimensions, i.e. single-column matrix is Mx1 matrix (and therefore minIdx/maxIdx will be 756 (i1,0)/(i2,0)) and single-row matrix is 1xN matrix (and therefore minIdx/maxIdx will be 757 (0,j1)/(0,j2)). 758 @param src input single-channel array. 759 @param minVal pointer to the returned minimum value; NULL is used if not required. 760 @param maxVal pointer to the returned maximum value; NULL is used if not required. 761 @param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required; 762 Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element 763 in each dimension are stored there sequentially. 764 @param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required. 765 @param mask specified array region 766 */ 767 CV_EXPORTS void minMaxIdx(InputArray src, double* minVal, double* maxVal = 0, 768 int* minIdx = 0, int* maxIdx = 0, InputArray mask = noArray()); 769 770 /** @overload 771 @param a input single-channel array. 772 @param minVal pointer to the returned minimum value; NULL is used if not required. 773 @param maxVal pointer to the returned maximum value; NULL is used if not required. 774 @param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required; 775 Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element 776 in each dimension are stored there sequentially. 777 @param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required. 778 */ 779 CV_EXPORTS void minMaxLoc(const SparseMat& a, double* minVal, 780 double* maxVal, int* minIdx = 0, int* maxIdx = 0); 781 782 /** @brief Reduces a matrix to a vector. 783 784 The function reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of 785 1D vectors and performing the specified operation on the vectors until a single row/column is 786 obtained. For example, the function can be used to compute horizontal and vertical projections of a 787 raster image. In case of REDUCE_SUM and REDUCE_AVG , the output may have a larger element 788 bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction 789 modes. 790 @param src input 2D matrix. 791 @param dst output vector. Its size and type is defined by dim and dtype parameters. 792 @param dim dimension index along which the matrix is reduced. 0 means that the matrix is reduced to 793 a single row. 1 means that the matrix is reduced to a single column. 794 @param rtype reduction operation that could be one of cv::ReduceTypes 795 @param dtype when negative, the output vector will have the same type as the input matrix, 796 otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()). 797 @sa repeat 798 */ 799 CV_EXPORTS_W void reduce(InputArray src, OutputArray dst, int dim, int rtype, int dtype = -1); 800 801 /** @brief Creates one multichannel array out of several single-channel ones. 802 803 The functions merge merge several arrays to make a single multi-channel array. That is, each 804 element of the output array will be a concatenation of the elements of the input arrays, where 805 elements of i-th input array are treated as mv[i].channels()-element vectors. 806 807 The function split does the reverse operation. If you need to shuffle channels in some other 808 advanced way, use mixChannels . 809 @param mv input array of matrices to be merged; all the matrices in mv must have the same 810 size and the same depth. 811 @param count number of input matrices when mv is a plain C array; it must be greater than zero. 812 @param dst output array of the same size and the same depth as mv[0]; The number of channels will 813 be the total number of channels in the matrix array. 814 @sa mixChannels, split, Mat::reshape 815 */ 816 CV_EXPORTS void merge(const Mat* mv, size_t count, OutputArray dst); 817 818 /** @overload 819 @param mv input vector of matrices to be merged; all the matrices in mv must have the same 820 size and the same depth. 821 @param dst output array of the same size and the same depth as mv[0]; The number of channels will 822 be the total number of channels in the matrix array. 823 */ 824 CV_EXPORTS_W void merge(InputArrayOfArrays mv, OutputArray dst); 825 826 /** @brief Divides a multi-channel array into several single-channel arrays. 827 828 The functions split split a multi-channel array into separate single-channel arrays: 829 \f[\texttt{mv} [c](I) = \texttt{src} (I)_c\f] 830 If you need to extract a single channel or do some other sophisticated channel permutation, use 831 mixChannels . 832 @param src input multi-channel array. 833 @param mvbegin output array; the number of arrays must match src.channels(); the arrays themselves are 834 reallocated, if needed. 835 @sa merge, mixChannels, cvtColor 836 */ 837 CV_EXPORTS void split(const Mat& src, Mat* mvbegin); 838 839 /** @overload 840 @param m input multi-channel array. 841 @param mv output vector of arrays; the arrays themselves are reallocated, if needed. 842 */ 843 CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv); 844 845 /** @brief Copies specified channels from input arrays to the specified channels of 846 output arrays. 847 848 The functions mixChannels provide an advanced mechanism for shuffling image channels. 849 850 split and merge and some forms of cvtColor are partial cases of mixChannels . 851 852 In the example below, the code splits a 4-channel RGBA image into a 3-channel BGR (with R and B 853 channels swapped) and a separate alpha-channel image: 854 @code{.cpp} 855 Mat rgba( 100, 100, CV_8UC4, Scalar(1,2,3,4) ); 856 Mat bgr( rgba.rows, rgba.cols, CV_8UC3 ); 857 Mat alpha( rgba.rows, rgba.cols, CV_8UC1 ); 858 859 // forming an array of matrices is a quite efficient operation, 860 // because the matrix data is not copied, only the headers 861 Mat out[] = { bgr, alpha }; 862 // rgba[0] -> bgr[2], rgba[1] -> bgr[1], 863 // rgba[2] -> bgr[0], rgba[3] -> alpha[0] 864 int from_to[] = { 0,2, 1,1, 2,0, 3,3 }; 865 mixChannels( &rgba, 1, out, 2, from_to, 4 ); 866 @endcode 867 @note Unlike many other new-style C++ functions in OpenCV (see the introduction section and 868 Mat::create ), mixChannels requires the output arrays to be pre-allocated before calling the 869 function. 870 @param src input array or vector of matricesl; all of the matrices must have the same size and the 871 same depth. 872 @param nsrcs number of matrices in src. 873 @param dst output array or vector of matrices; all the matrices *must be allocated*; their size and 874 depth must be the same as in src[0]. 875 @param ndsts number of matrices in dst. 876 @param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is 877 a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in 878 dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to 879 src[0].channels()-1, the second input image channels are indexed from src[0].channels() to 880 src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image 881 channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is 882 filled with zero . 883 @param npairs number of index pairs in fromTo. 884 @sa split, merge, cvtColor 885 */ 886 CV_EXPORTS void mixChannels(const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, 887 const int* fromTo, size_t npairs); 888 889 /** @overload 890 @param src input array or vector of matricesl; all of the matrices must have the same size and the 891 same depth. 892 @param dst output array or vector of matrices; all the matrices *must be allocated*; their size and 893 depth must be the same as in src[0]. 894 @param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is 895 a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in 896 dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to 897 src[0].channels()-1, the second input image channels are indexed from src[0].channels() to 898 src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image 899 channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is 900 filled with zero . 901 @param npairs number of index pairs in fromTo. 902 */ 903 CV_EXPORTS void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst, 904 const int* fromTo, size_t npairs); 905 906 /** @overload 907 @param src input array or vector of matricesl; all of the matrices must have the same size and the 908 same depth. 909 @param dst output array or vector of matrices; all the matrices *must be allocated*; their size and 910 depth must be the same as in src[0]. 911 @param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is 912 a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in 913 dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to 914 src[0].channels()-1, the second input image channels are indexed from src[0].channels() to 915 src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image 916 channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is 917 filled with zero . 918 */ 919 CV_EXPORTS_W void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst, 920 const std::vector<int>& fromTo); 921 922 /** @brief extracts a single channel from src (coi is 0-based index) 923 @todo document 924 */ 925 CV_EXPORTS_W void extractChannel(InputArray src, OutputArray dst, int coi); 926 927 /** @brief inserts a single channel to dst (coi is 0-based index) 928 @todo document 929 */ 930 CV_EXPORTS_W void insertChannel(InputArray src, InputOutputArray dst, int coi); 931 932 /** @brief Flips a 2D array around vertical, horizontal, or both axes. 933 934 The function flip flips the array in one of three different ways (row 935 and column indices are 0-based): 936 \f[\texttt{dst} _{ij} = 937 \left\{ 938 \begin{array}{l l} 939 \texttt{src} _{\texttt{src.rows}-i-1,j} & if\; \texttt{flipCode} = 0 \\ 940 \texttt{src} _{i, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} > 0 \\ 941 \texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\ 942 \end{array} 943 \right.\f] 944 The example scenarios of using the function are the following: 945 * Vertical flipping of the image (flipCode == 0) to switch between 946 top-left and bottom-left image origin. This is a typical operation 947 in video processing on Microsoft Windows\* OS. 948 * Horizontal flipping of the image with the subsequent horizontal 949 shift and absolute difference calculation to check for a 950 vertical-axis symmetry (flipCode \> 0). 951 * Simultaneous horizontal and vertical flipping of the image with 952 the subsequent shift and absolute difference calculation to check 953 for a central symmetry (flipCode \< 0). 954 * Reversing the order of point arrays (flipCode \> 0 or 955 flipCode == 0). 956 @param src input array. 957 @param dst output array of the same size and type as src. 958 @param flipCode a flag to specify how to flip the array; 0 means 959 flipping around the x-axis and positive value (for example, 1) means 960 flipping around y-axis. Negative value (for example, -1) means flipping 961 around both axes. 962 @sa transpose , repeat , completeSymm 963 */ 964 CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode); 965 966 /** @brief Fills the output array with repeated copies of the input array. 967 968 The functions repeat duplicate the input array one or more times along each of the two axes: 969 \f[\texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }\f] 970 The second variant of the function is more convenient to use with @ref MatrixExpressions. 971 @param src input array to replicate. 972 @param dst output array of the same type as src. 973 @param ny Flag to specify how many times the src is repeated along the 974 vertical axis. 975 @param nx Flag to specify how many times the src is repeated along the 976 horizontal axis. 977 @sa reduce 978 */ 979 CV_EXPORTS_W void repeat(InputArray src, int ny, int nx, OutputArray dst); 980 981 /** @overload 982 @param src input array to replicate. 983 @param ny Flag to specify how many times the src is repeated along the 984 vertical axis. 985 @param nx Flag to specify how many times the src is repeated along the 986 horizontal axis. 987 */ 988 CV_EXPORTS Mat repeat(const Mat& src, int ny, int nx); 989 990 /** @brief Applies horizontal concatenation to given matrices. 991 992 The function horizontally concatenates two or more cv::Mat matrices (with the same number of rows). 993 @code{.cpp} 994 cv::Mat matArray[] = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)), 995 cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)), 996 cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),}; 997 998 cv::Mat out; 999 cv::hconcat( matArray, 3, out ); 1000 //out: 1001 //[1, 2, 3; 1002 // 1, 2, 3; 1003 // 1, 2, 3; 1004 // 1, 2, 3] 1005 @endcode 1006 @param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth. 1007 @param nsrc number of matrices in src. 1008 @param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src. 1009 @sa cv::vconcat(const Mat*, size_t, OutputArray), @sa cv::vconcat(InputArrayOfArrays, OutputArray) and @sa cv::vconcat(InputArray, InputArray, OutputArray) 1010 */ 1011 CV_EXPORTS void hconcat(const Mat* src, size_t nsrc, OutputArray dst); 1012 /** @overload 1013 @code{.cpp} 1014 cv::Mat_<float> A = (cv::Mat_<float>(3, 2) << 1, 4, 1015 2, 5, 1016 3, 6); 1017 cv::Mat_<float> B = (cv::Mat_<float>(3, 2) << 7, 10, 1018 8, 11, 1019 9, 12); 1020 1021 cv::Mat C; 1022 cv::hconcat(A, B, C); 1023 //C: 1024 //[1, 4, 7, 10; 1025 // 2, 5, 8, 11; 1026 // 3, 6, 9, 12] 1027 @endcode 1028 @param src1 first input array to be considered for horizontal concatenation. 1029 @param src2 second input array to be considered for horizontal concatenation. 1030 @param dst output array. It has the same number of rows and depth as the src1 and src2, and the sum of cols of the src1 and src2. 