1 /*
2  *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <math.h>
12 
13 #include <limits>
14 #include <vector>
15 
16 #include "testing/gtest/include/gtest/gtest.h"
17 #include "webrtc/base/random.h"
18 
19 namespace webrtc {
20 
21 namespace {
22 // Computes the positive remainder of x/n.
23 template <typename T>
fdiv_remainder(T x,T n)24 T fdiv_remainder(T x, T n) {
25   RTC_CHECK_GE(n, static_cast<T>(0));
26   T remainder = x % n;
27   if (remainder < 0)
28     remainder += n;
29   return remainder;
30 }
31 }  // namespace
32 
33 // Sample a number of random integers of type T. Divide them into buckets
34 // based on the remainder when dividing by bucket_count and check that each
35 // bucket gets roughly the expected number of elements.
36 template <typename T>
UniformBucketTest(T bucket_count,int samples,Random * prng)37 void UniformBucketTest(T bucket_count, int samples, Random* prng) {
38   std::vector<int> buckets(bucket_count, 0);
39 
40   uint64_t total_values = 1ull << (std::numeric_limits<T>::digits +
41                                    std::numeric_limits<T>::is_signed);
42   T upper_limit =
43       std::numeric_limits<T>::max() -
44       static_cast<T>(total_values % static_cast<uint64_t>(bucket_count));
45   ASSERT_GT(upper_limit, std::numeric_limits<T>::max() / 2);
46 
47   for (int i = 0; i < samples; i++) {
48     T sample;
49     do {
50       // We exclude a few numbers from the range so that it is divisible by
51       // the number of buckets. If we are unlucky and hit one of the excluded
52       // numbers we just resample. Note that if the number of buckets is a
53       // power of 2, then we don't have to exclude anything.
54       sample = prng->Rand<T>();
55     } while (sample > upper_limit);
56     buckets[fdiv_remainder(sample, bucket_count)]++;
57   }
58 
59   for (T i = 0; i < bucket_count; i++) {
60     // Expect the result to be within 3 standard deviations of the mean.
61     EXPECT_NEAR(buckets[i], samples / bucket_count,
62                 3 * sqrt(samples / bucket_count));
63   }
64 }
65 
TEST(RandomNumberGeneratorTest,BucketTestSignedChar)66 TEST(RandomNumberGeneratorTest, BucketTestSignedChar) {
67   Random prng(7297352569824ull);
68   UniformBucketTest<signed char>(64, 640000, &prng);
69   UniformBucketTest<signed char>(11, 440000, &prng);
70   UniformBucketTest<signed char>(3, 270000, &prng);
71 }
72 
TEST(RandomNumberGeneratorTest,BucketTestUnsignedChar)73 TEST(RandomNumberGeneratorTest, BucketTestUnsignedChar) {
74   Random prng(7297352569824ull);
75   UniformBucketTest<unsigned char>(64, 640000, &prng);
76   UniformBucketTest<unsigned char>(11, 440000, &prng);
77   UniformBucketTest<unsigned char>(3, 270000, &prng);
78 }
79 
TEST(RandomNumberGeneratorTest,BucketTestSignedShort)80 TEST(RandomNumberGeneratorTest, BucketTestSignedShort) {
81   Random prng(7297352569824ull);
82   UniformBucketTest<int16_t>(64, 640000, &prng);
83   UniformBucketTest<int16_t>(11, 440000, &prng);
84   UniformBucketTest<int16_t>(3, 270000, &prng);
85 }
86 
TEST(RandomNumberGeneratorTest,BucketTestUnsignedShort)87 TEST(RandomNumberGeneratorTest, BucketTestUnsignedShort) {
88   Random prng(7297352569824ull);
89   UniformBucketTest<uint16_t>(64, 640000, &prng);
90   UniformBucketTest<uint16_t>(11, 440000, &prng);
91   UniformBucketTest<uint16_t>(3, 270000, &prng);
92 }
93 
TEST(RandomNumberGeneratorTest,BucketTestSignedInt)94 TEST(RandomNumberGeneratorTest, BucketTestSignedInt) {
95   Random prng(7297352569824ull);
96   UniformBucketTest<signed int>(64, 640000, &prng);
97   UniformBucketTest<signed int>(11, 440000, &prng);
98   UniformBucketTest<signed int>(3, 270000, &prng);
99 }
100 
TEST(RandomNumberGeneratorTest,BucketTestUnsignedInt)101 TEST(RandomNumberGeneratorTest, BucketTestUnsignedInt) {
102   Random prng(7297352569824ull);
103   UniformBucketTest<unsigned int>(64, 640000, &prng);
104   UniformBucketTest<unsigned int>(11, 440000, &prng);
105   UniformBucketTest<unsigned int>(3, 270000, &prng);
106 }
107 
108 // The range of the random numbers is divided into bucket_count intervals
109 // of consecutive numbers. Check that approximately equally many numbers
110 // from each inteval are generated.
