1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/runtime/runtime-utils.h"
6 
7 #include "src/arguments.h"
8 #include "src/conversions-inl.h"
9 #include "src/isolate-inl.h"
10 #include "src/regexp/jsregexp-inl.h"
11 #include "src/regexp/jsregexp.h"
12 #include "src/string-builder.h"
13 #include "src/string-search.h"
14 
15 namespace v8 {
16 namespace internal {
17 
18 
19 // Perform string match of pattern on subject, starting at start index.
20 // Caller must ensure that 0 <= start_index <= sub->length(),
21 // and should check that pat->length() + start_index <= sub->length().
StringMatch(Isolate * isolate,Handle<String> sub,Handle<String> pat,int start_index)22 int StringMatch(Isolate* isolate, Handle<String> sub, Handle<String> pat,
23                 int start_index) {
24   DCHECK(0 <= start_index);
25   DCHECK(start_index <= sub->length());
26 
27   int pattern_length = pat->length();
28   if (pattern_length == 0) return start_index;
29 
30   int subject_length = sub->length();
31   if (start_index + pattern_length > subject_length) return -1;
32 
33   sub = String::Flatten(sub);
34   pat = String::Flatten(pat);
35 
36   DisallowHeapAllocation no_gc;  // ensure vectors stay valid
37   // Extract flattened substrings of cons strings before getting encoding.
38   String::FlatContent seq_sub = sub->GetFlatContent();
39   String::FlatContent seq_pat = pat->GetFlatContent();
40 
41   // dispatch on type of strings
42   if (seq_pat.IsOneByte()) {
43     Vector<const uint8_t> pat_vector = seq_pat.ToOneByteVector();
44     if (seq_sub.IsOneByte()) {
45       return SearchString(isolate, seq_sub.ToOneByteVector(), pat_vector,
46                           start_index);
47     }
48     return SearchString(isolate, seq_sub.ToUC16Vector(), pat_vector,
49                         start_index);
50   }
51   Vector<const uc16> pat_vector = seq_pat.ToUC16Vector();
52   if (seq_sub.IsOneByte()) {
53     return SearchString(isolate, seq_sub.ToOneByteVector(), pat_vector,
54                         start_index);
55   }
56   return SearchString(isolate, seq_sub.ToUC16Vector(), pat_vector, start_index);
57 }
58 
59 
60 // This may return an empty MaybeHandle if an exception is thrown or
61 // we abort due to reaching the recursion limit.
StringReplaceOneCharWithString(Isolate * isolate,Handle<String> subject,Handle<String> search,Handle<String> replace,bool * found,int recursion_limit)62 MaybeHandle<String> StringReplaceOneCharWithString(
63     Isolate* isolate, Handle<String> subject, Handle<String> search,
64     Handle<String> replace, bool* found, int recursion_limit) {
65   StackLimitCheck stackLimitCheck(isolate);
66   if (stackLimitCheck.HasOverflowed() || (recursion_limit == 0)) {
67     return MaybeHandle<String>();
68   }
69   recursion_limit--;
70   if (subject->IsConsString()) {
71     ConsString* cons = ConsString::cast(*subject);
72     Handle<String> first = Handle<String>(cons->first());
73     Handle<String> second = Handle<String>(cons->second());
74     Handle<String> new_first;
75     if (!StringReplaceOneCharWithString(isolate, first, search, replace, found,
76                                         recursion_limit).ToHandle(&new_first)) {
77       return MaybeHandle<String>();
78     }
79     if (*found) return isolate->factory()->NewConsString(new_first, second);
80 
81     Handle<String> new_second;
82     if (!StringReplaceOneCharWithString(isolate, second, search, replace, found,
83                                         recursion_limit)
84              .ToHandle(&new_second)) {
85       return MaybeHandle<String>();
86     }
87     if (*found) return isolate->factory()->NewConsString(first, new_second);
88 
89     return subject;
90   } else {
91     int index = StringMatch(isolate, subject, search, 0);
92     if (index == -1) return subject;
93     *found = true;
94     Handle<String> first = isolate->factory()->NewSubString(subject, 0, index);
95     Handle<String> cons1;
96     ASSIGN_RETURN_ON_EXCEPTION(
97         isolate, cons1, isolate->factory()->NewConsString(first, replace),
98         String);
99     Handle<String> second =
100         isolate->factory()->NewSubString(subject, index + 1, subject->length());
101     return isolate->factory()->NewConsString(cons1, second);
102   }
103 }
104 
105 
RUNTIME_FUNCTION(Runtime_StringReplaceOneCharWithString)106 RUNTIME_FUNCTION(Runtime_StringReplaceOneCharWithString) {
107   HandleScope scope(isolate);
108   DCHECK(args.length() == 3);
109   CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
110   CONVERT_ARG_HANDLE_CHECKED(String, search, 1);
111   CONVERT_ARG_HANDLE_CHECKED(String, replace, 2);
112 
113   // If the cons string tree is too deep, we simply abort the recursion and
114   // retry with a flattened subject string.
115   const int kRecursionLimit = 0x1000;
116   bool found = false;
117   Handle<String> result;
118   if (StringReplaceOneCharWithString(isolate, subject, search, replace, &found,
119                                      kRecursionLimit).ToHandle(&result)) {
120     return *result;
121   }
122   if (isolate->has_pending_exception()) return isolate->heap()->exception();
123 
124   subject = String::Flatten(subject);
125   if (StringReplaceOneCharWithString(isolate, subject, search, replace, &found,
126                                      kRecursionLimit).ToHandle(&result)) {
127     return *result;
128   }
129   if (isolate->has_pending_exception()) return isolate->heap()->exception();
130   // In case of empty handle and no pending exception we have stack overflow.
