1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30 
31 #include "ceres/internal/autodiff.h"
32 
33 #include "gtest/gtest.h"
34 #include "ceres/random.h"
35 
36 namespace ceres {
37 namespace internal {
38 
39 template <typename T> inline
RowMajorAccess(T * base,int rows,int cols,int i,int j)40 T &RowMajorAccess(T *base, int rows, int cols, int i, int j) {
41   return base[cols * i + j];
42 }
43 
44 // Do (symmetric) finite differencing using the given function object 'b' of
45 // type 'B' and scalar type 'T' with step size 'del'.
46 //
47 // The type B should have a signature
48 //
49 //   bool operator()(T const *, T *) const;
50 //
51 // which maps a vector of parameters to a vector of outputs.
52 template <typename B, typename T, int M, int N> inline
SymmetricDiff(const B & b,const T par[N],T del,T fun[M],T jac[M * N])53 bool SymmetricDiff(const B& b,
54                    const T par[N],
55                    T del,           // step size.
56                    T fun[M],
57                    T jac[M * N]) {  // row-major.
58   if (!b(par, fun)) {
59     return false;
60   }
61 
62   // Temporary parameter vector.
63   T tmp_par[N];
64   for (int j = 0; j < N; ++j) {
65     tmp_par[j] = par[j];
66   }
67 
68   // For each dimension, we do one forward step and one backward step in
69   // parameter space, and store the output vector vectors in these vectors.
70   T fwd_fun[M];
71   T bwd_fun[M];
72 
73   for (int j = 0; j < N; ++j) {
74     // Forward step.
75     tmp_par[j] = par[j] + del;
76     if (!b(tmp_par, fwd_fun)) {
77       return false;
78     }
79 
80     // Backward step.
81     tmp_par[j] = par[j] - del;
82     if (!b(tmp_par, bwd_fun)) {
83       return false;
84     }
85 
86     // Symmetric differencing:
87     //   f'(a) = (f(a + h) - f(a - h)) / (2 h)
88     for (int i = 0; i < M; ++i) {
89       RowMajorAccess(jac, M, N, i, j) =
90           (fwd_fun[i] - bwd_fun[i]) / (T(2) * del);
91     }
92 
93     // Restore our temporary vector.
94     tmp_par[j] = par[j];
95   }
96 
97   return true;
98 }
99 
100 template <typename A> inline
QuaternionToScaledRotation(A const q[4],A R[3* 3])101 void QuaternionToScaledRotation(A const q[4], A R[3 * 3]) {
102   // Make convenient names for elements of q.
103   A a = q[0];
104   A b = q[1];
105   A c = q[2];
106   A d = q[3];
107   // This is not to eliminate common sub-expression, but to
108   // make the lines shorter so that they fit in 80 columns!
109   A aa = a*a;
110   A ab = a*b;
111   A ac = a*c;
112   A ad = a*d;
113   A bb = b*b;
114   A bc = b*c;
115   A bd = b*d;
116   A cc = c*c;
117   A cd = c*d;
118   A dd = d*d;
119 #define R(i, j) RowMajorAccess(R, 3, 3, (i), (j))
120   R(0, 0) =  aa+bb-cc-dd; R(0, 1) = A(2)*(bc-ad); R(0, 2) = A(2)*(ac+bd);  // NOLINT
121   R(1, 0) = A(2)*(ad+bc); R(1, 1) =  aa-bb+cc-dd; R(1, 2) = A(2)*(cd-ab);  // NOLINT
122   R(2, 0) = A(2)*(bd-ac); R(2, 1) = A(2)*(ab+cd); R(2, 2) =  aa-bb-cc+dd;  // NOLINT
123 #undef R
124 }
125 
126 // A structure for projecting a 3x4 camera matrix and a
127 // homogeneous 3D point, to a 2D inhomogeneous point.