BucketTestSignedInterval(unsigned int bucket_count,unsigned int samples,int32_t low,int32_t high,int sigma_level,Random * prng)111 void BucketTestSignedInterval(unsigned int bucket_count,
112                               unsigned int samples,
113                               int32_t low,
114                               int32_t high,
115                               int sigma_level,
116                               Random* prng) {
117   std::vector<unsigned int> buckets(bucket_count, 0);
118 
119   ASSERT_GE(high, low);
120   ASSERT_GE(bucket_count, 2u);
121   uint32_t interval = static_cast<uint32_t>(high - low + 1);
122   uint32_t numbers_per_bucket;
123   if (interval == 0) {
124     // The computation high - low + 1 should be 2^32 but overflowed
125     // Hence, bucket_count must be a power of 2
126     ASSERT_EQ(bucket_count & (bucket_count - 1), 0u);
127     numbers_per_bucket = (0x80000000u / bucket_count) * 2;
128   } else {
129     ASSERT_EQ(interval % bucket_count, 0u);
130     numbers_per_bucket = interval / bucket_count;
131   }
132 
133   for (unsigned int i = 0; i < samples; i++) {
134     int32_t sample = prng->Rand(low, high);
135     EXPECT_LE(low, sample);
136     EXPECT_GE(high, sample);
137     buckets[static_cast<uint32_t>(sample - low) / numbers_per_bucket]++;
138   }
139 
140   for (unsigned int i = 0; i < bucket_count; i++) {
141     // Expect the result to be within 3 standard deviations of the mean,
142     // or more generally, within sigma_level standard deviations of the mean.
143     double mean = static_cast<double>(samples) / bucket_count;
144     EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean));
145   }
146 }
147 
148 // The range of the random numbers is divided into bucket_count intervals
149 // of consecutive numbers. Check that approximately equally many numbers
150 // from each inteval are generated.
BucketTestUnsignedInterval(unsigned int bucket_count,unsigned int samples,uint32_t low,uint32_t high,int sigma_level,Random * prng)151 void BucketTestUnsignedInterval(unsigned int bucket_count,
152                                 unsigned int samples,
153                                 uint32_t low,
154                                 uint32_t high,
155                                 int sigma_level,
156                                 Random* prng) {
157   std::vector<unsigned int> buckets(bucket_count, 0);
158 
159   ASSERT_GE(high, low);
160   ASSERT_GE(bucket_count, 2u);
161   uint32_t interval = static_cast<uint32_t>(high - low + 1);
162   uint32_t numbers_per_bucket;
163   if (interval == 0) {
164     // The computation high - low + 1 should be 2^32 but overflowed
165     // Hence, bucket_count must be a power of 2
166     ASSERT_EQ(bucket_count & (bucket_count - 1), 0u);
167     numbers_per_bucket = (0x80000000u / bucket_count) * 2;
168   } else {
169     ASSERT_EQ(interval % bucket_count, 0u);
170     numbers_per_bucket = interval / bucket_count;
171   }
172 
173   for (unsigned int i = 0; i < samples; i++) {
174     uint32_t sample = prng->Rand(low, high);
175     EXPECT_LE(low, sample);
176     EXPECT_GE(high, sample);
177     buckets[static_cast<uint32_t>(sample - low) / numbers_per_bucket]++;
178   }
179 
180   for (unsigned int i = 0; i < bucket_count; i++) {
181     // Expect the result to be within 3 standard deviations of the mean,
182     // or more generally, within sigma_level standard deviations of the mean.
183     double mean = static_cast<double>(samples) / bucket_count;
184     EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean));
185   }
186 }
187 
TEST(RandomNumberGeneratorTest,UniformUnsignedInterval)188 TEST(RandomNumberGeneratorTest, UniformUnsignedInterval) {
189   Random prng(299792458ull);
190   BucketTestUnsignedInterval(2, 100000, 0, 1, 3, &prng);
191   BucketTestUnsignedInterval(7, 100000, 1, 14, 3, &prng);
192   BucketTestUnsignedInterval(11, 100000, 1000, 1010, 3, &prng);
193   BucketTestUnsignedInterval(100, 100000, 0, 99, 3, &prng);
194   BucketTestUnsignedInterval(2, 100000, 0, 4294967295, 3, &prng);
195   BucketTestUnsignedInterval(17, 100000, 455, 2147484110, 3, &prng);
196   // 99.7% of all samples will be within 3 standard deviations of the mean,
197   // but since we test 1000 buckets we allow an interval of 4 sigma.
198   BucketTestUnsignedInterval(1000, 1000000, 0, 2147483999, 4, &prng);
199 }
200 
TEST(RandomNumberGeneratorTest,UniformSignedInterval)201 TEST(RandomNumberGeneratorTest, UniformSignedInterval) {
202   Random prng(66260695729ull);
203   BucketTestSignedInterval(2, 100000, 0, 1, 3, &prng);
204   BucketTestSignedInterval(7, 100000, -2, 4, 3, &prng);
205   BucketTestSignedInterval(11, 100000, 1000, 1010, 3, &prng);
206   BucketTestSignedInterval(100, 100000, 0, 99, 3, &prng);
207   BucketTestSignedInterval(2, 100000, std::numeric_limits<int32_t>::min(),
208                            std::numeric_limits<int32_t>::max(), 3, &prng);
209   BucketTestSignedInterval(17, 100000, -1073741826, 1073741829, 3, &prng);
210   // 99.7% of all samples will be within 3 standard deviations of the mean,
211   // but since we test 1000 buckets we allow an interval of 4 sigma.
