1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _UAPI_LINUX_PERF_EVENT_H
15 #define _UAPI_LINUX_PERF_EVENT_H
16 
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20 
21 /*
22  * User-space ABI bits:
23  */
24 
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29 	PERF_TYPE_HARDWARE			= 0,
30 	PERF_TYPE_SOFTWARE			= 1,
31 	PERF_TYPE_TRACEPOINT			= 2,
32 	PERF_TYPE_HW_CACHE			= 3,
33 	PERF_TYPE_RAW				= 4,
34 	PERF_TYPE_BREAKPOINT			= 5,
35 
36 	PERF_TYPE_MAX,				/* non-ABI */
37 };
38 
39 /*
40  * Generalized performance event event_id types, used by the
41  * attr.event_id parameter of the sys_perf_event_open()
42  * syscall:
43  */
44 enum perf_hw_id {
45 	/*
46 	 * Common hardware events, generalized by the kernel:
47 	 */
48 	PERF_COUNT_HW_CPU_CYCLES		= 0,
49 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
50 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
51 	PERF_COUNT_HW_CACHE_MISSES		= 3,
52 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
53 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
54 	PERF_COUNT_HW_BUS_CYCLES		= 6,
55 	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
56 	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
57 	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
58 
59 	PERF_COUNT_HW_MAX,			/* non-ABI */
60 };
61 
62 /*
63  * Generalized hardware cache events:
64  *
65  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
66  *       { read, write, prefetch } x
67  *       { accesses, misses }
68  */
69 enum perf_hw_cache_id {
70 	PERF_COUNT_HW_CACHE_L1D			= 0,
71 	PERF_COUNT_HW_CACHE_L1I			= 1,
72 	PERF_COUNT_HW_CACHE_LL			= 2,
73 	PERF_COUNT_HW_CACHE_DTLB		= 3,
74 	PERF_COUNT_HW_CACHE_ITLB		= 4,
75 	PERF_COUNT_HW_CACHE_BPU			= 5,
76 	PERF_COUNT_HW_CACHE_NODE		= 6,
77 
78 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
79 };
80 
81 enum perf_hw_cache_op_id {
82 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
83 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
84 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
85 
86 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
87 };
88 
89 enum perf_hw_cache_op_result_id {
90 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
91 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
92 
93 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
94 };
95 
96 /*
97  * Special "software" events provided by the kernel, even if the hardware
98  * does not support performance events. These events measure various
99  * physical and sw events of the kernel (and allow the profiling of them as
100  * well):
101  */
102 enum perf_sw_ids {
103 	PERF_COUNT_SW_CPU_CLOCK			= 0,
104 	PERF_COUNT_SW_TASK_CLOCK		= 1,
105 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
106 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
107 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
108 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
109 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
110 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
111 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
112 	PERF_COUNT_SW_DUMMY			= 9,
113 	PERF_COUNT_SW_BPF_OUTPUT		= 10,
114 
115 	PERF_COUNT_SW_MAX,			/* non-ABI */
116 };
117 
118 /*
119  * Bits that can be set in attr.sample_type to request information
120  * in the overflow packets.
121  */
122 enum perf_event_sample_format {
123 	PERF_SAMPLE_IP				= 1U << 0,
124 	PERF_SAMPLE_TID				= 1U << 1,
125 	PERF_SAMPLE_TIME			= 1U << 2,
126 	PERF_SAMPLE_ADDR			= 1U << 3,
127 	PERF_SAMPLE_READ			= 1U << 4,
128 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
129 	PERF_SAMPLE_ID				= 1U << 6,
130 	PERF_SAMPLE_CPU				= 1U << 7,
131 	PERF_SAMPLE_PERIOD			= 1U << 8,
132 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
133 	PERF_SAMPLE_RAW				= 1U << 10,
134 	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
135 	PERF_SAMPLE_REGS_USER			= 1U << 12,
136 	PERF_SAMPLE_STACK_USER			= 1U << 13,
137 	PERF_SAMPLE_WEIGHT			= 1U << 14,
138 	PERF_SAMPLE_DATA_SRC			= 1U << 15,
139 	PERF_SAMPLE_IDENTIFIER			= 1U << 16,
140 	PERF_SAMPLE_TRANSACTION			= 1U << 17,
141 	PERF_SAMPLE_REGS_INTR			= 1U << 18,
142 
143 	PERF_SAMPLE_MAX = 1U << 19,		/* non-ABI */
144 };
145 
146 /*
147  * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
148  *
149  * If the user does not pass priv level information via branch_sample_type,
150  * the kernel uses the event's priv level. Branch and event priv levels do
151  * not have to match. Branch priv level is checked for permissions.
