1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30
31 #include "ceres/internal/autodiff.h"
32
33 #include "gtest/gtest.h"
34 #include "ceres/random.h"
35
36 namespace ceres {
37 namespace internal {
38
39 template <typename T> inline
RowMajorAccess(T * base,int rows,int cols,int i,int j)40 T &RowMajorAccess(T *base, int rows, int cols, int i, int j) {
41 return base[cols * i + j];
42 }
43
44 // Do (symmetric) finite differencing using the given function object 'b' of
45 // type 'B' and scalar type 'T' with step size 'del'.
46 //
47 // The type B should have a signature
48 //
49 // bool operator()(T const *, T *) const;
50 //
51 // which maps a vector of parameters to a vector of outputs.
52 template <typename B, typename T, int M, int N> inline
SymmetricDiff(const B & b,const T par[N],T del,T fun[M],T jac[M * N])53 bool SymmetricDiff(const B& b,
54 const T par[N],
55 T del, // step size.
56 T fun[M],
57 T jac[M * N]) { // row-major.
58 if (!b(par, fun)) {
59 return false;
60 }
61
62 // Temporary parameter vector.
63 T tmp_par[N];
64 for (int j = 0; j < N; ++j) {
65 tmp_par[j] = par[j];
66 }
67
68 // For each dimension, we do one forward step and one backward step in
69 // parameter space, and store the output vector vectors in these vectors.
70 T fwd_fun[M];
71 T bwd_fun[M];
72
73 for (int j = 0; j < N; ++j) {
74 // Forward step.
75 tmp_par[j] = par[j] + del;
76 if (!b(tmp_par, fwd_fun)) {
77 return false;
78 }
79
80 // Backward step.
81 tmp_par[j] = par[j] - del;
82 if (!b(tmp_par, bwd_fun)) {
83 return false;
84 }
85
86 // Symmetric differencing:
87 // f'(a) = (f(a + h) - f(a - h)) / (2 h)
88 for (int i = 0; i < M; ++i) {
89 RowMajorAccess(jac, M, N, i, j) =
90 (fwd_fun[i] - bwd_fun[i]) / (T(2) * del);
91 }
92
93 // Restore our temporary vector.
94 tmp_par[j] = par[j];
95 }
96
97 return true;
98 }
99
100 template <typename A> inline
QuaternionToScaledRotation(A const q[4],A R[3* 3])101 void QuaternionToScaledRotation(A const q[4], A R[3 * 3]) {
102 // Make convenient names for elements of q.
103 A a = q[0];
104 A b = q[1];
105 A c = q[2];
106 A d = q[3];
107 // This is not to eliminate common sub-expression, but to
108 // make the lines shorter so that they fit in 80 columns!
109 A aa = a*a;
110 A ab = a*b;
111 A ac = a*c;
112 A ad = a*d;
113 A bb = b*b;
114 A bc = b*c;
115 A bd = b*d;
116 A cc = c*c;
117 A cd = c*d;
118 A dd = d*d;
119 #define R(i, j) RowMajorAccess(R, 3, 3, (i), (j))
120 R(0, 0) = aa+bb-cc-dd; R(0, 1) = A(2)*(bc-ad); R(0, 2) = A(2)*(ac+bd); // NOLINT
121 R(1, 0) = A(2)*(ad+bc); R(1, 1) = aa-bb+cc-dd; R(1, 2) = A(2)*(cd-ab); // NOLINT
122 R(2, 0) = A(2)*(bd-ac); R(2, 1) = A(2)*(ab+cd); R(2, 2) = aa-bb-cc+dd; // NOLINT
123 #undef R
124 }
125
126 // A structure for projecting a 3x4 camera matrix and a
127 // homogeneous 3D point, to a 2D inhomogeneous point.
128 struct Projective {
129 // Function that takes P and X as separate vectors:
130 // P, X -> x
131 template <typename A>
operator ()ceres::internal::Projective132 bool operator()(A const P[12], A const X[4], A x[2]) const {
133 A PX[3];
134 for (int i = 0; i < 3; ++i) {
135 PX[i] = RowMajorAccess(P, 3, 4, i, 0) * X[0] +
136 RowMajorAccess(P, 3, 4, i, 1) * X[1] +
137 RowMajorAccess(P, 3, 4, i, 2) * X[2] +
138 RowMajorAccess(P, 3, 4, i, 3) * X[3];
139 }
140 if (PX[2] != 0.0) {
141 x[0] = PX[0] / PX[2];
142 x[1] = PX[1] / PX[2];
143 return true;
144 }
145 return false;
146 }
147
148 // Version that takes P and X packed in one vector:
149 //
150 // (P, X) -> x
151 //
152 template <typename A>
operator ()ceres::internal::Projective153 bool operator()(A const P_X[12 + 4], A x[2]) const {
154 return operator()(P_X + 0, P_X + 12, x);
155 }
156 };
157
158 // Test projective camera model projector.