131   return isolate->StackOverflow();
132 }
133 
134 
RUNTIME_FUNCTION(Runtime_StringIndexOf)135 RUNTIME_FUNCTION(Runtime_StringIndexOf) {
136   HandleScope scope(isolate);
137   DCHECK(args.length() == 3);
138 
139   CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
140   CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
141   CONVERT_ARG_HANDLE_CHECKED(Object, index, 2);
142 
143   uint32_t start_index = 0;
144   if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
145 
146   RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length()));
147   int position = StringMatch(isolate, sub, pat, start_index);
148   return Smi::FromInt(position);
149 }
150 
151 
152 template <typename schar, typename pchar>
StringMatchBackwards(Vector<const schar> subject,Vector<const pchar> pattern,int idx)153 static int StringMatchBackwards(Vector<const schar> subject,
154                                 Vector<const pchar> pattern, int idx) {
155   int pattern_length = pattern.length();
156   DCHECK(pattern_length >= 1);
157   DCHECK(idx + pattern_length <= subject.length());
158 
159   if (sizeof(schar) == 1 && sizeof(pchar) > 1) {
160     for (int i = 0; i < pattern_length; i++) {
161       uc16 c = pattern[i];
162       if (c > String::kMaxOneByteCharCode) {
163         return -1;
164       }
165     }
166   }
167 
168   pchar pattern_first_char = pattern[0];
169   for (int i = idx; i >= 0; i--) {
170     if (subject[i] != pattern_first_char) continue;
171     int j = 1;
172     while (j < pattern_length) {
173       if (pattern[j] != subject[i + j]) {
174         break;
175       }
176       j++;
177     }
178     if (j == pattern_length) {
179       return i;
180     }
181   }
182   return -1;
183 }
184 
185 
RUNTIME_FUNCTION(Runtime_StringLastIndexOf)186 RUNTIME_FUNCTION(Runtime_StringLastIndexOf) {
187   HandleScope scope(isolate);
188   DCHECK(args.length() == 3);
189 
190   CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
191   CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
192   CONVERT_ARG_HANDLE_CHECKED(Object, index, 2);
193 
194   uint32_t start_index = 0;
195   if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
196 
197   uint32_t pat_length = pat->length();
198   uint32_t sub_length = sub->length();
199 
200   if (start_index + pat_length > sub_length) {
201     start_index = sub_length - pat_length;
202   }
203 
204   if (pat_length == 0) {
205     return Smi::FromInt(start_index);
206   }
207 
208   sub = String::Flatten(sub);
209   pat = String::Flatten(pat);
210 
211   int position = -1;
212   DisallowHeapAllocation no_gc;  // ensure vectors stay valid
213 
214   String::FlatContent sub_content = sub->GetFlatContent();
215   String::FlatContent pat_content = pat->GetFlatContent();
216 
217   if (pat_content.IsOneByte()) {
218     Vector<const uint8_t> pat_vector = pat_content.ToOneByteVector();
219     if (sub_content.IsOneByte()) {
220       position = StringMatchBackwards(sub_content.ToOneByteVector(), pat_vector,
221                                       start_index);
222     } else {
223       position = StringMatchBackwards(sub_content.ToUC16Vector(), pat_vector,
224                                       start_index);
225     }
226   } else {
227     Vector<const uc16> pat_vector = pat_content.ToUC16Vector();
228     if (sub_content.IsOneByte()) {
229       position = StringMatchBackwards(sub_content.ToOneByteVector(), pat_vector,
230                                       start_index);
231     } else {
232       position = StringMatchBackwards(sub_content.ToUC16Vector(), pat_vector,
233                                       start_index);
234     }
235   }
236 
237   return Smi::FromInt(position);
238 }
239 
240 
RUNTIME_FUNCTION(Runtime_StringLocaleCompare)241 RUNTIME_FUNCTION(Runtime_StringLocaleCompare) {
242   HandleScope handle_scope(isolate);
243   DCHECK(args.length() == 2);
244 
245   CONVERT_ARG_HANDLE_CHECKED(String, str1, 0);
246   CONVERT_ARG_HANDLE_CHECKED(String, str2, 1);
247 
248   if (str1.is_identical_to(str2)) return Smi::FromInt(0);  // Equal.
249   int str1_length = str1->length();
250   int str2_length = str2->length();
251 
252   // Decide trivial cases without flattening.
253   if (str1_length == 0) {
254     if (str2_length == 0) return Smi::FromInt(0);  // Equal.
255     return Smi::FromInt(-str2_length);
256   } else {
257     if (str2_length == 0) return Smi::FromInt(str1_length);
258   }
259 
260   int end = str1_length < str2_length ? str1_length : str2_length;
261 
262   // No need to flatten if we are going to find the answer on the first
263   // character.  At this point we know there is at least one character
264   // in each string, due to the trivial case handling above.
265   int d = str1->Get(0) - str2->Get(0);
266   if (d != 0) return Smi::FromInt(d);
267 
268   str1 = String::Flatten(str1);
269   str2 = String::Flatten(str2);
270 
271   DisallowHeapAllocation no_gc;
272   String::FlatContent flat1 = str1->GetFlatContent();
273   String::FlatContent flat2 = str2->GetFlatContent();
274 
275   for (int i = 0; i < end; i++) {
276     if (flat1.Get(i) != flat2.Get(i)) {
277       return Smi::FromInt(flat1.Get(i) - flat2.Get(i));
278     }
279   }
280 
281   return Smi::FromInt(str1_length - str2_length);
282 }
283 
284 
RUNTIME_FUNCTION(Runtime_SubString)285 RUNTIME_FUNCTION(Runtime_SubString) {
286   HandleScope scope(isolate);
287   DCHECK(args.length() == 3);
288 
289   CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
290   int start, end;
291   // We have a fast integer-only case here to avoid a conversion to double in
292   // the common case where from and to are Smis.
