1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include <stdlib.h>
29 #include <iostream>  // NOLINT(readability/streams)
30 
31 #include "src/v8.h"
32 #include "test/cctest/cctest.h"
33 
34 #include "src/base/utils/random-number-generator.h"
35 #include "src/macro-assembler.h"
36 #include "src/mips64/macro-assembler-mips64.h"
37 #include "src/mips64/simulator-mips64.h"
38 
39 
40 using namespace v8::internal;
41 
42 typedef void* (*F)(int64_t x, int64_t y, int p2, int p3, int p4);
43 typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4);
44 
45 #define __ masm->
46 
47 
to_non_zero(int n)48 static byte to_non_zero(int n) {
49   return static_cast<unsigned>(n) % 255 + 1;
50 }
51 
52 
all_zeroes(const byte * beg,const byte * end)53 static bool all_zeroes(const byte* beg, const byte* end) {
54   CHECK(beg);
55   CHECK(beg <= end);
56   while (beg < end) {
57     if (*beg++ != 0)
58       return false;
59   }
60   return true;
61 }
62 
63 
TEST(CopyBytes)64 TEST(CopyBytes) {
65   CcTest::InitializeVM();
66   Isolate* isolate = CcTest::i_isolate();
67   HandleScope handles(isolate);
68 
69   const int data_size = 1 * KB;
70   size_t act_size;
71 
72   // Allocate two blocks to copy data between.
73   byte* src_buffer =
74       static_cast<byte*>(v8::base::OS::Allocate(data_size, &act_size, 0));
75   CHECK(src_buffer);
76   CHECK(act_size >= static_cast<size_t>(data_size));
77   byte* dest_buffer =
78       static_cast<byte*>(v8::base::OS::Allocate(data_size, &act_size, 0));
79   CHECK(dest_buffer);
80   CHECK(act_size >= static_cast<size_t>(data_size));
81 
82   // Storage for a0 and a1.
83   byte* a0_;
84   byte* a1_;
85 
86   MacroAssembler assembler(isolate, NULL, 0,
87                            v8::internal::CodeObjectRequired::kYes);
88   MacroAssembler* masm = &assembler;
89 
90   // Code to be generated: The stuff in CopyBytes followed by a store of a0 and
91   // a1, respectively.
92   __ CopyBytes(a0, a1, a2, a3);
93   __ li(a2, Operand(reinterpret_cast<int64_t>(&a0_)));
94   __ li(a3, Operand(reinterpret_cast<int64_t>(&a1_)));
95   __ sd(a0, MemOperand(a2));
96   __ jr(ra);
97   __ sd(a1, MemOperand(a3));
98 
99   CodeDesc desc;
100   masm->GetCode(&desc);
101   Handle<Code> code = isolate->factory()->NewCode(
102       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
103 
104   ::F f = FUNCTION_CAST< ::F>(code->entry());
105 
106   // Initialise source data with non-zero bytes.
107   for (int i = 0; i < data_size; i++) {
108     src_buffer[i] = to_non_zero(i);
109   }
110 
111   const int fuzz = 11;
112 
113   for (int size = 0; size < 600; size++) {
114     for (const byte* src = src_buffer; src < src_buffer + fuzz; src++) {
115       for (byte* dest = dest_buffer; dest < dest_buffer + fuzz; dest++) {
116         memset(dest_buffer, 0, data_size);
117         CHECK(dest + size < dest_buffer + data_size);
118         (void)CALL_GENERATED_CODE(isolate, f, reinterpret_cast<int64_t>(src),
119                                   reinterpret_cast<int64_t>(dest), size, 0, 0);
120         // a0 and a1 should point at the first byte after the copied data.
121         CHECK_EQ(src + size, a0_);
122         CHECK_EQ(dest + size, a1_);
123         // Check that we haven't written outside the target area.
124         CHECK(all_zeroes(dest_buffer, dest));
125         CHECK(all_zeroes(dest + size, dest_buffer + data_size));
126         // Check the target area.
127         CHECK_EQ(0, memcmp(src, dest, size));
128       }
129     }
130   }
131 
132   // Check that the source data hasn't been clobbered.