TEST(AutoDiff,ProjectiveCameraModel)159 TEST(AutoDiff, ProjectiveCameraModel) {
160 srand(5);
161 double const tol = 1e-10; // floating-point tolerance.
162 double const del = 1e-4; // finite-difference step.
163 double const err = 1e-6; // finite-difference tolerance.
164
165 Projective b;
166
167 // Make random P and X, in a single vector.
168 double PX[12 + 4];
169 for (int i = 0; i < 12 + 4; ++i) {
170 PX[i] = RandDouble();
171 }
172
173 // Handy names for the P and X parts.
174 double *P = PX + 0;
175 double *X = PX + 12;
176
177 // Apply the mapping, to get image point b_x.
178 double b_x[2];
179 b(P, X, b_x);
180
181 // Use finite differencing to estimate the Jacobian.
182 double fd_x[2];
183 double fd_J[2 * (12 + 4)];
184 ASSERT_TRUE((SymmetricDiff<Projective, double, 2, 12 + 4>(b, PX, del,
185 fd_x, fd_J)));
186
187 for (int i = 0; i < 2; ++i) {
188 ASSERT_EQ(fd_x[i], b_x[i]);
189 }
190
191 // Use automatic differentiation to compute the Jacobian.
192 double ad_x1[2];
193 double J_PX[2 * (12 + 4)];
194 {
195 double *parameters[] = { PX };
196 double *jacobians[] = { J_PX };
197 ASSERT_TRUE((AutoDiff<Projective, double, 12 + 4>::Differentiate(
198 b, parameters, 2, ad_x1, jacobians)));
199
200 for (int i = 0; i < 2; ++i) {
201 ASSERT_NEAR(ad_x1[i], b_x[i], tol);
202 }
203 }
204
205 // Use automatic differentiation (again), with two arguments.
206 {
207 double ad_x2[2];
208 double J_P[2 * 12];
209 double J_X[2 * 4];
210 double *parameters[] = { P, X };
211 double *jacobians[] = { J_P, J_X };
212 ASSERT_TRUE((AutoDiff<Projective, double, 12, 4>::Differentiate(
213 b, parameters, 2, ad_x2, jacobians)));
214
215 for (int i = 0; i < 2; ++i) {
216 ASSERT_NEAR(ad_x2[i], b_x[i], tol);
217 }
218
219 // Now compare the jacobians we got.
220 for (int i = 0; i < 2; ++i) {
221 for (int j = 0; j < 12 + 4; ++j) {
222 ASSERT_NEAR(J_PX[(12 + 4) * i + j], fd_J[(12 + 4) * i + j], err);
223 }
224
225 for (int j = 0; j < 12; ++j) {
226 ASSERT_NEAR(J_PX[(12 + 4) * i + j], J_P[12 * i + j], tol);
227 }
228 for (int j = 0; j < 4; ++j) {
229 ASSERT_NEAR(J_PX[(12 + 4) * i + 12 + j], J_X[4 * i + j], tol);
230 }
231 }
232 }
233 }
234
235 // Object to implement the projection by a calibrated camera.
236 struct Metric {
237 // The mapping is
238 //
239 // q, c, X -> x = dehomg(R(q) (X - c))
240 //
241 // where q is a quaternion and c is the center of projection.
242 //
243 // This function takes three input vectors.
244 template <typename A>
operator ()ceres::internal::Metric245 bool operator()(A const q[4], A const c[3], A const X[3], A x[2]) const {
246 A R[3 * 3];
247 QuaternionToScaledRotation(q, R);
248
249 // Convert the quaternion mapping all the way to projective matrix.
250 A P[3 * 4];
251
252 // Set P(:, 1:3) = R
253 for (int i = 0; i < 3; ++i) {
254 for (int j = 0; j < 3; ++j) {
255 RowMajorAccess(P, 3, 4, i, j) = RowMajorAccess(R, 3, 3, i, j);
256 }
257 }
258
259 // Set P(:, 4) = - R c
260 for (int i = 0; i < 3; ++i) {
261 RowMajorAccess(P, 3, 4, i, 3) =
262 - (RowMajorAccess(R, 3, 3, i, 0) * c[0] +
263 RowMajorAccess(R, 3, 3, i, 1) * c[1] +
264 RowMajorAccess(R, 3, 3, i, 2) * c[2]);
265 }
266
267 A X1[4] = { X[0], X[1], X[2], A(1) };
268 Projective p;
269 return p(P, X1, x);
270 }
271
272 // A version that takes a single vector.