1031 */ 1032 CV_EXPORTS void hconcat(InputArray src1, InputArray src2, OutputArray dst); 1033 /** @overload 1034 @code{.cpp} 1035 std::vector<cv::Mat> matrices = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)), 1036 cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)), 1037 cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),}; 1038 1039 cv::Mat out; 1040 cv::hconcat( matrices, out ); 1041 //out: 1042 //[1, 2, 3; 1043 // 1, 2, 3; 1044 // 1, 2, 3; 1045 // 1, 2, 3] 1046 @endcode 1047 @param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth. 1048 @param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src. 1049 same depth. 1050 */ 1051 CV_EXPORTS_W void hconcat(InputArrayOfArrays src, OutputArray dst); 1052 1053 /** @brief Applies vertical concatenation to given matrices. 1054 1055 The function vertically concatenates two or more cv::Mat matrices (with the same number of cols). 1056 @code{.cpp} 1057 cv::Mat matArray[] = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)), 1058 cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)), 1059 cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),}; 1060 1061 cv::Mat out; 1062 cv::vconcat( matArray, 3, out ); 1063 //out: 1064 //[1, 1, 1, 1; 1065 // 2, 2, 2, 2; 1066 // 3, 3, 3, 3] 1067 @endcode 1068 @param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth. 1069 @param nsrc number of matrices in src. 1070 @param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src. 1071 @sa cv::hconcat(const Mat*, size_t, OutputArray), @sa cv::hconcat(InputArrayOfArrays, OutputArray) and @sa cv::hconcat(InputArray, InputArray, OutputArray) 1072 */ 1073 CV_EXPORTS void vconcat(const Mat* src, size_t nsrc, OutputArray dst); 1074 /** @overload 1075 @code{.cpp} 1076 cv::Mat_<float> A = (cv::Mat_<float>(3, 2) << 1, 7, 1077 2, 8, 1078 3, 9); 1079 cv::Mat_<float> B = (cv::Mat_<float>(3, 2) << 4, 10, 1080 5, 11, 1081 6, 12); 1082 1083 cv::Mat C; 1084 cv::vconcat(A, B, C); 1085 //C: 1086 //[1, 7; 1087 // 2, 8; 1088 // 3, 9; 1089 // 4, 10; 1090 // 5, 11; 1091 // 6, 12] 1092 @endcode 1093 @param src1 first input array to be considered for vertical concatenation. 1094 @param src2 second input array to be considered for vertical concatenation. 1095 @param dst output array. It has the same number of cols and depth as the src1 and src2, and the sum of rows of the src1 and src2. 1096 */ 1097 CV_EXPORTS void vconcat(InputArray src1, InputArray src2, OutputArray dst); 1098 /** @overload 1099 @code{.cpp} 1100 std::vector<cv::Mat> matrices = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)), 1101 cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)), 1102 cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),}; 1103 1104 cv::Mat out; 1105 cv::vconcat( matrices, out ); 1106 //out: 1107 //[1, 1, 1, 1; 1108 // 2, 2, 2, 2; 1109 // 3, 3, 3, 3] 1110 @endcode 1111 @param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth 1112 @param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src. 1113 same depth. 1114 */ 1115 CV_EXPORTS_W void vconcat(InputArrayOfArrays src, OutputArray dst); 1116 1117 /** @brief computes bitwise conjunction of the two arrays (dst = src1 & src2) 1118 Calculates the per-element bit-wise conjunction of two arrays or an 1119 array and a scalar. 1120 1121 The function calculates the per-element bit-wise logical conjunction for: 1122 * Two arrays when src1 and src2 have the same size: 1123 \f[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f] 1124 * An array and a scalar when src2 is constructed from Scalar or has 1125 the same number of elements as `src1.channels()`: 1126 \f[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} \quad \texttt{if mask} (I) \ne0\f] 1127 * A scalar and an array when src1 is constructed from Scalar or has 1128 the same number of elements as `src2.channels()`: 1129 \f[\texttt{dst} (I) = \texttt{src1} \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f] 1130 In case of floating-point arrays, their machine-specific bit 1131 representations (usually IEEE754-compliant) are used for the operation. 1132 In case of multi-channel arrays, each channel is processed 1133 independently. In the second and third cases above, the scalar is first 1134 converted to the array type. 1135 @param src1 first input array or a scalar. 1136 @param src2 second input array or a scalar. 1137 @param dst output array that has the same size and type as the input 1138 arrays. 1139 @param mask optional operation mask, 8-bit single channel array, that 1140 specifies elements of the output array to be changed. 1141 */ 1142 CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2, 1143 OutputArray dst, InputArray mask = noArray()); 1144 1145 /** @brief Calculates the per-element bit-wise disjunction of two arrays or an 1146 array and a scalar. 1147 1148 The function calculates the per-element bit-wise logical disjunction for: 1149 * Two arrays when src1 and src2 have the same size: 1150 \f[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f] 1151 * An array and a scalar when src2 is constructed from Scalar or has 1152 the same number of elements as `src1.channels()`: 1153 \f[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} \quad \texttt{if mask} (I) \ne0\f] 1154 * A scalar and an array when src1 is constructed from Scalar or has 1155 the same number of elements as `src2.channels()`: 1156 \f[\texttt{dst} (I) = \texttt{src1} \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f] 1157 In case of floating-point arrays, their machine-specific bit 1158 representations (usually IEEE754-compliant) are used for the operation. 1159 In case of multi-channel arrays, each channel is processed 1160 independently. In the second and third cases above, the scalar is first 1161 converted to the array type. 1162 @param src1 first input array or a scalar. 1163 @param src2 second input array or a scalar. 1164 @param dst output array that has the same size and type as the input 1165 arrays. 1166 @param mask optional operation mask, 8-bit single channel array, that 1167 specifies elements of the output array to be changed. 1168 */ 1169 CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2, 1170 OutputArray dst, InputArray mask = noArray()); 1171 1172 /** @brief Calculates the per-element bit-wise "exclusive or" operation on two 1173 arrays or an array and a scalar. 1174 1175 The function calculates the per-element bit-wise logical "exclusive-or" 1176 operation for: 1177 * Two arrays when src1 and src2 have the same size: 1178 \f[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f] 1179 * An array and a scalar when src2 is constructed from Scalar or has 1180 the same number of elements as `src1.channels()`: 1181 \f[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} \quad \texttt{if mask} (I) \ne0\f] 1182 * A scalar and an array when src1 is constructed from Scalar or has 1183 the same number of elements as `src2.channels()`: 1184 \f[\texttt{dst} (I) = \texttt{src1} \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f] 1185 In case of floating-point arrays, their machine-specific bit 1186 representations (usually IEEE754-compliant) are used for the operation. 1187 In case of multi-channel arrays, each channel is processed 1188 independently. In the 2nd and 3rd cases above, the scalar is first 1189 converted to the array type. 1190 @param src1 first input array or a scalar. 1191 @param src2 second input array or a scalar. 1192 @param dst output array that has the same size and type as the input 1193 arrays. 1194 @param mask optional operation mask, 8-bit single channel array, that 1195 specifies elements of the output array to be changed. 1196 */ 1197 CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2, 1198 OutputArray dst, InputArray mask = noArray()); 1199 1200 /** @brief Inverts every bit of an array. 1201 1202 The function calculates per-element bit-wise inversion of the input 1203 array: 1204 \f[\texttt{dst} (I) = \neg \texttt{src} (I)\f] 1205 In case of a floating-point input array, its machine-specific bit 1206 representation (usually IEEE754-compliant) is used for the operation. In 1207 case of multi-channel arrays, each channel is processed independently. 1208 @param src input array. 1209 @param dst output array that has the same size and type as the input 1210 array. 1211 @param mask optional operation mask, 8-bit single channel array, that 1212 specifies elements of the output array to be changed. 1213 */ 1214 CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst, 1215 InputArray mask = noArray()); 1216 1217 /** @brief Calculates the per-element absolute difference between two arrays or between an array and a scalar. 1218 1219 The function absdiff calculates: 1220 * Absolute difference between two arrays when they have the same 1221 size and type: 1222 \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2}(I)|)\f] 1223 * Absolute difference between an array and a scalar when the second 1224 array is constructed from Scalar or has as many elements as the 1225 number of channels in `src1`: 1226 \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2} |)\f] 1227 * Absolute difference between a scalar and an array when the first 1228 array is constructed from Scalar or has as many elements as the 1229 number of channels in `src2`: 1230 \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1} - \texttt{src2}(I) |)\f] 1231 where I is a multi-dimensional index of array elements. In case of 1232 multi-channel arrays, each channel is processed independently. 1233 @note Saturation is not applied when the arrays have the depth CV_32S. 1234 You may even get a negative value in the case of overflow. 1235 @param src1 first input array or a scalar. 1236 @param src2 second input array or a scalar. 1237 @param dst output array that has the same size and type as input arrays. 1238 @sa cv::abs(const Mat&) 1239 */ 1240 CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst); 1241 1242 /** @brief Checks if array elements lie between the elements of two other arrays. 1243 1244 The function checks the range as follows: 1245 - For every element of a single-channel input array: 1246 \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0\f] 1247 - For two-channel arrays: 1248 \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0 \land \texttt{lowerb} (I)_1 \leq \texttt{src} (I)_1 \leq \texttt{upperb} (I)_1\f] 1249 - and so forth. 1250 1251 That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the 1252 specified 1D, 2D, 3D, ... box and 0 otherwise. 1253 1254 When the lower and/or upper boundary parameters are scalars, the indexes 1255 (I) at lowerb and upperb in the above formulas should be omitted. 1256 @param src first input array. 1257 @param lowerb inclusive lower boundary array or a scalar. 1258 @param upperb inclusive upper boundary array or a scalar. 1259 @param dst output array of the same size as src and CV_8U type. 1260 */ 1261 CV_EXPORTS_W void inRange(InputArray src, InputArray lowerb, 1262 InputArray upperb, OutputArray dst); 1263 1264 /** @brief Performs the per-element comparison of two arrays or an array and scalar value. 1265 1266 The function compares: 1267 * Elements of two arrays when src1 and src2 have the same size: 1268 \f[\texttt{dst} (I) = \texttt{src1} (I) \,\texttt{cmpop}\, \texttt{src2} (I)\f] 1269 * Elements of src1 with a scalar src2 when src2 is constructed from 1270 Scalar or has a single element: 1271 \f[\texttt{dst} (I) = \texttt{src1}(I) \,\texttt{cmpop}\, \texttt{src2}\f] 1272 * src1 with elements of src2 when src1 is constructed from Scalar or 1273 has a single element: 1274 \f[\texttt{dst} (I) = \texttt{src1} \,\texttt{cmpop}\, \texttt{src2} (I)\f] 1275 When the comparison result is true, the corresponding element of output 1276 array is set to 255. The comparison operations can be replaced with the 1277 equivalent matrix expressions: 1278 @code{.cpp} 1279 Mat dst1 = src1 >= src2; 1280 Mat dst2 = src1 < 8; 1281 ... 1282 @endcode 1283 @param src1 first input array or a scalar; when it is an array, it must have a single channel. 1284 @param src2 second input array or a scalar; when it is an array, it must have a single channel. 1285 @param dst output array of type ref CV_8U that has the same size and the same number of channels as 1286 the input arrays. 1287 @param cmpop a flag, that specifies correspondence between the arrays (cv::CmpTypes) 1288 @sa checkRange, min, max, threshold 1289 */ 1290 CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop); 1291 1292 /** @brief Calculates per-element minimum of two arrays or an array and a scalar. 1293 1294 The functions min calculate the per-element minimum of two arrays: 1295 \f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))\f] 1296 or array and a scalar: 1297 \f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{value} )\f] 1298 @param src1 first input array. 1299 @param src2 second input array of the same size and type as src1. 1300 @param dst output array of the same size and type as src1. 1301 @sa max, compare, inRange, minMaxLoc 1302 */ 1303 CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst); 1304 /** @overload 1305 needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare) 1306 */ 1307 CV_EXPORTS void min(const Mat& src1, const Mat& src2, Mat& dst); 1308 /** @overload 1309 needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare) 1310 */ 1311 CV_EXPORTS void min(const UMat& src1, const UMat& src2, UMat& dst); 1312 1313 /** @brief Calculates per-element maximum of two arrays or an array and a scalar. 1314 1315 The functions max calculate the per-element maximum of two arrays: 1316 \f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))\f] 1317 or array and a scalar: 1318 \f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{value} )\f] 1319 @param src1 first input array. 