133   for (int i = 0; i < data_size; i++) {
134     CHECK(src_buffer[i] == to_non_zero(i));
135   }
136 }
137 
138 
TEST(LoadConstants)139 TEST(LoadConstants) {
140   CcTest::InitializeVM();
141   Isolate* isolate = CcTest::i_isolate();
142   HandleScope handles(isolate);
143 
144   int64_t refConstants[64];
145   int64_t result[64];
146 
147   int64_t mask = 1;
148   for (int i = 0; i < 64; i++) {
149     refConstants[i] = ~(mask << i);
150   }
151 
152   MacroAssembler assembler(isolate, NULL, 0,
153                            v8::internal::CodeObjectRequired::kYes);
154   MacroAssembler* masm = &assembler;
155 
156   __ mov(a4, a0);
157   for (int i = 0; i < 64; i++) {
158     // Load constant.
159     __ li(a5, Operand(refConstants[i]));
160     __ sd(a5, MemOperand(a4));
161     __ Daddu(a4, a4, Operand(kPointerSize));
162   }
163 
164   __ jr(ra);
165   __ nop();
166 
167   CodeDesc desc;
168   masm->GetCode(&desc);
169   Handle<Code> code = isolate->factory()->NewCode(
170       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
171 
172   ::F f = FUNCTION_CAST< ::F>(code->entry());
173   (void)CALL_GENERATED_CODE(isolate, f, reinterpret_cast<int64_t>(result), 0, 0,
174                             0, 0);
175   // Check results.
176   for (int i = 0; i < 64; i++) {
177     CHECK(refConstants[i] == result[i]);
178   }
179 }
180 
181 
TEST(LoadAddress)182 TEST(LoadAddress) {
183   CcTest::InitializeVM();
184   Isolate* isolate = CcTest::i_isolate();
185   HandleScope handles(isolate);
186 
187   MacroAssembler assembler(isolate, NULL, 0,
188                            v8::internal::CodeObjectRequired::kYes);
189   MacroAssembler* masm = &assembler;
190   Label to_jump, skip;
191   __ mov(a4, a0);
192 
193   __ Branch(&skip);
194   __ bind(&to_jump);
195   __ nop();
196   __ nop();
197   __ jr(ra);
198   __ nop();
199   __ bind(&skip);
200   __ li(a4, Operand(masm->jump_address(&to_jump)), ADDRESS_LOAD);
201   int check_size = masm->InstructionsGeneratedSince(&skip);
202   CHECK_EQ(check_size, 4);
203   __ jr(a4);
204   __ nop();
205   __ stop("invalid");
206   __ stop("invalid");
207   __ stop("invalid");
208   __ stop("invalid");
209   __ stop("invalid");
210 
211 
212   CodeDesc desc;
213   masm->GetCode(&desc);
214   Handle<Code> code = isolate->factory()->NewCode(
215       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
216 
217   ::F f = FUNCTION_CAST< ::F>(code->entry());
218   (void)CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0);
219   // Check results.
220 }
221 
222 
TEST(jump_tables4)223 TEST(jump_tables4) {
224   // Similar to test-assembler-mips jump_tables1, with extra test for branch
225   // trampoline required before emission of the dd table (where trampolines are
226   // blocked), and proper transition to long-branch mode.
227   // Regression test for v8:4294.
228   CcTest::InitializeVM();
229   Isolate* isolate = CcTest::i_isolate();
230   HandleScope scope(isolate);
231   MacroAssembler assembler(isolate, NULL, 0,
232                            v8::internal::CodeObjectRequired::kYes);
233   MacroAssembler* masm = &assembler;
234 
235   const int kNumCases = 512;
236   int values[kNumCases];
237   isolate->random_number_generator()->NextBytes(values, sizeof(values));
238   Label labels[kNumCases];
239   Label near_start, end;
240 
241   __ daddiu(sp, sp, -8);
242   __ sd(ra, MemOperand(sp));
243 
244   __ mov(v0, zero_reg);
245 
246   __ Branch(&end);
247   __ bind(&near_start);
248 
249   // Generate slightly less than 32K instructions, which will soon require
250   // trampoline for branch distance fixup.