152  *
153  * The branch types can be combined, however BRANCH_ANY covers all types
154  * of branches and therefore it supersedes all the other types.
155  */
156 enum perf_branch_sample_type_shift {
157 	PERF_SAMPLE_BRANCH_USER_SHIFT		= 0, /* user branches */
158 	PERF_SAMPLE_BRANCH_KERNEL_SHIFT		= 1, /* kernel branches */
159 	PERF_SAMPLE_BRANCH_HV_SHIFT		= 2, /* hypervisor branches */
160 
161 	PERF_SAMPLE_BRANCH_ANY_SHIFT		= 3, /* any branch types */
162 	PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT	= 4, /* any call branch */
163 	PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT	= 5, /* any return branch */
164 	PERF_SAMPLE_BRANCH_IND_CALL_SHIFT	= 6, /* indirect calls */
165 	PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT	= 7, /* transaction aborts */
166 	PERF_SAMPLE_BRANCH_IN_TX_SHIFT		= 8, /* in transaction */
167 	PERF_SAMPLE_BRANCH_NO_TX_SHIFT		= 9, /* not in transaction */
168 	PERF_SAMPLE_BRANCH_COND_SHIFT		= 10, /* conditional branches */
169 
170 	PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT	= 11, /* call/ret stack */
171 	PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT	= 12, /* indirect jumps */
172 	PERF_SAMPLE_BRANCH_CALL_SHIFT		= 13, /* direct call */
173 
174 	PERF_SAMPLE_BRANCH_MAX_SHIFT		/* non-ABI */
175 };
176 
177 enum perf_branch_sample_type {
178 	PERF_SAMPLE_BRANCH_USER		= 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
179 	PERF_SAMPLE_BRANCH_KERNEL	= 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
180 	PERF_SAMPLE_BRANCH_HV		= 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
181 
182 	PERF_SAMPLE_BRANCH_ANY		= 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
183 	PERF_SAMPLE_BRANCH_ANY_CALL	= 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
184 	PERF_SAMPLE_BRANCH_ANY_RETURN	= 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
185 	PERF_SAMPLE_BRANCH_IND_CALL	= 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
186 	PERF_SAMPLE_BRANCH_ABORT_TX	= 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
187 	PERF_SAMPLE_BRANCH_IN_TX	= 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
188 	PERF_SAMPLE_BRANCH_NO_TX	= 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
189 	PERF_SAMPLE_BRANCH_COND		= 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
190 
191 	PERF_SAMPLE_BRANCH_CALL_STACK	= 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
192 	PERF_SAMPLE_BRANCH_IND_JUMP	= 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
193 	PERF_SAMPLE_BRANCH_CALL		= 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
194 
195 	PERF_SAMPLE_BRANCH_MAX		= 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
196 };
197 
198 #define PERF_SAMPLE_BRANCH_PLM_ALL \
199 	(PERF_SAMPLE_BRANCH_USER|\
200 	 PERF_SAMPLE_BRANCH_KERNEL|\
201 	 PERF_SAMPLE_BRANCH_HV)
202 
203 /*
204  * Values to determine ABI of the registers dump.
205  */
206 enum perf_sample_regs_abi {
207 	PERF_SAMPLE_REGS_ABI_NONE	= 0,
208 	PERF_SAMPLE_REGS_ABI_32		= 1,
209 	PERF_SAMPLE_REGS_ABI_64		= 2,
210 };
211 
212 /*
213  * Values for the memory transaction event qualifier, mostly for
214  * abort events. Multiple bits can be set.