1320 @param src2 second input array of the same size and type as src1 . 1321 @param dst output array of the same size and type as src1. 1322 @sa min, compare, inRange, minMaxLoc, @ref MatrixExpressions 1323 */ 1324 CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst); 1325 /** @overload 1326 needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare) 1327 */ 1328 CV_EXPORTS void max(const Mat& src1, const Mat& src2, Mat& dst); 1329 /** @overload 1330 needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare) 1331 */ 1332 CV_EXPORTS void max(const UMat& src1, const UMat& src2, UMat& dst); 1333 1334 /** @brief Calculates a square root of array elements. 1335 1336 The functions sqrt calculate a square root of each input array element. 1337 In case of multi-channel arrays, each channel is processed 1338 independently. The accuracy is approximately the same as of the built-in 1339 std::sqrt . 1340 @param src input floating-point array. 1341 @param dst output array of the same size and type as src. 1342 */ 1343 CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst); 1344 1345 /** @brief Raises every array element to a power. 1346 1347 The function pow raises every element of the input array to power : 1348 \f[\texttt{dst} (I) = \fork{\texttt{src}(I)^power}{if \texttt{power} is integer}{|\texttt{src}(I)|^power}{otherwise}\f] 1349 1350 So, for a non-integer power exponent, the absolute values of input array 1351 elements are used. However, it is possible to get true values for 1352 negative values using some extra operations. In the example below, 1353 computing the 5th root of array src shows: 1354 @code{.cpp} 1355 Mat mask = src < 0; 1356 pow(src, 1./5, dst); 1357 subtract(Scalar::all(0), dst, dst, mask); 1358 @endcode 1359 For some values of power, such as integer values, 0.5 and -0.5, 1360 specialized faster algorithms are used. 1361 1362 Special values (NaN, Inf) are not handled. 1363 @param src input array. 1364 @param power exponent of power. 1365 @param dst output array of the same size and type as src. 1366 @sa sqrt, exp, log, cartToPolar, polarToCart 1367 */ 1368 CV_EXPORTS_W void pow(InputArray src, double power, OutputArray dst); 1369 1370 /** @brief Calculates the exponent of every array element. 1371 1372 The function exp calculates the exponent of every element of the input 1373 array: 1374 \f[\texttt{dst} [I] = e^{ src(I) }\f] 1375 1376 The maximum relative error is about 7e-6 for single-precision input and 1377 less than 1e-10 for double-precision input. Currently, the function 1378 converts denormalized values to zeros on output. Special values (NaN, 1379 Inf) are not handled. 1380 @param src input array. 1381 @param dst output array of the same size and type as src. 1382 @sa log , cartToPolar , polarToCart , phase , pow , sqrt , magnitude 1383 */ 1384 CV_EXPORTS_W void exp(InputArray src, OutputArray dst); 1385 1386 /** @brief Calculates the natural logarithm of every array element. 1387 1388 The function log calculates the natural logarithm of the absolute value 1389 of every element of the input array: 1390 \f[\texttt{dst} (I) = \fork{\log |\texttt{src}(I)|}{if \(\texttt{src}(I) \ne 0\) }{\texttt{C}}{otherwise}\f] 1391 1392 where C is a large negative number (about -700 in the current 1393 implementation). The maximum relative error is about 7e-6 for 1394 single-precision input and less than 1e-10 for double-precision input. 1395 Special values (NaN, Inf) are not handled. 1396 @param src input array. 1397 @param dst output array of the same size and type as src . 1398 @sa exp, cartToPolar, polarToCart, phase, pow, sqrt, magnitude 1399 */ 1400 CV_EXPORTS_W void log(InputArray src, OutputArray dst); 1401 1402 /** @brief Calculates x and y coordinates of 2D vectors from their magnitude and angle. 1403 1404 The function polarToCart calculates the Cartesian coordinates of each 2D 1405 vector represented by the corresponding elements of magnitude and angle: 1406 \f[\begin{array}{l} \texttt{x} (I) = \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) = \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}\f] 1407 1408 The relative accuracy of the estimated coordinates is about 1e-6. 1409 @param magnitude input floating-point array of magnitudes of 2D vectors; 1410 it can be an empty matrix (=Mat()), in this case, the function assumes 1411 that all the magnitudes are =1; if it is not empty, it must have the 1412 same size and type as angle. 1413 @param angle input floating-point array of angles of 2D vectors. 1414 @param x output array of x-coordinates of 2D vectors; it has the same 1415 size and type as angle. 1416 @param y output array of y-coordinates of 2D vectors; it has the same 1417 size and type as angle. 1418 @param angleInDegrees when true, the input angles are measured in 1419 degrees, otherwise, they are measured in radians. 1420 @sa cartToPolar, magnitude, phase, exp, log, pow, sqrt 1421 */ 1422 CV_EXPORTS_W void polarToCart(InputArray magnitude, InputArray angle, 1423 OutputArray x, OutputArray y, bool angleInDegrees = false); 1424 1425 /** @brief Calculates the magnitude and angle of 2D vectors. 1426 1427 The function cartToPolar calculates either the magnitude, angle, or both 1428 for every 2D vector (x(I),y(I)): 1429 \f[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}\f] 1430 1431 The angles are calculated with accuracy about 0.3 degrees. For the point 1432 (0,0), the angle is set to 0. 1433 @param x array of x-coordinates; this must be a single-precision or 1434 double-precision floating-point array. 1435 @param y array of y-coordinates, that must have the same size and same type as x. 1436 @param magnitude output array of magnitudes of the same size and type as x. 1437 @param angle output array of angles that has the same size and type as 1438 x; the angles are measured in radians (from 0 to 2\*Pi) or in degrees (0 to 360 degrees). 1439 @param angleInDegrees a flag, indicating whether the angles are measured 1440 in radians (which is by default), or in degrees. 1441 @sa Sobel, Scharr 1442 */ 1443 CV_EXPORTS_W void cartToPolar(InputArray x, InputArray y, 1444 OutputArray magnitude, OutputArray angle, 1445 bool angleInDegrees = false); 1446 1447 /** @brief Calculates the rotation angle of 2D vectors. 1448 1449 The function phase calculates the rotation angle of each 2D vector that 1450 is formed from the corresponding elements of x and y : 1451 \f[\texttt{angle} (I) = \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))\f] 1452 1453 The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 , 1454 the corresponding angle(I) is set to 0. 1455 @param x input floating-point array of x-coordinates of 2D vectors. 1456 @param y input array of y-coordinates of 2D vectors; it must have the 1457 same size and the same type as x. 1458 @param angle output array of vector angles; it has the same size and 1459 same type as x . 1460 @param angleInDegrees when true, the function calculates the angle in 1461 degrees, otherwise, they are measured in radians. 1462 */ 1463 CV_EXPORTS_W void phase(InputArray x, InputArray y, OutputArray angle, 1464 bool angleInDegrees = false); 1465 1466 /** @brief Calculates the magnitude of 2D vectors. 1467 1468 The function magnitude calculates the magnitude of 2D vectors formed 1469 from the corresponding elements of x and y arrays: 1470 \f[\texttt{dst} (I) = \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}\f] 1471 @param x floating-point array of x-coordinates of the vectors. 1472 @param y floating-point array of y-coordinates of the vectors; it must 1473 have the same size as x. 1474 @param magnitude output array of the same size and type as x. 1475 @sa cartToPolar, polarToCart, phase, sqrt 1476 */ 1477 CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude); 1478 1479 /** @brief Checks every element of an input array for invalid values. 1480 1481 The functions checkRange check that every array element is neither NaN nor infinite. When minVal \< 1482 -DBL_MAX and maxVal \< DBL_MAX, the functions also check that each value is between minVal and 1483 maxVal. In case of multi-channel arrays, each channel is processed independently. If some values 1484 are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the 1485 functions either return false (when quiet=true) or throw an exception. 1486 @param a input array. 1487 @param quiet a flag, indicating whether the functions quietly return false when the array elements 1488 are out of range or they throw an exception. 1489 @param pos optional output parameter, when not NULL, must be a pointer to array of src.dims 1490 elements. 1491 @param minVal inclusive lower boundary of valid values range. 1492 @param maxVal exclusive upper boundary of valid values range. 1493 */ 1494 CV_EXPORTS_W bool checkRange(InputArray a, bool quiet = true, CV_OUT Point* pos = 0, 1495 double minVal = -DBL_MAX, double maxVal = DBL_MAX); 1496 1497 /** @brief converts NaN's to the given number 1498 */ 1499 CV_EXPORTS_W void patchNaNs(InputOutputArray a, double val = 0); 1500 1501 /** @brief Performs generalized matrix multiplication. 1502 1503 The function performs generalized matrix multiplication similar to the 1504 gemm functions in BLAS level 3. For example, 1505 `gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)` 1506 corresponds to 1507 \f[\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T\f] 1508 1509 In case of complex (two-channel) data, performed a complex matrix 1510 multiplication. 1511 1512 The function can be replaced with a matrix expression. For example, the 1513 above call can be replaced with: 1514 @code{.cpp} 1515 dst = alpha*src1.t()*src2 + beta*src3.t(); 1516 @endcode 1517 @param src1 first multiplied input matrix that could be real(CV_32FC1, 1518 CV_64FC1) or complex(CV_32FC2, CV_64FC2). 1519 @param src2 second multiplied input matrix of the same type as src1. 1520 @param alpha weight of the matrix product. 1521 @param src3 third optional delta matrix added to the matrix product; it 1522 should have the same type as src1 and src2. 1523 @param beta weight of src3. 1524 @param dst output matrix; it has the proper size and the same type as 1525 input matrices. 1526 @param flags operation flags (cv::GemmFlags) 1527 @sa mulTransposed , transform 1528 */ 1529 CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha, 1530 InputArray src3, double beta, OutputArray dst, int flags = 0); 1531 1532 /** @brief Calculates the product of a matrix and its transposition. 1533 1534 The function mulTransposed calculates the product of src and its 1535 transposition: 1536 \f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )\f] 1537 if aTa=true , and 1538 \f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T\f] 1539 otherwise. The function is used to calculate the covariance matrix. With 1540 zero delta, it can be used as a faster substitute for general matrix 1541 product A\*B when B=A' 1542 @param src input single-channel matrix. Note that unlike gemm, the 1543 function can multiply not only floating-point matrices. 1544 @param dst output square matrix. 1545 @param aTa Flag specifying the multiplication ordering. See the 1546 description below. 1547 @param delta Optional delta matrix subtracted from src before the 1548 multiplication. When the matrix is empty ( delta=noArray() ), it is 1549 assumed to be zero, that is, nothing is subtracted. If it has the same 1550 size as src , it is simply subtracted. Otherwise, it is "repeated" (see 1551 repeat ) to cover the full src and then subtracted. Type of the delta 1552 matrix, when it is not empty, must be the same as the type of created 1553 output matrix. See the dtype parameter description below. 1554 @param scale Optional scale factor for the matrix product. 1555 @param dtype Optional type of the output matrix. When it is negative, 1556 the output matrix will have the same type as src . Otherwise, it will be 1557 type=CV_MAT_DEPTH(dtype) that should be either CV_32F or CV_64F . 1558 @sa calcCovarMatrix, gemm, repeat, reduce 1559 */ 1560 CV_EXPORTS_W void mulTransposed( InputArray src, OutputArray dst, bool aTa, 1561 InputArray delta = noArray(), 1562 double scale = 1, int dtype = -1 ); 1563 1564 /** @brief Transposes a matrix. 1565 1566 The function transpose transposes the matrix src : 1567 \f[\texttt{dst} (i,j) = \texttt{src} (j,i)\f] 1568 @note No complex conjugation is done in case of a complex matrix. It it 1569 should be done separately if needed. 1570 @param src input array. 1571 @param dst output array of the same type as src. 1572 */ 1573 CV_EXPORTS_W void transpose(InputArray src, OutputArray dst); 1574 1575 /** @brief Performs the matrix transformation of every array element. 1576 1577 The function transform performs the matrix transformation of every 1578 element of the array src and stores the results in dst : 1579 \f[\texttt{dst} (I) = \texttt{m} \cdot \texttt{src} (I)\f] 1580 (when m.cols=src.channels() ), or 1581 \f[\texttt{dst} (I) = \texttt{m} \cdot [ \texttt{src} (I); 1]\f] 1582 (when m.cols=src.channels()+1 ) 1583 1584 Every element of the N -channel array src is interpreted as N -element 1585 vector that is transformed using the M x N or M x (N+1) matrix m to 1586 M-element vector - the corresponding element of the output array dst . 1587 1588 The function may be used for geometrical transformation of 1589 N -dimensional points, arbitrary linear color space transformation (such 1590 as various kinds of RGB to YUV transforms), shuffling the image 1591 channels, and so forth. 