1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <stddef.h>
6 #include <stdint.h>
7
8 #include <vector>
9
10 #include "base/bind.h"
11 #include "base/bind_helpers.h"
12 #include "base/compiler_specific.h"
13 #include "base/logging.h"
14 #include "base/macros.h"
15 #include "base/memory/ref_counted.h"
16 #include "base/message_loop/message_loop.h"
17 #include "base/message_loop/message_loop_test.h"
18 #include "base/pending_task.h"
19 #include "base/posix/eintr_wrapper.h"
20 #include "base/run_loop.h"
21 #include "base/synchronization/waitable_event.h"
22 #include "base/test/test_simple_task_runner.h"
23 #include "base/thread_task_runner_handle.h"
24 #include "base/threading/platform_thread.h"
25 #include "base/threading/thread.h"
26 #include "build/build_config.h"
27 #include "testing/gtest/include/gtest/gtest.h"
28
29 #if defined(OS_WIN)
30 #include "base/message_loop/message_pump_dispatcher.h"
31 #include "base/message_loop/message_pump_win.h"
32 #include "base/process/memory.h"
33 #include "base/strings/string16.h"
34 #include "base/win/scoped_handle.h"
35 #endif
36
37 namespace base {
38
39 // TODO(darin): Platform-specific MessageLoop tests should be grouped together
40 // to avoid chopping this file up with so many #ifdefs.
41
42 namespace {
43
TypeDefaultMessagePumpFactory()44 scoped_ptr<MessagePump> TypeDefaultMessagePumpFactory() {
45 return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_DEFAULT);
46 }
47
TypeIOMessagePumpFactory()48 scoped_ptr<MessagePump> TypeIOMessagePumpFactory() {
49 return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_IO);
50 }
51
TypeUIMessagePumpFactory()52 scoped_ptr<MessagePump> TypeUIMessagePumpFactory() {
53 return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_UI);
54 }
55
56 class Foo : public RefCounted<Foo> {
57 public:
Foo()58 Foo() : test_count_(0) {
59 }
60
Test1ConstRef(const std::string & a)61 void Test1ConstRef(const std::string& a) {
62 ++test_count_;
63 result_.append(a);
64 }
65
test_count() const66 int test_count() const { return test_count_; }
result() const67 const std::string& result() const { return result_; }
68
69 private:
70 friend class RefCounted<Foo>;
71
~Foo()72 ~Foo() {}
73
74 int test_count_;
75 std::string result_;
76 };
77
78 #if defined(OS_WIN)
79
80 // This function runs slowly to simulate a large amount of work being done.
SlowFunc(TimeDelta pause,int * quit_counter)81 static void SlowFunc(TimeDelta pause, int* quit_counter) {
82 PlatformThread::Sleep(pause);
83 if (--(*quit_counter) == 0)
84 MessageLoop::current()->QuitWhenIdle();
85 }
86
87 // This function records the time when Run was called in a Time object, which is
88 // useful for building a variety of MessageLoop tests.
RecordRunTimeFunc(Time * run_time,int * quit_counter)89 static void RecordRunTimeFunc(Time* run_time, int* quit_counter) {
90 *run_time = Time::Now();
91
92 // Cause our Run function to take some time to execute. As a result we can
93 // count on subsequent RecordRunTimeFunc()s running at a future time,
94 // without worry about the resolution of our system clock being an issue.
95 SlowFunc(TimeDelta::FromMilliseconds(10), quit_counter);
96 }
97
SubPumpFunc()98 void SubPumpFunc() {
99 MessageLoop::current()->SetNestableTasksAllowed(true);
100 MSG msg;
101 while (GetMessage(&msg, NULL, 0, 0)) {
102 TranslateMessage(&msg);
103 DispatchMessage(&msg);
104 }
105 MessageLoop::current()->QuitWhenIdle();
106 }
107
RunTest_PostDelayedTask_SharedTimer_SubPump()108 void RunTest_PostDelayedTask_SharedTimer_SubPump() {
109 MessageLoop loop(MessageLoop::TYPE_UI);
110
111 // Test that the interval of the timer, used to run the next delayed task, is
112 // set to a value corresponding to when the next delayed task should run.
113
114 // By setting num_tasks to 1, we ensure that the first task to run causes the
115 // run loop to exit.
116 int num_tasks = 1;
117 Time run_time;
118
119 loop.PostTask(FROM_HERE, Bind(&SubPumpFunc));
120
121 // This very delayed task should never run.
122 loop.PostDelayedTask(
123 FROM_HERE,
124 Bind(&RecordRunTimeFunc, &run_time, &num_tasks),
125 TimeDelta::FromSeconds(1000));
126
127 // This slightly delayed task should run from within SubPumpFunc.
128 loop.PostDelayedTask(
129 FROM_HERE,
130 Bind(&PostQuitMessage, 0),
131 TimeDelta::FromMilliseconds(10));
132
133 Time start_time = Time::Now();
134
135 loop.Run();
136 EXPECT_EQ(1, num_tasks);
137
138 // Ensure that we ran in far less time than the slower timer.
139 TimeDelta total_time = Time::Now() - start_time;
140 EXPECT_GT(5000, total_time.InMilliseconds());
141
142 // In case both timers somehow run at nearly the same time, sleep a little
143 // and then run all pending to force them both to have run. This is just
144 // encouraging flakiness if there is any.