215  */
216 enum {
217 	PERF_TXN_ELISION        = (1 << 0), /* From elision */
218 	PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
219 	PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
220 	PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
221 	PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
222 	PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
223 	PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
224 	PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
225 
226 	PERF_TXN_MAX	        = (1 << 8), /* non-ABI */
227 
228 	/* bits 32..63 are reserved for the abort code */
229 
230 	PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
231 	PERF_TXN_ABORT_SHIFT = 32,
232 };
233 
234 /*
235  * The format of the data returned by read() on a perf event fd,
236  * as specified by attr.read_format:
237  *
238  * struct read_format {
239  *	{ u64		value;
240  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
241  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
242  *	  { u64		id;           } && PERF_FORMAT_ID
243  *	} && !PERF_FORMAT_GROUP
244  *
245  *	{ u64		nr;
246  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
247  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
248  *	  { u64		value;
249  *	    { u64	id;           } && PERF_FORMAT_ID
250  *	  }		cntr[nr];
251  *	} && PERF_FORMAT_GROUP
252  * };
253  */
254 enum perf_event_read_format {
255 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
256 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
257 	PERF_FORMAT_ID				= 1U << 2,
258 	PERF_FORMAT_GROUP			= 1U << 3,
259 
260 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
261 };
262 
263 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
264 #define PERF_ATTR_SIZE_VER1	72	/* add: config2 */
265 #define PERF_ATTR_SIZE_VER2	80	/* add: branch_sample_type */
266 #define PERF_ATTR_SIZE_VER3	96	/* add: sample_regs_user */
267 					/* add: sample_stack_user */
268 #define PERF_ATTR_SIZE_VER4	104	/* add: sample_regs_intr */
269 #define PERF_ATTR_SIZE_VER5	112	/* add: aux_watermark */
270 
271 /*
272  * Hardware event_id to monitor via a performance monitoring event:
273  */
274 struct perf_event_attr {
275 
276 	/*
277 	 * Major type: hardware/software/tracepoint/etc.
278 	 */
279 	__u32			type;
280 
281 	/*
282 	 * Size of the attr structure, for fwd/bwd compat.
283 	 */
284 	__u32			size;
285 
286 	/*
287 	 * Type specific configuration information.
288 	 */
289 	__u64			config;
290 
291 	union {
292 		__u64		sample_period;
293 		__u64		sample_freq;
294 	};
295 
296 	__u64			sample_type;
297 	__u64			read_format;
298 
299 	__u64			disabled       :  1, /* off by default        */
300 				inherit	       :  1, /* children inherit it   */
301 				pinned	       :  1, /* must always be on PMU */
302 				exclusive      :  1, /* only group on PMU     */
303 				exclude_user   :  1, /* don't count user      */
304 				exclude_kernel :  1, /* ditto kernel          */
305 				exclude_hv     :  1, /* ditto hypervisor      */
306 				exclude_idle   :  1, /* don't count when idle */
307 				mmap           :  1, /* include mmap data     */
308 				comm	       :  1, /* include comm data     */
309 				freq           :  1, /* use freq, not period  */
310 				inherit_stat   :  1, /* per task counts       */
311 				enable_on_exec :  1, /* next exec enables     */
312 				task           :  1, /* trace fork/exit       */
313 				watermark      :  1, /* wakeup_watermark      */
314 				/*
315 				 * precise_ip:
316 				 *
317 				 *  0 - SAMPLE_IP can have arbitrary skid
318 				 *  1 - SAMPLE_IP must have constant skid
319 				 *  2 - SAMPLE_IP requested to have 0 skid
320 				 *  3 - SAMPLE_IP must have 0 skid
321 				 *
322 				 *  See also PERF_RECORD_MISC_EXACT_IP
323 				 */
324 				precise_ip     :  2, /* skid constraint       */
325 				mmap_data      :  1, /* non-exec mmap data    */
326 				sample_id_all  :  1, /* sample_type all events */
327 
328 				exclude_host   :  1, /* don't count in host   */
329 				exclude_guest  :  1, /* don't count in guest  */
330 
331 				exclude_callchain_kernel : 1, /* exclude kernel callchains */
332 				exclude_callchain_user   : 1, /* exclude user callchains */
333 				mmap2          :  1, /* include mmap with inode data     */
334 				comm_exec      :  1, /* flag comm events that are due to an exec */
335 				use_clockid    :  1, /* use @clockid for time fields */
336 				context_switch :  1, /* context switch data */
337 				__reserved_1   : 37;
338 
339 	union {
340 		__u32		wakeup_events;	  /* wakeup every n events */
341 		__u32		wakeup_watermark; /* bytes before wakeup   */
342 	};
343 
344 	__u32			bp_type;
345 	union {
346 		__u64		bp_addr;
347 		__u64		config1; /* extension of config */
348 	};
349 	union {
350 		__u64		bp_len;
351 		__u64		config2; /* extension of config1 */
352 	};
353 	__u64	branch_sample_type; /* enum perf_branch_sample_type */
354 
355 	/*
356 	 * Defines set of user regs to dump on samples.
357 	 * See asm/perf_regs.h for details.
358 	 */
359 	__u64	sample_regs_user;
360 
361 	/*
362 	 * Defines size of the user stack to dump on samples.