293   if (args[1]->IsSmi() && args[2]->IsSmi()) {
294     CONVERT_SMI_ARG_CHECKED(from_number, 1);
295     CONVERT_SMI_ARG_CHECKED(to_number, 2);
296     start = from_number;
297     end = to_number;
298   } else {
299     CONVERT_DOUBLE_ARG_CHECKED(from_number, 1);
300     CONVERT_DOUBLE_ARG_CHECKED(to_number, 2);
301     start = FastD2IChecked(from_number);
302     end = FastD2IChecked(to_number);
303   }
304   RUNTIME_ASSERT(end >= start);
305   RUNTIME_ASSERT(start >= 0);
306   RUNTIME_ASSERT(end <= string->length());
307   isolate->counters()->sub_string_runtime()->Increment();
308 
309   return *isolate->factory()->NewSubString(string, start, end);
310 }
311 
312 
RUNTIME_FUNCTION(Runtime_StringAdd)313 RUNTIME_FUNCTION(Runtime_StringAdd) {
314   HandleScope scope(isolate);
315   DCHECK(args.length() == 2);
316   CONVERT_ARG_HANDLE_CHECKED(String, str1, 0);
317   CONVERT_ARG_HANDLE_CHECKED(String, str2, 1);
318   isolate->counters()->string_add_runtime()->Increment();
319   Handle<String> result;
320   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
321       isolate, result, isolate->factory()->NewConsString(str1, str2));
322   return *result;
323 }
324 
325 
RUNTIME_FUNCTION(Runtime_InternalizeString)326 RUNTIME_FUNCTION(Runtime_InternalizeString) {
327   HandleScope handles(isolate);
328   RUNTIME_ASSERT(args.length() == 1);
329   CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
330   return *isolate->factory()->InternalizeString(string);
331 }
332 
333 
RUNTIME_FUNCTION(Runtime_StringMatch)334 RUNTIME_FUNCTION(Runtime_StringMatch) {
335   HandleScope handles(isolate);
336   DCHECK(args.length() == 3);
337 
338   CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
339   CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1);
340   CONVERT_ARG_HANDLE_CHECKED(JSArray, regexp_info, 2);
341 
342   RUNTIME_ASSERT(regexp_info->HasFastObjectElements());
343 
344   RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
345   if (global_cache.HasException()) return isolate->heap()->exception();
346 
347   int capture_count = regexp->CaptureCount();
348 
349   ZoneScope zone_scope(isolate->runtime_zone());
350   ZoneList<int> offsets(8, zone_scope.zone());
351 
352   while (true) {
353     int32_t* match = global_cache.FetchNext();
354     if (match == NULL) break;
355     offsets.Add(match[0], zone_scope.zone());  // start
356     offsets.Add(match[1], zone_scope.zone());  // end
357   }
358 
359   if (global_cache.HasException()) return isolate->heap()->exception();
360 
361   if (offsets.length() == 0) {
362     // Not a single match.
363     return isolate->heap()->null_value();
364   }
365 
366   RegExpImpl::SetLastMatchInfo(regexp_info, subject, capture_count,
367                                global_cache.LastSuccessfulMatch());
368 
369   int matches = offsets.length() / 2;
370   Handle<FixedArray> elements = isolate->factory()->NewFixedArray(matches);
371   Handle<String> substring =
372       isolate->factory()->NewSubString(subject, offsets.at(0), offsets.at(1));
373   elements->set(0, *substring);
374   for (int i = 1; i < matches; i++) {
375     HandleScope temp_scope(isolate);
376     int from = offsets.at(i * 2);
377     int to = offsets.at(i * 2 + 1);
378     Handle<String> substring =
379         isolate->factory()->NewProperSubString(subject, from, to);
380     elements->set(i, *substring);
381   }
382   Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(elements);
383   result->set_length(Smi::FromInt(matches));
384   return *result;
385 }
386 
387 
RUNTIME_FUNCTION(Runtime_StringCharCodeAtRT)388 RUNTIME_FUNCTION(Runtime_StringCharCodeAtRT) {
389   HandleScope handle_scope(isolate);
390   DCHECK(args.length() == 2);
391 
392   CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
393   CONVERT_NUMBER_CHECKED(uint32_t, i, Uint32, args[1]);
394 
395   // Flatten the string.  If someone wants to get a char at an index
396   // in a cons string, it is likely that more indices will be
397   // accessed.
398   subject = String::Flatten(subject);
399 
400   if (i >= static_cast<uint32_t>(subject->length())) {
401     return isolate->heap()->nan_value();
402   }
403 
404   return Smi::FromInt(subject->Get(i));
405 }
406 
407 
RUNTIME_FUNCTION(Runtime_StringCompare)408 RUNTIME_FUNCTION(Runtime_StringCompare) {
409   HandleScope handle_scope(isolate);
410   DCHECK_EQ(2, args.length());
411   CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
412   CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
413   isolate->counters()->string_compare_runtime()->Increment();
414   switch (String::Compare(x, y)) {
415     case ComparisonResult::kLessThan:
416       return Smi::FromInt(LESS);
417     case ComparisonResult::kEqual:
418       return Smi::FromInt(EQUAL);
419     case ComparisonResult::kGreaterThan:
420       return Smi::FromInt(GREATER);
421     case ComparisonResult::kUndefined:
422       break;
423   }
424   UNREACHABLE();
425   return Smi::FromInt(0);
426 }
427 
428 
RUNTIME_FUNCTION(Runtime_StringBuilderConcat)429 RUNTIME_FUNCTION(Runtime_StringBuilderConcat) {
430   HandleScope scope(isolate);
431   DCHECK(args.length() == 3);
432   CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
433   int32_t array_length;
434   if (!args[1]->ToInt32(&array_length)) {
435     THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
436   }
437   CONVERT_ARG_HANDLE_CHECKED(String, special, 2);
438 
439   size_t actual_array_length = 0;
440   RUNTIME_ASSERT(
441       TryNumberToSize(isolate, array->length(), &actual_array_length));
442   RUNTIME_ASSERT(array_length >= 0);
443   RUNTIME_ASSERT(static_cast<size_t>(array_length) <= actual_array_length);
444 
445   // This assumption is used by the slice encoding in one or two smis.