1592 @param src input array that must have as many channels (1 to 4) as 1593 m.cols or m.cols-1. 1594 @param dst output array of the same size and depth as src; it has as 1595 many channels as m.rows. 1596 @param m transformation 2x2 or 2x3 floating-point matrix. 1597 @sa perspectiveTransform, getAffineTransform, estimateRigidTransform, warpAffine, warpPerspective 1598 */ 1599 CV_EXPORTS_W void transform(InputArray src, OutputArray dst, InputArray m ); 1600 1601 /** @brief Performs the perspective matrix transformation of vectors. 1602 1603 The function perspectiveTransform transforms every element of src by 1604 treating it as a 2D or 3D vector, in the following way: 1605 \f[(x, y, z) \rightarrow (x'/w, y'/w, z'/w)\f] 1606 where 1607 \f[(x', y', z', w') = \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1 \end{bmatrix}\f] 1608 and 1609 \f[w = \fork{w'}{if \(w' \ne 0\)}{\infty}{otherwise}\f] 1610 1611 Here a 3D vector transformation is shown. In case of a 2D vector 1612 transformation, the z component is omitted. 1613 1614 @note The function transforms a sparse set of 2D or 3D vectors. If you 1615 want to transform an image using perspective transformation, use 1616 warpPerspective . If you have an inverse problem, that is, you want to 1617 compute the most probable perspective transformation out of several 1618 pairs of corresponding points, you can use getPerspectiveTransform or 1619 findHomography . 1620 @param src input two-channel or three-channel floating-point array; each 1621 element is a 2D/3D vector to be transformed. 1622 @param dst output array of the same size and type as src. 1623 @param m 3x3 or 4x4 floating-point transformation matrix. 1624 @sa transform, warpPerspective, getPerspectiveTransform, findHomography 1625 */ 1626 CV_EXPORTS_W void perspectiveTransform(InputArray src, OutputArray dst, InputArray m ); 1627 1628 /** @brief Copies the lower or the upper half of a square matrix to another half. 1629 1630 The function completeSymm copies the lower half of a square matrix to 1631 its another half. The matrix diagonal remains unchanged: 1632 * \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i > j\f$ if 1633 lowerToUpper=false 1634 * \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i < j\f$ if 1635 lowerToUpper=true 1636 @param mtx input-output floating-point square matrix. 1637 @param lowerToUpper operation flag; if true, the lower half is copied to 1638 the upper half. Otherwise, the upper half is copied to the lower half. 1639 @sa flip, transpose 1640 */ 1641 CV_EXPORTS_W void completeSymm(InputOutputArray mtx, bool lowerToUpper = false); 1642 1643 /** @brief Initializes a scaled identity matrix. 1644 1645 The function setIdentity initializes a scaled identity matrix: 1646 \f[\texttt{mtx} (i,j)= \fork{\texttt{value}}{ if \(i=j\)}{0}{otherwise}\f] 1647 1648 The function can also be emulated using the matrix initializers and the 1649 matrix expressions: 1650 @code 1651 Mat A = Mat::eye(4, 3, CV_32F)*5; 1652 // A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]] 1653 @endcode 1654 @param mtx matrix to initialize (not necessarily square). 1655 @param s value to assign to diagonal elements. 1656 @sa Mat::zeros, Mat::ones, Mat::setTo, Mat::operator= 1657 */ 1658 CV_EXPORTS_W void setIdentity(InputOutputArray mtx, const Scalar& s = Scalar(1)); 1659 1660 /** @brief Returns the determinant of a square floating-point matrix. 1661 1662 The function determinant calculates and returns the determinant of the 1663 specified matrix. For small matrices ( mtx.cols=mtx.rows\<=3 ), the 1664 direct method is used. For larger matrices, the function uses LU 1665 factorization with partial pivoting. 1666 1667 For symmetric positively-determined matrices, it is also possible to use 1668 eigen decomposition to calculate the determinant. 1669 @param mtx input matrix that must have CV_32FC1 or CV_64FC1 type and 1670 square size. 1671 @sa trace, invert, solve, eigen, @ref MatrixExpressions 1672 */ 1673 CV_EXPORTS_W double determinant(InputArray mtx); 1674 1675 /** @brief Returns the trace of a matrix. 1676 1677 The function trace returns the sum of the diagonal elements of the 1678 matrix mtx . 1679 \f[\mathrm{tr} ( \texttt{mtx} ) = \sum _i \texttt{mtx} (i,i)\f] 1680 @param mtx input matrix. 1681 */ 1682 CV_EXPORTS_W Scalar trace(InputArray mtx); 1683 1684 /** @brief Finds the inverse or pseudo-inverse of a matrix. 1685 1686 The function invert inverts the matrix src and stores the result in dst 1687 . When the matrix src is singular or non-square, the function calculates 1688 the pseudo-inverse matrix (the dst matrix) so that norm(src\*dst - I) is 1689 minimal, where I is an identity matrix. 1690 1691 In case of the DECOMP_LU method, the function returns non-zero value if 1692 the inverse has been successfully calculated and 0 if src is singular. 1693 1694 In case of the DECOMP_SVD method, the function returns the inverse 1695 condition number of src (the ratio of the smallest singular value to the 1696 largest singular value) and 0 if src is singular. The SVD method 1697 calculates a pseudo-inverse matrix if src is singular. 1698 1699 Similarly to DECOMP_LU, the method DECOMP_CHOLESKY works only with 1700 non-singular square matrices that should also be symmetrical and 1701 positively defined. In this case, the function stores the inverted 1702 matrix in dst and returns non-zero. Otherwise, it returns 0. 1703 1704 @param src input floating-point M x N matrix. 1705 @param dst output matrix of N x M size and the same type as src. 1706 @param flags inversion method (cv::DecompTypes) 1707 @sa solve, SVD 1708 */ 1709 CV_EXPORTS_W double invert(InputArray src, OutputArray dst, int flags = DECOMP_LU); 1710 1711 /** @brief Solves one or more linear systems or least-squares problems. 1712 1713 The function solve solves a linear system or least-squares problem (the 1714 latter is possible with SVD or QR methods, or by specifying the flag 1715 DECOMP_NORMAL ): 1716 \f[\texttt{dst} = \arg \min _X \| \texttt{src1} \cdot \texttt{X} - \texttt{src2} \|\f] 1717 1718 If DECOMP_LU or DECOMP_CHOLESKY method is used, the function returns 1 1719 if src1 (or \f$\texttt{src1}^T\texttt{src1}\f$ ) is non-singular. Otherwise, 1720 it returns 0. In the latter case, dst is not valid. Other methods find a 1721 pseudo-solution in case of a singular left-hand side part. 1722 1723 @note If you want to find a unity-norm solution of an under-defined 1724 singular system \f$\texttt{src1}\cdot\texttt{dst}=0\f$ , the function solve 1725 will not do the work. Use SVD::solveZ instead. 1726 1727 @param src1 input matrix on the left-hand side of the system. 1728 @param src2 input matrix on the right-hand side of the system. 1729 @param dst output solution. 1730 @param flags solution (matrix inversion) method (cv::DecompTypes) 1731 @sa invert, SVD, eigen 1732 */ 1733 CV_EXPORTS_W bool solve(InputArray src1, InputArray src2, 1734 OutputArray dst, int flags = DECOMP_LU); 1735 1736 /** @brief Sorts each row or each column of a matrix. 1737 1738 The function sort sorts each matrix row or each matrix column in 1739 ascending or descending order. So you should pass two operation flags to 1740 get desired behaviour. If you want to sort matrix rows or columns 1741 lexicographically, you can use STL std::sort generic function with the 1742 proper comparison predicate. 1743 1744 @param src input single-channel array. 1745 @param dst output array of the same size and type as src. 1746 @param flags operation flags, a combination of cv::SortFlags 1747 @sa sortIdx, randShuffle 1748 */ 1749 CV_EXPORTS_W void sort(InputArray src, OutputArray dst, int flags); 1750 1751 /** @brief Sorts each row or each column of a matrix. 1752 1753 The function sortIdx sorts each matrix row or each matrix column in the 1754 ascending or descending order. So you should pass two operation flags to 1755 get desired behaviour. Instead of reordering the elements themselves, it 1756 stores the indices of sorted elements in the output array. For example: 1757 @code 1758 Mat A = Mat::eye(3,3,CV_32F), B; 1759 sortIdx(A, B, SORT_EVERY_ROW + SORT_ASCENDING); 1760 // B will probably contain 1761 // (because of equal elements in A some permutations are possible): 1762 // [[1, 2, 0], [0, 2, 1], [0, 1, 2]] 1763 @endcode 1764 @param src input single-channel array. 1765 @param dst output integer array of the same size as src. 1766 @param flags operation flags that could be a combination of cv::SortFlags 1767 @sa sort, randShuffle 1768 */ 1769 CV_EXPORTS_W void sortIdx(InputArray src, OutputArray dst, int flags); 1770 1771 /** @brief Finds the real roots of a cubic equation. 1772 1773 The function solveCubic finds the real roots of a cubic equation: 1774 - if coeffs is a 4-element vector: 1775 \f[\texttt{coeffs} [0] x^3 + \texttt{coeffs} [1] x^2 + \texttt{coeffs} [2] x + \texttt{coeffs} [3] = 0\f] 1776 - if coeffs is a 3-element vector: 1777 \f[x^3 + \texttt{coeffs} [0] x^2 + \texttt{coeffs} [1] x + \texttt{coeffs} [2] = 0\f] 1778 1779 The roots are stored in the roots array. 1780 @param coeffs equation coefficients, an array of 3 or 4 elements. 1781 @param roots output array of real roots that has 1 or 3 elements. 1782 */ 1783 CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots); 1784 1785 /** @brief Finds the real or complex roots of a polynomial equation. 1786 1787 The function solvePoly finds real and complex roots of a polynomial equation: 1788 \f[\texttt{coeffs} [n] x^{n} + \texttt{coeffs} [n-1] x^{n-1} + ... + \texttt{coeffs} [1] x + \texttt{coeffs} [0] = 0\f] 1789 @param coeffs array of polynomial coefficients. 1790 @param roots output (complex) array of roots. 1791 @param maxIters maximum number of iterations the algorithm does. 1792 */ 1793 CV_EXPORTS_W double solvePoly(InputArray coeffs, OutputArray roots, int maxIters = 300); 1794 1795 /** @brief Calculates eigenvalues and eigenvectors of a symmetric matrix. 1796 1797 The functions eigen calculate just eigenvalues, or eigenvalues and eigenvectors of the symmetric 1798 matrix src: 1799 @code 1800 src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t() 1801 @endcode 1802 @note in the new and the old interfaces different ordering of eigenvalues and eigenvectors 1803 parameters is used. 1804 @param src input matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmetrical 1805 (src ^T^ == src). 1806 @param eigenvalues output vector of eigenvalues of the same type as src; the eigenvalues are stored 1807 in the descending order. 1808 @param eigenvectors output matrix of eigenvectors; it has the same size and type as src; the 1809 eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding 1810 eigenvalues. 1811 @sa completeSymm , PCA 1812 */ 1813 CV_EXPORTS_W bool eigen(InputArray src, OutputArray eigenvalues, 1814 OutputArray eigenvectors = noArray()); 1815 1816 /** @brief Calculates the covariance matrix of a set of vectors. 1817 1818 The functions calcCovarMatrix calculate the covariance matrix and, optionally, the mean vector of 1819 the set of input vectors. 1820 @param samples samples stored as separate matrices 1821 @param nsamples number of samples 1822 @param covar output covariance matrix of the type ctype and square size. 1823 @param mean input or output (depending on the flags) array as the average value of the input vectors. 1824 @param flags operation flags as a combination of cv::CovarFlags 1825 @param ctype type of the matrixl; it equals 'CV_64F' by default. 1826 @sa PCA, mulTransposed, Mahalanobis 1827 @todo InputArrayOfArrays 1828 */ 1829 CV_EXPORTS void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean, 1830 int flags, int ctype = CV_64F); 1831 1832 /** @overload 1833 @note use cv::COVAR_ROWS or cv::COVAR_COLS flag 1834 @param samples samples stored as rows/columns of a single matrix. 1835 @param covar output covariance matrix of the type ctype and square size. 1836 @param mean input or output (depending on the flags) array as the average value of the input vectors. 1837 @param flags operation flags as a combination of cv::CovarFlags 1838 @param ctype type of the matrixl; it equals 'CV_64F' by default. 1839 */ 1840 CV_EXPORTS_W void calcCovarMatrix( InputArray samples, OutputArray covar, 1841 InputOutputArray mean, int flags, int ctype = CV_64F); 1842 1843 /** wrap PCA::operator() */ 1844 CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean, 1845 OutputArray eigenvectors, int maxComponents = 0); 1846 1847 /** wrap PCA::operator() */ 1848 CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean, 1849 OutputArray eigenvectors, double retainedVariance); 1850 1851 /** wrap PCA::project */ 1852 CV_EXPORTS_W void PCAProject(InputArray data, InputArray mean, 1853 InputArray eigenvectors, OutputArray result); 1854 1855 /** wrap PCA::backProject */ 1856 CV_EXPORTS_W void PCABackProject(InputArray data, InputArray mean, 1857 InputArray eigenvectors, OutputArray result); 1858 1859 /** wrap SVD::compute */ 1860 CV_EXPORTS_W void SVDecomp( InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags = 0 ); 1861 1862 /** wrap SVD::backSubst */ 1863 CV_EXPORTS_W void SVBackSubst( InputArray w, InputArray u, InputArray vt, 1864 InputArray rhs, OutputArray dst ); 1865 1866 /** @brief Calculates the Mahalanobis distance between two vectors. 1867 1868 The function Mahalanobis calculates and returns the weighted distance between two vectors: 1869 \f[d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }\f] 1870 The covariance matrix may be calculated using the cv::calcCovarMatrix function and then inverted using 1871 the invert function (preferably using the cv::DECOMP_SVD method, as the most accurate). 