363 	 */
364 	__u32	sample_stack_user;
365 
366 	__s32	clockid;
367 	/*
368 	 * Defines set of regs to dump for each sample
369 	 * state captured on:
370 	 *  - precise = 0: PMU interrupt
371 	 *  - precise > 0: sampled instruction
372 	 *
373 	 * See asm/perf_regs.h for details.
374 	 */
375 	__u64	sample_regs_intr;
376 
377 	/*
378 	 * Wakeup watermark for AUX area
379 	 */
380 	__u32	aux_watermark;
381 	__u32	__reserved_2;	/* align to __u64 */
382 };
383 
384 #define perf_flags(attr)	(*(&(attr)->read_format + 1))
385 
386 /*
387  * Ioctls that can be done on a perf event fd:
388  */
389 #define PERF_EVENT_IOC_ENABLE		_IO ('$', 0)
390 #define PERF_EVENT_IOC_DISABLE		_IO ('$', 1)
391 #define PERF_EVENT_IOC_REFRESH		_IO ('$', 2)
392 #define PERF_EVENT_IOC_RESET		_IO ('$', 3)
393 #define PERF_EVENT_IOC_PERIOD		_IOW('$', 4, __u64)
394 #define PERF_EVENT_IOC_SET_OUTPUT	_IO ('$', 5)
395 #define PERF_EVENT_IOC_SET_FILTER	_IOW('$', 6, char *)
396 #define PERF_EVENT_IOC_ID		_IOR('$', 7, __u64 *)
397 #define PERF_EVENT_IOC_SET_BPF		_IOW('$', 8, __u32)
398 
399 enum perf_event_ioc_flags {
400 	PERF_IOC_FLAG_GROUP		= 1U << 0,
401 };
402 
403 /*
404  * Structure of the page that can be mapped via mmap
405  */
406 struct perf_event_mmap_page {
407 	__u32	version;		/* version number of this structure */
408 	__u32	compat_version;		/* lowest version this is compat with */
409 
410 	/*
411 	 * Bits needed to read the hw events in user-space.
412 	 *
413 	 *   u32 seq, time_mult, time_shift, index, width;
414 	 *   u64 count, enabled, running;
415 	 *   u64 cyc, time_offset;
416 	 *   s64 pmc = 0;
417 	 *
418 	 *   do {
419 	 *     seq = pc->lock;
420 	 *     barrier()
421 	 *
422 	 *     enabled = pc->time_enabled;
423 	 *     running = pc->time_running;
424 	 *
425 	 *     if (pc->cap_usr_time && enabled != running) {
426 	 *       cyc = rdtsc();
427 	 *       time_offset = pc->time_offset;
428 	 *       time_mult   = pc->time_mult;
429 	 *       time_shift  = pc->time_shift;
430 	 *     }
431 	 *
432 	 *     index = pc->index;
433 	 *     count = pc->offset;
434 	 *     if (pc->cap_user_rdpmc && index) {
435 	 *       width = pc->pmc_width;
436 	 *       pmc = rdpmc(index - 1);
437 	 *     }
438 	 *
439 	 *     barrier();
440 	 *   } while (pc->lock != seq);
441 	 *
442 	 * NOTE: for obvious reason this only works on self-monitoring
443 	 *       processes.
444 	 */
445 	__u32	lock;			/* seqlock for synchronization */
446 	__u32	index;			/* hardware event identifier */
447 	__s64	offset;			/* add to hardware event value */
448 	__u64	time_enabled;		/* time event active */
449 	__u64	time_running;		/* time event on cpu */
450 	union {
451 		__u64	capabilities;
452 		struct {
453 			__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
454 				cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */
455 
456 				cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
457 				cap_user_time		: 1, /* The time_* fields are used */
458 				cap_user_time_zero	: 1, /* The time_zero field is used */
459 				cap_____res		: 59;
460 		};
461 	};
462 
463 	/*
464 	 * If cap_user_rdpmc this field provides the bit-width of the value
465 	 * read using the rdpmc() or equivalent instruction. This can be used
466 	 * to sign extend the result like:
467 	 *
468 	 *   pmc <<= 64 - width;
469 	 *   pmc >>= 64 - width; // signed shift right
470 	 *   count += pmc;
471 	 */
472 	__u16	pmc_width;
473 
474 	/*
475 	 * If cap_usr_time the below fields can be used to compute the time
476 	 * delta since time_enabled (in ns) using rdtsc or similar.