145 PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
146 RunLoop().RunUntilIdle();
147
148 EXPECT_TRUE(run_time.is_null());
149 }
150
151 const wchar_t kMessageBoxTitle[] = L"MessageLoop Unit Test";
152
153 enum TaskType {
154 MESSAGEBOX,
155 ENDDIALOG,
156 RECURSIVE,
157 TIMEDMESSAGELOOP,
158 QUITMESSAGELOOP,
159 ORDERED,
160 PUMPS,
161 SLEEP,
162 RUNS,
163 };
164
165 // Saves the order in which the tasks executed.
166 struct TaskItem {
TaskItembase::__anon9ed8289d0111::TaskItem167 TaskItem(TaskType t, int c, bool s)
168 : type(t),
169 cookie(c),
170 start(s) {
171 }
172
173 TaskType type;
174 int cookie;
175 bool start;
176
operator ==base::__anon9ed8289d0111::TaskItem177 bool operator == (const TaskItem& other) const {
178 return type == other.type && cookie == other.cookie && start == other.start;
179 }
180 };
181
operator <<(std::ostream & os,TaskType type)182 std::ostream& operator <<(std::ostream& os, TaskType type) {
183 switch (type) {
184 case MESSAGEBOX: os << "MESSAGEBOX"; break;
185 case ENDDIALOG: os << "ENDDIALOG"; break;
186 case RECURSIVE: os << "RECURSIVE"; break;
187 case TIMEDMESSAGELOOP: os << "TIMEDMESSAGELOOP"; break;
188 case QUITMESSAGELOOP: os << "QUITMESSAGELOOP"; break;
189 case ORDERED: os << "ORDERED"; break;
190 case PUMPS: os << "PUMPS"; break;
191 case SLEEP: os << "SLEEP"; break;
192 default:
193 NOTREACHED();
194 os << "Unknown TaskType";
195 break;
196 }
197 return os;
198 }
199
operator <<(std::ostream & os,const TaskItem & item)200 std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
201 if (item.start)
202 return os << item.type << " " << item.cookie << " starts";
203 else
204 return os << item.type << " " << item.cookie << " ends";
205 }
206
207 class TaskList {
208 public:
RecordStart(TaskType type,int cookie)209 void RecordStart(TaskType type, int cookie) {
210 TaskItem item(type, cookie, true);
211 DVLOG(1) << item;
212 task_list_.push_back(item);
213 }
214
RecordEnd(TaskType type,int cookie)215 void RecordEnd(TaskType type, int cookie) {
216 TaskItem item(type, cookie, false);
217 DVLOG(1) << item;
218 task_list_.push_back(item);
219 }
220
Size()221 size_t Size() {
222 return task_list_.size();
223 }
224
Get(int n)225 TaskItem Get(int n) {
226 return task_list_[n];
227 }
228
229 private:
230 std::vector<TaskItem> task_list_;
231 };
232
233 // MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
234 // common controls (like OpenFile) and StartDoc printing function can cause
235 // implicit message loops.
MessageBoxFunc(TaskList * order,int cookie,bool is_reentrant)236 void MessageBoxFunc(TaskList* order, int cookie, bool is_reentrant) {
237 order->RecordStart(MESSAGEBOX, cookie);
238 if (is_reentrant)
239 MessageLoop::current()->SetNestableTasksAllowed(true);
240 MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
241 order->RecordEnd(MESSAGEBOX, cookie);
242 }
243
244 // Will end the MessageBox.
EndDialogFunc(TaskList * order,int cookie)245 void EndDialogFunc(TaskList* order, int cookie) {
246 order->RecordStart(ENDDIALOG, cookie);
247 HWND window = GetActiveWindow();
248 if (window != NULL) {
249 EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
250 // Cheap way to signal that the window wasn't found if RunEnd() isn't
251 // called.
252 order->RecordEnd(ENDDIALOG, cookie);
253 }
254 }
255
RecursiveFunc(TaskList * order,int cookie,int depth,bool is_reentrant)256 void RecursiveFunc(TaskList* order, int cookie, int depth,
257 bool is_reentrant) {
258 order->RecordStart(RECURSIVE, cookie);
259 if (depth > 0) {
260 if (is_reentrant)
261 MessageLoop::current()->SetNestableTasksAllowed(true);
262 MessageLoop::current()->PostTask(
263 FROM_HERE,
264 Bind(&RecursiveFunc, order, cookie, depth - 1, is_reentrant));
265 }
266 order->RecordEnd(RECURSIVE, cookie);
267 }
268
QuitFunc(TaskList * order,int cookie)269 void QuitFunc(TaskList* order, int cookie) {
270 order->RecordStart(QUITMESSAGELOOP, cookie);
271 MessageLoop::current()->QuitWhenIdle();
272 order->RecordEnd(QUITMESSAGELOOP, cookie);
273 }
274
RecursiveFuncWin(MessageLoop * target,HANDLE event,bool expect_window,TaskList * order,bool is_reentrant)275 void RecursiveFuncWin(MessageLoop* target,
276 HANDLE event,
277 bool expect_window,
278 TaskList* order,
279 bool is_reentrant) {
280 target->PostTask(FROM_HERE,
281 Bind(&RecursiveFunc, order, 1, 2, is_reentrant));
282 target->PostTask(FROM_HERE,
283 Bind(&MessageBoxFunc, order, 2, is_reentrant));
284 target->PostTask(FROM_HERE,
285 Bind(&RecursiveFunc, order, 3, 2, is_reentrant));
286 // The trick here is that for recursive task processing, this task will be
287 // ran _inside_ the MessageBox message loop, dismissing the MessageBox
288 // without a chance.