446   DCHECK(Smi::kMaxValue >= String::kMaxLength);
447 
448   RUNTIME_ASSERT(array->HasFastElements());
449   JSObject::EnsureCanContainHeapObjectElements(array);
450 
451   int special_length = special->length();
452   if (!array->HasFastObjectElements()) {
453     return isolate->Throw(isolate->heap()->illegal_argument_string());
454   }
455 
456   int length;
457   bool one_byte = special->HasOnlyOneByteChars();
458 
459   {
460     DisallowHeapAllocation no_gc;
461     FixedArray* fixed_array = FixedArray::cast(array->elements());
462     if (fixed_array->length() < array_length) {
463       array_length = fixed_array->length();
464     }
465 
466     if (array_length == 0) {
467       return isolate->heap()->empty_string();
468     } else if (array_length == 1) {
469       Object* first = fixed_array->get(0);
470       if (first->IsString()) return first;
471     }
472     length = StringBuilderConcatLength(special_length, fixed_array,
473                                        array_length, &one_byte);
474   }
475 
476   if (length == -1) {
477     return isolate->Throw(isolate->heap()->illegal_argument_string());
478   }
479 
480   if (one_byte) {
481     Handle<SeqOneByteString> answer;
482     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
483         isolate, answer, isolate->factory()->NewRawOneByteString(length));
484     StringBuilderConcatHelper(*special, answer->GetChars(),
485                               FixedArray::cast(array->elements()),
486                               array_length);
487     return *answer;
488   } else {
489     Handle<SeqTwoByteString> answer;
490     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
491         isolate, answer, isolate->factory()->NewRawTwoByteString(length));
492     StringBuilderConcatHelper(*special, answer->GetChars(),
493                               FixedArray::cast(array->elements()),
494                               array_length);
495     return *answer;
496   }
497 }
498 
499 
RUNTIME_FUNCTION(Runtime_StringBuilderJoin)500 RUNTIME_FUNCTION(Runtime_StringBuilderJoin) {
501   HandleScope scope(isolate);
502   DCHECK(args.length() == 3);
503   CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
504   int32_t array_length;
505   if (!args[1]->ToInt32(&array_length)) {
506     THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
507   }
508   CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
509   RUNTIME_ASSERT(array->HasFastObjectElements());
510   RUNTIME_ASSERT(array_length >= 0);
511 
512   Handle<FixedArray> fixed_array(FixedArray::cast(array->elements()));
513   if (fixed_array->length() < array_length) {
514     array_length = fixed_array->length();
515   }
516 
517   if (array_length == 0) {
518     return isolate->heap()->empty_string();
519   } else if (array_length == 1) {
520     Object* first = fixed_array->get(0);
521     RUNTIME_ASSERT(first->IsString());
522     return first;
523   }
524 
525   int separator_length = separator->length();
526   RUNTIME_ASSERT(separator_length > 0);
527   int max_nof_separators =
528       (String::kMaxLength + separator_length - 1) / separator_length;
529   if (max_nof_separators < (array_length - 1)) {
530     THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
531   }
532   int length = (array_length - 1) * separator_length;
533   for (int i = 0; i < array_length; i++) {
534     Object* element_obj = fixed_array->get(i);
535     RUNTIME_ASSERT(element_obj->IsString());
536     String* element = String::cast(element_obj);
537     int increment = element->length();
538     if (increment > String::kMaxLength - length) {
539       STATIC_ASSERT(String::kMaxLength < kMaxInt);
540       length = kMaxInt;  // Provoke exception;
541       break;
542     }
543     length += increment;
544   }
545 
546   Handle<SeqTwoByteString> answer;
547   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
548       isolate, answer, isolate->factory()->NewRawTwoByteString(length));
549 
550   DisallowHeapAllocation no_gc;
551 
552   uc16* sink = answer->GetChars();
553 #ifdef DEBUG
554   uc16* end = sink + length;
555 #endif
556 
557   RUNTIME_ASSERT(fixed_array->get(0)->IsString());
558   String* first = String::cast(fixed_array->get(0));
559   String* separator_raw = *separator;
560   int first_length = first->length();
561   String::WriteToFlat(first, sink, 0, first_length);
562   sink += first_length;
563 
564   for (int i = 1; i < array_length; i++) {
565     DCHECK(sink + separator_length <= end);
566     String::WriteToFlat(separator_raw, sink, 0, separator_length);
567     sink += separator_length;
568 
569     RUNTIME_ASSERT(fixed_array->get(i)->IsString());
570     String* element = String::cast(fixed_array->get(i));
571     int element_length = element->length();
572     DCHECK(sink + element_length <= end);
573     String::WriteToFlat(element, sink, 0, element_length);
574     sink += element_length;
575   }
576   DCHECK(sink == end);
577 
578   // Use %_FastOneByteArrayJoin instead.
579   DCHECK(!answer->IsOneByteRepresentation());
580   return *answer;
581 }
582 
583 template <typename Char>
JoinSparseArrayWithSeparator(FixedArray * elements,int elements_length,uint32_t array_length,String * separator,Vector<Char> buffer)584 static void JoinSparseArrayWithSeparator(FixedArray* elements,
585                                          int elements_length,
586                                          uint32_t array_length,
587                                          String* separator,
588                                          Vector<Char> buffer) {
589   DisallowHeapAllocation no_gc;
590   int previous_separator_position = 0;
591   int separator_length = separator->length();
592   int cursor = 0;
593   for (int i = 0; i < elements_length; i += 2) {
594     int position = NumberToInt32(elements->get(i));
595     String* string = String::cast(elements->get(i + 1));
596     int string_length = string->length();
597     if (string->length() > 0) {
598       while (previous_separator_position < position) {
599         String::WriteToFlat<Char>(separator, &buffer[cursor], 0,
600                                   separator_length);
601         cursor += separator_length;
602         previous_separator_position++;
603       }
604       String::WriteToFlat<Char>(string, &buffer[cursor], 0, string_length);
605       cursor += string->length();
606     }
607   }
608   if (separator_length > 0) {
609     // Array length must be representable as a signed 32-bit number,
610     // otherwise the total string length would have been too large.
611     DCHECK(array_length <= 0x7fffffff);  // Is int32_t.
612     int last_array_index = static_cast<int>(array_length - 1);
613     while (previous_separator_position < last_array_index) {
614       String::WriteToFlat<Char>(separator, &buffer[cursor], 0,
615                                 separator_length);
616       cursor += separator_length;
617       previous_separator_position++;
618     }
619   }
620   DCHECK(cursor <= buffer.length());
621 }
622 
623 
RUNTIME_FUNCTION(Runtime_SparseJoinWithSeparator)624 RUNTIME_FUNCTION(Runtime_SparseJoinWithSeparator) {
625   HandleScope scope(isolate);
626   DCHECK(args.length() == 3);
627   CONVERT_ARG_HANDLE_CHECKED(JSArray, elements_array, 0);
628   CONVERT_NUMBER_CHECKED(uint32_t, array_length, Uint32, args[1]);
629   CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
630   // elements_array is fast-mode JSarray of alternating positions
631   // (increasing order) and strings.
632   RUNTIME_ASSERT(elements_array->HasFastSmiOrObjectElements());
633   // array_length is length of original array (used to add separators);
634   // separator is string to put between elements. Assumed to be non-empty.
635   RUNTIME_ASSERT(array_length > 0);
636 
637   // Find total length of join result.