477 	 *
478 	 *   u64 quot, rem;
479 	 *   u64 delta;
480 	 *
481 	 *   quot = (cyc >> time_shift);
482 	 *   rem = cyc & (((u64)1 << time_shift) - 1);
483 	 *   delta = time_offset + quot * time_mult +
484 	 *              ((rem * time_mult) >> time_shift);
485 	 *
486 	 * Where time_offset,time_mult,time_shift and cyc are read in the
487 	 * seqcount loop described above. This delta can then be added to
488 	 * enabled and possible running (if index), improving the scaling:
489 	 *
490 	 *   enabled += delta;
491 	 *   if (index)
492 	 *     running += delta;
493 	 *
494 	 *   quot = count / running;
495 	 *   rem  = count % running;
496 	 *   count = quot * enabled + (rem * enabled) / running;
497 	 */
498 	__u16	time_shift;
499 	__u32	time_mult;
500 	__u64	time_offset;
501 	/*
502 	 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
503 	 * from sample timestamps.
504 	 *
505 	 *   time = timestamp - time_zero;
506 	 *   quot = time / time_mult;
507 	 *   rem  = time % time_mult;
508 	 *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
509 	 *
510 	 * And vice versa:
511 	 *
512 	 *   quot = cyc >> time_shift;
513 	 *   rem  = cyc & (((u64)1 << time_shift) - 1);
514 	 *   timestamp = time_zero + quot * time_mult +
515 	 *               ((rem * time_mult) >> time_shift);
516 	 */
517 	__u64	time_zero;
518 	__u32	size;			/* Header size up to __reserved[] fields. */
519 
520 		/*
521 		 * Hole for extension of the self monitor capabilities
522 		 */
523 
524 	__u8	__reserved[118*8+4];	/* align to 1k. */
525 
526 	/*
527 	 * Control data for the mmap() data buffer.
528 	 *
529 	 * User-space reading the @data_head value should issue an smp_rmb(),
530 	 * after reading this value.
531 	 *
532 	 * When the mapping is PROT_WRITE the @data_tail value should be
533 	 * written by userspace to reflect the last read data, after issueing
534 	 * an smp_mb() to separate the data read from the ->data_tail store.
535 	 * In this case the kernel will not over-write unread data.
536 	 *
537 	 * See perf_output_put_handle() for the data ordering.
538 	 *
539 	 * data_{offset,size} indicate the location and size of the perf record
540 	 * buffer within the mmapped area.
541 	 */
542 	__u64   data_head;		/* head in the data section */
543 	__u64	data_tail;		/* user-space written tail */
544 	__u64	data_offset;		/* where the buffer starts */
545 	__u64	data_size;		/* data buffer size */
546 
547 	/*
548 	 * AUX area is defined by aux_{offset,size} fields that should be set
549 	 * by the userspace, so that
550 	 *
551 	 *   aux_offset >= data_offset + data_size
552 	 *
553 	 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
554 	 *
555 	 * Ring buffer pointers aux_{head,tail} have the same semantics as
556 	 * data_{head,tail} and same ordering rules apply.
557 	 */
558 	__u64	aux_head;
559 	__u64	aux_tail;
560 	__u64	aux_offset;
561 	__u64	aux_size;
562 };
563 
564 #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
565 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
566 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
567 #define PERF_RECORD_MISC_USER			(2 << 0)
568 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
569 #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
570 #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
571 
572 /*
573  * Indicates that /proc/PID/maps parsing are truncated by time out.
574  */
575 #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT	(1 << 12)
576 /*
577  * PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on
578  * different events so can reuse the same bit position.
579  * Ditto PERF_RECORD_MISC_SWITCH_OUT.
580  */
581 #define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)
582 #define PERF_RECORD_MISC_COMM_EXEC		(1 << 13)
583 #define PERF_RECORD_MISC_SWITCH_OUT		(1 << 13)
584 /*
585  * Indicates that the content of PERF_SAMPLE_IP points to
586  * the actual instruction that triggered the event. See also
587  * perf_event_attr::precise_ip.
588  */
589 #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
590 /*
591  * Reserve the last bit to indicate some extended misc field
592  */
593 #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
594 
595 struct perf_event_header {
596 	__u32	type;
597 	__u16	misc;
598 	__u16	size;
599 };
600 
601 enum perf_event_type {
602 
603 	/*
604 	 * If perf_event_attr.sample_id_all is set then all event types will
605 	 * have the sample_type selected fields related to where/when
606 	 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
607 	 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
608 	 * just after the perf_event_header and the fields already present for
609 	 * the existing fields, i.e. at the end of the payload. That way a newer
610 	 * perf.data file will be supported by older perf tools, with these new
611 	 * optional fields being ignored.