289 // For non-recursive task processing, this will be executed _after_ the
290 // MessageBox will have been dismissed by the code below, where
291 // expect_window_ is true.
292 target->PostTask(FROM_HERE,
293 Bind(&EndDialogFunc, order, 4));
294 target->PostTask(FROM_HERE,
295 Bind(&QuitFunc, order, 5));
296
297 // Enforce that every tasks are sent before starting to run the main thread
298 // message loop.
299 ASSERT_TRUE(SetEvent(event));
300
301 // Poll for the MessageBox. Don't do this at home! At the speed we do it,
302 // you will never realize one MessageBox was shown.
303 for (; expect_window;) {
304 HWND window = FindWindow(L"#32770", kMessageBoxTitle);
305 if (window) {
306 // Dismiss it.
307 for (;;) {
308 HWND button = FindWindowEx(window, NULL, L"Button", NULL);
309 if (button != NULL) {
310 EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
311 EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
312 break;
313 }
314 }
315 break;
316 }
317 }
318 }
319
320 // TODO(darin): These tests need to be ported since they test critical
321 // message loop functionality.
322
323 // A side effect of this test is the generation a beep. Sorry.
RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type)324 void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
325 MessageLoop loop(message_loop_type);
326
327 Thread worker("RecursiveDenial2_worker");
328 Thread::Options options;
329 options.message_loop_type = message_loop_type;
330 ASSERT_EQ(true, worker.StartWithOptions(options));
331 TaskList order;
332 win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
333 worker.message_loop()->PostTask(FROM_HERE,
334 Bind(&RecursiveFuncWin,
335 MessageLoop::current(),
336 event.Get(),
337 true,
338 &order,
339 false));
340 // Let the other thread execute.
341 WaitForSingleObject(event.Get(), INFINITE);
342 MessageLoop::current()->Run();
343
344 ASSERT_EQ(17u, order.Size());
345 EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
346 EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
347 EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
348 EXPECT_EQ(order.Get(3), TaskItem(MESSAGEBOX, 2, false));
349 EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, true));
350 EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 3, false));
351 // When EndDialogFunc is processed, the window is already dismissed, hence no
352 // "end" entry.
353 EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, true));
354 EXPECT_EQ(order.Get(7), TaskItem(QUITMESSAGELOOP, 5, true));
355 EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, false));
356 EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 1, true));
357 EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, false));
358 EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 3, true));
359 EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, false));
360 EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, true));
361 EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, false));
362 EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 3, true));
363 EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, false));
364 }
365
366 // A side effect of this test is the generation a beep. Sorry. This test also
367 // needs to process windows messages on the current thread.
RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type)368 void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
369 MessageLoop loop(message_loop_type);
370
371 Thread worker("RecursiveSupport2_worker");
372 Thread::Options options;
373 options.message_loop_type = message_loop_type;
374 ASSERT_EQ(true, worker.StartWithOptions(options));
375 TaskList order;
376 win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
377 worker.message_loop()->PostTask(FROM_HERE,
378 Bind(&RecursiveFuncWin,
379 MessageLoop::current(),
380 event.Get(),
381 false,
382 &order,
383 true));
384 // Let the other thread execute.
385 WaitForSingleObject(event.Get(), INFINITE);
386 MessageLoop::current()->Run();
387
388 ASSERT_EQ(18u, order.Size());
389 EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
390 EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
391 EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
392 // Note that this executes in the MessageBox modal loop.
393 EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 3, true));
394 EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, false));
395 EXPECT_EQ(order.Get(5), TaskItem(ENDDIALOG, 4, true));
396 EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, false));
397 EXPECT_EQ(order.Get(7), TaskItem(MESSAGEBOX, 2, false));
398 /* The order can subtly change here. The reason is that when RecursiveFunc(1)
399 is called in the main thread, if it is faster than getting to the
400 PostTask(FROM_HERE, Bind(&QuitFunc) execution, the order of task
401 execution can change. We don't care anyway that the order isn't correct.
402 EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, true));
403 EXPECT_EQ(order.Get(9), TaskItem(QUITMESSAGELOOP, 5, false));
404 EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
405 EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
406 */
407 EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, true));
408 EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 3, false));
409 EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, true));
410 EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 1, false));
411 EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, true));
412 EXPECT_EQ(order.Get(17), TaskItem(RECURSIVE, 3, false));
413 }
414
415 #endif // defined(OS_WIN)
416
PostNTasksThenQuit(int posts_remaining)417 void PostNTasksThenQuit(int posts_remaining) {
418 if (posts_remaining > 1) {
419 MessageLoop::current()->PostTask(
420 FROM_HERE,
421 Bind(&PostNTasksThenQuit, posts_remaining - 1));
422 } else {
423 MessageLoop::current()->QuitWhenIdle();
424 }
425 }
426
427 #if defined(OS_WIN)
428
429 class DispatcherImpl : public MessagePumpDispatcher {
430 public:
DispatcherImpl()431 DispatcherImpl() : dispatch_count_(0) {}
432
Dispatch(const NativeEvent & msg)433 uint32_t Dispatch(const NativeEvent& msg) override {
434 ::TranslateMessage(&msg);
435 ::DispatchMessage(&msg);
436 // Do not count WM_TIMER since it is not what we post and it will cause
437 // flakiness.