1872 @param v1 first 1D input vector. 1873 @param v2 second 1D input vector. 1874 @param icovar inverse covariance matrix. 1875 */ 1876 CV_EXPORTS_W double Mahalanobis(InputArray v1, InputArray v2, InputArray icovar); 1877 1878 /** @brief Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array. 1879 1880 The function performs one of the following: 1881 - Forward the Fourier transform of a 1D vector of N elements: 1882 \f[Y = F^{(N)} \cdot X,\f] 1883 where \f$F^{(N)}_{jk}=\exp(-2\pi i j k/N)\f$ and \f$i=\sqrt{-1}\f$ 1884 - Inverse the Fourier transform of a 1D vector of N elements: 1885 \f[\begin{array}{l} X'= \left (F^{(N)} \right )^{-1} \cdot Y = \left (F^{(N)} \right )^* \cdot y \\ X = (1/N) \cdot X, \end{array}\f] 1886 where \f$F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T\f$ 1887 - Forward the 2D Fourier transform of a M x N matrix: 1888 \f[Y = F^{(M)} \cdot X \cdot F^{(N)}\f] 1889 - Inverse the 2D Fourier transform of a M x N matrix: 1890 \f[\begin{array}{l} X'= \left (F^{(M)} \right )^* \cdot Y \cdot \left (F^{(N)} \right )^* \\ X = \frac{1}{M \cdot N} \cdot X' \end{array}\f] 1891 1892 In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input 1893 spectrum of the inverse Fourier transform can be represented in a packed format called *CCS* 1894 (complex-conjugate-symmetrical). It was borrowed from IPL (Intel\* Image Processing Library). Here 1895 is how 2D *CCS* spectrum looks: 1896 \f[\begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} & \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2} \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} & \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2} \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} & \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2} \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} & Re Y_{M-3,1} & Im Y_{M-3,1} & \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2} \\ Im Y_{M/2-1,0} & Re Y_{M-2,1} & Im Y_{M-2,1} & \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2} \\ Re Y_{M/2,0} & Re Y_{M-1,1} & Im Y_{M-1,1} & \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}\f] 1897 1898 In case of 1D transform of a real vector, the output looks like the first row of the matrix above. 1899 1900 So, the function chooses an operation mode depending on the flags and size of the input array: 1901 - If DFT_ROWS is set or the input array has a single row or single column, the function 1902 performs a 1D forward or inverse transform of each row of a matrix when DFT_ROWS is set. 1903 Otherwise, it performs a 2D transform. 1904 - If the input array is real and DFT_INVERSE is not set, the function performs a forward 1D or 1905 2D transform: 1906 - When DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as 1907 input. 1908 - When DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as 1909 input. In case of 2D transform, it uses the packed format as shown above. In case of a 1910 single 1D transform, it looks like the first row of the matrix above. In case of 1911 multiple 1D transforms (when using the DFT_ROWS flag), each row of the output matrix 1912 looks like the first row of the matrix above. 1913 - If the input array is complex and either DFT_INVERSE or DFT_REAL_OUTPUT are not set, the 1914 output is a complex array of the same size as input. The function performs a forward or 1915 inverse 1D or 2D transform of the whole input array or each row of the input array 1916 independently, depending on the flags DFT_INVERSE and DFT_ROWS. 1917 - When DFT_INVERSE is set and the input array is real, or it is complex but DFT_REAL_OUTPUT 1918 is set, the output is a real array of the same size as input. The function performs a 1D or 2D 1919 inverse transformation of the whole input array or each individual row, depending on the flags 1920 DFT_INVERSE and DFT_ROWS. 1921 1922 If DFT_SCALE is set, the scaling is done after the transformation. 1923 1924 Unlike dct , the function supports arrays of arbitrary size. But only those arrays are processed 1925 efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the 1926 current implementation). Such an efficient DFT size can be calculated using the getOptimalDFTSize 1927 method. 1928 1929 The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays: 1930 @code 1931 void convolveDFT(InputArray A, InputArray B, OutputArray C) 1932 { 1933 // reallocate the output array if needed 1934 C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type()); 1935 Size dftSize; 1936 // calculate the size of DFT transform 1937 dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1); 1938 dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1); 1939 1940 // allocate temporary buffers and initialize them with 0's 1941 Mat tempA(dftSize, A.type(), Scalar::all(0)); 1942 Mat tempB(dftSize, B.type(), Scalar::all(0)); 1943 1944 // copy A and B to the top-left corners of tempA and tempB, respectively 1945 Mat roiA(tempA, Rect(0,0,A.cols,A.rows)); 1946 A.copyTo(roiA); 1947 Mat roiB(tempB, Rect(0,0,B.cols,B.rows)); 1948 B.copyTo(roiB); 1949 1950 // now transform the padded A & B in-place; 1951 // use "nonzeroRows" hint for faster processing 1952 dft(tempA, tempA, 0, A.rows); 1953 dft(tempB, tempB, 0, B.rows); 1954 1955 // multiply the spectrums; 1956 // the function handles packed spectrum representations well 1957 mulSpectrums(tempA, tempB, tempA); 1958 1959 // transform the product back from the frequency domain. 1960 // Even though all the result rows will be non-zero, 1961 // you need only the first C.rows of them, and thus you 1962 // pass nonzeroRows == C.rows 1963 dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows); 1964 1965 // now copy the result back to C. 1966 tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C); 1967 1968 // all the temporary buffers will be deallocated automatically 1969 } 1970 @endcode 1971 To optimize this sample, consider the following approaches: 1972 - Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to 1973 the top-left corners of tempA and tempB, respectively, it is not necessary to clear the whole 1974 tempA and tempB. It is only necessary to clear the tempA.cols - A.cols ( tempB.cols - B.cols) 1975 rightmost columns of the matrices. 1976 - This DFT-based convolution does not have to be applied to the whole big arrays, especially if B 1977 is significantly smaller than A or vice versa. Instead, you can calculate convolution by parts. 1978 To do this, you need to split the output array C into multiple tiles. For each tile, estimate 1979 which parts of A and B are required to calculate convolution in this tile. If the tiles in C are 1980 too small, the speed will decrease a lot because of repeated work. In the ultimate case, when 1981 each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution 1982 algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and 1983 there is also a slowdown because of bad cache locality. So, there is an optimal tile size 1984 somewhere in the middle. 1985 - If different tiles in C can be calculated in parallel and, thus, the convolution is done by 1986 parts, the loop can be threaded. 1987 1988 All of the above improvements have been implemented in matchTemplate and filter2D . Therefore, by 1989 using them, you can get the performance even better than with the above theoretically optimal 1990 implementation. Though, those two functions actually calculate cross-correlation, not convolution, 1991 so you need to "flip" the second convolution operand B vertically and horizontally using flip . 1992 @note 1993 - An example using the discrete fourier transform can be found at 1994 opencv_source_code/samples/cpp/dft.cpp 1995 - (Python) An example using the dft functionality to perform Wiener deconvolution can be found 1996 at opencv_source/samples/python2/deconvolution.py 1997 - (Python) An example rearranging the quadrants of a Fourier image can be found at 1998 opencv_source/samples/python2/dft.py 1999 @param src input array that could be real or complex. 2000 @param dst output array whose size and type depends on the flags . 2001 @param flags transformation flags, representing a combination of the cv::DftFlags 2002 @param nonzeroRows when the parameter is not zero, the function assumes that only the first 2003 nonzeroRows rows of the input array (DFT_INVERSE is not set) or only the first nonzeroRows of the 2004 output array (DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the 2005 rows more efficiently and save some time; this technique is very useful for calculating array 2006 cross-correlation or convolution using DFT. 2007 @sa dct , getOptimalDFTSize , mulSpectrums, filter2D , matchTemplate , flip , cartToPolar , 2008 magnitude , phase 2009 */ 2010 CV_EXPORTS_W void dft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0); 2011 2012 /** @brief Calculates the inverse Discrete Fourier Transform of a 1D or 2D array. 2013 2014 idft(src, dst, flags) is equivalent to dft(src, dst, flags | DFT_INVERSE) . 2015 @note None of dft and idft scales the result by default. So, you should pass DFT_SCALE to one of 2016 dft or idft explicitly to make these transforms mutually inverse. 2017 @sa dft, dct, idct, mulSpectrums, getOptimalDFTSize 2018 @param src input floating-point real or complex array. 2019 @param dst output array whose size and type depend on the flags. 2020 @param flags operation flags (see dft and cv::DftFlags). 2021 @param nonzeroRows number of dst rows to process; the rest of the rows have undefined content (see 2022 the convolution sample in dft description. 2023 */ 2024 CV_EXPORTS_W void idft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0); 2025 2026 /** @brief Performs a forward or inverse discrete Cosine transform of 1D or 2D array. 2027 2028 The function dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D 2029 floating-point array: 2030 - Forward Cosine transform of a 1D vector of N elements: 2031 \f[Y = C^{(N)} \cdot X\f] 2032 where 2033 \f[C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left ( \frac{\pi(2k+1)j}{2N} \right )\f] 2034 and 2035 \f$\alpha_0=1\f$, \f$\alpha_j=2\f$ for *j \> 0*. 2036 - Inverse Cosine transform of a 1D vector of N elements: 2037 \f[X = \left (C^{(N)} \right )^{-1} \cdot Y = \left (C^{(N)} \right )^T \cdot Y\f] 2038 (since \f$C^{(N)}\f$ is an orthogonal matrix, \f$C^{(N)} \cdot \left(C^{(N)}\right)^T = I\f$ ) 2039 - Forward 2D Cosine transform of M x N matrix: 2040 \f[Y = C^{(N)} \cdot X \cdot \left (C^{(N)} \right )^T\f] 2041 - Inverse 2D Cosine transform of M x N matrix: 2042 \f[X = \left (C^{(N)} \right )^T \cdot X \cdot C^{(N)}\f] 2043 2044 The function chooses the mode of operation by looking at the flags and size of the input array: 2045 - If (flags & DCT_INVERSE) == 0 , the function does a forward 1D or 2D transform. Otherwise, it 2046 is an inverse 1D or 2D transform. 2047 - If (flags & DCT_ROWS) != 0 , the function performs a 1D transform of each row. 2048 - If the array is a single column or a single row, the function performs a 1D transform. 2049 - If none of the above is true, the function performs a 2D transform. 2050 2051 @note Currently dct supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you 2052 can pad the array when necessary. 2053 Also, the function performance depends very much, and not monotonically, on the array size (see 2054 getOptimalDFTSize ). In the current implementation DCT of a vector of size N is calculated via DFT 2055 of a vector of size N/2 . Thus, the optimal DCT size N1 \>= N can be calculated as: 2056 @code 2057 size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); } 2058 N1 = getOptimalDCTSize(N); 2059 @endcode 2060 @param src input floating-point array. 2061 @param dst output array of the same size and type as src . 2062 @param flags transformation flags as a combination of cv::DftFlags (DCT_*) 2063 @sa dft , getOptimalDFTSize , idct 2064 */ 2065 CV_EXPORTS_W void dct(InputArray src, OutputArray dst, int flags = 0); 2066 2067 /** @brief Calculates the inverse Discrete Cosine Transform of a 1D or 2D array. 2068 2069 idct(src, dst, flags) is equivalent to dct(src, dst, flags | DCT_INVERSE). 2070 @param src input floating-point single-channel array. 2071 @param dst output array of the same size and type as src. 2072 @param flags operation flags. 2073 @sa dct, dft, idft, getOptimalDFTSize 2074 */ 2075 CV_EXPORTS_W void idct(InputArray src, OutputArray dst, int flags = 0); 2076 2077 /** @brief Performs the per-element multiplication of two Fourier spectrums. 2078 2079 The function mulSpectrums performs the per-element multiplication of the two CCS-packed or complex 2080 matrices that are results of a real or complex Fourier transform. 2081 2082 The function, together with dft and idft , may be used to calculate convolution (pass conjB=false ) 2083 or correlation (pass conjB=true ) of two arrays rapidly. When the arrays are complex, they are 2084 simply multiplied (per element) with an optional conjugation of the second-array elements. When the 2085 arrays are real, they are assumed to be CCS-packed (see dft for details). 2086 @param a first input array. 2087 @param b second input array of the same size and type as src1 . 2088 @param c output array of the same size and type as src1 . 2089 @param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that 2090 each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value. 2091 @param conjB optional flag that conjugates the second input array before the multiplication (true) 2092 or not (false). 