1 /*
2 * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <math.h>
12
13 #include <limits>
14 #include <vector>
15
16 #include "testing/gtest/include/gtest/gtest.h"
17 #include "webrtc/base/random.h"
18
19 namespace webrtc {
20
21 namespace {
22 // Computes the positive remainder of x/n.
23 template <typename T>
fdiv_remainder(T x,T n)24 T fdiv_remainder(T x, T n) {
25 RTC_CHECK_GE(n, static_cast<T>(0));
26 T remainder = x % n;
27 if (remainder < 0)
28 remainder += n;
29 return remainder;
30 }
31 } // namespace
32
33 // Sample a number of random integers of type T. Divide them into buckets
34 // based on the remainder when dividing by bucket_count and check that each
35 // bucket gets roughly the expected number of elements.
36 template <typename T>
UniformBucketTest(T bucket_count,int samples,Random * prng)37 void UniformBucketTest(T bucket_count, int samples, Random* prng) {
38 std::vector<int> buckets(bucket_count, 0);
39
40 uint64_t total_values = 1ull << (std::numeric_limits<T>::digits +
41 std::numeric_limits<T>::is_signed);
42 T upper_limit =
43 std::numeric_limits<T>::max() -
44 static_cast<T>(total_values % static_cast<uint64_t>(bucket_count));
45 ASSERT_GT(upper_limit, std::numeric_limits<T>::max() / 2);
46
47 for (int i = 0; i < samples; i++) {
48 T sample;
49 do {
50 // We exclude a few numbers from the range so that it is divisible by
51 // the number of buckets. If we are unlucky and hit one of the excluded
52 // numbers we just resample. Note that if the number of buckets is a
53 // power of 2, then we don't have to exclude anything.
54 sample = prng->Rand<T>();
55 } while (sample > upper_limit);
56 buckets[fdiv_remainder(sample, bucket_count)]++;
57 }
58
59 for (T i = 0; i < bucket_count; i++) {
60 // Expect the result to be within 3 standard deviations of the mean.
61 EXPECT_NEAR(buckets[i], samples / bucket_count,
62 3 * sqrt(samples / bucket_count));
63 }
64 }
65
TEST(RandomNumberGeneratorTest,BucketTestSignedChar)66 TEST(RandomNumberGeneratorTest, BucketTestSignedChar) {
67 Random prng(7297352569824ull);
68 UniformBucketTest<signed char>(64, 640000, &prng);
69 UniformBucketTest<signed char>(11, 440000, &prng);
70 UniformBucketTest<signed char>(3, 270000, &prng);
71 }
72
TEST(RandomNumberGeneratorTest,BucketTestUnsignedChar)73 TEST(RandomNumberGeneratorTest, BucketTestUnsignedChar) {
74 Random prng(7297352569824ull);
75 UniformBucketTest<unsigned char>(64, 640000, &prng);
76 UniformBucketTest<unsigned char>(11, 440000, &prng);
77 UniformBucketTest<unsigned char>(3, 270000, &prng);
78 }
79
TEST(RandomNumberGeneratorTest,BucketTestSignedShort)80 TEST(RandomNumberGeneratorTest, BucketTestSignedShort) {
81 Random prng(7297352569824ull);
82 UniformBucketTest<int16_t>(64, 640000, &prng);
83 UniformBucketTest<int16_t>(11, 440000, &prng);
84 UniformBucketTest<int16_t>(3, 270000, &prng);
85 }
86
TEST(RandomNumberGeneratorTest,BucketTestUnsignedShort)87 TEST(RandomNumberGeneratorTest, BucketTestUnsignedShort) {
88 Random prng(7297352569824ull);
89 UniformBucketTest<uint16_t>(64, 640000, &prng);
90 UniformBucketTest<uint16_t>(11, 440000, &prng);
91 UniformBucketTest<uint16_t>(3, 270000, &prng);
92 }
93
TEST(RandomNumberGeneratorTest,BucketTestSignedInt)94 TEST(RandomNumberGeneratorTest, BucketTestSignedInt) {
95 Random prng(7297352569824ull);
96 UniformBucketTest<signed int>(64, 640000, &prng);
97 UniformBucketTest<signed int>(11, 440000, &prng);
98 UniformBucketTest<signed int>(3, 270000, &prng);
99 }
100
TEST(RandomNumberGeneratorTest,BucketTestUnsignedInt)101 TEST(RandomNumberGeneratorTest, BucketTestUnsignedInt) {
102 Random prng(7297352569824ull);
103 UniformBucketTest<unsigned int>(64, 640000, &prng);
104 UniformBucketTest<unsigned int>(11, 440000, &prng);
105 UniformBucketTest<unsigned int>(3, 270000, &prng);
106 }
107
108 // The range of the random numbers is divided into bucket_count intervals
109 // of consecutive numbers. Check that approximately equally many numbers
110 // from each inteval are generated.