438 if (msg.message != WM_TIMER)
439 ++dispatch_count_;
440 // We treat WM_LBUTTONUP as the last message.
441 return msg.message == WM_LBUTTONUP ? POST_DISPATCH_QUIT_LOOP
442 : POST_DISPATCH_NONE;
443 }
444
445 int dispatch_count_;
446 };
447
MouseDownUp()448 void MouseDownUp() {
449 PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
450 PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
451 }
452
RunTest_Dispatcher(MessageLoop::Type message_loop_type)453 void RunTest_Dispatcher(MessageLoop::Type message_loop_type) {
454 MessageLoop loop(message_loop_type);
455
456 MessageLoop::current()->PostDelayedTask(
457 FROM_HERE,
458 Bind(&MouseDownUp),
459 TimeDelta::FromMilliseconds(100));
460 DispatcherImpl dispatcher;
461 RunLoop run_loop(&dispatcher);
462 run_loop.Run();
463 ASSERT_EQ(2, dispatcher.dispatch_count_);
464 }
465
MsgFilterProc(int code,WPARAM wparam,LPARAM lparam)466 LRESULT CALLBACK MsgFilterProc(int code, WPARAM wparam, LPARAM lparam) {
467 if (code == MessagePumpForUI::kMessageFilterCode) {
468 MSG* msg = reinterpret_cast<MSG*>(lparam);
469 if (msg->message == WM_LBUTTONDOWN)
470 return TRUE;
471 }
472 return FALSE;
473 }
474
RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type)475 void RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type) {
476 MessageLoop loop(message_loop_type);
477
478 MessageLoop::current()->PostDelayedTask(
479 FROM_HERE,
480 Bind(&MouseDownUp),
481 TimeDelta::FromMilliseconds(100));
482 HHOOK msg_hook = SetWindowsHookEx(WH_MSGFILTER,
483 MsgFilterProc,
484 NULL,
485 GetCurrentThreadId());
486 DispatcherImpl dispatcher;
487 RunLoop run_loop(&dispatcher);
488 run_loop.Run();
489 ASSERT_EQ(1, dispatcher.dispatch_count_);
490 UnhookWindowsHookEx(msg_hook);
491 }
492
493 class TestIOHandler : public MessageLoopForIO::IOHandler {
494 public:
495 TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
496
497 void OnIOCompleted(MessageLoopForIO::IOContext* context,
498 DWORD bytes_transfered,
499 DWORD error) override;
500
501 void Init();
502 void WaitForIO();
context()503 OVERLAPPED* context() { return &context_.overlapped; }
size()504 DWORD size() { return sizeof(buffer_); }
505
506 private:
507 char buffer_[48];
508 MessageLoopForIO::IOContext context_;
509 HANDLE signal_;
510 win::ScopedHandle file_;
511 bool wait_;
512 };
513
TestIOHandler(const wchar_t * name,HANDLE signal,bool wait)514 TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
515 : signal_(signal), wait_(wait) {
516 memset(buffer_, 0, sizeof(buffer_));
517 memset(&context_, 0, sizeof(context_));
518 context_.handler = this;
519
520 file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
521 FILE_FLAG_OVERLAPPED, NULL));
522 EXPECT_TRUE(file_.IsValid());
523 }
524
Init()525 void TestIOHandler::Init() {
526 MessageLoopForIO::current()->RegisterIOHandler(file_.Get(), this);
527
528 DWORD read;
529 EXPECT_FALSE(ReadFile(file_.Get(), buffer_, size(), &read, context()));
530 EXPECT_EQ(static_cast<DWORD>(ERROR_IO_PENDING), GetLastError());
531 if (wait_)
532 WaitForIO();
533 }
534
OnIOCompleted(MessageLoopForIO::IOContext * context,DWORD bytes_transfered,DWORD error)535 void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
536 DWORD bytes_transfered, DWORD error) {
537 ASSERT_TRUE(context == &context_);
538 ASSERT_TRUE(SetEvent(signal_));
539 }
540
WaitForIO()541 void TestIOHandler::WaitForIO() {
542 EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
543 EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
544 }
545
RunTest_IOHandler()546 void RunTest_IOHandler() {
547 win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
548 ASSERT_TRUE(callback_called.IsValid());
549
550 const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
551 win::ScopedHandle server(
552 CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
553 ASSERT_TRUE(server.IsValid());
554
555 Thread thread("IOHandler test");
556 Thread::Options options;
557 options.message_loop_type = MessageLoop::TYPE_IO;
558 ASSERT_TRUE(thread.StartWithOptions(options));
559
560 MessageLoop* thread_loop = thread.message_loop();
561 ASSERT_TRUE(NULL != thread_loop);
562
563 TestIOHandler handler(kPipeName, callback_called.Get(), false);
564 thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
565 Unretained(&handler)));
566 // Make sure the thread runs and sleeps for lack of work.