273 template <typename A>
operator ()ceres::internal::Metric274 bool operator()(A const q_c_X[4 + 3 + 3], A x[2]) const {
275 return operator()(q_c_X, q_c_X + 4, q_c_X + 4 + 3, x);
276 }
277 };
278
279 // This test is similar in structure to the previous one.
TEST(AutoDiff,Metric)280 TEST(AutoDiff, Metric) {
281 srand(5);
282 double const tol = 1e-10; // floating-point tolerance.
283 double const del = 1e-4; // finite-difference step.
284 double const err = 1e-5; // finite-difference tolerance.
285
286 Metric b;
287
288 // Make random parameter vector.
289 double qcX[4 + 3 + 3];
290 for (int i = 0; i < 4 + 3 + 3; ++i)
291 qcX[i] = RandDouble();
292
293 // Handy names.
294 double *q = qcX;
295 double *c = qcX + 4;
296 double *X = qcX + 4 + 3;
297
298 // Compute projection, b_x.
299 double b_x[2];
300 ASSERT_TRUE(b(q, c, X, b_x));
301
302 // Finite differencing estimate of Jacobian.
303 double fd_x[2];
304 double fd_J[2 * (4 + 3 + 3)];
305 ASSERT_TRUE((SymmetricDiff<Metric, double, 2, 4 + 3 + 3>(b, qcX, del,
306 fd_x, fd_J)));
307
308 for (int i = 0; i < 2; ++i) {
309 ASSERT_NEAR(fd_x[i], b_x[i], tol);
310 }
311
312 // Automatic differentiation.
313 double ad_x[2];
314 double J_q[2 * 4];
315 double J_c[2 * 3];
316 double J_X[2 * 3];
317 double *parameters[] = { q, c, X };
318 double *jacobians[] = { J_q, J_c, J_X };
319 ASSERT_TRUE((AutoDiff<Metric, double, 4, 3, 3>::Differentiate(
320 b, parameters, 2, ad_x, jacobians)));
321
322 for (int i = 0; i < 2; ++i) {
323 ASSERT_NEAR(ad_x[i], b_x[i], tol);
324 }
325
326 // Compare the pieces.
327 for (int i = 0; i < 2; ++i) {
328 for (int j = 0; j < 4; ++j) {
329 ASSERT_NEAR(J_q[4 * i + j], fd_J[(4 + 3 + 3) * i + j], err);
330 }
331 for (int j = 0; j < 3; ++j) {
332 ASSERT_NEAR(J_c[3 * i + j], fd_J[(4 + 3 + 3) * i + j + 4], err);
333 }
334 for (int j = 0; j < 3; ++j) {
335 ASSERT_NEAR(J_X[3 * i + j], fd_J[(4 + 3 + 3) * i + j + 4 + 3], err);
336 }
337 }
338 }
339
340 struct VaryingResidualFunctor {
341 template <typename T>
operator ()ceres::internal::VaryingResidualFunctor342 bool operator()(const T x[2], T* y) const {
343 for (int i = 0; i < num_residuals; ++i) {
344 y[i] = T(i) * x[0] * x[1] * x[1];
345 }
346 return true;
347 }
348
349 int num_residuals;
350 };
351
TEST(AutoDiff,VaryingNumberOfResidualsForOneCostFunctorType)352 TEST(AutoDiff, VaryingNumberOfResidualsForOneCostFunctorType) {
353 double x[2] = { 1.0, 5.5 };
354 double *parameters[] = { x };
355 const int kMaxResiduals = 10;
356 double J_x[2 * kMaxResiduals];
357 double residuals[kMaxResiduals];
358 double *jacobians[] = { J_x };
359
360 // Use a single functor, but tweak it to produce different numbers of
361 // residuals.
362 VaryingResidualFunctor functor;
363
364 for (int num_residuals = 1; num_residuals < kMaxResiduals; ++num_residuals) {
365 // Tweak the number of residuals to produce.
366 functor.num_residuals = num_residuals;
367
368 // Run autodiff with the new number of residuals.