612 	 *
613 	 * struct sample_id {
614 	 * 	{ u32			pid, tid; } && PERF_SAMPLE_TID
615 	 * 	{ u64			time;     } && PERF_SAMPLE_TIME
616 	 * 	{ u64			id;       } && PERF_SAMPLE_ID
617 	 * 	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
618 	 * 	{ u32			cpu, res; } && PERF_SAMPLE_CPU
619 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
620 	 * } && perf_event_attr::sample_id_all
621 	 *
622 	 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
623 	 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
624 	 * relative to header.size.
625 	 */
626 
627 	/*
628 	 * The MMAP events record the PROT_EXEC mappings so that we can
629 	 * correlate userspace IPs to code. They have the following structure:
630 	 *
631 	 * struct {
632 	 *	struct perf_event_header	header;
633 	 *
634 	 *	u32				pid, tid;
635 	 *	u64				addr;
636 	 *	u64				len;
637 	 *	u64				pgoff;
638 	 *	char				filename[];
639 	 * 	struct sample_id		sample_id;
640 	 * };
641 	 */
642 	PERF_RECORD_MMAP			= 1,
643 
644 	/*
645 	 * struct {
646 	 *	struct perf_event_header	header;
647 	 *	u64				id;
648 	 *	u64				lost;
649 	 * 	struct sample_id		sample_id;
650 	 * };
651 	 */
652 	PERF_RECORD_LOST			= 2,
653 
654 	/*
655 	 * struct {
656 	 *	struct perf_event_header	header;
657 	 *
658 	 *	u32				pid, tid;
659 	 *	char				comm[];
660 	 * 	struct sample_id		sample_id;
661 	 * };
662 	 */
663 	PERF_RECORD_COMM			= 3,
664 
665 	/*
666 	 * struct {
667 	 *	struct perf_event_header	header;
668 	 *	u32				pid, ppid;
669 	 *	u32				tid, ptid;
670 	 *	u64				time;
671 	 * 	struct sample_id		sample_id;
672 	 * };
673 	 */
674 	PERF_RECORD_EXIT			= 4,
675 
676 	/*
677 	 * struct {
678 	 *	struct perf_event_header	header;
679 	 *	u64				time;
680 	 *	u64				id;
681 	 *	u64				stream_id;
682 	 * 	struct sample_id		sample_id;
683 	 * };
684 	 */
685 	PERF_RECORD_THROTTLE			= 5,
686 	PERF_RECORD_UNTHROTTLE			= 6,
687 
688 	/*
689 	 * struct {
690 	 *	struct perf_event_header	header;
691 	 *	u32				pid, ppid;
692 	 *	u32				tid, ptid;
693 	 *	u64				time;
694 	 * 	struct sample_id		sample_id;
695 	 * };
696 	 */
697 	PERF_RECORD_FORK			= 7,
698 
699 	/*
700 	 * struct {
701 	 *	struct perf_event_header	header;
702 	 *	u32				pid, tid;
703 	 *
704 	 *	struct read_format		values;
705 	 * 	struct sample_id		sample_id;
706 	 * };
707 	 */
708 	PERF_RECORD_READ			= 8,
709 
710 	/*
711 	 * struct {
712 	 *	struct perf_event_header	header;
713 	 *
714 	 *	#
715 	 *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
716 	 *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
717 	 *	# is fixed relative to header.
718 	 *	#
719 	 *
720 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
721 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
722 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
723 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
724 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
725 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
726 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
727 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
728 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
729 	 *
730 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
731 	 *
732 	 *	{ u64			nr,
733 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
734 	 *
735 	 *	#
736 	 *	# The RAW record below is opaque data wrt the ABI
737 	 *	#
738 	 *	# That is, the ABI doesn't make any promises wrt to
739 	 *	# the stability of its content, it may vary depending
740 	 *	# on event, hardware, kernel version and phase of
741 	 *	# the moon.