567 PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
568
569 const char buffer[] = "Hello there!";
570 DWORD written;
571 EXPECT_TRUE(WriteFile(server.Get(), buffer, sizeof(buffer), &written, NULL));
572
573 DWORD result = WaitForSingleObject(callback_called.Get(), 1000);
574 EXPECT_EQ(WAIT_OBJECT_0, result);
575
576 thread.Stop();
577 }
578
RunTest_WaitForIO()579 void RunTest_WaitForIO() {
580 win::ScopedHandle callback1_called(
581 CreateEvent(NULL, TRUE, FALSE, NULL));
582 win::ScopedHandle callback2_called(
583 CreateEvent(NULL, TRUE, FALSE, NULL));
584 ASSERT_TRUE(callback1_called.IsValid());
585 ASSERT_TRUE(callback2_called.IsValid());
586
587 const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
588 const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
589 win::ScopedHandle server1(
590 CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
591 win::ScopedHandle server2(
592 CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
593 ASSERT_TRUE(server1.IsValid());
594 ASSERT_TRUE(server2.IsValid());
595
596 Thread thread("IOHandler test");
597 Thread::Options options;
598 options.message_loop_type = MessageLoop::TYPE_IO;
599 ASSERT_TRUE(thread.StartWithOptions(options));
600
601 MessageLoop* thread_loop = thread.message_loop();
602 ASSERT_TRUE(NULL != thread_loop);
603
604 TestIOHandler handler1(kPipeName1, callback1_called.Get(), false);
605 TestIOHandler handler2(kPipeName2, callback2_called.Get(), true);
606 thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
607 Unretained(&handler1)));
608 // TODO(ajwong): Do we really need such long Sleeps in this function?
609 // Make sure the thread runs and sleeps for lack of work.
610 TimeDelta delay = TimeDelta::FromMilliseconds(100);
611 PlatformThread::Sleep(delay);
612 thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
613 Unretained(&handler2)));
614 PlatformThread::Sleep(delay);
615
616 // At this time handler1 is waiting to be called, and the thread is waiting
617 // on the Init method of handler2, filtering only handler2 callbacks.
618
619 const char buffer[] = "Hello there!";
620 DWORD written;
621 EXPECT_TRUE(WriteFile(server1.Get(), buffer, sizeof(buffer), &written, NULL));
622 PlatformThread::Sleep(2 * delay);
623 EXPECT_EQ(static_cast<DWORD>(WAIT_TIMEOUT),
624 WaitForSingleObject(callback1_called.Get(), 0))
625 << "handler1 has not been called";
626
627 EXPECT_TRUE(WriteFile(server2.Get(), buffer, sizeof(buffer), &written, NULL));
628
629 HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
630 DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
631 EXPECT_EQ(WAIT_OBJECT_0, result);
632
633 thread.Stop();
634 }
635
636 #endif // defined(OS_WIN)
637
638 } // namespace
639
640 //-----------------------------------------------------------------------------
641 // Each test is run against each type of MessageLoop. That way we are sure
642 // that message loops work properly in all configurations. Of course, in some
643 // cases, a unit test may only be for a particular type of loop.
644
645 RUN_MESSAGE_LOOP_TESTS(Default, &TypeDefaultMessagePumpFactory);
646 RUN_MESSAGE_LOOP_TESTS(UI, &TypeUIMessagePumpFactory);
647 RUN_MESSAGE_LOOP_TESTS(IO, &TypeIOMessagePumpFactory);
648
649 #if defined(OS_WIN)
TEST(MessageLoopTest,PostDelayedTask_SharedTimer_SubPump)650 TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
651 RunTest_PostDelayedTask_SharedTimer_SubPump();
652 }
653
654 // This test occasionally hangs. See http://crbug.com/44567.
TEST(MessageLoopTest,DISABLED_RecursiveDenial2)655 TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
656 RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
657 RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
658 RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
659 }
660
TEST(MessageLoopTest,RecursiveSupport2)661 TEST(MessageLoopTest, RecursiveSupport2) {
662 // This test requires a UI loop.