128 struct Projective {
129   // Function that takes P and X as separate vectors:
130   //   P, X -> x
131   template <typename A>
operator ()ceres::internal::Projective132   bool operator()(A const P[12], A const X[4], A x[2]) const {
133     A PX[3];
134     for (int i = 0; i < 3; ++i) {
135       PX[i] = RowMajorAccess(P, 3, 4, i, 0) * X[0] +
136               RowMajorAccess(P, 3, 4, i, 1) * X[1] +
137               RowMajorAccess(P, 3, 4, i, 2) * X[2] +
138               RowMajorAccess(P, 3, 4, i, 3) * X[3];
139     }
140     if (PX[2] != 0.0) {
141       x[0] = PX[0] / PX[2];
142       x[1] = PX[1] / PX[2];
143       return true;
144     }
145     return false;
146   }
147 
148   // Version that takes P and X packed in one vector:
149   //
150   //   (P, X) -> x
151   //
152   template <typename A>
operator ()ceres::internal::Projective153   bool operator()(A const P_X[12 + 4], A x[2]) const {
154     return operator()(P_X + 0, P_X + 12, x);
155   }
156 };
157 
158 // Test projective camera model projector.
TEST(AutoDiff,ProjectiveCameraModel)159 TEST(AutoDiff, ProjectiveCameraModel) {
160   srand(5);
161   double const tol = 1e-10;  // floating-point tolerance.
162   double const del = 1e-4;   // finite-difference step.
163   double const err = 1e-6;   // finite-difference tolerance.
164 
165   Projective b;
166 
167   // Make random P and X, in a single vector.
168   double PX[12 + 4];
169   for (int i = 0; i < 12 + 4; ++i) {
170     PX[i] = RandDouble();
171   }
172 
173   // Handy names for the P and X parts.
174   double *P = PX + 0;
175   double *X = PX + 12;
176 
177   // Apply the mapping, to get image point b_x.
178   double b_x[2];
179   b(P, X, b_x);
180 
181   // Use finite differencing to estimate the Jacobian.
182   double fd_x[2];
183   double fd_J[2 * (12 + 4)];
184   ASSERT_TRUE((SymmetricDiff<Projective, double, 2, 12 + 4>(b, PX, del,
185                                                             fd_x, fd_J)));
186 
187   for (int i = 0; i < 2; ++i) {
188     ASSERT_EQ(fd_x[i], b_x[i]);
189   }
190 
191   // Use automatic differentiation to compute the Jacobian.
192   double ad_x1[2];
193   double J_PX[2 * (12 + 4)];
194   {
195     double *parameters[] = { PX };
196     double *jacobians[] = { J_PX };
197     ASSERT_TRUE((AutoDiff<Projective, double, 12 + 4>::Differentiate(
198         b, parameters, 2, ad_x1, jacobians)));
199 
200     for (int i = 0; i < 2; ++i) {
201       ASSERT_NEAR(ad_x1[i], b_x[i], tol);
202     }
203   }
204 
205   // Use automatic differentiation (again), with two arguments.
206   {
207     double ad_x2[2];
208     double J_P[2 * 12];
209     double J_X[2 * 4];
210     double *parameters[] = { P, X };
211     double *jacobians[] = { J_P, J_X };
212     ASSERT_TRUE((AutoDiff<Projective, double, 12, 4>::Differentiate(
213         b, parameters, 2, ad_x2, jacobians)));
214 
215     for (int i = 0; i < 2; ++i) {
216       ASSERT_NEAR(ad_x2[i], b_x[i], tol);
217     }
218 
219     // Now compare the jacobians we got.
220     for (int i = 0; i < 2; ++i) {
221       for (int j = 0; j < 12 + 4; ++j) {
222         ASSERT_NEAR(J_PX[(12 + 4) * i + j], fd_J[(12 + 4) * i + j], err);
223       }
224 
225       for (int j = 0; j < 12; ++j) {
226         ASSERT_NEAR(J_PX[(12 + 4) * i + j], J_P[12 * i + j], tol);
227       }
228       for (int j = 0; j < 4; ++j) {
229         ASSERT_NEAR(J_PX[(12 + 4) * i + 12 + j], J_X[4 * i + j], tol);
230       }
231     }
232   }
233 }
234 
235 // Object to implement the projection by a calibrated camera.