638   int string_length = 0;
639   bool is_one_byte = separator->IsOneByteRepresentation();
640   bool overflow = false;
641   CONVERT_NUMBER_CHECKED(int, elements_length, Int32, elements_array->length());
642   RUNTIME_ASSERT(elements_length <= elements_array->elements()->length());
643   RUNTIME_ASSERT((elements_length & 1) == 0);  // Even length.
644   FixedArray* elements = FixedArray::cast(elements_array->elements());
645   for (int i = 0; i < elements_length; i += 2) {
646     RUNTIME_ASSERT(elements->get(i)->IsNumber());
647     CONVERT_NUMBER_CHECKED(uint32_t, position, Uint32, elements->get(i));
648     RUNTIME_ASSERT(position < array_length);
649     RUNTIME_ASSERT(elements->get(i + 1)->IsString());
650   }
651 
652   {
653     DisallowHeapAllocation no_gc;
654     for (int i = 0; i < elements_length; i += 2) {
655       String* string = String::cast(elements->get(i + 1));
656       int length = string->length();
657       if (is_one_byte && !string->IsOneByteRepresentation()) {
658         is_one_byte = false;
659       }
660       if (length > String::kMaxLength ||
661           String::kMaxLength - length < string_length) {
662         overflow = true;
663         break;
664       }
665       string_length += length;
666     }
667   }
668 
669   int separator_length = separator->length();
670   if (!overflow && separator_length > 0) {
671     if (array_length <= 0x7fffffffu) {
672       int separator_count = static_cast<int>(array_length) - 1;
673       int remaining_length = String::kMaxLength - string_length;
674       if ((remaining_length / separator_length) >= separator_count) {
675         string_length += separator_length * (array_length - 1);
676       } else {
677         // Not room for the separators within the maximal string length.
678         overflow = true;
679       }
680     } else {
681       // Nonempty separator and at least 2^31-1 separators necessary
682       // means that the string is too large to create.
683       STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
684       overflow = true;
685     }
686   }
687   if (overflow) {
688     // Throw an exception if the resulting string is too large. See
689     // https://code.google.com/p/chromium/issues/detail?id=336820
690     // for details.
691     THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
692   }
693 
694   if (is_one_byte) {
695     Handle<SeqOneByteString> result = isolate->factory()
696                                           ->NewRawOneByteString(string_length)
697                                           .ToHandleChecked();
698     JoinSparseArrayWithSeparator<uint8_t>(
699         FixedArray::cast(elements_array->elements()), elements_length,
700         array_length, *separator,
701         Vector<uint8_t>(result->GetChars(), string_length));
702     return *result;
703   } else {
704     Handle<SeqTwoByteString> result = isolate->factory()
705                                           ->NewRawTwoByteString(string_length)
706                                           .ToHandleChecked();
707     JoinSparseArrayWithSeparator<uc16>(
708         FixedArray::cast(elements_array->elements()), elements_length,
709         array_length, *separator,
710         Vector<uc16>(result->GetChars(), string_length));
711     return *result;
712   }
713 }
714 
715 
716 // Copies Latin1 characters to the given fixed array looking up
717 // one-char strings in the cache. Gives up on the first char that is
718 // not in the cache and fills the remainder with smi zeros. Returns
719 // the length of the successfully copied prefix.
CopyCachedOneByteCharsToArray(Heap * heap,const uint8_t * chars,FixedArray * elements,int length)720 static int CopyCachedOneByteCharsToArray(Heap* heap, const uint8_t* chars,
721                                          FixedArray* elements, int length) {
722   DisallowHeapAllocation no_gc;
723   FixedArray* one_byte_cache = heap->single_character_string_cache();
724   Object* undefined = heap->undefined_value();
725   int i;
726   WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
727   for (i = 0; i < length; ++i) {
728     Object* value = one_byte_cache->get(chars[i]);
729     if (value == undefined) break;
730     elements->set(i, value, mode);
731   }
732   if (i < length) {
733     DCHECK(Smi::FromInt(0) == 0);
734     memset(elements->data_start() + i, 0, kPointerSize * (length - i));
735   }
736 #ifdef DEBUG
737   for (int j = 0; j < length; ++j) {
738     Object* element = elements->get(j);
739     DCHECK(element == Smi::FromInt(0) ||
740            (element->IsString() && String::cast(element)->LooksValid()));
741   }
742 #endif
743   return i;
744 }
745 
746 
747 // Converts a String to JSArray.
748 // For example, "foo" => ["f", "o", "o"].
RUNTIME_FUNCTION(Runtime_StringToArray)749 RUNTIME_FUNCTION(Runtime_StringToArray) {
750   HandleScope scope(isolate);
751   DCHECK(args.length() == 2);
752   CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
753   CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
754 
755   s = String::Flatten(s);
756   const int length = static_cast<int>(Min<uint32_t>(s->length(), limit));
757 
758   Handle<FixedArray> elements;
759   int position = 0;
760   if (s->IsFlat() && s->IsOneByteRepresentation()) {
761     // Try using cached chars where possible.
762     elements = isolate->factory()->NewUninitializedFixedArray(length);
763 
764     DisallowHeapAllocation no_gc;
765     String::FlatContent content = s->GetFlatContent();
766     if (content.IsOneByte()) {
767       Vector<const uint8_t> chars = content.ToOneByteVector();
768       // Note, this will initialize all elements (not only the prefix)
769       // to prevent GC from seeing partially initialized array.
770       position = CopyCachedOneByteCharsToArray(isolate->heap(), chars.start(),
771                                                *elements, length);
772     } else {
773       MemsetPointer(elements->data_start(), isolate->heap()->undefined_value(),
774                     length);
775     }
776   } else {
777     elements = isolate->factory()->NewFixedArray(length);
778   }
779   for (int i = position; i < length; ++i) {
780     Handle<Object> str =
781         isolate->factory()->LookupSingleCharacterStringFromCode(s->Get(i));
782     elements->set(i, *str);
783   }
784 
785 #ifdef DEBUG
786   for (int i = 0; i < length; ++i) {
787     DCHECK(String::cast(elements->get(i))->length() == 1);
788   }
789 #endif
790 
791   return *isolate->factory()->NewJSArrayWithElements(elements);
792 }
793 
794 
ToUpperOverflows(uc32 character)795 static inline bool ToUpperOverflows(uc32 character) {
796   // y with umlauts and the micro sign are the only characters that stop
797   // fitting into one-byte when converting to uppercase.
798   static const uc32 yuml_code = 0xff;
799   static const uc32 micro_code = 0xb5;
800   return (character == yuml_code || character == micro_code);
801 }
802 
803 
804 template <class Converter>
ConvertCaseHelper(Isolate * isolate,String * string,SeqString * result,int result_length,unibrow::Mapping<Converter,128> * mapping)805 MUST_USE_RESULT static Object* ConvertCaseHelper(
806     Isolate* isolate, String* string, SeqString* result, int result_length,
807     unibrow::Mapping<Converter, 128>* mapping) {
808   DisallowHeapAllocation no_gc;
809   // We try this twice, once with the assumption that the result is no longer
810   // than the input and, if that assumption breaks, again with the exact
811   // length.  This may not be pretty, but it is nicer than what was here before
812   // and I hereby claim my vaffel-is.