663 RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
664 }
665 #endif // defined(OS_WIN)
666
667 class DummyTaskObserver : public MessageLoop::TaskObserver {
668 public:
DummyTaskObserver(int num_tasks)669 explicit DummyTaskObserver(int num_tasks)
670 : num_tasks_started_(0),
671 num_tasks_processed_(0),
672 num_tasks_(num_tasks) {}
673
~DummyTaskObserver()674 ~DummyTaskObserver() override {}
675
WillProcessTask(const PendingTask & pending_task)676 void WillProcessTask(const PendingTask& pending_task) override {
677 num_tasks_started_++;
678 EXPECT_LE(num_tasks_started_, num_tasks_);
679 EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
680 }
681
DidProcessTask(const PendingTask & pending_task)682 void DidProcessTask(const PendingTask& pending_task) override {
683 num_tasks_processed_++;
684 EXPECT_LE(num_tasks_started_, num_tasks_);
685 EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
686 }
687
num_tasks_started() const688 int num_tasks_started() const { return num_tasks_started_; }
num_tasks_processed() const689 int num_tasks_processed() const { return num_tasks_processed_; }
690
691 private:
692 int num_tasks_started_;
693 int num_tasks_processed_;
694 const int num_tasks_;
695
696 DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
697 };
698
TEST(MessageLoopTest,TaskObserver)699 TEST(MessageLoopTest, TaskObserver) {
700 const int kNumPosts = 6;
701 DummyTaskObserver observer(kNumPosts);
702
703 MessageLoop loop;
704 loop.AddTaskObserver(&observer);
705 loop.PostTask(FROM_HERE, Bind(&PostNTasksThenQuit, kNumPosts));
706 loop.Run();
707 loop.RemoveTaskObserver(&observer);
708
709 EXPECT_EQ(kNumPosts, observer.num_tasks_started());
710 EXPECT_EQ(kNumPosts, observer.num_tasks_processed());
711 }
712
713 #if defined(OS_WIN)
TEST(MessageLoopTest,Dispatcher)714 TEST(MessageLoopTest, Dispatcher) {
715 // This test requires a UI loop
716 RunTest_Dispatcher(MessageLoop::TYPE_UI);
717 }
718
TEST(MessageLoopTest,DispatcherWithMessageHook)719 TEST(MessageLoopTest, DispatcherWithMessageHook) {
720 // This test requires a UI loop
721 RunTest_DispatcherWithMessageHook(MessageLoop::TYPE_UI);
722 }
723
TEST(MessageLoopTest,IOHandler)724 TEST(MessageLoopTest, IOHandler) {
725 RunTest_IOHandler();
726 }
727
TEST(MessageLoopTest,WaitForIO)728 TEST(MessageLoopTest, WaitForIO) {
729 RunTest_WaitForIO();
730 }
731
TEST(MessageLoopTest,HighResolutionTimer)732 TEST(MessageLoopTest, HighResolutionTimer) {
733 MessageLoop loop;
734 Time::EnableHighResolutionTimer(true);
735
736 const TimeDelta kFastTimer = TimeDelta::FromMilliseconds(5);
737 const TimeDelta kSlowTimer = TimeDelta::FromMilliseconds(100);
738
739 EXPECT_FALSE(loop.HasHighResolutionTasks());
740 // Post a fast task to enable the high resolution timers.
741 loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
742 kFastTimer);
743 EXPECT_TRUE(loop.HasHighResolutionTasks());
744 loop.Run();
745 EXPECT_FALSE(loop.HasHighResolutionTasks());
746 EXPECT_FALSE(Time::IsHighResolutionTimerInUse());
747 // Check that a slow task does not trigger the high resolution logic.
748 loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
749 kSlowTimer);
750 EXPECT_FALSE(loop.HasHighResolutionTasks());
751 loop.Run();
752 EXPECT_FALSE(loop.HasHighResolutionTasks());
753 Time::EnableHighResolutionTimer(false);
754 }
755
756 #endif // defined(OS_WIN)
757
758 #if defined(OS_POSIX) && !defined(OS_NACL)
759
760 namespace {
761
762 class QuitDelegate : public MessageLoopForIO::Watcher {
763 public:
OnFileCanWriteWithoutBlocking(int fd)764 void OnFileCanWriteWithoutBlocking(int fd) override {
765 MessageLoop::current()->QuitWhenIdle();
766 }
OnFileCanReadWithoutBlocking(int fd)767 void OnFileCanReadWithoutBlocking(int fd) override {
768 MessageLoop::current()->QuitWhenIdle();
769 }
770 };
771
TEST(MessageLoopTest,FileDescriptorWatcherOutlivesMessageLoop)772 TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
773 // Simulate a MessageLoop that dies before an FileDescriptorWatcher.
774 // This could happen when people use the Singleton pattern or atexit.
775
776 // Create a file descriptor. Doesn't need to be readable or writable,
777 // as we don't need to actually get any notifications.
778 // pipe() is just the easiest way to do it.
779 int pipefds[2];
780 int err = pipe(pipefds);
781 ASSERT_EQ(0, err);
782 int fd = pipefds[1];
783 {
784 // Arrange for controller to live longer than message loop.
785 MessageLoopForIO::FileDescriptorWatcher controller;
786 {
787 MessageLoopForIO message_loop;
788
789 QuitDelegate delegate;
790 message_loop.WatchFileDescriptor(fd,
791 true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
792 // and don't run the message loop, just destroy it.
793 }
794 }
795 if (IGNORE_EINTR(close(pipefds[0])) < 0)
796 PLOG(ERROR) << "close";
797 if (IGNORE_EINTR(close(pipefds[1])) < 0)
798 PLOG(ERROR) << "close";
799 }
800
TEST(MessageLoopTest,FileDescriptorWatcherDoubleStop)801 TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
802 // Verify that it's ok to call StopWatchingFileDescriptor().
803 // (Errors only showed up in valgrind.)
804 int pipefds[2];
805 int err = pipe(pipefds);
806 ASSERT_EQ(0, err);
807 int fd = pipefds[1];
808 {
809 // Arrange for message loop to live longer than controller.