236 struct Metric {
237   // The mapping is
238   //
239   //   q, c, X -> x = dehomg(R(q) (X - c))
240   //
241   // where q is a quaternion and c is the center of projection.
242   //
243   // This function takes three input vectors.
244   template <typename A>
operator ()ceres::internal::Metric245   bool operator()(A const q[4], A const c[3], A const X[3], A x[2]) const {
246     A R[3 * 3];
247     QuaternionToScaledRotation(q, R);
248 
249     // Convert the quaternion mapping all the way to projective matrix.
250     A P[3 * 4];
251 
252     // Set P(:, 1:3) = R
253     for (int i = 0; i < 3; ++i) {
254       for (int j = 0; j < 3; ++j) {
255         RowMajorAccess(P, 3, 4, i, j) = RowMajorAccess(R, 3, 3, i, j);
256       }
257     }
258 
259     // Set P(:, 4) = - R c
260     for (int i = 0; i < 3; ++i) {
261       RowMajorAccess(P, 3, 4, i, 3) =
262         - (RowMajorAccess(R, 3, 3, i, 0) * c[0] +
263            RowMajorAccess(R, 3, 3, i, 1) * c[1] +
264            RowMajorAccess(R, 3, 3, i, 2) * c[2]);
265     }
266 
267     A X1[4] = { X[0], X[1], X[2], A(1) };
268     Projective p;
269     return p(P, X1, x);
270   }
271 
272   // A version that takes a single vector.
273   template <typename A>
operator ()ceres::internal::Metric274   bool operator()(A const q_c_X[4 + 3 + 3], A x[2]) const {
275     return operator()(q_c_X, q_c_X + 4, q_c_X + 4 + 3, x);
276   }
277 };
278 
279 // This test is similar in structure to the previous one.
TEST(AutoDiff,Metric)280 TEST(AutoDiff, Metric) {
281   srand(5);
282   double const tol = 1e-10;  // floating-point tolerance.
283   double const del = 1e-4;   // finite-difference step.
284   double const err = 1e-5;   // finite-difference tolerance.
285 
286   Metric b;
287 
288   // Make random parameter vector.
289   double qcX[4 + 3 + 3];
290   for (int i = 0; i < 4 + 3 + 3; ++i)
291     qcX[i] = RandDouble();
292 
293   // Handy names.
294   double *q = qcX;
295   double *c = qcX + 4;
296   double *X = qcX + 4 + 3;
297 
298   // Compute projection, b_x.
299   double b_x[2];
300   ASSERT_TRUE(b(q, c, X, b_x));
301 
302   // Finite differencing estimate of Jacobian.
303   double fd_x[2];
304   double fd_J[2 * (4 + 3 + 3)];
305   ASSERT_TRUE((SymmetricDiff<Metric, double, 2, 4 + 3 + 3>(b, qcX, del,
306                                                            fd_x, fd_J)));
307 
308   for (int i = 0; i < 2; ++i) {
309     ASSERT_NEAR(fd_x[i], b_x[i], tol);
310   }
311 
312   // Automatic differentiation.
313   double ad_x[2];
314   double J_q[2 * 4];
315   double J_c[2 * 3];
316   double J_X[2 * 3];
317   double *parameters[] = { q, c, X };
318   double *jacobians[] = { J_q, J_c, J_X };
319   ASSERT_TRUE((AutoDiff<Metric, double, 4, 3, 3>::Differentiate(
320       b, parameters, 2, ad_x, jacobians)));
321 
322   for (int i = 0; i < 2; ++i) {
323     ASSERT_NEAR(ad_x[i], b_x[i], tol);
324   }
325 
326   // Compare the pieces.
