1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include "ceres/casts.h"
32 #include "ceres/compressed_row_sparse_matrix.h"
33 #include "ceres/internal/scoped_ptr.h"
34 #include "ceres/linear_least_squares_problems.h"
35 #include "ceres/linear_solver.h"
36 #include "ceres/triplet_sparse_matrix.h"
37 #include "ceres/types.h"
38 #include "glog/logging.h"
39 #include "gtest/gtest.h"
40 
41 
42 namespace ceres {
43 namespace internal {
44 
45 class UnsymmetricLinearSolverTest : public ::testing::Test {
46  protected :
SetUp()47   virtual void SetUp() {
48     scoped_ptr<LinearLeastSquaresProblem> problem(
49         CreateLinearLeastSquaresProblemFromId(0));
50 
51     CHECK_NOTNULL(problem.get());
52     A_.reset(down_cast<TripletSparseMatrix*>(problem->A.release()));
53     b_.reset(problem->b.release());
54     D_.reset(problem->D.release());
55     sol_unregularized_.reset(problem->x.release());
56     sol_regularized_.reset(problem->x_D.release());
57   }
58 
TestSolver(const LinearSolver::Options & options)59   void TestSolver(const LinearSolver::Options& options) {
60 
61 
62     LinearSolver::PerSolveOptions per_solve_options;
63     LinearSolver::Summary unregularized_solve_summary;
64     LinearSolver::Summary regularized_solve_summary;
65     Vector x_unregularized(A_->num_cols());
66     Vector x_regularized(A_->num_cols());
67 
68     scoped_ptr<SparseMatrix> transformed_A;
69 
70     if (options.type == DENSE_QR ||
71         options.type == DENSE_NORMAL_CHOLESKY) {
72       transformed_A.reset(new DenseSparseMatrix(*A_));
73     } else if (options.type == SPARSE_NORMAL_CHOLESKY) {
74       CompressedRowSparseMatrix* crsm =  new CompressedRowSparseMatrix(*A_);
75       // Add row/column blocks structure.
76       for (int i = 0; i < A_->num_rows(); ++i) {
77         crsm->mutable_row_blocks()->push_back(1);
78       }
79 
80       for (int i = 0; i < A_->num_cols(); ++i) {
81         crsm->mutable_col_blocks()->push_back(1);
82       }
83       transformed_A.reset(crsm);
84     } else {
85       LOG(FATAL) << "Unknown linear solver : " << options.type;
86     }
87 
88     // Unregularized
89     scoped_ptr<LinearSolver> solver(LinearSolver::Create(options));
90     unregularized_solve_summary =
91         solver->Solve(transformed_A.get(),
92                       b_.get(),
93                       per_solve_options,
94                       x_unregularized.data());
95 
96     // Sparsity structure is changing, reset the solver.
97     solver.reset(LinearSolver::Create(options));
98     // Regularized solution
99     per_solve_options.D = D_.get();
100     regularized_solve_summary =
101         solver->Solve(transformed_A.get(),
102                       b_.get(),
103                       per_solve_options,
104                       x_regularized.data());
105 
106     EXPECT_EQ(unregularized_solve_summary.termination_type,
107               LINEAR_SOLVER_SUCCESS);
108 
109     for (int i = 0; i < A_->num_cols(); ++i) {
110       EXPECT_NEAR(sol_unregularized_[i], x_unregularized[i], 1e-8)
111           << "\nExpected: "
112           << ConstVectorRef(sol_unregularized_.get(), A_->num_cols()).transpose()
113           << "\nActual: " << x_unregularized.transpose();
114     }
115 
116     EXPECT_EQ(regularized_solve_summary.termination_type,
117               LINEAR_SOLVER_SUCCESS);
118     for (int i = 0; i < A_->num_cols(); ++i) {
119       EXPECT_NEAR(sol_regularized_[i], x_regularized[i], 1e-8)
120           << "\nExpected: "
121           << ConstVectorRef(sol_regularized_.get(), A_->num_cols()).transpose()
122           << "\nActual: " << x_regularized.transpose();
123     }
124   }
125 
126   scoped_ptr<TripletSparseMatrix> A_;
127   scoped_array<double> b_;
128   scoped_array<double> D_;
129   scoped_array<double> sol_unregularized_;
130   scoped_array<double> sol_regularized_;
131 };
132 
TEST_F(UnsymmetricLinearSolverTest,EigenDenseQR)133 TEST_F(UnsymmetricLinearSolverTest, EigenDenseQR) {
134   LinearSolver::Options options;
135   options.type = DENSE_QR;
136   options.dense_linear_algebra_library_type = EIGEN;
137   TestSolver(options);
138 }
139 
TEST_F(UnsymmetricLinearSolverTest,EigenDenseNormalCholesky)140 TEST_F(UnsymmetricLinearSolverTest, EigenDenseNormalCholesky) {
141   LinearSolver::Options options;
142   options.dense_linear_algebra_library_type = EIGEN;
143   options.type = DENSE_NORMAL_CHOLESKY;
144   TestSolver(options);
145 }
146 
147 #ifndef CERES_NO_LAPACK
