1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "test_precomp.hpp"
44 #include "opencv2/photo.hpp"
45 #include <string>
46
47 using namespace cv;
48 using namespace std;
49
50 //#define DUMP_RESULTS
51
52 #ifdef DUMP_RESULTS
53 # define DUMP(image, path) imwrite(path, image)
54 #else
55 # define DUMP(image, path)
56 #endif
57
58
TEST(Photo_DenoisingGrayscale,regression)59 TEST(Photo_DenoisingGrayscale, regression)
60 {
61 string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/";
62 string original_path = folder + "lena_noised_gaussian_sigma=10.png";
63 string expected_path = folder + "lena_noised_denoised_grayscale_tw=7_sw=21_h=10.png";
64
65 Mat original = imread(original_path, IMREAD_GRAYSCALE);
66 Mat expected = imread(expected_path, IMREAD_GRAYSCALE);
67
68 ASSERT_FALSE(original.empty()) << "Could not load input image " << original_path;
69 ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path;
70
71 Mat result;
72 fastNlMeansDenoising(original, result, 10);
73
74 DUMP(result, expected_path + ".res.png");
75
76 ASSERT_EQ(0, cvtest::norm(result, expected, NORM_L2));
77 }
78
TEST(Photo_DenoisingColored,regression)79 TEST(Photo_DenoisingColored, regression)
80 {
81 string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/";
82 string original_path = folder + "lena_noised_gaussian_sigma=10.png";
83 string expected_path = folder + "lena_noised_denoised_lab12_tw=7_sw=21_h=10_h2=10.png";
84
85 Mat original = imread(original_path, IMREAD_COLOR);
86 Mat expected = imread(expected_path, IMREAD_COLOR);
87
88 ASSERT_FALSE(original.empty()) << "Could not load input image " << original_path;
89 ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path;
90
91 Mat result;
92 fastNlMeansDenoisingColored(original, result, 10, 10);
93
94 DUMP(result, expected_path + ".res.png");
95
96 ASSERT_EQ(0, cvtest::norm(result, expected, NORM_L2));
97 }
98
TEST(Photo_DenoisingGrayscaleMulti,regression)99 TEST(Photo_DenoisingGrayscaleMulti, regression)
100 {
101 const int imgs_count = 3;
102 string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/";
103
104 string expected_path = folder + "lena_noised_denoised_multi_tw=7_sw=21_h=15.png";
105 Mat expected = imread(expected_path, IMREAD_GRAYSCALE);
106 ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path;
107
108 vector<Mat> original(imgs_count);
109 for (int i = 0; i < imgs_count; i++)
110 {
111 string original_path = format("%slena_noised_gaussian_sigma=20_multi_%d.png", folder.c_str(), i);
112 original[i] = imread(original_path, IMREAD_GRAYSCALE);
113 ASSERT_FALSE(original[i].empty()) << "Could not load input image " << original_path;
114 }
115
116 Mat result;
117 fastNlMeansDenoisingMulti(original, result, imgs_count / 2, imgs_count, 15);
118
119 DUMP(result, expected_path + ".res.png");
120
121 ASSERT_EQ(0, cvtest::norm(result, expected, NORM_L2));
122 }
123
TEST(Photo_DenoisingColoredMulti,regression)124 TEST(Photo_DenoisingColoredMulti, regression)
125 {
126 const int imgs_count = 3;
127 string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/";
128
129 string expected_path = folder + "lena_noised_denoised_multi_lab12_tw=7_sw=21_h=10_h2=15.png";
130 Mat expected = imread(expected_path, IMREAD_COLOR);
131 ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path;
132
133 vector<Mat> original(imgs_count);
134 for (int i = 0; i < imgs_count; i++)
135 {
136 string original_path = format("%slena_noised_gaussian_sigma=20_multi_%d.png", folder.c_str(), i);
137 original[i] = imread(original_path, IMREAD_COLOR);
138 ASSERT_FALSE(original[i].empty()) << "Could not load input image " << original_path;
139 }
140
141 Mat result;
142 fastNlMeansDenoisingColoredMulti(original, result, imgs_count / 2, imgs_count, 10, 15);
143
144 DUMP(result, expected_path + ".res.png");
145
146 ASSERT_EQ(0, cvtest::norm(result, expected, NORM_L2));
147 }
148
TEST(Photo_White,issue_2646)149 TEST(Photo_White, issue_2646)
150 {
151 cv::Mat img(50, 50, CV_8UC1, cv::Scalar::all(255));
152 cv::Mat filtered;
153 cv::fastNlMeansDenoising(img, filtered);
154
155 int nonWhitePixelsCount = (int)img.total() - cv::countNonZero(filtered == img);
156
157 ASSERT_EQ(0, nonWhitePixelsCount);
158 }
159
TEST(Photo_Denoising,speed)160 TEST(Photo_Denoising, speed)
161 {
162 string imgname = string(cvtest::TS::ptr()->get_data_path()) + "shared/5MP.png";
163 Mat src = imread(imgname, 0), dst;
164
165 double t = (double)getTickCount();
166 fastNlMeansDenoising(src, dst, 5, 7, 21);
167 t = (double)getTickCount() - t;
168 printf("execution time: %gms\n", t*1000./getTickFrequency());
169 }
170