327   for (int i = 0; i < 2; ++i) {
328     for (int j = 0; j < 4; ++j) {
329       ASSERT_NEAR(J_q[4 * i + j], fd_J[(4 + 3 + 3) * i + j], err);
330     }
331     for (int j = 0; j < 3; ++j) {
332       ASSERT_NEAR(J_c[3 * i + j], fd_J[(4 + 3 + 3) * i + j + 4], err);
333     }
334     for (int j = 0; j < 3; ++j) {
335       ASSERT_NEAR(J_X[3 * i + j], fd_J[(4 + 3 + 3) * i + j + 4 + 3], err);
336     }
337   }
338 }
339 
340 struct VaryingResidualFunctor {
341   template <typename T>
operator ()ceres::internal::VaryingResidualFunctor342   bool operator()(const T x[2], T* y) const {
343     for (int i = 0; i < num_residuals; ++i) {
344       y[i] = T(i) * x[0] * x[1] * x[1];
345     }
346     return true;
347   }
348 
349   int num_residuals;
350 };
351 
TEST(AutoDiff,VaryingNumberOfResidualsForOneCostFunctorType)352 TEST(AutoDiff, VaryingNumberOfResidualsForOneCostFunctorType) {
353   double x[2] = { 1.0, 5.5 };
354   double *parameters[] = { x };
355   const int kMaxResiduals = 10;
356   double J_x[2 * kMaxResiduals];
357   double residuals[kMaxResiduals];
358   double *jacobians[] = { J_x };
359 
360   // Use a single functor, but tweak it to produce different numbers of
361   // residuals.
362   VaryingResidualFunctor functor;
363 
364   for (int num_residuals = 1; num_residuals < kMaxResiduals; ++num_residuals) {
365     // Tweak the number of residuals to produce.
366     functor.num_residuals = num_residuals;
367 
368     // Run autodiff with the new number of residuals.
369     ASSERT_TRUE((AutoDiff<VaryingResidualFunctor, double, 2>::Differentiate(
370         functor, parameters, num_residuals, residuals, jacobians)));
371 
372     const double kTolerance = 1e-14;
373     for (int i = 0; i < num_residuals; ++i) {
374       EXPECT_NEAR(J_x[2 * i + 0], i * x[1] * x[1], kTolerance) << "i: " << i;
375       EXPECT_NEAR(J_x[2 * i + 1], 2 * i * x[0] * x[1], kTolerance)
376           << "i: " << i;
377     }
378   }
379 }
380 
381 struct Residual1Param {
382   template <typename T>
operator ()ceres::internal::Residual1Param383   bool operator()(const T* x0, T* y) const {
384     y[0] = *x0;
385     return true;
386   }
387 };
388 
389 struct Residual2Param {
390   template <typename T>
operator ()ceres::internal::Residual2Param391   bool operator()(const T* x0, const T* x1, T* y) const {
392     y[0] = *x0 + pow(*x1, 2);
393     return true;
394   }
395 };
396 
397 struct Residual3Param {
398   template <typename T>
operator ()ceres::internal::Residual3Param399   bool operator()(const T* x0, const T* x1, const T* x2, T* y) const {
400     y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3);
401     return true;
402   }
403 };
404 
405 struct Residual4Param {
406   template <typename T>
operator ()ceres::internal::Residual4Param407   bool operator()(const T* x0,
408                   const T* x1,
409                   const T* x2,
410                   const T* x3,
411                   T* y) const {
412     y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4);
413     return true;
414   }
415 };
416 
417 struct Residual5Param {
418   template <typename T>
operator ()ceres::internal::Residual5Param419   bool operator()(const T* x0,
420                   const T* x1,
421                   const T* x2,
422                   const T* x3,
423                   const T* x4,
424                   T* y) const {
425     y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5);
426     return true;
427   }
428 };
429 
430 struct Residual6Param {
431   template <typename T>
operator ()ceres::internal::Residual6Param432   bool operator()(const T* x0,
433                   const T* x1,
434                   const T* x2,
435                   const T* x3,
436                   const T* x4,
437                   const T* x5,
438                   T* y) const {
439     y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
440         pow(*x5, 6);
441     return true;
442   }
443 };
444 
445 struct Residual7Param {
446   template <typename T>
operator ()ceres::internal::Residual7Param447   bool operator()(const T* x0,
448                   const T* x1,