BucketTestSignedInterval(unsigned int bucket_count,unsigned int samples,int32_t low,int32_t high,int sigma_level,Random * prng)111 void BucketTestSignedInterval(unsigned int bucket_count,
112 unsigned int samples,
113 int32_t low,
114 int32_t high,
115 int sigma_level,
116 Random* prng) {
117 std::vector<unsigned int> buckets(bucket_count, 0);
118
119 ASSERT_GE(high, low);
120 ASSERT_GE(bucket_count, 2u);
121 uint32_t interval = static_cast<uint32_t>(high - low + 1);
122 uint32_t numbers_per_bucket;
123 if (interval == 0) {
124 // The computation high - low + 1 should be 2^32 but overflowed
125 // Hence, bucket_count must be a power of 2
126 ASSERT_EQ(bucket_count & (bucket_count - 1), 0u);
127 numbers_per_bucket = (0x80000000u / bucket_count) * 2;
128 } else {
129 ASSERT_EQ(interval % bucket_count, 0u);
130 numbers_per_bucket = interval / bucket_count;
131 }
132
133 for (unsigned int i = 0; i < samples; i++) {
134 int32_t sample = prng->Rand(low, high);
135 EXPECT_LE(low, sample);
136 EXPECT_GE(high, sample);
137 buckets[static_cast<uint32_t>(sample - low) / numbers_per_bucket]++;
138 }
139
140 for (unsigned int i = 0; i < bucket_count; i++) {
141 // Expect the result to be within 3 standard deviations of the mean,
142 // or more generally, within sigma_level standard deviations of the mean.
143 double mean = static_cast<double>(samples) / bucket_count;
144 EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean));
145 }
146 }
147
148 // The range of the random numbers is divided into bucket_count intervals
149 // of consecutive numbers. Check that approximately equally many numbers
150 // from each inteval are generated.
BucketTestUnsignedInterval(unsigned int bucket_count,unsigned int samples,uint32_t low,uint32_t high,int sigma_level,Random * prng)151 void BucketTestUnsignedInterval(unsigned int bucket_count,
152 unsigned int samples,
153 uint32_t low,
154 uint32_t high,
155 int sigma_level,
156 Random* prng) {
157 std::vector<unsigned int> buckets(bucket_count, 0);
158
159 ASSERT_GE(high, low);
160 ASSERT_GE(bucket_count, 2u);
161 uint32_t interval = static_cast<uint32_t>(high - low + 1);
162 uint32_t numbers_per_bucket;
163 if (interval == 0) {
164 // The computation high - low + 1 should be 2^32 but overflowed
165 // Hence, bucket_count must be a power of 2
166 ASSERT_EQ(bucket_count & (bucket_count - 1), 0u);
167 numbers_per_bucket = (0x80000000u / bucket_count) * 2;
168 } else {
169 ASSERT_EQ(interval % bucket_count, 0u);
170 numbers_per_bucket = interval / bucket_count;
171 }
172
173 for (unsigned int i = 0; i < samples; i++) {
174 uint32_t sample = prng->Rand(low, high);
175 EXPECT_LE(low, sample);
176 EXPECT_GE(high, sample);
177 buckets[static_cast<uint32_t>(sample - low) / numbers_per_bucket]++;
178 }
179
180 for (unsigned int i = 0; i < bucket_count; i++) {
181 // Expect the result to be within 3 standard deviations of the mean,
182 // or more generally, within sigma_level standard deviations of the mean.
183 double mean = static_cast<double>(samples) / bucket_count;
184 EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean));
185 }
186 }
187
TEST(RandomNumberGeneratorTest,UniformUnsignedInterval)188 TEST(RandomNumberGeneratorTest, UniformUnsignedInterval) {
189 Random prng(299792458ull);
190 BucketTestUnsignedInterval(2, 100000, 0, 1, 3, &prng);
191 BucketTestUnsignedInterval(7, 100000, 1, 14, 3, &prng);
192 BucketTestUnsignedInterval(11, 100000, 1000, 1010, 3, &prng);
193 BucketTestUnsignedInterval(100, 100000, 0, 99, 3, &prng);
194 BucketTestUnsignedInterval(2, 100000, 0, 4294967295, 3, &prng);
195 BucketTestUnsignedInterval(17, 100000, 455, 2147484110, 3, &prng);
196 // 99.7% of all samples will be within 3 standard deviations of the mean,
197 // but since we test 1000 buckets we allow an interval of 4 sigma.
198 BucketTestUnsignedInterval(1000, 1000000, 0, 2147483999, 4, &prng);
199 }
200
TEST(RandomNumberGeneratorTest,UniformSignedInterval)201 TEST(RandomNumberGeneratorTest, UniformSignedInterval) {
202 Random prng(66260695729ull);
203 BucketTestSignedInterval(2, 100000, 0, 1, 3, &prng);
204 BucketTestSignedInterval(7, 100000, -2, 4, 3, &prng);
205 BucketTestSignedInterval(11, 100000, 1000, 1010, 3, &prng);
206 BucketTestSignedInterval(100, 100000, 0, 99, 3, &prng);
207 BucketTestSignedInterval(2, 100000, std::numeric_limits<int32_t>::min(),
208 std::numeric_limits<int32_t>::max(), 3, &prng);
209 BucketTestSignedInterval(17, 100000, -1073741826, 1073741829, 3, &prng);
210 // 99.7% of all samples will be within 3 standard deviations of the mean,
211 // but since we test 1000 buckets we allow an interval of 4 sigma.