810 MessageLoopForIO message_loop;
811 {
812 MessageLoopForIO::FileDescriptorWatcher controller;
813
814 QuitDelegate delegate;
815 message_loop.WatchFileDescriptor(fd,
816 true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
817 controller.StopWatchingFileDescriptor();
818 }
819 }
820 if (IGNORE_EINTR(close(pipefds[0])) < 0)
821 PLOG(ERROR) << "close";
822 if (IGNORE_EINTR(close(pipefds[1])) < 0)
823 PLOG(ERROR) << "close";
824 }
825
826 } // namespace
827
828 #endif // defined(OS_POSIX) && !defined(OS_NACL)
829
830 namespace {
831 // Inject a test point for recording the destructor calls for Closure objects
832 // send to MessageLoop::PostTask(). It is awkward usage since we are trying to
833 // hook the actual destruction, which is not a common operation.
834 class DestructionObserverProbe :
835 public RefCounted<DestructionObserverProbe> {
836 public:
DestructionObserverProbe(bool * task_destroyed,bool * destruction_observer_called)837 DestructionObserverProbe(bool* task_destroyed,
838 bool* destruction_observer_called)
839 : task_destroyed_(task_destroyed),
840 destruction_observer_called_(destruction_observer_called) {
841 }
Run()842 virtual void Run() {
843 // This task should never run.
844 ADD_FAILURE();
845 }
846 private:
847 friend class RefCounted<DestructionObserverProbe>;
848
~DestructionObserverProbe()849 virtual ~DestructionObserverProbe() {
850 EXPECT_FALSE(*destruction_observer_called_);
851 *task_destroyed_ = true;
852 }
853
854 bool* task_destroyed_;
855 bool* destruction_observer_called_;
856 };
857
858 class MLDestructionObserver : public MessageLoop::DestructionObserver {
859 public:
MLDestructionObserver(bool * task_destroyed,bool * destruction_observer_called)860 MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
861 : task_destroyed_(task_destroyed),
862 destruction_observer_called_(destruction_observer_called),
863 task_destroyed_before_message_loop_(false) {
864 }
WillDestroyCurrentMessageLoop()865 void WillDestroyCurrentMessageLoop() override {
866 task_destroyed_before_message_loop_ = *task_destroyed_;
867 *destruction_observer_called_ = true;
868 }
task_destroyed_before_message_loop() const869 bool task_destroyed_before_message_loop() const {
870 return task_destroyed_before_message_loop_;
871 }
872 private:
873 bool* task_destroyed_;
874 bool* destruction_observer_called_;
875 bool task_destroyed_before_message_loop_;
876 };
877
878 } // namespace
879
TEST(MessageLoopTest,DestructionObserverTest)880 TEST(MessageLoopTest, DestructionObserverTest) {
881 // Verify that the destruction observer gets called at the very end (after
882 // all the pending tasks have been destroyed).
883 MessageLoop* loop = new MessageLoop;
884 const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
885
886 bool task_destroyed = false;
887 bool destruction_observer_called = false;
888
889 MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
890 loop->AddDestructionObserver(&observer);
891 loop->PostDelayedTask(
892 FROM_HERE,
893 Bind(&DestructionObserverProbe::Run,
894 new DestructionObserverProbe(&task_destroyed,
895 &destruction_observer_called)),
896 kDelay);
897 delete loop;
898 EXPECT_TRUE(observer.task_destroyed_before_message_loop());
899 // The task should have been destroyed when we deleted the loop.
900 EXPECT_TRUE(task_destroyed);
901 EXPECT_TRUE(destruction_observer_called);
902 }
903
904
905 // Verify that MessageLoop sets ThreadMainTaskRunner::current() and it
906 // posts tasks on that message loop.
TEST(MessageLoopTest,ThreadMainTaskRunner)907 TEST(MessageLoopTest, ThreadMainTaskRunner) {
908 MessageLoop loop;
909
910 scoped_refptr<Foo> foo(new Foo());
911 std::string a("a");
912 ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, Bind(
913 &Foo::Test1ConstRef, foo.get(), a));
914
915 // Post quit task;
916 MessageLoop::current()->PostTask(
917 FROM_HERE,
918 Bind(&MessageLoop::QuitWhenIdle, Unretained(MessageLoop::current())));
919
920 // Now kick things off
921 MessageLoop::current()->Run();
922
923 EXPECT_EQ(foo->test_count(), 1);
924 EXPECT_EQ(foo->result(), "a");
925 }
926
TEST(MessageLoopTest,IsType)927 TEST(MessageLoopTest, IsType) {
928 MessageLoop loop(MessageLoop::TYPE_UI);
929 EXPECT_TRUE(loop.IsType(MessageLoop::TYPE_UI));
930 EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_IO));
931 EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_DEFAULT));
932 }
933
934 #if defined(OS_WIN)
EmptyFunction()935 void EmptyFunction() {}
936
PostMultipleTasks()937 void PostMultipleTasks() {
938 MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&EmptyFunction));
939 MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&EmptyFunction));
940 }
941
942 static const int kSignalMsg = WM_USER + 2;
943
PostWindowsMessage(HWND message_hwnd)944 void PostWindowsMessage(HWND message_hwnd) {
945 PostMessage(message_hwnd, kSignalMsg, 0, 2);
946 }
947
EndTest(bool * did_run,HWND hwnd)948 void EndTest(bool* did_run, HWND hwnd) {
949 *did_run = true;
950 PostMessage(hwnd, WM_CLOSE, 0, 0);
951 }
952
953 int kMyMessageFilterCode = 0x5002;
954
TestWndProcThunk(HWND hwnd,UINT message,WPARAM wparam,LPARAM lparam)955 LRESULT CALLBACK TestWndProcThunk(HWND hwnd, UINT message,
956 WPARAM wparam, LPARAM lparam) {
957 if (message == WM_CLOSE)
958 EXPECT_TRUE(DestroyWindow(hwnd));
959 if (message != kSignalMsg)
960 return DefWindowProc(hwnd, message, wparam, lparam);
961
962 switch (lparam) {
963 case 1:
964 // First, we post a task that will post multiple no-op tasks to make sure
965 // that the pump's incoming task queue does not become empty during the
966 // test.