369 ASSERT_TRUE((AutoDiff<VaryingResidualFunctor, double, 2>::Differentiate(
370 functor, parameters, num_residuals, residuals, jacobians)));
371
372 const double kTolerance = 1e-14;
373 for (int i = 0; i < num_residuals; ++i) {
374 EXPECT_NEAR(J_x[2 * i + 0], i * x[1] * x[1], kTolerance) << "i: " << i;
375 EXPECT_NEAR(J_x[2 * i + 1], 2 * i * x[0] * x[1], kTolerance)
376 << "i: " << i;
377 }
378 }
379 }
380
381 struct Residual1Param {
382 template <typename T>
operator ()ceres::internal::Residual1Param383 bool operator()(const T* x0, T* y) const {
384 y[0] = *x0;
385 return true;
386 }
387 };
388
389 struct Residual2Param {
390 template <typename T>
operator ()ceres::internal::Residual2Param391 bool operator()(const T* x0, const T* x1, T* y) const {
392 y[0] = *x0 + pow(*x1, 2);
393 return true;
394 }
395 };
396
397 struct Residual3Param {
398 template <typename T>
operator ()ceres::internal::Residual3Param399 bool operator()(const T* x0, const T* x1, const T* x2, T* y) const {
400 y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3);
401 return true;
402 }
403 };
404
405 struct Residual4Param {
406 template <typename T>
operator ()ceres::internal::Residual4Param407 bool operator()(const T* x0,
408 const T* x1,
409 const T* x2,
410 const T* x3,
411 T* y) const {
412 y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4);
413 return true;
414 }
415 };
416
417 struct Residual5Param {
418 template <typename T>
operator ()ceres::internal::Residual5Param419 bool operator()(const T* x0,
420 const T* x1,
421 const T* x2,
422 const T* x3,
423 const T* x4,
424 T* y) const {
425 y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5);
426 return true;
427 }
428 };
429
430 struct Residual6Param {
431 template <typename T>
operator ()ceres::internal::Residual6Param432 bool operator()(const T* x0,
433 const T* x1,
434 const T* x2,
435 const T* x3,
436 const T* x4,
437 const T* x5,
438 T* y) const {
439 y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
440 pow(*x5, 6);
441 return true;
442 }
443 };
444
445 struct Residual7Param {
446 template <typename T>
operator ()ceres::internal::Residual7Param447 bool operator()(const T* x0,
448 const T* x1,
449 const T* x2,
450 const T* x3,
451 const T* x4,
452 const T* x5,
453 const T* x6,
454 T* y) const {
455 y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
456 pow(*x5, 6) + pow(*x6, 7);
457 return true;
458 }
459 };
460
461 struct Residual8Param {
462 template <typename T>
operator ()ceres::internal::Residual8Param463 bool operator()(const T* x0,
464 const T* x1,
465 const T* x2,
466 const T* x3,
467 const T* x4,
468 const T* x5,
469 const T* x6,
470 const T* x7,
471 T* y) const {
472 y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
473 pow(*x5, 6) + pow(*x6, 7) + pow(*x7, 8);
474 return true;
475 }
476 };
477
478 struct Residual9Param {
479 template <typename T>
operator ()ceres::internal::Residual9Param480 bool operator()(const T* x0,
481 const T* x1,
482 const T* x2,
483 const T* x3,
484 const T* x4,
485 const T* x5,
486 const T* x6,
487 const T* x7,
488 const T* x8,
489 T* y) const {
490 y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
491 pow(*x5, 6) + pow(*x6, 7) + pow(*x7, 8) + pow(*x8, 9);
492 return true;
493 }
494 };
495
496 struct Residual10Param {
497 template <typename T>
operator ()ceres::internal::Residual10Param498 bool operator()(const T* x0,
499 const T* x1,
500 const T* x2,
501 const T* x3,
502 const T* x4,
503 const T* x5,
504 const T* x6,
505 const T* x7,
506 const T* x8,
507 const T* x9,
508 T* y) const {
509 y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
510 pow(*x5, 6) + pow(*x6, 7) + pow(*x7, 8) + pow(*x8, 9) + pow(*x9, 10);
511 return true;
512 }
513 };
514
TEST(AutoDiff,VariadicAutoDiff)515 TEST(AutoDiff, VariadicAutoDiff) {
516 double x[10];
517 double residual = 0;
518 double* parameters[10];
519 double jacobian_values[10];
520 double* jacobians[10];
521
522 for (int i = 0; i < 10; ++i) {
523 x[i] = 2.0;
524 parameters[i] = x + i;
525 jacobians[i] = jacobian_values + i;
526 }
527
528 {
529 Residual1Param functor;
530 int num_variables = 1;
531 EXPECT_TRUE((AutoDiff<Residual1Param, double, 1>::Differentiate(
532 functor, parameters, 1, &residual, jacobians)));
533 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
534 for (int i = 0; i < num_variables; ++i) {
535 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
536 }
537 }
538
539 {
540 Residual2Param functor;
541 int num_variables = 2;