813   //
814   // NOTE: This assumes that the upper/lower case of an ASCII
815   // character is also ASCII.  This is currently the case, but it
816   // might break in the future if we implement more context and locale
817   // dependent upper/lower conversions.
818   bool has_changed_character = false;
819 
820   // Convert all characters to upper case, assuming that they will fit
821   // in the buffer
822   StringCharacterStream stream(string);
823   unibrow::uchar chars[Converter::kMaxWidth];
824   // We can assume that the string is not empty
825   uc32 current = stream.GetNext();
826   bool ignore_overflow = Converter::kIsToLower || result->IsSeqTwoByteString();
827   for (int i = 0; i < result_length;) {
828     bool has_next = stream.HasMore();
829     uc32 next = has_next ? stream.GetNext() : 0;
830     int char_length = mapping->get(current, next, chars);
831     if (char_length == 0) {
832       // The case conversion of this character is the character itself.
833       result->Set(i, current);
834       i++;
835     } else if (char_length == 1 &&
836                (ignore_overflow || !ToUpperOverflows(current))) {
837       // Common case: converting the letter resulted in one character.
838       DCHECK(static_cast<uc32>(chars[0]) != current);
839       result->Set(i, chars[0]);
840       has_changed_character = true;
841       i++;
842     } else if (result_length == string->length()) {
843       bool overflows = ToUpperOverflows(current);
844       // We've assumed that the result would be as long as the
845       // input but here is a character that converts to several
846       // characters.  No matter, we calculate the exact length
847       // of the result and try the whole thing again.
848       //
849       // Note that this leaves room for optimization.  We could just
850       // memcpy what we already have to the result string.  Also,
851       // the result string is the last object allocated we could
852       // "realloc" it and probably, in the vast majority of cases,
853       // extend the existing string to be able to hold the full
854       // result.
855       int next_length = 0;
856       if (has_next) {
857         next_length = mapping->get(next, 0, chars);
858         if (next_length == 0) next_length = 1;
859       }
860       int current_length = i + char_length + next_length;
861       while (stream.HasMore()) {
862         current = stream.GetNext();
863         overflows |= ToUpperOverflows(current);
864         // NOTE: we use 0 as the next character here because, while
865         // the next character may affect what a character converts to,
866         // it does not in any case affect the length of what it convert
867         // to.
868         int char_length = mapping->get(current, 0, chars);
869         if (char_length == 0) char_length = 1;
870         current_length += char_length;
871         if (current_length > String::kMaxLength) {
872           AllowHeapAllocation allocate_error_and_return;
873           THROW_NEW_ERROR_RETURN_FAILURE(isolate,
874                                          NewInvalidStringLengthError());
875         }
876       }
877       // Try again with the real length.  Return signed if we need
878       // to allocate a two-byte string for to uppercase.
879       return (overflows && !ignore_overflow) ? Smi::FromInt(-current_length)
880                                              : Smi::FromInt(current_length);
881     } else {
882       for (int j = 0; j < char_length; j++) {
883         result->Set(i, chars[j]);
884         i++;
885       }
886       has_changed_character = true;
887     }
888     current = next;
889   }
890   if (has_changed_character) {
891     return result;
892   } else {
893     // If we didn't actually change anything in doing the conversion
894     // we simple return the result and let the converted string
895     // become garbage; there is no reason to keep two identical strings
896     // alive.
897     return string;
898   }
899 }
900 
901 
902 static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF;
903 static const uintptr_t kAsciiMask = kOneInEveryByte << 7;
904 
905 // Given a word and two range boundaries returns a word with high bit
906 // set in every byte iff the corresponding input byte was strictly in
907 // the range (m, n). All the other bits in the result are cleared.
908 // This function is only useful when it can be inlined and the
909 // boundaries are statically known.
910 // Requires: all bytes in the input word and the boundaries must be
911 // ASCII (less than 0x7F).
AsciiRangeMask(uintptr_t w,char m,char n)912 static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) {
913   // Use strict inequalities since in edge cases the function could be
914   // further simplified.
915   DCHECK(0 < m && m < n);
916   // Has high bit set in every w byte less than n.
917   uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w;
918   // Has high bit set in every w byte greater than m.
919   uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m);
920   return (tmp1 & tmp2 & (kOneInEveryByte * 0x80));
921 }
922 
923 
924 #ifdef DEBUG
CheckFastAsciiConvert(char * dst,const char * src,int length,bool changed,bool is_to_lower)925 static bool CheckFastAsciiConvert(char* dst, const char* src, int length,
926                                   bool changed, bool is_to_lower) {
927   bool expected_changed = false;
928   for (int i = 0; i < length; i++) {
929     if (dst[i] == src[i]) continue;
930     expected_changed = true;
931     if (is_to_lower) {
932       DCHECK('A' <= src[i] && src[i] <= 'Z');
933       DCHECK(dst[i] == src[i] + ('a' - 'A'));
934     } else {
935       DCHECK('a' <= src[i] && src[i] <= 'z');
936       DCHECK(dst[i] == src[i] - ('a' - 'A'));
937     }
938   }
939   return (expected_changed == changed);
940 }
941 #endif
942 
943 
944 template <class Converter>
FastAsciiConvert(char * dst,const char * src,int length,bool * changed_out)945 static bool FastAsciiConvert(char* dst, const char* src, int length,
946                              bool* changed_out) {
947 #ifdef DEBUG
948   char* saved_dst = dst;
949   const char* saved_src = src;
950 #endif
951   DisallowHeapAllocation no_gc;
952   // We rely on the distance between upper and lower case letters
953   // being a known power of 2.
954   DCHECK('a' - 'A' == (1 << 5));
955   // Boundaries for the range of input characters than require conversion.
956   static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1;
957   static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1;
958   bool changed = false;
959   uintptr_t or_acc = 0;
960   const char* const limit = src + length;
961 
962   // dst is newly allocated and always aligned.
963   DCHECK(IsAligned(reinterpret_cast<intptr_t>(dst), sizeof(uintptr_t)));
964   // Only attempt processing one word at a time if src is also aligned.