742 	 *	#
743 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
744 	 *	#
745 	 *
746 	 *	{ u32			size;
747 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
748 	 *
749 	 *	{ u64                   nr;
750 	 *        { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
751 	 *
752 	 * 	{ u64			abi; # enum perf_sample_regs_abi
753 	 * 	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
754 	 *
755 	 * 	{ u64			size;
756 	 * 	  char			data[size];
757 	 * 	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
758 	 *
759 	 *	{ u64			weight;   } && PERF_SAMPLE_WEIGHT
760 	 *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
761 	 *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
762 	 *	{ u64			abi; # enum perf_sample_regs_abi
763 	 *	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
764 	 * };
765 	 */
766 	PERF_RECORD_SAMPLE			= 9,
767 
768 	/*
769 	 * The MMAP2 records are an augmented version of MMAP, they add
770 	 * maj, min, ino numbers to be used to uniquely identify each mapping
771 	 *
772 	 * struct {
773 	 *	struct perf_event_header	header;
774 	 *
775 	 *	u32				pid, tid;
776 	 *	u64				addr;
777 	 *	u64				len;
778 	 *	u64				pgoff;
779 	 *	u32				maj;
780 	 *	u32				min;
781 	 *	u64				ino;
782 	 *	u64				ino_generation;
783 	 *	u32				prot, flags;
784 	 *	char				filename[];
785 	 * 	struct sample_id		sample_id;
786 	 * };
787 	 */
788 	PERF_RECORD_MMAP2			= 10,
789 
790 	/*
791 	 * Records that new data landed in the AUX buffer part.
792 	 *
793 	 * struct {
794 	 * 	struct perf_event_header	header;
795 	 *
796 	 * 	u64				aux_offset;
797 	 * 	u64				aux_size;
798 	 *	u64				flags;
799 	 * 	struct sample_id		sample_id;
800 	 * };
801 	 */
802 	PERF_RECORD_AUX				= 11,
803 
804 	/*
805 	 * Indicates that instruction trace has started
806 	 *
807 	 * struct {
808 	 *	struct perf_event_header	header;
809 	 *	u32				pid;
810 	 *	u32				tid;
811 	 * };
812 	 */
813 	PERF_RECORD_ITRACE_START		= 12,
814 
815 	/*
816 	 * Records the dropped/lost sample number.
817 	 *
818 	 * struct {
819 	 *	struct perf_event_header	header;
820 	 *
821 	 *	u64				lost;
822 	 *	struct sample_id		sample_id;
823 	 * };
824 	 */
825 	PERF_RECORD_LOST_SAMPLES		= 13,
826 
827 	/*
828 	 * Records a context switch in or out (flagged by
829 	 * PERF_RECORD_MISC_SWITCH_OUT). See also
830 	 * PERF_RECORD_SWITCH_CPU_WIDE.
831 	 *
832 	 * struct {
833 	 *	struct perf_event_header	header;
834 	 *	struct sample_id		sample_id;
835 	 * };
836 	 */
837 	PERF_RECORD_SWITCH			= 14,
838 
839 	/*
840 	 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
841 	 * next_prev_tid that are the next (switching out) or previous
842 	 * (switching in) pid/tid.
843 	 *
844 	 * struct {
845 	 *	struct perf_event_header	header;
846 	 *	u32				next_prev_pid;
847 	 *	u32				next_prev_tid;
848 	 *	struct sample_id		sample_id;
849 	 * };
850 	 */
851 	PERF_RECORD_SWITCH_CPU_WIDE		= 15,
852 
853 	PERF_RECORD_MAX,			/* non-ABI */
854 };
855 
856 #define PERF_MAX_STACK_DEPTH		127
857 
858 enum perf_callchain_context {
859 	PERF_CONTEXT_HV			= (__u64)-32,
860 	PERF_CONTEXT_KERNEL		= (__u64)-128,
861 	PERF_CONTEXT_USER		= (__u64)-512,
862 
863 	PERF_CONTEXT_GUEST		= (__u64)-2048,
864 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
865 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
866 
867 	PERF_CONTEXT_MAX		= (__u64)-4095,
868 };
869 
870 /**
871  * PERF_RECORD_AUX::flags bits
872  */
873 #define PERF_AUX_FLAG_TRUNCATED		0x01	/* record was truncated to fit */
874 #define PERF_AUX_FLAG_OVERWRITE		0x02	/* snapshot from overwrite mode */
875 
876 #define PERF_FLAG_FD_NO_GROUP		(1UL << 0)
877 #define PERF_FLAG_FD_OUTPUT		(1UL << 1)