251   for (int i = 0; i < 32768 - 256; ++i) {
252     __ addiu(v0, v0, 1);
253   }
254 
255   __ Align(8);
256   Label done;
257   {
258     __ BlockTrampolinePoolFor(kNumCases * 2 + 6);
259     PredictableCodeSizeScope predictable(
260         masm, (kNumCases * 2 + 6) * Assembler::kInstrSize);
261     Label here;
262 
263     __ bal(&here);
264     __ dsll(at, a0, 3);  // In delay slot.
265     __ bind(&here);
266     __ daddu(at, at, ra);
267     __ ld(at, MemOperand(at, 4 * Assembler::kInstrSize));
268     __ jr(at);
269     __ nop();  // Branch delay slot nop.
270     for (int i = 0; i < kNumCases; ++i) {
271       __ dd(&labels[i]);
272     }
273   }
274 
275   for (int i = 0; i < kNumCases; ++i) {
276     __ bind(&labels[i]);
277     __ lui(v0, (values[i] >> 16) & 0xffff);
278     __ ori(v0, v0, values[i] & 0xffff);
279     __ Branch(&done);
280   }
281 
282   __ bind(&done);
283   __ ld(ra, MemOperand(sp));
284   __ daddiu(sp, sp, 8);
285   __ jr(ra);
286   __ nop();
287 
288   __ bind(&end);
289   __ Branch(&near_start);
290 
291   CodeDesc desc;
292   masm->GetCode(&desc);
293   Handle<Code> code = isolate->factory()->NewCode(
294       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
295 #ifdef OBJECT_PRINT
296   code->Print(std::cout);
297 #endif
298   F1 f = FUNCTION_CAST<F1>(code->entry());
299   for (int i = 0; i < kNumCases; ++i) {
300     int64_t res = reinterpret_cast<int64_t>(
301         CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
302     ::printf("f(%d) = %" PRId64 "\n", i, res);
303     CHECK_EQ(values[i], res);
304   }
305 }
306 
307 
TEST(jump_tables5)308 TEST(jump_tables5) {
309   if (kArchVariant != kMips64r6) return;
310 
311   // Similar to test-assembler-mips jump_tables1, with extra test for emitting a
312   // compact branch instruction before emission of the dd table.
313   CcTest::InitializeVM();
314   Isolate* isolate = CcTest::i_isolate();
315   HandleScope scope(isolate);
316   MacroAssembler assembler(isolate, nullptr, 0,
317                            v8::internal::CodeObjectRequired::kYes);
318   MacroAssembler* masm = &assembler;
319 
320   const int kNumCases = 512;
321   int values[kNumCases];
322   isolate->random_number_generator()->NextBytes(values, sizeof(values));
323   Label labels[kNumCases];
324   Label done;
325 
326   __ daddiu(sp, sp, -8);
327   __ sd(ra, MemOperand(sp));
328 
329   __ Align(8);
330   {
331     __ BlockTrampolinePoolFor(kNumCases * 2 + 7 + 1);
332     PredictableCodeSizeScope predictable(
333         masm, kNumCases * kPointerSize + ((7 + 1) * Assembler::kInstrSize));
334     Label here;
335 
336     __ bal(&here);
337     __ dsll(at, a0, 3);  // In delay slot.
338     __ bind(&here);
339     __ daddu(at, at, ra);
340     __ ld(at, MemOperand(at, 6 * Assembler::kInstrSize));
341     __ jalr(at);
342     __ nop();  // Branch delay slot nop.
343     __ bc(&done);
344     // A nop instruction must be generated by the forbidden slot guard
345     // (Assembler::dd(Label*)) so the first label goes to an 8 bytes aligned
346     // location.