542 EXPECT_TRUE((AutoDiff<Residual2Param, double, 1, 1>::Differentiate(
543 functor, parameters, 1, &residual, jacobians)));
544 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
545 for (int i = 0; i < num_variables; ++i) {
546 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
547 }
548 }
549
550 {
551 Residual3Param functor;
552 int num_variables = 3;
553 EXPECT_TRUE((AutoDiff<Residual3Param, double, 1, 1, 1>::Differentiate(
554 functor, parameters, 1, &residual, jacobians)));
555 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
556 for (int i = 0; i < num_variables; ++i) {
557 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
558 }
559 }
560
561 {
562 Residual4Param functor;
563 int num_variables = 4;
564 EXPECT_TRUE((AutoDiff<Residual4Param, double, 1, 1, 1, 1>::Differentiate(
565 functor, parameters, 1, &residual, jacobians)));
566 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
567 for (int i = 0; i < num_variables; ++i) {
568 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
569 }
570 }
571
572 {
573 Residual5Param functor;
574 int num_variables = 5;
575 EXPECT_TRUE((AutoDiff<Residual5Param, double, 1, 1, 1, 1, 1>::Differentiate(
576 functor, parameters, 1, &residual, jacobians)));
577 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
578 for (int i = 0; i < num_variables; ++i) {
579 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
580 }
581 }
582
583 {
584 Residual6Param functor;
585 int num_variables = 6;
586 EXPECT_TRUE((AutoDiff<Residual6Param,
587 double,
588 1, 1, 1, 1, 1, 1>::Differentiate(
589 functor, parameters, 1, &residual, jacobians)));
590 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
591 for (int i = 0; i < num_variables; ++i) {
592 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
593 }
594 }
595
596 {
597 Residual7Param functor;
598 int num_variables = 7;
599 EXPECT_TRUE((AutoDiff<Residual7Param,
600 double,
601 1, 1, 1, 1, 1, 1, 1>::Differentiate(
602 functor, parameters, 1, &residual, jacobians)));
603 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
604 for (int i = 0; i < num_variables; ++i) {
605 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
606 }
607 }
608
609 {
610 Residual8Param functor;
611 int num_variables = 8;
612 EXPECT_TRUE((AutoDiff<
613 Residual8Param,
614 double, 1, 1, 1, 1, 1, 1, 1, 1>::Differentiate(
615 functor, parameters, 1, &residual, jacobians)));
616 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
617 for (int i = 0; i < num_variables; ++i) {
618 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
619 }
620 }
621
622 {
623 Residual9Param functor;
624 int num_variables = 9;
625 EXPECT_TRUE((AutoDiff<
626 Residual9Param,
627 double,
628 1, 1, 1, 1, 1, 1, 1, 1, 1>::Differentiate(
629 functor, parameters, 1, &residual, jacobians)));
630 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
631 for (int i = 0; i < num_variables; ++i) {
632 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
633 }
634 }
635
636 {
637 Residual10Param functor;
638 int num_variables = 10;
639 EXPECT_TRUE((AutoDiff<
640 Residual10Param,
641 double,
642 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>::Differentiate(
643 functor, parameters, 1, &residual, jacobians)));
644 EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
645 for (int i = 0; i < num_variables; ++i) {
646 EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
647 }
648 }
649 }
650
651 // This is fragile test that triggers the alignment bug on
652 // i686-apple-darwin10-llvm-g++-4.2 (GCC) 4.2.1. It is quite possible,
653 // that other combinations of operating system + compiler will
654 // re-arrange the operations in this test.
655 //
656 // But this is the best (and only) way we know of to trigger this
657 // problem for now. A more robust solution that guarantees the
658 // alignment of Eigen types used for automatic differentiation would
659 // be nice.
TEST(AutoDiff,AlignedAllocationTest)660 TEST(AutoDiff, AlignedAllocationTest) {
661 // This int is needed to allocate 16 bits on the stack, so that the
662 // next allocation is not aligned by default.
663 char y = 0;
664
665 // This is needed to prevent the compiler from optimizing y out of
666 // this function.
667 y += 1;
668
669 typedef Jet<double, 2> JetT;
670 FixedArray<JetT, (256 * 7) / sizeof(JetT)> x(3);
671
672 // Need this to makes sure that x does not get optimized out.
673 x[0] = x[0] + JetT(1.0);
674 }
675
676 } // namespace internal
677 } // namespace ceres
678