TEST_F(UnsymmetricLinearSolverTest,LAPACKDenseQR)148 TEST_F(UnsymmetricLinearSolverTest, LAPACKDenseQR) {
149   LinearSolver::Options options;
150   options.type = DENSE_QR;
151   options.dense_linear_algebra_library_type = LAPACK;
152   TestSolver(options);
153 }
154 
TEST_F(UnsymmetricLinearSolverTest,LAPACKDenseNormalCholesky)155 TEST_F(UnsymmetricLinearSolverTest, LAPACKDenseNormalCholesky) {
156   LinearSolver::Options options;
157   options.dense_linear_algebra_library_type = LAPACK;
158   options.type = DENSE_NORMAL_CHOLESKY;
159   TestSolver(options);
160 }
161 #endif
162 
163 #ifndef CERES_NO_SUITESPARSE
TEST_F(UnsymmetricLinearSolverTest,SparseNormalCholeskyUsingSuiteSparsePreOrdering)164 TEST_F(UnsymmetricLinearSolverTest,
165        SparseNormalCholeskyUsingSuiteSparsePreOrdering) {
166   LinearSolver::Options options;
167   options.sparse_linear_algebra_library_type = SUITE_SPARSE;
168   options.type = SPARSE_NORMAL_CHOLESKY;
169   options.use_postordering = false;
170   TestSolver(options);
171 }
172 
TEST_F(UnsymmetricLinearSolverTest,SparseNormalCholeskyUsingSuiteSparsePostOrdering)173 TEST_F(UnsymmetricLinearSolverTest,
174        SparseNormalCholeskyUsingSuiteSparsePostOrdering) {
175   LinearSolver::Options options;
176   options.sparse_linear_algebra_library_type = SUITE_SPARSE;
177   options.type = SPARSE_NORMAL_CHOLESKY;
178   options.use_postordering = true;
179   TestSolver(options);
180 }
181 
TEST_F(UnsymmetricLinearSolverTest,SparseNormalCholeskyUsingSuiteSparseDynamicSparsity)182 TEST_F(UnsymmetricLinearSolverTest,
183        SparseNormalCholeskyUsingSuiteSparseDynamicSparsity) {
184   LinearSolver::Options options;
185   options.sparse_linear_algebra_library_type = SUITE_SPARSE;
186   options.type = SPARSE_NORMAL_CHOLESKY;
187   options.dynamic_sparsity = true;
188   TestSolver(options);
189 }
190 #endif
191 
192 #ifndef CERES_NO_CXSPARSE
TEST_F(UnsymmetricLinearSolverTest,SparseNormalCholeskyUsingCXSparsePreOrdering)193 TEST_F(UnsymmetricLinearSolverTest,
194        SparseNormalCholeskyUsingCXSparsePreOrdering) {
195   LinearSolver::Options options;
196   options.sparse_linear_algebra_library_type = CX_SPARSE;
197   options.type = SPARSE_NORMAL_CHOLESKY;
198   options.use_postordering = false;
199   TestSolver(options);
200 }
201 
TEST_F(UnsymmetricLinearSolverTest,SparseNormalCholeskyUsingCXSparsePostOrdering)202 TEST_F(UnsymmetricLinearSolverTest,
203        SparseNormalCholeskyUsingCXSparsePostOrdering) {
204   LinearSolver::Options options;
205   options.sparse_linear_algebra_library_type = CX_SPARSE;
206   options.type = SPARSE_NORMAL_CHOLESKY;
207   options.use_postordering = true;
208   TestSolver(options);
209 }
210 
TEST_F(UnsymmetricLinearSolverTest,SparseNormalCholeskyUsingCXSparseDynamicSparsity)211 TEST_F(UnsymmetricLinearSolverTest,
212        SparseNormalCholeskyUsingCXSparseDynamicSparsity) {
213   LinearSolver::Options options;
214   options.sparse_linear_algebra_library_type = CX_SPARSE;
215   options.type = SPARSE_NORMAL_CHOLESKY;
216   options.dynamic_sparsity = true;
217   TestSolver(options);
218 }
219 #endif
220 
221 #ifdef CERES_USE_EIGEN_SPARSE
TEST_F(UnsymmetricLinearSolverTest,SparseNormalCholeskyUsingEigenPreOrdering)222 TEST_F(UnsymmetricLinearSolverTest,
223        SparseNormalCholeskyUsingEigenPreOrdering) {
224   LinearSolver::Options options;
225   options.sparse_linear_algebra_library_type = EIGEN_SPARSE;
226   options.type = SPARSE_NORMAL_CHOLESKY;
227   options.use_postordering = false;
228   TestSolver(options);
229 }
230 
TEST_F(UnsymmetricLinearSolverTest,SparseNormalCholeskyUsingEigenPostOrdering)231 TEST_F(UnsymmetricLinearSolverTest,
232        SparseNormalCholeskyUsingEigenPostOrdering) {
233   LinearSolver::Options options;
234   options.sparse_linear_algebra_library_type = EIGEN_SPARSE;
235   options.type = SPARSE_NORMAL_CHOLESKY;
236   options.use_postordering = true;
237   TestSolver(options);
238 }
239 
TEST_F(UnsymmetricLinearSolverTest,SparseNormalCholeskyUsingEigenDynamicSparsity)240 TEST_F(UnsymmetricLinearSolverTest,
241        SparseNormalCholeskyUsingEigenDynamicSparsity) {
242   LinearSolver::Options options;
243   options.sparse_linear_algebra_library_type = EIGEN_SPARSE;
244   options.type = SPARSE_NORMAL_CHOLESKY;
245   options.dynamic_sparsity = true;
246   TestSolver(options);
247 }
248 
249 #endif  // CERES_USE_EIGEN_SPARSE
250 
251 }  // namespace internal
252 }  // namespace ceres
253