347     for (int i = 0; i < kNumCases; ++i) {
348       __ dd(&labels[i]);
349     }
350   }
351 
352   for (int i = 0; i < kNumCases; ++i) {
353     __ bind(&labels[i]);
354     __ lui(v0, (values[i] >> 16) & 0xffff);
355     __ ori(v0, v0, values[i] & 0xffff);
356     __ jr(ra);
357     __ nop();
358   }
359 
360   __ bind(&done);
361   __ ld(ra, MemOperand(sp));
362   __ daddiu(sp, sp, 8);
363   __ jr(ra);
364   __ nop();
365 
366   CodeDesc desc;
367   masm->GetCode(&desc);
368   Handle<Code> code = isolate->factory()->NewCode(
369       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
370 #ifdef OBJECT_PRINT
371   code->Print(std::cout);
372 #endif
373   F1 f = FUNCTION_CAST<F1>(code->entry());
374   for (int i = 0; i < kNumCases; ++i) {
375     int64_t res = reinterpret_cast<int64_t>(
376         CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
377     ::printf("f(%d) = %" PRId64 "\n", i, res);
378     CHECK_EQ(values[i], res);
379   }
380 }
381 
382 
run_lsa(uint32_t rt,uint32_t rs,int8_t sa)383 static uint64_t run_lsa(uint32_t rt, uint32_t rs, int8_t sa) {
384   Isolate* isolate = CcTest::i_isolate();
385   HandleScope scope(isolate);
386   MacroAssembler assembler(isolate, nullptr, 0,
387                            v8::internal::CodeObjectRequired::kYes);
388   MacroAssembler* masm = &assembler;
389 
390   __ Lsa(v0, a0, a1, sa);
391   __ jr(ra);
392   __ nop();
393 
394   CodeDesc desc;
395   assembler.GetCode(&desc);
396   Handle<Code> code = isolate->factory()->NewCode(
397       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
398 
399   F1 f = FUNCTION_CAST<F1>(code->entry());
400 
401   uint64_t res = reinterpret_cast<uint64_t>(
402       CALL_GENERATED_CODE(isolate, f, rt, rs, 0, 0, 0));
403 
404   return res;
405 }
406 
407 
TEST(Lsa)408 TEST(Lsa) {
409   CcTest::InitializeVM();
410   struct TestCaseLsa {
411     int32_t rt;
412     int32_t rs;
413     uint8_t sa;
414     uint64_t expected_res;
415   };
416 
417   struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res
418                              {0x4, 0x1, 1, 0x6},
419                              {0x4, 0x1, 2, 0x8},
420                              {0x4, 0x1, 3, 0xc},
421                              {0x4, 0x1, 4, 0x14},
422                              {0x4, 0x1, 5, 0x24},
423                              {0x0, 0x1, 1, 0x2},
424                              {0x0, 0x1, 2, 0x4},
425                              {0x0, 0x1, 3, 0x8},
426                              {0x0, 0x1, 4, 0x10},
427                              {0x0, 0x1, 5, 0x20},
428                              {0x4, 0x0, 1, 0x4},
429                              {0x4, 0x0, 2, 0x4},
430                              {0x4, 0x0, 3, 0x4},
431                              {0x4, 0x0, 4, 0x4},
432                              {0x4, 0x0, 5, 0x4},
433 
434                              // Shift overflow.
435                              {0x4, INT32_MAX, 1, 0x2},
436                              {0x4, INT32_MAX >> 1, 2, 0x0},
437                              {0x4, INT32_MAX >> 2, 3, 0xfffffffffffffffc},
438                              {0x4, INT32_MAX >> 3, 4, 0xfffffffffffffff4},
439                              {0x4, INT32_MAX >> 4, 5, 0xffffffffffffffe4},
440 
441                              // Signed addition overflow.
442                              {INT32_MAX - 1, 0x1, 1, 0xffffffff80000000},
443                              {INT32_MAX - 3, 0x1, 2, 0xffffffff80000000},
444                              {INT32_MAX - 7, 0x1, 3, 0xffffffff80000000},
445                              {INT32_MAX - 15, 0x1, 4, 0xffffffff80000000},
446                              {INT32_MAX - 31, 0x1, 5, 0xffffffff80000000},
447 
448                              // Addition overflow.