449                   const T* x2,
450                   const T* x3,
451                   const T* x4,
452                   const T* x5,
453                   const T* x6,
454                   T* y) const {
455     y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
456         pow(*x5, 6) + pow(*x6, 7);
457     return true;
458   }
459 };
460 
461 struct Residual8Param {
462   template <typename T>
operator ()ceres::internal::Residual8Param463   bool operator()(const T* x0,
464                   const T* x1,
465                   const T* x2,
466                   const T* x3,
467                   const T* x4,
468                   const T* x5,
469                   const T* x6,
470                   const T* x7,
471                   T* y) const {
472     y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
473         pow(*x5, 6) + pow(*x6, 7) + pow(*x7, 8);
474     return true;
475   }
476 };
477 
478 struct Residual9Param {
479   template <typename T>
operator ()ceres::internal::Residual9Param480   bool operator()(const T* x0,
481                   const T* x1,
482                   const T* x2,
483                   const T* x3,
484                   const T* x4,
485                   const T* x5,
486                   const T* x6,
487                   const T* x7,
488                   const T* x8,
489                   T* y) const {
490     y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
491         pow(*x5, 6) + pow(*x6, 7) + pow(*x7, 8) + pow(*x8, 9);
492     return true;
493   }
494 };
495 
496 struct Residual10Param {
497   template <typename T>
operator ()ceres::internal::Residual10Param498   bool operator()(const T* x0,
499                   const T* x1,
500                   const T* x2,
501                   const T* x3,
502                   const T* x4,
503                   const T* x5,
504                   const T* x6,
505                   const T* x7,
506                   const T* x8,
507                   const T* x9,
508                   T* y) const {
509     y[0] = *x0 + pow(*x1, 2) + pow(*x2, 3) + pow(*x3, 4) + pow(*x4, 5) +
510         pow(*x5, 6) + pow(*x6, 7) + pow(*x7, 8) + pow(*x8, 9) + pow(*x9, 10);
511     return true;
512   }
513 };
514 
TEST(AutoDiff,VariadicAutoDiff)515 TEST(AutoDiff, VariadicAutoDiff) {
516   double x[10];
517   double residual = 0;
518   double* parameters[10];
519   double jacobian_values[10];
520   double* jacobians[10];
521 
522   for (int i = 0; i < 10; ++i) {
523     x[i] = 2.0;
524     parameters[i] = x + i;
525     jacobians[i] = jacobian_values + i;
526   }
527 
528   {
529     Residual1Param functor;
530     int num_variables = 1;
531     EXPECT_TRUE((AutoDiff<Residual1Param, double, 1>::Differentiate(
532                      functor, parameters, 1, &residual, jacobians)));
533     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
534     for (int i = 0; i < num_variables; ++i) {
535       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
536     }
537   }
538 
539   {
540     Residual2Param functor;
541     int num_variables = 2;
542     EXPECT_TRUE((AutoDiff<Residual2Param, double, 1, 1>::Differentiate(
543                      functor, parameters, 1, &residual, jacobians)));
544     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
545     for (int i = 0; i < num_variables; ++i) {
546       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
547     }
548   }
549 
550   {
551     Residual3Param functor;
552     int num_variables = 3;
553     EXPECT_TRUE((AutoDiff<Residual3Param, double, 1, 1, 1>::Differentiate(
554                      functor, parameters, 1, &residual, jacobians)));
555     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
556     for (int i = 0; i < num_variables; ++i) {
557       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
558     }
559   }
560 
561   {
562     Residual4Param functor;
563     int num_variables = 4;
564     EXPECT_TRUE((AutoDiff<Residual4Param, double, 1, 1, 1, 1>::Differentiate(
565                      functor, parameters, 1, &residual, jacobians)));
566     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