965   if (IsAligned(reinterpret_cast<intptr_t>(src), sizeof(uintptr_t))) {
966     // Process the prefix of the input that requires no conversion one aligned
967     // (machine) word at a time.
968     while (src <= limit - sizeof(uintptr_t)) {
969       const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
970       or_acc |= w;
971       if (AsciiRangeMask(w, lo, hi) != 0) {
972         changed = true;
973         break;
974       }
975       *reinterpret_cast<uintptr_t*>(dst) = w;
976       src += sizeof(uintptr_t);
977       dst += sizeof(uintptr_t);
978     }
979     // Process the remainder of the input performing conversion when
980     // required one word at a time.
981     while (src <= limit - sizeof(uintptr_t)) {
982       const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
983       or_acc |= w;
984       uintptr_t m = AsciiRangeMask(w, lo, hi);
985       // The mask has high (7th) bit set in every byte that needs
986       // conversion and we know that the distance between cases is
987       // 1 << 5.
988       *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2);
989       src += sizeof(uintptr_t);
990       dst += sizeof(uintptr_t);
991     }
992   }
993   // Process the last few bytes of the input (or the whole input if
994   // unaligned access is not supported).
995   while (src < limit) {
996     char c = *src;
997     or_acc |= c;
998     if (lo < c && c < hi) {
999       c ^= (1 << 5);
1000       changed = true;
1001     }
1002     *dst = c;
1003     ++src;
1004     ++dst;
1005   }
1006 
1007   if ((or_acc & kAsciiMask) != 0) return false;
1008 
1009   DCHECK(CheckFastAsciiConvert(saved_dst, saved_src, length, changed,
1010                                Converter::kIsToLower));
1011 
1012   *changed_out = changed;
1013   return true;
1014 }
1015 
1016 
1017 template <class Converter>
ConvertCase(Handle<String> s,Isolate * isolate,unibrow::Mapping<Converter,128> * mapping)1018 MUST_USE_RESULT static Object* ConvertCase(
1019     Handle<String> s, Isolate* isolate,
1020     unibrow::Mapping<Converter, 128>* mapping) {
1021   s = String::Flatten(s);
1022   int length = s->length();
1023   // Assume that the string is not empty; we need this assumption later
1024   if (length == 0) return *s;
1025 
1026   // Simpler handling of ASCII strings.
1027   //
1028   // NOTE: This assumes that the upper/lower case of an ASCII
1029   // character is also ASCII.  This is currently the case, but it
1030   // might break in the future if we implement more context and locale
1031   // dependent upper/lower conversions.
1032   if (s->IsOneByteRepresentationUnderneath()) {
1033     // Same length as input.
1034     Handle<SeqOneByteString> result =
1035         isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
1036     DisallowHeapAllocation no_gc;
1037     String::FlatContent flat_content = s->GetFlatContent();
1038     DCHECK(flat_content.IsFlat());
1039     bool has_changed_character = false;
1040     bool is_ascii = FastAsciiConvert<Converter>(
1041         reinterpret_cast<char*>(result->GetChars()),
1042         reinterpret_cast<const char*>(flat_content.ToOneByteVector().start()),
1043         length, &has_changed_character);
1044     // If not ASCII, we discard the result and take the 2 byte path.
1045     if (is_ascii) return has_changed_character ? *result : *s;
1046   }
1047 
1048   Handle<SeqString> result;  // Same length as input.
1049   if (s->IsOneByteRepresentation()) {
1050     result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
1051   } else {
1052     result = isolate->factory()->NewRawTwoByteString(length).ToHandleChecked();
1053   }
1054 
1055   Object* answer = ConvertCaseHelper(isolate, *s, *result, length, mapping);
1056   if (answer->IsException() || answer->IsString()) return answer;
1057 
1058   DCHECK(answer->IsSmi());
1059   length = Smi::cast(answer)->value();
1060   if (s->IsOneByteRepresentation() && length > 0) {
1061     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
1062         isolate, result, isolate->factory()->NewRawOneByteString(length));
1063   } else {
1064     if (length < 0) length = -length;
1065     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
1066         isolate, result, isolate->factory()->NewRawTwoByteString(length));
1067   }
1068   return ConvertCaseHelper(isolate, *s, *result, length, mapping);
1069 }
1070 
1071 
RUNTIME_FUNCTION(Runtime_StringToLowerCase)1072 RUNTIME_FUNCTION(Runtime_StringToLowerCase) {
1073   HandleScope scope(isolate);
1074   DCHECK(args.length() == 1);
1075   CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
1076   return ConvertCase(s, isolate, isolate->runtime_state()->to_lower_mapping());
1077 }
1078 
1079 
RUNTIME_FUNCTION(Runtime_StringToUpperCase)1080 RUNTIME_FUNCTION(Runtime_StringToUpperCase) {
1081   HandleScope scope(isolate);
1082   DCHECK(args.length() == 1);
1083   CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
1084   return ConvertCase(s, isolate, isolate->runtime_state()->to_upper_mapping());
1085 }
1086 
1087 
RUNTIME_FUNCTION(Runtime_StringTrim)1088 RUNTIME_FUNCTION(Runtime_StringTrim) {
1089   HandleScope scope(isolate);
1090   DCHECK(args.length() == 3);
1091 
1092   CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
1093   CONVERT_BOOLEAN_ARG_CHECKED(trimLeft, 1);
1094   CONVERT_BOOLEAN_ARG_CHECKED(trimRight, 2);
1095 
1096   string = String::Flatten(string);
1097   int length = string->length();
1098 
1099   int left = 0;
1100   UnicodeCache* unicode_cache = isolate->unicode_cache();
1101   if (trimLeft) {
1102     while (left < length &&
1103            unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(left))) {
1104       left++;
1105     }
1106   }
1107 
1108   int right = length;
1109   if (trimRight) {
1110     while (
1111         right > left &&
1112         unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(right - 1))) {
1113       right--;
1114     }
1115   }
1116 
1117   return *isolate->factory()->NewSubString(string, left, right);
1118 }
1119 
1120 
RUNTIME_FUNCTION(Runtime_TruncateString)1121 RUNTIME_FUNCTION(Runtime_TruncateString) {
1122   HandleScope scope(isolate);
1123   DCHECK(args.length() == 2);
1124   CONVERT_ARG_HANDLE_CHECKED(SeqString, string, 0);
1125   CONVERT_INT32_ARG_CHECKED(new_length, 1);
1126   RUNTIME_ASSERT(new_length >= 0);
1127   return *SeqString::Truncate(string, new_length);
1128 }
1129 
1130 
RUNTIME_FUNCTION(Runtime_NewString)1131 RUNTIME_FUNCTION(Runtime_NewString) {
1132   HandleScope scope(isolate);
1133   DCHECK(args.length() == 2);
1134   CONVERT_INT32_ARG_CHECKED(length, 0);
1135   CONVERT_BOOLEAN_ARG_CHECKED(is_one_byte, 1);
1136   if (length == 0) return isolate->heap()->empty_string();
1137   Handle<String> result;
1138   if (is_one_byte) {
1139     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
1140         isolate, result, isolate->factory()->NewRawOneByteString(length));
1141   } else {
1142     ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
1143         isolate, result, isolate->factory()->NewRawTwoByteString(length));
1144   }
1145   return *result;
1146 }
1147 
1148 
RUNTIME_FUNCTION(Runtime_StringEquals)1149 RUNTIME_FUNCTION(Runtime_StringEquals) {
1150   HandleScope handle_scope(isolate);
1151   DCHECK(args.length() == 2);
1152 
1153   CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
1154   CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
1155 
1156   bool not_equal = !String::Equals(x, y);
1157   // This is slightly convoluted because the value that signifies
1158   // equality is 0 and inequality is 1 so we have to negate the result
1159   // from String::Equals.