449                              {-2, 0x1, 1, 0x0},
450                              {-4, 0x1, 2, 0x0},
451                              {-8, 0x1, 3, 0x0},
452                              {-16, 0x1, 4, 0x0},
453                              {-32, 0x1, 5, 0x0}};
454 
455   size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa);
456   for (size_t i = 0; i < nr_test_cases; ++i) {
457     uint64_t res = run_lsa(tc[i].rt, tc[i].rs, tc[i].sa);
458     PrintF("0x%" PRIx64 " =? 0x%" PRIx64 " == Lsa(v0, %x, %x, %hhu)\n",
459            tc[i].expected_res, res, tc[i].rt, tc[i].rs, tc[i].sa);
460     CHECK_EQ(tc[i].expected_res, res);
461   }
462 }
463 
464 
run_dlsa(uint64_t rt,uint64_t rs,int8_t sa)465 static uint64_t run_dlsa(uint64_t rt, uint64_t rs, int8_t sa) {
466   Isolate* isolate = CcTest::i_isolate();
467   HandleScope scope(isolate);
468   MacroAssembler assembler(isolate, nullptr, 0,
469                            v8::internal::CodeObjectRequired::kYes);
470   MacroAssembler* masm = &assembler;
471 
472   __ Dlsa(v0, a0, a1, sa);
473   __ jr(ra);
474   __ nop();
475 
476   CodeDesc desc;
477   assembler.GetCode(&desc);
478   Handle<Code> code = isolate->factory()->NewCode(
479       desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
480 
481   ::F f = FUNCTION_CAST<::F>(code->entry());
482 
483   uint64_t res = reinterpret_cast<uint64_t>(
484       CALL_GENERATED_CODE(isolate, f, rt, rs, 0, 0, 0));
485 
486   return res;
487 }
488 
489 
TEST(Dlsa)490 TEST(Dlsa) {
491   CcTest::InitializeVM();
492   struct TestCaseLsa {
493     int64_t rt;
494     int64_t rs;
495     uint8_t sa;
496     uint64_t expected_res;
497   };
498 
499   struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res
500                              {0x4, 0x1, 1, 0x6},
501                              {0x4, 0x1, 2, 0x8},
502                              {0x4, 0x1, 3, 0xc},
503                              {0x4, 0x1, 4, 0x14},
504                              {0x4, 0x1, 5, 0x24},
505                              {0x0, 0x1, 1, 0x2},
506                              {0x0, 0x1, 2, 0x4},
507                              {0x0, 0x1, 3, 0x8},
508                              {0x0, 0x1, 4, 0x10},
509                              {0x0, 0x1, 5, 0x20},
510                              {0x4, 0x0, 1, 0x4},
511                              {0x4, 0x0, 2, 0x4},
512                              {0x4, 0x0, 3, 0x4},
513                              {0x4, 0x0, 4, 0x4},
514                              {0x4, 0x0, 5, 0x4},
515 
516                              // Shift overflow.
517                              {0x4, INT64_MAX, 1, 0x2},
518                              {0x4, INT64_MAX >> 1, 2, 0x0},
519                              {0x4, INT64_MAX >> 2, 3, 0xfffffffffffffffc},
520                              {0x4, INT64_MAX >> 3, 4, 0xfffffffffffffff4},
521                              {0x4, INT64_MAX >> 4, 5, 0xffffffffffffffe4},
522 
523                              // Signed addition overflow.
524                              {INT64_MAX - 1, 0x1, 1, 0x8000000000000000},
525                              {INT64_MAX - 3, 0x1, 2, 0x8000000000000000},
526                              {INT64_MAX - 7, 0x1, 3, 0x8000000000000000},
527                              {INT64_MAX - 15, 0x1, 4, 0x8000000000000000},
528                              {INT64_MAX - 31, 0x1, 5, 0x8000000000000000},
529 
530                              // Addition overflow.
531                              {-2, 0x1, 1, 0x0},
532                              {-4, 0x1, 2, 0x0},
533                              {-8, 0x1, 3, 0x0},
534                              {-16, 0x1, 4, 0x0},
535                              {-32, 0x1, 5, 0x0}};
536 
537   size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa);
538   for (size_t i = 0; i < nr_test_cases; ++i) {
539     uint64_t res = run_dlsa(tc[i].rt, tc[i].rs, tc[i].sa);
540     PrintF("0x%" PRIx64 " =? 0x%" PRIx64 " == Dlsa(v0, %" PRIx64 ", %" PRIx64
541            ", %hhu)\n",
542            tc[i].expected_res, res, tc[i].rt, tc[i].rs, tc[i].sa);
543     CHECK_EQ(tc[i].expected_res, res);
544   }
545 }
546 
547 #undef __
548