212 BucketTestSignedInterval(1000, 1000000, -352, 2147483647, 4, &prng);
213 }
214
215 // The range of the random numbers is divided into bucket_count intervals
216 // of consecutive numbers. Check that approximately equally many numbers
217 // from each inteval are generated.
BucketTestFloat(unsigned int bucket_count,unsigned int samples,int sigma_level,Random * prng)218 void BucketTestFloat(unsigned int bucket_count,
219 unsigned int samples,
220 int sigma_level,
221 Random* prng) {
222 ASSERT_GE(bucket_count, 2u);
223 std::vector<unsigned int> buckets(bucket_count, 0);
224
225 for (unsigned int i = 0; i < samples; i++) {
226 uint32_t sample = bucket_count * prng->Rand<float>();
227 EXPECT_LE(0u, sample);
228 EXPECT_GE(bucket_count - 1, sample);
229 buckets[sample]++;
230 }
231
232 for (unsigned int i = 0; i < bucket_count; i++) {
233 // Expect the result to be within 3 standard deviations of the mean,
234 // or more generally, within sigma_level standard deviations of the mean.
235 double mean = static_cast<double>(samples) / bucket_count;
236 EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean));
237 }
238 }
239
TEST(RandomNumberGeneratorTest,UniformFloatInterval)240 TEST(RandomNumberGeneratorTest, UniformFloatInterval) {
241 Random prng(1380648813ull);
242 BucketTestFloat(100, 100000, 3, &prng);
243 // 99.7% of all samples will be within 3 standard deviations of the mean,
244 // but since we test 1000 buckets we allow an interval of 4 sigma.
245 // BucketTestSignedInterval(1000, 1000000, -352, 2147483647, 4, &prng);
246 }
247
TEST(RandomNumberGeneratorTest,SignedHasSameBitPattern)248 TEST(RandomNumberGeneratorTest, SignedHasSameBitPattern) {
249 Random prng_signed(66738480ull), prng_unsigned(66738480ull);
250
251 for (int i = 0; i < 1000; i++) {
252 signed int s = prng_signed.Rand<signed int>();
253 unsigned int u = prng_unsigned.Rand<unsigned int>();
254 EXPECT_EQ(u, static_cast<unsigned int>(s));
255 }
256
257 for (int i = 0; i < 1000; i++) {
258 int16_t s = prng_signed.Rand<int16_t>();
259 uint16_t u = prng_unsigned.Rand<uint16_t>();
260 EXPECT_EQ(u, static_cast<uint16_t>(s));
261 }
262
263 for (int i = 0; i < 1000; i++) {
264 signed char s = prng_signed.Rand<signed char>();
265 unsigned char u = prng_unsigned.Rand<unsigned char>();
266 EXPECT_EQ(u, static_cast<unsigned char>(s));
267 }
268 }
269
TEST(RandomNumberGeneratorTest,Gaussian)270 TEST(RandomNumberGeneratorTest, Gaussian) {
271 const int kN = 100000;
272 const int kBuckets = 100;
273 const double kMean = 49;
274 const double kStddev = 10;
275
276 Random prng(1256637061);
277
278 std::vector<unsigned int> buckets(kBuckets, 0);
279 for (int i = 0; i < kN; i++) {
280 int index = prng.Gaussian(kMean, kStddev) + 0.5;
281 if (index >= 0 && index < kBuckets) {
282 buckets[index]++;
283 }
284 }
285
286 const double kPi = 3.14159265358979323846;
287 const double kScale = 1 / (kStddev * sqrt(2.0 * kPi));
288 const double kDiv = -2.0 * kStddev * kStddev;
289 for (int n = 0; n < kBuckets; ++n) {
290 // Use Simpsons rule to estimate the probability that a random gaussian
291 // sample is in the interval [n-0.5, n+0.5].
292 double f_left = kScale * exp((n - kMean - 0.5) * (n - kMean - 0.5) / kDiv);
293 double f_mid = kScale * exp((n - kMean) * (n - kMean) / kDiv);
294 double f_right = kScale * exp((n - kMean + 0.5) * (n - kMean + 0.5) / kDiv);
295 double normal_dist = (f_left + 4 * f_mid + f_right) / 6;
296 // Expect the number of samples to be within 3 standard deviations
297 // (rounded up) of the expected number of samples in the bucket.
298 EXPECT_NEAR(buckets[n], kN * normal_dist, 3 * sqrt(kN * normal_dist) + 1);
299 }
300 }
301
302 } // namespace webrtc
303