967 MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&PostMultipleTasks));
968 // Next, we post a task that posts a windows message to trigger the second
969 // stage of the test.
970 MessageLoop::current()->PostTask(FROM_HERE,
971 base::Bind(&PostWindowsMessage, hwnd));
972 break;
973 case 2:
974 // Since we're about to enter a modal loop, tell the message loop that we
975 // intend to nest tasks.
976 MessageLoop::current()->SetNestableTasksAllowed(true);
977 bool did_run = false;
978 MessageLoop::current()->PostTask(FROM_HERE,
979 base::Bind(&EndTest, &did_run, hwnd));
980 // Run a nested windows-style message loop and verify that our task runs. If
981 // it doesn't, then we'll loop here until the test times out.
982 MSG msg;
983 while (GetMessage(&msg, 0, 0, 0)) {
984 if (!CallMsgFilter(&msg, kMyMessageFilterCode))
985 DispatchMessage(&msg);
986 // If this message is a WM_CLOSE, explicitly exit the modal loop. Posting
987 // a WM_QUIT should handle this, but unfortunately MessagePumpWin eats
988 // WM_QUIT messages even when running inside a modal loop.
989 if (msg.message == WM_CLOSE)
990 break;
991 }
992 EXPECT_TRUE(did_run);
993 MessageLoop::current()->QuitWhenIdle();
994 break;
995 }
996 return 0;
997 }
998
TEST(MessageLoopTest,AlwaysHaveUserMessageWhenNesting)999 TEST(MessageLoopTest, AlwaysHaveUserMessageWhenNesting) {
1000 MessageLoop loop(MessageLoop::TYPE_UI);
1001 HINSTANCE instance = GetModuleFromAddress(&TestWndProcThunk);
1002 WNDCLASSEX wc = {0};
1003 wc.cbSize = sizeof(wc);
1004 wc.lpfnWndProc = TestWndProcThunk;
1005 wc.hInstance = instance;
1006 wc.lpszClassName = L"MessageLoopTest_HWND";
1007 ATOM atom = RegisterClassEx(&wc);
1008 ASSERT_TRUE(atom);
1009
1010 HWND message_hwnd = CreateWindow(MAKEINTATOM(atom), 0, 0, 0, 0, 0, 0,
1011 HWND_MESSAGE, 0, instance, 0);
1012 ASSERT_TRUE(message_hwnd) << GetLastError();
1013
1014 ASSERT_TRUE(PostMessage(message_hwnd, kSignalMsg, 0, 1));
1015
1016 loop.Run();
1017
1018 ASSERT_TRUE(UnregisterClass(MAKEINTATOM(atom), instance));
1019 }
1020 #endif // defined(OS_WIN)
1021
TEST(MessageLoopTest,SetTaskRunner)1022 TEST(MessageLoopTest, SetTaskRunner) {
1023 MessageLoop loop;
1024 scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
1025
1026 loop.SetTaskRunner(new_runner);
1027 EXPECT_EQ(new_runner, loop.task_runner());
1028 EXPECT_EQ(new_runner, ThreadTaskRunnerHandle::Get());
1029 }
1030
TEST(MessageLoopTest,OriginalRunnerWorks)1031 TEST(MessageLoopTest, OriginalRunnerWorks) {
1032 MessageLoop loop;
1033 scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
1034 scoped_refptr<SingleThreadTaskRunner> original_runner(loop.task_runner());
1035 loop.SetTaskRunner(new_runner);
1036
1037 scoped_refptr<Foo> foo(new Foo());
1038 original_runner->PostTask(FROM_HERE,
1039 Bind(&Foo::Test1ConstRef, foo.get(), "a"));
1040 loop.RunUntilIdle();
1041 EXPECT_EQ(1, foo->test_count());
1042 }
1043
TEST(MessageLoopTest,DeleteUnboundLoop)1044 TEST(MessageLoopTest, DeleteUnboundLoop) {
1045 // It should be possible to delete an unbound message loop on a thread which
1046 // already has another active loop. This happens when thread creation fails.
1047 MessageLoop loop;
1048 scoped_ptr<MessageLoop> unbound_loop(MessageLoop::CreateUnbound(
1049 MessageLoop::TYPE_DEFAULT, MessageLoop::MessagePumpFactoryCallback()));
1050 unbound_loop.reset();
1051 EXPECT_EQ(&loop, MessageLoop::current());
1052 EXPECT_EQ(loop.task_runner(), ThreadTaskRunnerHandle::Get());
1053 }
1054
1055 } // namespace base
1056