2093 */ 2094 CV_EXPORTS_W void mulSpectrums(InputArray a, InputArray b, OutputArray c, 2095 int flags, bool conjB = false); 2096 2097 /** @brief Returns the optimal DFT size for a given vector size. 2098 2099 DFT performance is not a monotonic function of a vector size. Therefore, when you calculate 2100 convolution of two arrays or perform the spectral analysis of an array, it usually makes sense to 2101 pad the input data with zeros to get a bit larger array that can be transformed much faster than the 2102 original one. Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the fastest to process. 2103 Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5\*5\*3\*2\*2) 2104 are also processed quite efficiently. 2105 2106 The function getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize 2107 so that the DFT of a vector of size N can be processed efficiently. In the current implementation N 2108 = 2 ^p^ \* 3 ^q^ \* 5 ^r^ for some integer p, q, r. 2109 2110 The function returns a negative number if vecsize is too large (very close to INT_MAX ). 2111 2112 While the function cannot be used directly to estimate the optimal vector size for DCT transform 2113 (since the current DCT implementation supports only even-size vectors), it can be easily processed 2114 as getOptimalDFTSize((vecsize+1)/2)\*2. 2115 @param vecsize vector size. 2116 @sa dft , dct , idft , idct , mulSpectrums 2117 */ 2118 CV_EXPORTS_W int getOptimalDFTSize(int vecsize); 2119 2120 /** @brief Returns the default random number generator. 2121 2122 The function theRNG returns the default random number generator. For each thread, there is a 2123 separate random number generator, so you can use the function safely in multi-thread environments. 2124 If you just need to get a single random number using this generator or initialize an array, you can 2125 use randu or randn instead. But if you are going to generate many random numbers inside a loop, it 2126 is much faster to use this function to retrieve the generator and then use RNG::operator _Tp() . 2127 @sa RNG, randu, randn 2128 */ 2129 CV_EXPORTS RNG& theRNG(); 2130 2131 /** @brief Generates a single uniformly-distributed random number or an array of random numbers. 2132 2133 Non-template variant of the function fills the matrix dst with uniformly-distributed 2134 random numbers from the specified range: 2135 \f[\texttt{low} _c \leq \texttt{dst} (I)_c < \texttt{high} _c\f] 2136 @param dst output array of random numbers; the array must be pre-allocated. 2137 @param low inclusive lower boundary of the generated random numbers. 2138 @param high exclusive upper boundary of the generated random numbers. 2139 @sa RNG, randn, theRNG 2140 */ 2141 CV_EXPORTS_W void randu(InputOutputArray dst, InputArray low, InputArray high); 2142 2143 /** @brief Fills the array with normally distributed random numbers. 2144 2145 The function randn fills the matrix dst with normally distributed random numbers with the specified 2146 mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the 2147 value range of the output array data type. 2148 @param dst output array of random numbers; the array must be pre-allocated and have 1 to 4 channels. 2149 @param mean mean value (expectation) of the generated random numbers. 2150 @param stddev standard deviation of the generated random numbers; it can be either a vector (in 2151 which case a diagonal standard deviation matrix is assumed) or a square matrix. 2152 @sa RNG, randu 2153 */ 2154 CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev); 2155 2156 /** @brief Shuffles the array elements randomly. 2157 2158 The function randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and 2159 swapping them. The number of such swap operations will be dst.rows\*dst.cols\*iterFactor . 2160 @param dst input/output numerical 1D array. 2161 @param iterFactor scale factor that determines the number of random swap operations (see the details 2162 below). 2163 @param rng optional random number generator used for shuffling; if it is zero, theRNG () is used 2164 instead. 2165 @sa RNG, sort 2166 */ 2167 CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0); 2168 2169 /** @brief Principal Component Analysis 2170 2171 The class is used to calculate a special basis for a set of vectors. The 2172 basis will consist of eigenvectors of the covariance matrix calculated 2173 from the input set of vectors. The class %PCA can also transform 2174 vectors to/from the new coordinate space defined by the basis. Usually, 2175 in this new coordinate system, each vector from the original set (and 2176 any linear combination of such vectors) can be quite accurately 2177 approximated by taking its first few components, corresponding to the 2178 eigenvectors of the largest eigenvalues of the covariance matrix. 2179 Geometrically it means that you calculate a projection of the vector to 2180 a subspace formed by a few eigenvectors corresponding to the dominant 2181 eigenvalues of the covariance matrix. And usually such a projection is 2182 very close to the original vector. So, you can represent the original 2183 vector from a high-dimensional space with a much shorter vector 2184 consisting of the projected vector's coordinates in the subspace. Such a 2185 transformation is also known as Karhunen-Loeve Transform, or KLT. 2186 See http://en.wikipedia.org/wiki/Principal_component_analysis 2187 2188 The sample below is the function that takes two matrices. The first 2189 function stores a set of vectors (a row per vector) that is used to 2190 calculate PCA. The second function stores another "test" set of vectors 2191 (a row per vector). First, these vectors are compressed with PCA, then 2192 reconstructed back, and then the reconstruction error norm is computed 2193 and printed for each vector. : 2194 2195 @code{.cpp} 2196 using namespace cv; 2197 2198 PCA compressPCA(const Mat& pcaset, int maxComponents, 2199 const Mat& testset, Mat& compressed) 2200 { 2201 PCA pca(pcaset, // pass the data 2202 Mat(), // we do not have a pre-computed mean vector, 2203 // so let the PCA engine to compute it 2204 PCA::DATA_AS_ROW, // indicate that the vectors 2205 // are stored as matrix rows 2206 // (use PCA::DATA_AS_COL if the vectors are 2207 // the matrix columns) 2208 maxComponents // specify, how many principal components to retain 2209 ); 2210 // if there is no test data, just return the computed basis, ready-to-use 2211 if( !testset.data ) 2212 return pca; 2213 CV_Assert( testset.cols == pcaset.cols ); 2214 2215 compressed.create(testset.rows, maxComponents, testset.type()); 2216 2217 Mat reconstructed; 2218 for( int i = 0; i < testset.rows; i++ ) 2219 { 2220 Mat vec = testset.row(i), coeffs = compressed.row(i), reconstructed; 2221 // compress the vector, the result will be stored 2222 // in the i-th row of the output matrix 2223 pca.project(vec, coeffs); 2224 // and then reconstruct it 2225 pca.backProject(coeffs, reconstructed); 2226 // and measure the error 2227 printf("%d. diff = %g\n", i, norm(vec, reconstructed, NORM_L2)); 2228 } 2229 return pca; 2230 } 2231 @endcode 2232 @sa calcCovarMatrix, mulTransposed, SVD, dft, dct 2233 */ 2234 class CV_EXPORTS PCA 2235 { 2236 public: 2237 enum Flags { DATA_AS_ROW = 0, //!< indicates that the input samples are stored as matrix rows 2238 DATA_AS_COL = 1, //!< indicates that the input samples are stored as matrix columns 2239 USE_AVG = 2 //! 2240 }; 2241 2242 /** @brief default constructor 2243 2244 The default constructor initializes an empty %PCA structure. The other 2245 constructors initialize the structure and call PCA::operator()(). 2246 */ 2247 PCA(); 2248 2249 /** @overload 2250 @param data input samples stored as matrix rows or matrix columns. 2251 @param mean optional mean value; if the matrix is empty (@c noArray()), 2252 the mean is computed from the data. 2253 @param flags operation flags; currently the parameter is only used to 2254 specify the data layout (PCA::Flags) 2255 @param maxComponents maximum number of components that %PCA should 2256 retain; by default, all the components are retained. 2257 */ 2258 PCA(InputArray data, InputArray mean, int flags, int maxComponents = 0); 2259 2260 /** @overload 2261 @param data input samples stored as matrix rows or matrix columns. 2262 @param mean optional mean value; if the matrix is empty (noArray()), 2263 the mean is computed from the data. 2264 @param flags operation flags; currently the parameter is only used to 2265 specify the data layout (PCA::Flags) 2266 @param retainedVariance Percentage of variance that PCA should retain. 2267 Using this parameter will let the PCA decided how many components to 2268 retain but it will always keep at least 2. 2269 */ 2270 PCA(InputArray data, InputArray mean, int flags, double retainedVariance); 2271 2272 /** @brief performs %PCA 2273 2274 The operator performs %PCA of the supplied dataset. It is safe to reuse 2275 the same PCA structure for multiple datasets. That is, if the structure 2276 has been previously used with another dataset, the existing internal 2277 data is reclaimed and the new eigenvalues, @ref eigenvectors , and @ref 2278 mean are allocated and computed. 2279 2280 The computed eigenvalues are sorted from the largest to the smallest and 2281 the corresponding eigenvectors are stored as eigenvectors rows. 2282 2283 @param data input samples stored as the matrix rows or as the matrix 2284 columns. 2285 @param mean optional mean value; if the matrix is empty (noArray()), 2286 the mean is computed from the data. 2287 @param flags operation flags; currently the parameter is only used to 2288 specify the data layout. (Flags) 2289 @param maxComponents maximum number of components that PCA should 2290 retain; by default, all the components are retained. 2291 */ 2292 PCA& operator()(InputArray data, InputArray mean, int flags, int maxComponents = 0); 2293 2294 /** @overload 2295 @param data input samples stored as the matrix rows or as the matrix 2296 columns. 2297 @param mean optional mean value; if the matrix is empty (noArray()), 2298 the mean is computed from the data. 2299 @param flags operation flags; currently the parameter is only used to 2300 specify the data layout. (PCA::Flags) 2301 @param retainedVariance Percentage of variance that %PCA should retain. 2302 Using this parameter will let the %PCA decided how many components to 2303 retain but it will always keep at least 2. 2304 */ 2305 PCA& operator()(InputArray data, InputArray mean, int flags, double retainedVariance); 2306 2307 /** @brief Projects vector(s) to the principal component subspace. 2308 2309 The methods project one or more vectors to the principal component 2310 subspace, where each vector projection is represented by coefficients in 2311 the principal component basis. The first form of the method returns the 2312 matrix that the second form writes to the result. So the first form can 2313 be used as a part of expression while the second form can be more 2314 efficient in a processing loop. 2315 @param vec input vector(s); must have the same dimensionality and the 2316 same layout as the input data used at %PCA phase, that is, if 2317 DATA_AS_ROW are specified, then `vec.cols==data.cols` 2318 (vector dimensionality) and `vec.rows` is the number of vectors to 2319 project, and the same is true for the PCA::DATA_AS_COL case. 2320 */ 2321 Mat project(InputArray vec) const; 2322 2323 /** @overload 2324 @param vec input vector(s); must have the same dimensionality and the 2325 same layout as the input data used at PCA phase, that is, if 2326 DATA_AS_ROW are specified, then `vec.cols==data.cols` 2327 (vector dimensionality) and `vec.rows` is the number of vectors to 2328 project, and the same is true for the PCA::DATA_AS_COL case. 2329 @param result output vectors; in case of PCA::DATA_AS_COL, the 2330 output matrix has as many columns as the number of input vectors, this 2331 means that `result.cols==vec.cols` and the number of rows match the 2332 number of principal components (for example, `maxComponents` parameter 2333 passed to the constructor). 2334 */ 2335 void project(InputArray vec, OutputArray result) const; 2336 2337 /** @brief Reconstructs vectors from their PC projections. 2338 2339 The methods are inverse operations to PCA::project. They take PC 2340 coordinates of projected vectors and reconstruct the original vectors. 2341 Unless all the principal components have been retained, the 2342 reconstructed vectors are different from the originals. But typically, 2343 the difference is small if the number of components is large enough (but 2344 still much smaller than the original vector dimensionality). As a 2345 result, PCA is used. 2346 @param vec coordinates of the vectors in the principal component 2347 subspace, the layout and size are the same as of PCA::project output 2348 vectors. 2349 */ 2350 Mat backProject(InputArray vec) const; 2351 2352 /** @overload 2353 @param vec coordinates of the vectors in the principal component 2354 subspace, the layout and size are the same as of PCA::project output 2355 vectors. 2356 @param result reconstructed vectors; the layout and size are the same as 2357 of PCA::project input vectors. 2358 */ 2359 void backProject(InputArray vec, OutputArray result) const; 2360 2361 /** @brief write and load PCA matrix 2362 2363 */ 2364 void write(FileStorage& fs ) const; 2365 void read(const FileNode& fs); 2366 2367 Mat eigenvectors; //!< eigenvectors of the covariation matrix 2368 Mat eigenvalues; //!< eigenvalues of the covariation matrix 2369 Mat mean; //!