878 #define PERF_FLAG_PID_CGROUP		(1UL << 2) /* pid=cgroup id, per-cpu mode only */
879 #define PERF_FLAG_FD_CLOEXEC		(1UL << 3) /* O_CLOEXEC */
880 
881 union perf_mem_data_src {
882 	__u64 val;
883 	struct {
884 		__u64   mem_op:5,	/* type of opcode */
885 			mem_lvl:14,	/* memory hierarchy level */
886 			mem_snoop:5,	/* snoop mode */
887 			mem_lock:2,	/* lock instr */
888 			mem_dtlb:7,	/* tlb access */
889 			mem_rsvd:31;
890 	};
891 };
892 
893 /* type of opcode (load/store/prefetch,code) */
894 #define PERF_MEM_OP_NA		0x01 /* not available */
895 #define PERF_MEM_OP_LOAD	0x02 /* load instruction */
896 #define PERF_MEM_OP_STORE	0x04 /* store instruction */
897 #define PERF_MEM_OP_PFETCH	0x08 /* prefetch */
898 #define PERF_MEM_OP_EXEC	0x10 /* code (execution) */
899 #define PERF_MEM_OP_SHIFT	0
900 
901 /* memory hierarchy (memory level, hit or miss) */
902 #define PERF_MEM_LVL_NA		0x01  /* not available */
903 #define PERF_MEM_LVL_HIT	0x02  /* hit level */
904 #define PERF_MEM_LVL_MISS	0x04  /* miss level  */
905 #define PERF_MEM_LVL_L1		0x08  /* L1 */
906 #define PERF_MEM_LVL_LFB	0x10  /* Line Fill Buffer */
907 #define PERF_MEM_LVL_L2		0x20  /* L2 */
908 #define PERF_MEM_LVL_L3		0x40  /* L3 */
909 #define PERF_MEM_LVL_LOC_RAM	0x80  /* Local DRAM */
910 #define PERF_MEM_LVL_REM_RAM1	0x100 /* Remote DRAM (1 hop) */
911 #define PERF_MEM_LVL_REM_RAM2	0x200 /* Remote DRAM (2 hops) */
912 #define PERF_MEM_LVL_REM_CCE1	0x400 /* Remote Cache (1 hop) */
913 #define PERF_MEM_LVL_REM_CCE2	0x800 /* Remote Cache (2 hops) */
914 #define PERF_MEM_LVL_IO		0x1000 /* I/O memory */
915 #define PERF_MEM_LVL_UNC	0x2000 /* Uncached memory */
916 #define PERF_MEM_LVL_SHIFT	5
917 
918 /* snoop mode */
919 #define PERF_MEM_SNOOP_NA	0x01 /* not available */
920 #define PERF_MEM_SNOOP_NONE	0x02 /* no snoop */
921 #define PERF_MEM_SNOOP_HIT	0x04 /* snoop hit */
922 #define PERF_MEM_SNOOP_MISS	0x08 /* snoop miss */
923 #define PERF_MEM_SNOOP_HITM	0x10 /* snoop hit modified */
924 #define PERF_MEM_SNOOP_SHIFT	19
925 
926 /* locked instruction */
927 #define PERF_MEM_LOCK_NA	0x01 /* not available */
928 #define PERF_MEM_LOCK_LOCKED	0x02 /* locked transaction */
929 #define PERF_MEM_LOCK_SHIFT	24
930 
931 /* TLB access */
932 #define PERF_MEM_TLB_NA		0x01 /* not available */
933 #define PERF_MEM_TLB_HIT	0x02 /* hit level */
934 #define PERF_MEM_TLB_MISS	0x04 /* miss level */
935 #define PERF_MEM_TLB_L1		0x08 /* L1 */
936 #define PERF_MEM_TLB_L2		0x10 /* L2 */
937 #define PERF_MEM_TLB_WK		0x20 /* Hardware Walker*/
938 #define PERF_MEM_TLB_OS		0x40 /* OS fault handler */
939 #define PERF_MEM_TLB_SHIFT	26
940 
941 #define PERF_MEM_S(a, s) \
942 	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
943 
944 /*
945  * single taken branch record layout:
946  *
947  *      from: source instruction (may not always be a branch insn)
948  *        to: branch target
949  *   mispred: branch target was mispredicted
950  * predicted: branch target was predicted
951  *
952  * support for mispred, predicted is optional. In case it
953  * is not supported mispred = predicted = 0.
954  *
955  *     in_tx: running in a hardware transaction
956  *     abort: aborting a hardware transaction
957  *    cycles: cycles from last branch (or 0 if not supported)
958  */
959 struct perf_branch_entry {
960 	__u64	from;
961 	__u64	to;
962 	__u64	mispred:1,  /* target mispredicted */
963 		predicted:1,/* target predicted */
964 		in_tx:1,    /* in transaction */
965 		abort:1,    /* transaction abort */
966 		cycles:16,  /* cycle count to last branch */
967 		reserved:44;
968 };
969 
970 #endif /* _UAPI_LINUX_PERF_EVENT_H */
971