1160   DCHECK(not_equal == 0 || not_equal == 1);
1161   STATIC_ASSERT(EQUAL == 0);
1162   STATIC_ASSERT(NOT_EQUAL == 1);
1163   return Smi::FromInt(not_equal);
1164 }
1165 
1166 
RUNTIME_FUNCTION(Runtime_FlattenString)1167 RUNTIME_FUNCTION(Runtime_FlattenString) {
1168   HandleScope scope(isolate);
1169   DCHECK(args.length() == 1);
1170   CONVERT_ARG_HANDLE_CHECKED(String, str, 0);
1171   return *String::Flatten(str);
1172 }
1173 
1174 
RUNTIME_FUNCTION(Runtime_StringCharFromCode)1175 RUNTIME_FUNCTION(Runtime_StringCharFromCode) {
1176   HandleScope handlescope(isolate);
1177   DCHECK_EQ(1, args.length());
1178   if (args[0]->IsNumber()) {
1179     CONVERT_NUMBER_CHECKED(uint32_t, code, Uint32, args[0]);
1180     code &= 0xffff;
1181     return *isolate->factory()->LookupSingleCharacterStringFromCode(code);
1182   }
1183   return isolate->heap()->empty_string();
1184 }
1185 
1186 
RUNTIME_FUNCTION(Runtime_StringCharAt)1187 RUNTIME_FUNCTION(Runtime_StringCharAt) {
1188   SealHandleScope shs(isolate);
1189   DCHECK(args.length() == 2);
1190   if (!args[0]->IsString()) return Smi::FromInt(0);
1191   if (!args[1]->IsNumber()) return Smi::FromInt(0);
1192   if (std::isinf(args.number_at(1))) return isolate->heap()->empty_string();
1193   Object* code = __RT_impl_Runtime_StringCharCodeAtRT(args, isolate);
1194   if (code->IsNaN()) return isolate->heap()->empty_string();
1195   return __RT_impl_Runtime_StringCharFromCode(Arguments(1, &code), isolate);
1196 }
1197 
1198 
RUNTIME_FUNCTION(Runtime_OneByteSeqStringGetChar)1199 RUNTIME_FUNCTION(Runtime_OneByteSeqStringGetChar) {
1200   SealHandleScope shs(isolate);
1201   DCHECK(args.length() == 2);
1202   CONVERT_ARG_CHECKED(SeqOneByteString, string, 0);
1203   CONVERT_INT32_ARG_CHECKED(index, 1);
1204   return Smi::FromInt(string->SeqOneByteStringGet(index));
1205 }
1206 
1207 
RUNTIME_FUNCTION(Runtime_OneByteSeqStringSetChar)1208 RUNTIME_FUNCTION(Runtime_OneByteSeqStringSetChar) {
1209   SealHandleScope shs(isolate);
1210   DCHECK(args.length() == 3);
1211   CONVERT_INT32_ARG_CHECKED(index, 0);
1212   CONVERT_INT32_ARG_CHECKED(value, 1);
1213   CONVERT_ARG_CHECKED(SeqOneByteString, string, 2);
1214   string->SeqOneByteStringSet(index, value);
1215   return string;
1216 }
1217 
1218 
RUNTIME_FUNCTION(Runtime_TwoByteSeqStringGetChar)1219 RUNTIME_FUNCTION(Runtime_TwoByteSeqStringGetChar) {
1220   SealHandleScope shs(isolate);
1221   DCHECK(args.length() == 2);
1222   CONVERT_ARG_CHECKED(SeqTwoByteString, string, 0);
1223   CONVERT_INT32_ARG_CHECKED(index, 1);
1224   return Smi::FromInt(string->SeqTwoByteStringGet(index));
1225 }
1226 
1227 
RUNTIME_FUNCTION(Runtime_TwoByteSeqStringSetChar)1228 RUNTIME_FUNCTION(Runtime_TwoByteSeqStringSetChar) {
1229   SealHandleScope shs(isolate);
1230   DCHECK(args.length() == 3);
1231   CONVERT_INT32_ARG_CHECKED(index, 0);
1232   CONVERT_INT32_ARG_CHECKED(value, 1);
1233   CONVERT_ARG_CHECKED(SeqTwoByteString, string, 2);
1234   string->SeqTwoByteStringSet(index, value);
1235   return string;
1236 }
1237 
1238 
RUNTIME_FUNCTION(Runtime_StringCharCodeAt)1239 RUNTIME_FUNCTION(Runtime_StringCharCodeAt) {
1240   SealHandleScope shs(isolate);
1241   DCHECK(args.length() == 2);
1242   if (!args[0]->IsString()) return isolate->heap()->undefined_value();
1243   if (!args[1]->IsNumber()) return isolate->heap()->undefined_value();
1244   if (std::isinf(args.number_at(1))) return isolate->heap()->nan_value();
1245   return __RT_impl_Runtime_StringCharCodeAtRT(args, isolate);
1246 }
1247 
1248 }  // namespace internal
1249 }  // namespace v8
1250