212   BucketTestSignedInterval(1000, 1000000, -352, 2147483647, 4, &prng);
213 }
214 
215 // The range of the random numbers is divided into bucket_count intervals
216 // of consecutive numbers. Check that approximately equally many numbers
217 // from each inteval are generated.
BucketTestFloat(unsigned int bucket_count,unsigned int samples,int sigma_level,Random * prng)218 void BucketTestFloat(unsigned int bucket_count,
219                      unsigned int samples,
220                      int sigma_level,
221                      Random* prng) {
222   ASSERT_GE(bucket_count, 2u);
223   std::vector<unsigned int> buckets(bucket_count, 0);
224 
225   for (unsigned int i = 0; i < samples; i++) {
226     uint32_t sample = bucket_count * prng->Rand<float>();
227     EXPECT_LE(0u, sample);
228     EXPECT_GE(bucket_count - 1, sample);
229     buckets[sample]++;
230   }
231 
232   for (unsigned int i = 0; i < bucket_count; i++) {
233     // Expect the result to be within 3 standard deviations of the mean,
234     // or more generally, within sigma_level standard deviations of the mean.
235     double mean = static_cast<double>(samples) / bucket_count;
236     EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean));
237   }
238 }
239 
TEST(RandomNumberGeneratorTest,UniformFloatInterval)240 TEST(RandomNumberGeneratorTest, UniformFloatInterval) {
241   Random prng(1380648813ull);
242   BucketTestFloat(100, 100000, 3, &prng);
243   // 99.7% of all samples will be within 3 standard deviations of the mean,
244   // but since we test 1000 buckets we allow an interval of 4 sigma.
245   // BucketTestSignedInterval(1000, 1000000, -352, 2147483647, 4, &prng);
246 }
247 
TEST(RandomNumberGeneratorTest,SignedHasSameBitPattern)248 TEST(RandomNumberGeneratorTest, SignedHasSameBitPattern) {
249   Random prng_signed(66738480ull), prng_unsigned(66738480ull);
250 
251   for (int i = 0; i < 1000; i++) {
252     signed int s = prng_signed.Rand<signed int>();
253     unsigned int u = prng_unsigned.Rand<unsigned int>();
254     EXPECT_EQ(u, static_cast<unsigned int>(s));
255   }
256 
257   for (int i = 0; i < 1000; i++) {
258     int16_t s = prng_signed.Rand<int16_t>();
259     uint16_t u = prng_unsigned.Rand<uint16_t>();
260     EXPECT_EQ(u, static_cast<uint16_t>(s));
261   }
262 
263   for (int i = 0; i < 1000; i++) {
264     signed char s = prng_signed.Rand<signed char>();
265     unsigned char u = prng_unsigned.Rand<unsigned char>();
266     EXPECT_EQ(u, static_cast<unsigned char>(s));
267   }
268 }
269 
TEST(RandomNumberGeneratorTest,Gaussian)270 TEST(RandomNumberGeneratorTest, Gaussian) {
271   const int kN = 100000;
272   const int kBuckets = 100;
273   const double kMean = 49;
274   const double kStddev = 10;
275 
276   Random prng(1256637061);
277 
278   std::vector<unsigned int> buckets(kBuckets, 0);
279   for (int i = 0; i < kN; i++) {
280     int index = prng.Gaussian(kMean, kStddev) + 0.5;
281     if (index >= 0 && index < kBuckets) {
282       buckets[index]++;
283     }
284   }
285 
286   const double kPi = 3.14159265358979323846;
287   const double kScale = 1 / (kStddev * sqrt(2.0 * kPi));
288   const double kDiv = -2.0 * kStddev * kStddev;
289   for (int n = 0; n < kBuckets; ++n) {
290     // Use Simpsons rule to estimate the probability that a random gaussian
291     // sample is in the interval [n-0.5, n+0.5].
292     double f_left = kScale * exp((n - kMean - 0.5) * (n - kMean - 0.5) / kDiv);
293     double f_mid = kScale * exp((n - kMean) * (n - kMean) / kDiv);
294     double f_right = kScale * exp((n - kMean + 0.5) * (n - kMean + 0.5) / kDiv);
295     double normal_dist = (f_left + 4 * f_mid + f_right) / 6;
296     // Expect the number of samples to be within 3 standard deviations
297     // (rounded up) of the expected number of samples in the bucket.
298     EXPECT_NEAR(buckets[n], kN * normal_dist, 3 * sqrt(kN * normal_dist) + 1);
299   }
300 }
301 
302 }  // namespace webrtc
303