< mean value subtracted before the projection and added after the back projection 2370 }; 2371 2372 /** @example pca.cpp 2373 An example using %PCA for dimensionality reduction while maintaining an amount of variance 2374 */ 2375 2376 /** 2377 @brief Linear Discriminant Analysis 2378 @todo document this class 2379 */ 2380 class CV_EXPORTS LDA 2381 { 2382 public: 2383 /** @brief constructor 2384 Initializes a LDA with num_components (default 0) and specifies how 2385 samples are aligned (default dataAsRow=true). 2386 */ 2387 explicit LDA(int num_components = 0); 2388 2389 /** Initializes and performs a Discriminant Analysis with Fisher's 2390 Optimization Criterion on given data in src and corresponding labels 2391 in labels. If 0 (or less) number of components are given, they are 2392 automatically determined for given data in computation. 2393 */ 2394 LDA(InputArrayOfArrays src, InputArray labels, int num_components = 0); 2395 2396 /** Serializes this object to a given filename. 2397 */ 2398 void save(const String& filename) const; 2399 2400 /** Deserializes this object from a given filename. 2401 */ 2402 void load(const String& filename); 2403 2404 /** Serializes this object to a given cv::FileStorage. 2405 */ 2406 void save(FileStorage& fs) const; 2407 2408 /** Deserializes this object from a given cv::FileStorage. 2409 */ 2410 void load(const FileStorage& node); 2411 2412 /** destructor 2413 */ 2414 ~LDA(); 2415 2416 /** Compute the discriminants for data in src and labels. 2417 */ 2418 void compute(InputArrayOfArrays src, InputArray labels); 2419 2420 /** Projects samples into the LDA subspace. 2421 */ 2422 Mat project(InputArray src); 2423 2424 /** Reconstructs projections from the LDA subspace. 2425 */ 2426 Mat reconstruct(InputArray src); 2427 2428 /** Returns the eigenvectors of this LDA. 2429 */ eigenvectors() const2430 Mat eigenvectors() const { return _eigenvectors; } 2431 2432 /** Returns the eigenvalues of this LDA. 2433 */ eigenvalues() const2434 Mat eigenvalues() const { return _eigenvalues; } 2435 2436 static Mat subspaceProject(InputArray W, InputArray mean, InputArray src); 2437 static Mat subspaceReconstruct(InputArray W, InputArray mean, InputArray src); 2438 2439 protected: 2440 bool _dataAsRow; 2441 int _num_components; 2442 Mat _eigenvectors; 2443 Mat _eigenvalues; 2444 2445 void lda(InputArrayOfArrays src, InputArray labels); 2446 }; 2447 2448 /** @brief Singular Value Decomposition 2449 2450 Class for computing Singular Value Decomposition of a floating-point 2451 matrix. The Singular Value Decomposition is used to solve least-square 2452 problems, under-determined linear systems, invert matrices, compute 2453 condition numbers, and so on. 2454 2455 If you want to compute a condition number of a matrix or an absolute value of 2456 its determinant, you do not need `u` and `vt`. You can pass 2457 flags=SVD::NO_UV|... . Another flag SVD::FULL_UV indicates that full-size u 2458 and vt must be computed, which is not necessary most of the time. 2459 2460 @sa invert, solve, eigen, determinant 2461 */ 2462 class CV_EXPORTS SVD 2463 { 2464 public: 2465 enum Flags { 2466 /** allow the algorithm to modify the decomposed matrix; it can save space and speed up 2467 processing. currently ignored. */ 2468 MODIFY_A = 1, 2469 /** indicates that only a vector of singular values `w` is to be processed, while u and vt 2470 will be set to empty matrices */ 2471 NO_UV = 2, 2472 /** when the matrix is not square, by default the algorithm produces u and vt matrices of 2473 sufficiently large size for the further A reconstruction; if, however, FULL_UV flag is 2474 specified, u and vt will be full-size square orthogonal matrices.*/ 2475 FULL_UV = 4 2476 }; 2477 2478 /** @brief the default constructor 2479 2480 initializes an empty SVD structure 2481 */ 2482 SVD(); 2483 2484 /** @overload 2485 initializes an empty SVD structure and then calls SVD::operator() 2486 @param src decomposed matrix. 2487 @param flags operation flags (SVD::Flags) 2488 */ 2489 SVD( InputArray src, int flags = 0 ); 2490 2491 /** @brief the operator that performs SVD. The previously allocated u, w and vt are released. 2492 2493 The operator performs the singular value decomposition of the supplied 2494 matrix. The u,`vt` , and the vector of singular values w are stored in 2495 the structure. The same SVD structure can be reused many times with 2496 different matrices. Each time, if needed, the previous u,`vt` , and w 2497 are reclaimed and the new matrices are created, which is all handled by 2498 Mat::create. 2499 @param src decomposed matrix. 2500 @param flags operation flags (SVD::Flags) 2501 */ 2502 SVD& operator ()( InputArray src, int flags = 0 ); 2503 2504 /** @brief decomposes matrix and stores the results to user-provided matrices 2505 2506 The methods/functions perform SVD of matrix. Unlike SVD::SVD constructor 2507 and SVD::operator(), they store the results to the user-provided 2508 matrices: 2509 2510 @code{.cpp} 2511 Mat A, w, u, vt; 2512 SVD::compute(A, w, u, vt); 2513 @endcode 2514 2515 @param src decomposed matrix 2516 @param w calculated singular values 2517 @param u calculated left singular vectors 2518 @param vt transposed matrix of right singular values 2519 @param flags operation flags - see SVD::SVD. 2520 */ 2521 static void compute( InputArray src, OutputArray w, 2522 OutputArray u, OutputArray vt, int flags = 0 ); 2523 2524 /** @overload 2525 computes singular values of a matrix 2526 @param src decomposed matrix 2527 @param w calculated singular values 2528 @param flags operation flags - see SVD::Flags. 2529 */ 2530 static void compute( InputArray src, OutputArray w, int flags = 0 ); 2531 2532 /** @brief performs back substitution 2533 */ 2534 static void backSubst( InputArray w, InputArray u, 2535 InputArray vt, InputArray rhs, 2536 OutputArray dst ); 2537 2538 /** @brief solves an under-determined singular linear system 2539 2540 The method finds a unit-length solution x of a singular linear system 2541 A\*x = 0. Depending on the rank of A, there can be no solutions, a 2542 single solution or an infinite number of solutions. In general, the 2543 algorithm solves the following problem: 2544 \f[dst = \arg \min _{x: \| x \| =1} \| src \cdot x \|\f] 2545 @param src left-hand-side matrix. 2546 @param dst found solution. 2547 */ 2548 static void solveZ( InputArray src, OutputArray dst ); 2549 2550 /** @brief performs a singular value back substitution. 2551 2552 The method calculates a back substitution for the specified right-hand 2553 side: 2554 2555 \f[\texttt{x} = \texttt{vt} ^T \cdot diag( \texttt{w} )^{-1} \cdot \texttt{u} ^T \cdot \texttt{rhs} \sim \texttt{A} ^{-1} \cdot \texttt{rhs}\f] 2556 2557 Using this technique you can either get a very accurate solution of the 2558 convenient linear system, or the best (in the least-squares terms) 2559 pseudo-solution of an overdetermined linear system. 2560 2561 @param rhs right-hand side of a linear system (u\*w\*v')\*dst = rhs to 2562 be solved, where A has been previously decomposed. 2563 2564 @param dst found solution of the system. 2565 2566 @note Explicit SVD with the further back substitution only makes sense 2567 if you need to solve many linear systems with the same left-hand side 2568 (for example, src ). If all you need is to solve a single system 2569 (possibly with multiple rhs immediately available), simply call solve 2570 add pass DECOMP_SVD there. It does absolutely the same thing. 2571 */ 2572 void backSubst( InputArray rhs, OutputArray dst ) const; 2573 2574 /** @todo document */ 2575 template<typename _Tp, int m, int n, int nm> static 2576 void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt ); 2577 2578 /** @todo document */ 2579 template<typename _Tp, int m, int n, int nm> static 2580 void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w ); 2581 2582 /** @todo document */ 2583 template<typename _Tp, int m, int n, int nm, int nb> static 2584 void backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u, const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs, Matx<_Tp, n, nb>& dst ); 2585 2586 Mat u, w, vt; 2587 }; 2588 2589 /** @brief Random Number Generator 2590 2591 Random number generator. It encapsulates the state (currently, a 64-bit 2592 integer) and has methods to return scalar random values and to fill 2593 arrays with random values. Currently it supports uniform and Gaussian 2594 (normal) distributions. The generator uses Multiply-With-Carry 2595 algorithm, introduced by G. Marsaglia ( 2596 <http://en.wikipedia.org/wiki/Multiply-with-carry> ). 2597 Gaussian-distribution random numbers are generated using the Ziggurat 2598 algorithm ( <http://en.wikipedia.org/wiki/Ziggurat_algorithm> ), 2599 introduced by G. Marsaglia and W. W. Tsang. 2600 */ 2601 class CV_EXPORTS RNG 2602 { 2603 public: 2604 enum { UNIFORM = 0, 2605 NORMAL = 1 2606 }; 2607 2608 /** @brief constructor 2609 2610 These are the RNG constructors. The first form sets the state to some 2611 pre-defined value, equal to 2\*\*32-1 in the current implementation. The 2612 second form sets the state to the specified value. If you passed state=0 2613 , the constructor uses the above default value instead to avoid the 2614 singular random number sequence, consisting of all zeros. 2615 */ 2616 RNG(); 2617 /** @overload 2618 @param state 64-bit value used to initialize the RNG. 2619 */ 2620 RNG(uint64 state); 2621 /**The method updates the state using the MWC algorithm and returns the 2622 next 32-bit random number.*/ 2623 unsigned next(); 2624 2625 /**Each of the methods updates the state using the MWC algorithm and 2626 returns the next random number of the specified type. In case of integer 2627 types, the returned number is from the available value range for the 2628 specified type. In case of floating-point types, the returned value is 2629 from [0,1) range. 2630 */ 2631 operator uchar(); 2632 /** @overload */ 2633 operator schar(); 2634 /** @overload */ 2635 operator ushort(); 2636 /** @overload */ 2637 operator short(); 2638 /** @overload */ 2639 operator unsigned(); 2640 /** @overload */ 2641 operator int(); 2642 /** @overload */ 2643 operator float(); 2644 /** @overload */ 2645 operator double(); 2646 2647 /** @brief returns a random integer sampled uniformly from [0, N). 2648 2649 The methods transform the state using the MWC algorithm and return the 2650 next random number. The first form is equivalent to RNG::next . The 2651 second form returns the random number modulo N , which means that the 2652 result is in the range [0, N) . 2653 */ 2654 unsigned operator ()(); 2655 /** @overload 2656 @param N upper non-inclusive boundary of the returned random number. 2657 */ 2658 unsigned operator ()(unsigned N); 2659 2660 /** @brief returns uniformly distributed integer random number from [a,b) range 2661 2662 The methods transform the state using the MWC algorithm and return the 2663 next uniformly-distributed random number of the specified type, deduced 2664 from the input parameter type, from the range [a, b) . There is a nuance 2665 illustrated by the following sample: 2666 2667 @code{.cpp} 2668 RNG rng; 2669 2670 // always produces 0 2671 double a = rng.uniform(0, 1); 2672 2673 // produces double from [0, 1) 2674 double a1 = rng.uniform((double)0, (double)1); 2675 2676 // produces float from [0, 1) 2677 double b = rng.uniform(0.f, 1.f); 2678 2679 // produces double from [0, 1) 2680 double c = rng.uniform(0., 1.); 2681 2682 // may cause compiler error because of ambiguity: 2683 // RNG::uniform(0, (int)0.999999)? or RNG::uniform((double)0, 0.99999)? 2684 double d = rng.uniform(0, 0.999999); 2685 @endcode 2686 2687 The compiler does not take into account the type of the variable to 2688 which you assign the result of RNG::uniform . The only thing that 2689 matters to the compiler is the type of a and b parameters. So, if you 2690 want a floating-point random number, but the range boundaries are 2691 integer numbers, either put dots in the end, if they are constants, or 2692 use explicit type cast operators, as in the a1 initialization above. 2693 @param a lower inclusive boundary of the returned random numbers. 2694 @param b upper non-inclusive boundary of the returned random numbers. 2695 */ 2696 int uniform(int a, int b); 2697 /** @overload */ 2698 float uniform(float a, float b); 2699 /** @overload */ 2700 double uniform(double a, double b); 2701 2702 /** @brief Fills arrays with random numbers. 2703 2704 @param mat 2D or N-dimensional matrix; currently matrices with more than 2705 4 channels are not supported by the methods, use Mat::reshape as a 2706 possible workaround. 2707 @param distType distribution type, RNG::UNIFORM or RNG::NORMAL. 2708 @param a first distribution parameter; in case of the uniform 2709 distribution, this is an inclusive lower boundary, in case of the normal 2710 distribution, this is a mean value. 2711 @param b second distribution parameter; in case of the uniform 2712 distribution, this is a non-inclusive upper boundary, in case of the 2713 normal distribution, this is a standard deviation (diagonal of the 2714 standard deviation matrix or the full standard deviation matrix). 2715 @param saturateRange pre-saturation flag; for uniform distribution only; 2716 if true, the method will first convert a and b to the acceptable value 2717 range (according to the mat datatype) and then will generate uniformly 2718 distributed random numbers within the range [saturate(a), saturate(b)), 2719 if saturateRange=false, the method will generate uniformly distributed 2720 random numbers in the original range [a, b) and then will saturate them, 2721 it means, for example, that 2722 <tt>theRNG().fill(mat_8u, RNG::UNIFORM, -DBL_MAX, DBL_MAX)</tt> will likely 2723 produce array mostly filled with 0's and 255's, since the range (0, 255) 2724 is significantly smaller than [-DBL_MAX, DBL_MAX). 