567     for (int i = 0; i < num_variables; ++i) {
568       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
569     }
570   }
571 
572   {
573     Residual5Param functor;
574     int num_variables = 5;
575     EXPECT_TRUE((AutoDiff<Residual5Param, double, 1, 1, 1, 1, 1>::Differentiate(
576                      functor, parameters, 1, &residual, jacobians)));
577     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
578     for (int i = 0; i < num_variables; ++i) {
579       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
580     }
581   }
582 
583   {
584     Residual6Param functor;
585     int num_variables = 6;
586     EXPECT_TRUE((AutoDiff<Residual6Param,
587                  double,
588                  1, 1, 1, 1, 1, 1>::Differentiate(
589                      functor, parameters, 1, &residual, jacobians)));
590     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
591     for (int i = 0; i < num_variables; ++i) {
592       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
593     }
594   }
595 
596   {
597     Residual7Param functor;
598     int num_variables = 7;
599     EXPECT_TRUE((AutoDiff<Residual7Param,
600                  double,
601                  1, 1, 1, 1, 1, 1, 1>::Differentiate(
602                      functor, parameters, 1, &residual, jacobians)));
603     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
604     for (int i = 0; i < num_variables; ++i) {
605       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
606     }
607   }
608 
609   {
610     Residual8Param functor;
611     int num_variables = 8;
612     EXPECT_TRUE((AutoDiff<
613                  Residual8Param,
614                  double, 1, 1, 1, 1, 1, 1, 1, 1>::Differentiate(
615                      functor, parameters, 1, &residual, jacobians)));
616     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
617     for (int i = 0; i < num_variables; ++i) {
618       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
619     }
620   }
621 
622   {
623     Residual9Param functor;
624     int num_variables = 9;
625     EXPECT_TRUE((AutoDiff<
626                  Residual9Param,
627                  double,
628                  1, 1, 1, 1, 1, 1, 1, 1, 1>::Differentiate(
629                      functor, parameters, 1, &residual, jacobians)));
630     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
631     for (int i = 0; i < num_variables; ++i) {
632       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
633     }
634   }
635 
636   {
637     Residual10Param functor;
638     int num_variables = 10;
639     EXPECT_TRUE((AutoDiff<
640                  Residual10Param,
641                  double,
642                  1, 1, 1, 1, 1, 1, 1, 1, 1, 1>::Differentiate(
643                      functor, parameters, 1, &residual, jacobians)));
644     EXPECT_EQ(residual, pow(2, num_variables + 1) - 2);
645     for (int i = 0; i < num_variables; ++i) {
646       EXPECT_EQ(jacobian_values[i], (i + 1) * pow(2, i));
647     }
648   }
649 }
650 
651 // This is fragile test that triggers the alignment bug on
652 // i686-apple-darwin10-llvm-g++-4.2 (GCC) 4.2.1. It is quite possible,
653 // that other combinations of operating system + compiler will
654 // re-arrange the operations in this test.
655 //
656 // But this is the best (and only) way we know of to trigger this
657 // problem for now. A more robust solution that guarantees the
658 // alignment of Eigen types used for automatic differentiation would
659 // be nice.
TEST(AutoDiff,AlignedAllocationTest)660 TEST(AutoDiff, AlignedAllocationTest) {
661   // This int is needed to allocate 16 bits on the stack, so that the
662   // next allocation is not aligned by default.
663   char y = 0;
664 
665   // This is needed to prevent the compiler from optimizing y out of
666   // this function.
667   y += 1;
668 
669   typedef Jet<double, 2> JetT;
670   FixedArray<JetT, (256 * 7) / sizeof(JetT)> x(3);
671 
672   // Need this to makes sure that x does not get optimized out.
673   x[0] = x[0] + JetT(1.0);
674 }
675 
676 }  // namespace internal
677 }  // namespace ceres
678