2725 2726 Each of the methods fills the matrix with the random values from the 2727 specified distribution. As the new numbers are generated, the RNG state 2728 is updated accordingly. In case of multiple-channel images, every 2729 channel is filled independently, which means that RNG cannot generate 2730 samples from the multi-dimensional Gaussian distribution with 2731 non-diagonal covariance matrix directly. To do that, the method 2732 generates samples from multi-dimensional standard Gaussian distribution 2733 with zero mean and identity covariation matrix, and then transforms them 2734 using transform to get samples from the specified Gaussian distribution. 2735 */ 2736 void fill( InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange = false ); 2737 2738 /** @brief Returns the next random number sampled from the Gaussian distribution 2739 @param sigma standard deviation of the distribution. 2740 2741 The method transforms the state using the MWC algorithm and returns the 2742 next random number from the Gaussian distribution N(0,sigma) . That is, 2743 the mean value of the returned random numbers is zero and the standard 2744 deviation is the specified sigma . 2745 */ 2746 double gaussian(double sigma); 2747 2748 uint64 state; 2749 }; 2750 2751 /** @brief Mersenne Twister random number generator 2752 2753 Inspired by http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c 2754 @todo document 2755 */ 2756 class CV_EXPORTS RNG_MT19937 2757 { 2758 public: 2759 RNG_MT19937(); 2760 RNG_MT19937(unsigned s); 2761 void seed(unsigned s); 2762 2763 unsigned next(); 2764 2765 operator int(); 2766 operator unsigned(); 2767 operator float(); 2768 operator double(); 2769 2770 unsigned operator ()(unsigned N); 2771 unsigned operator ()(); 2772 2773 /** @brief returns uniformly distributed integer random number from [a,b) range 2774 2775 */ 2776 int uniform(int a, int b); 2777 /** @brief returns uniformly distributed floating-point random number from [a,b) range 2778 2779 */ 2780 float uniform(float a, float b); 2781 /** @brief returns uniformly distributed double-precision floating-point random number from [a,b) range 2782 2783 */ 2784 double uniform(double a, double b); 2785 2786 private: 2787 enum PeriodParameters {N = 624, M = 397}; 2788 unsigned state[N]; 2789 int mti; 2790 }; 2791 2792 //! @} core_array 2793 2794 //! @addtogroup core_cluster 2795 //! @{ 2796 2797 /** @example kmeans.cpp 2798 An example on K-means clustering 2799 */ 2800 2801 /** @brief Finds centers of clusters and groups input samples around the clusters. 2802 2803 The function kmeans implements a k-means algorithm that finds the centers of cluster_count clusters 2804 and groups the input samples around the clusters. As an output, \f$\texttt{labels}_i\f$ contains a 2805 0-based cluster index for the sample stored in the \f$i^{th}\f$ row of the samples matrix. 2806 2807 @note 2808 - (Python) An example on K-means clustering can be found at 2809 opencv_source_code/samples/python2/kmeans.py 2810 @param data Data for clustering. An array of N-Dimensional points with float coordinates is needed. 2811 Examples of this array can be: 2812 - Mat points(count, 2, CV_32F); 2813 - Mat points(count, 1, CV_32FC2); 2814 - Mat points(1, count, CV_32FC2); 2815 - std::vector\<cv::Point2f\> points(sampleCount); 2816 @param K Number of clusters to split the set by. 2817 @param bestLabels Input/output integer array that stores the cluster indices for every sample. 2818 @param criteria The algorithm termination criteria, that is, the maximum number of iterations and/or 2819 the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster 2820 centers moves by less than criteria.epsilon on some iteration, the algorithm stops. 2821 @param attempts Flag to specify the number of times the algorithm is executed using different 2822 initial labellings. The algorithm returns the labels that yield the best compactness (see the last 2823 function parameter). 2824 @param flags Flag that can take values of cv::KmeansFlags 2825 @param centers Output matrix of the cluster centers, one row per each cluster center. 2826 @return The function returns the compactness measure that is computed as 2827 \f[\sum _i \| \texttt{samples} _i - \texttt{centers} _{ \texttt{labels} _i} \| ^2\f] 2828 after every attempt. The best (minimum) value is chosen and the corresponding labels and the 2829 compactness value are returned by the function. Basically, you can use only the core of the 2830 function, set the number of attempts to 1, initialize labels each time using a custom algorithm, 2831 pass them with the ( flags = KMEANS_USE_INITIAL_LABELS ) flag, and then choose the best 2832 (most-compact) clustering. 2833 */ 2834 CV_EXPORTS_W double kmeans( InputArray data, int K, InputOutputArray bestLabels, 2835 TermCriteria criteria, int attempts, 2836 int flags, OutputArray centers = noArray() ); 2837 2838 //! @} core_cluster 2839 2840 //! @addtogroup core_basic 2841 //! @{ 2842 2843 /////////////////////////////// Formatted output of cv::Mat /////////////////////////// 2844 2845 /** @todo document */ 2846 class CV_EXPORTS Formatted 2847 { 2848 public: 2849 virtual const char* next() = 0; 2850 virtual void reset() = 0; 2851 virtual ~Formatted(); 2852 }; 2853 2854 /** @todo document */ 2855 class CV_EXPORTS Formatter 2856 { 2857 public: 2858 enum { FMT_DEFAULT = 0, 2859 FMT_MATLAB = 1, 2860 FMT_CSV = 2, 2861 FMT_PYTHON = 3, 2862 FMT_NUMPY = 4, 2863 FMT_C = 5 2864 }; 2865 2866 virtual ~Formatter(); 2867 2868 virtual Ptr<Formatted> format(const Mat& mtx) const = 0; 2869 2870 virtual void set32fPrecision(int p = 8) = 0; 2871 virtual void set64fPrecision(int p = 16) = 0; 2872 virtual void setMultiline(bool ml = true) = 0; 2873 2874 static Ptr<Formatter> get(int fmt = FMT_DEFAULT); 2875 2876 }; 2877 2878 //////////////////////////////////////// Algorithm //////////////////////////////////// 2879 2880 class CV_EXPORTS Algorithm; 2881 2882 template<typename _Tp> struct ParamType {}; 2883 2884 2885 /** @brief This is a base class for all more or less complex algorithms in OpenCV 2886 2887 especially for classes of algorithms, for which there can be multiple implementations. The examples 2888 are stereo correspondence (for which there are algorithms like block matching, semi-global block 2889 matching, graph-cut etc.), background subtraction (which can be done using mixture-of-gaussians 2890 models, codebook-based algorithm etc.), optical flow (block matching, Lucas-Kanade, Horn-Schunck 2891 etc.). 2892 2893 Here is example of SIFT use in your application via Algorithm interface: 2894 @code 2895 #include "opencv2/opencv.hpp" 2896 #include "opencv2/xfeatures2d.hpp" 2897 using namespace cv::xfeatures2d; 2898 2899 Ptr<Feature2D> sift = SIFT::create(); 2900 FileStorage fs("sift_params.xml", FileStorage::READ); 2901 if( fs.isOpened() ) // if we have file with parameters, read them 2902 { 2903 sift->read(fs["sift_params"]); 2904 fs.release(); 2905 } 2906 else // else modify the parameters and store them; user can later edit the file to use different parameters 2907 { 2908 sift->setContrastThreshold(0.01f); // lower the contrast threshold, compared to the default value 2909 { 2910 WriteStructContext ws(fs, "sift_params", CV_NODE_MAP); 2911 sift->write(fs); 2912 } 2913 } 2914 Mat image = imread("myimage.png", 0), descriptors; 2915 vector<KeyPoint> keypoints; 2916 sift->detectAndCompute(image, noArray(), keypoints, descriptors); 2917 @endcode 2918 */ 2919 class CV_EXPORTS_W Algorithm 2920 { 2921 public: 2922 Algorithm(); 2923 virtual ~Algorithm(); 2924 2925 /** @brief Clears the algorithm state 2926 */ clear()2927 CV_WRAP virtual void clear() {} 2928 2929 /** @brief Stores algorithm parameters in a file storage 2930 */ write(FileStorage & fs) const2931 virtual void write(FileStorage& fs) const { (void)fs; } 2932 2933 /** @brief Reads algorithm parameters from a file storage 2934 */ read(const FileNode & fn)2935 virtual void read(const FileNode& fn) { (void)fn; } 2936 2937 /** @brief Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read 2938 */ empty() const2939 virtual bool empty() const { return false; } 2940 2941 /** @brief Reads algorithm from the file node 2942 2943 This is static template method of Algorithm. It's usage is following (in the case of SVM): 2944 @code 2945 Ptr<SVM> svm = Algorithm::read<SVM>(fn); 2946 @endcode 2947 In order to make this method work, the derived class must overwrite Algorithm::read(const 2948 FileNode& fn) and also have static create() method without parameters 2949 (or with all the optional parameters) 2950 */ read(const FileNode & fn)2951 template<typename _Tp> static Ptr<_Tp> read(const FileNode& fn) 2952 { 2953 Ptr<_Tp> obj = _Tp::create(); 2954 obj->read(fn); 2955 return !obj->empty() ? obj : Ptr<_Tp>(); 2956 } 2957 2958 /** @brief Loads algorithm from the file 2959 2960 @param filename Name of the file to read. 2961 @param objname The optional name of the node to read (if empty, the first top-level node will be used) 2962 2963 This is static template method of Algorithm. It's usage is following (in the case of SVM): 2964 @code 2965 Ptr<SVM> svm = Algorithm::load<SVM>("my_svm_model.xml"); 2966 @endcode 2967 In order to make this method work, the derived class must overwrite Algorithm::read(const 2968 FileNode& fn). 2969 */ load(const String & filename,const String & objname=String ())2970 template<typename _Tp> static Ptr<_Tp> load(const String& filename, const String& objname=String()) 2971 { 2972 FileStorage fs(filename, FileStorage::READ); 2973 FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname]; 2974 Ptr<_Tp> obj = _Tp::create(); 2975 obj->read(fn); 2976 return !obj->empty() ? obj : Ptr<_Tp>(); 2977 } 2978 2979 /** @brief Loads algorithm from a String 2980 2981 @param strModel The string variable containing the model you want to load. 2982 @param objname The optional name of the node to read (if empty, the first top-level node will be used) 2983 2984 This is static template method of Algorithm. It's usage is following (in the case of SVM): 2985 @code 2986 Ptr<SVM> svm = Algorithm::loadFromString<SVM>(myStringModel); 2987 @endcode 2988 */ loadFromString(const String & strModel,const String & objname=String ())2989 template<typename _Tp> static Ptr<_Tp> loadFromString(const String& strModel, const String& objname=String()) 2990 { 2991 FileStorage fs(strModel, FileStorage::READ + FileStorage::MEMORY); 2992 FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname]; 2993 Ptr<_Tp> obj = _Tp::create(); 2994 obj->read(fn); 2995 return !obj->empty() ? obj : Ptr<_Tp>(); 2996 } 2997 2998 /** Saves the algorithm to a file. 2999 In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs). */ 3000 CV_WRAP virtual void save(const String& filename) const; 3001 3002 /** Returns the algorithm string identifier. 3003 This string is used as top level xml/yml node tag when the object is saved to a file or string. */ 3004 CV_WRAP virtual String getDefaultName() const; 3005 }; 3006 3007 struct Param { 3008 enum { INT=0, BOOLEAN=1, REAL=2, STRING=3, MAT=4, MAT_VECTOR=5, ALGORITHM=6, FLOAT=7, 3009 UNSIGNED_INT=8, UINT64=9, UCHAR=11 }; 3010 }; 3011 3012 3013 3014 template<> struct ParamType<bool> 3015 { 3016 typedef bool const_param_type; 3017 typedef bool member_type; 3018 3019 enum { type = Param::BOOLEAN }; 3020 }; 3021 3022 template<> struct ParamType<int> 3023 { 3024 typedef int const_param_type; 3025 typedef int member_type; 3026 3027 enum { type = Param::INT }; 3028 }; 3029 3030 template<> struct ParamType<double> 3031 { 3032 typedef double const_param_type; 3033 typedef double member_type; 3034 3035 enum { type = Param::REAL }; 3036 }; 3037 3038 template<> struct ParamType<String> 3039 { 3040 typedef const String& const_param_type; 3041 typedef String member_type; 3042 3043 enum { type = Param::STRING }; 3044 }; 3045 3046 template<> struct ParamType<Mat> 3047 { 3048 typedef const Mat& const_param_type; 3049 typedef Mat member_type; 3050 3051 enum { type = Param::MAT }; 3052 }; 3053 3054 template<> struct ParamType<std::vector<Mat> > 3055 { 3056 typedef const std::vector<Mat>& const_param_type; 3057 typedef std::vector<Mat> member_type; 3058 3059 enum { type = Param::MAT_VECTOR }; 3060 }; 3061 3062 template<> struct ParamType<Algorithm> 3063 { 3064 typedef const Ptr<Algorithm>& const_param_type; 3065 typedef Ptr<Algorithm> member_type; 3066 3067 enum { type = Param::ALGORITHM }; 3068 }; 3069 3070 template<> struct ParamType<float> 3071 { 3072 typedef float const_param_type; 3073 typedef float member_type; 3074 3075 enum { type = Param::FLOAT }; 3076 }; 3077 3078 template<> struct ParamType<unsigned> 3079 { 3080 typedef unsigned const_param_type; 3081 typedef unsigned member_type; 3082 3083 enum { type = Param::UNSIGNED_INT }; 3084 }; 3085 3086 template<> struct ParamType<uint64> 3087 { 3088 typedef uint64 const_param_type; 3089 typedef uint64 member_type; 3090 3091 enum { type = Param::UINT64 }; 3092 }; 3093 3094 template<> struct ParamType<uchar> 3095 { 3096 typedef uchar const_param_type; 3097 typedef uchar member_type; 3098 3099 enum { type = Param::UCHAR }; 3100 }; 3101 3102 //! @} core_basic 3103 3104 } //namespace cv 3105 3106 #include "opencv2/core/operations.hpp" 3107 #include "opencv2/core/cvstd.inl.hpp" 3108 #include "opencv2/core/utility.hpp" 3109 #include "opencv2/core/optim.hpp" 3110 3111 #endif /*__OPENCV_CORE_HPP__*/ 3112