/external/eigen/unsupported/Eigen/src/NonLinearOptimization/ |
D | dogleg.h | 95 …/ qnorm * numext::abs2(sgnorm / delta) + sqrt(numext::abs2(temp - delta / qnorm) + (1.-numext::abs… in dogleg() 96 alpha = delta / qnorm * (1. - numext::abs2(sgnorm / delta)) / temp; in dogleg()
|
D | LevenbergMarquardt.h | 288 actred = 1. - numext::abs2(fnorm1 / fnorm); in minimizeOneStep() 293 temp1 = numext::abs2(wa3.stableNorm() / fnorm); in minimizeOneStep() 294 temp2 = numext::abs2(sqrt(par) * pnorm / fnorm); in minimizeOneStep() 538 actred = 1. - numext::abs2(fnorm1 / fnorm); in minimizeOptimumStorageOneStep() 543 temp1 = numext::abs2(wa3.stableNorm() / fnorm); in minimizeOptimumStorageOneStep() 544 temp2 = numext::abs2(sqrt(par) * pnorm / fnorm); in minimizeOptimumStorageOneStep()
|
D | HybridNonLinearSolver.h | 257 actred = 1. - numext::abs2(fnorm1 / fnorm); in solveOneStep() 264 prered = 1. - numext::abs2(temp / fnorm); in solveOneStep() 500 actred = 1. - numext::abs2(fnorm1 / fnorm); in solveNumericalDiffOneStep() 507 prered = 1. - numext::abs2(temp / fnorm); in solveNumericalDiffOneStep()
|
/external/eigen/unsupported/Eigen/src/Polynomials/ |
D | PolynomialSolver.h | 86 RealScalar norm2 = numext::abs2( m_roots[0] ); in selectComplexRoot_withRespectToNorm() 89 const RealScalar currNorm2 = numext::abs2( m_roots[i] ); in selectComplexRoot_withRespectToNorm() 125 RealScalar abs2(0); 135 abs2 = m_roots[i].real() * m_roots[i].real(); 140 if( pred( currAbs2, abs2 ) ) 142 abs2 = currAbs2;
|
/external/eigen/Eigen/src/Core/ |
D | StableNorm.h | 25 ssq = ssq * numext::abs2(scale/maxCoeff); in stable_norm_kernel() 100 if(ax > ab2) abig += numext::abs2(ax*s2m); in blueNorm_impl() 101 else if(ax < b1) asml += numext::abs2(ax*s1m); in blueNorm_impl() 102 else amed += numext::abs2(ax); in blueNorm_impl() 136 return abig * sqrt(RealScalar(1) + numext::abs2(asml/abig)); in blueNorm_impl()
|
D | MathFunctions.h | 599 inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x) 601 return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x); 696 return numext::abs2(x) <= numext::abs2(y) * prec * prec; 701 return numext::abs2(x - y) <= (min)(numext::abs2(x), numext::abs2(y)) * prec * prec;
|
D | Fuzzy.h | 45 return x.cwiseAbs2().sum() <= numext::abs2(prec) * y.cwiseAbs2().sum(); 63 return x.cwiseAbs2().sum() <= numext::abs2(prec * y);
|
D | GlobalFunctions.h | 86 EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(abs2,scalar_abs2_op)
|
/external/eigen/unsupported/test/ |
D | FFTW.cpp | 40 totalpower += numext::abs2(acc); in fft_rmse() 43 difpower += numext::abs2(dif); in fft_rmse() 57 totalpower += (numext::abs2( buf1[k] ) + numext::abs2(buf2[k]) )/2.; in dif_rmse() 58 difpower += numext::abs2(buf1[k] - buf2[k]); in dif_rmse()
|
D | mpreal_support.cpp | 30 VERIFY(Eigen::internal::isApprox(A.array().abs2().sum(), A.squaredNorm())); in test_mpreal_support() 32 VERIFY_IS_APPROX(A.array().abs2().sqrt(), A.array().abs()); in test_mpreal_support()
|
/external/eigen/Eigen/src/Jacobi/ |
D | Jacobi.h | 97 RealScalar w = sqrt(numext::abs2(tau) + RealScalar(1)); in makeJacobi() 108 RealScalar n = RealScalar(1) / sqrt(numext::abs2(t)+RealScalar(1)); in makeJacobi() 181 RealScalar p2 = numext::abs2(ps); in makeGivens() 183 RealScalar q2 = numext::abs2(qs); in makeGivens() 196 RealScalar p2 = numext::abs2(ps); in makeGivens() 198 RealScalar q2 = numext::abs2(qs); in makeGivens() 234 Scalar u = sqrt(Scalar(1) + numext::abs2(t)); in makeGivens() 244 Scalar u = sqrt(Scalar(1) + numext::abs2(t)); in makeGivens()
|
/external/eigen/test/ |
D | array.cpp | 181 VERIFY_IS_APPROX(m1.abs(), sqrt(numext::abs2(m1))); in array_real() 183 …VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1)… in array_real() 184 VERIFY_IS_APPROX(numext::abs2(real(m1)) + numext::abs2(imag(m1)), numext::abs2(m1)); in array_real()
|
D | eigen2support.cpp | 49 using numext::abs2; in eigen2support() 52 VERIFY_IS_EQUAL(ei_abs2(s1), abs2(s1)); in eigen2support()
|
D | stable_norm.cpp | 55 while(numext::abs2(factor)<RealScalar(1e-4)) in stable_norm() 60 while(numext::abs2(factor)<RealScalar(1e-4)) in stable_norm()
|
/external/llvm/test/CodeGen/ARM/ |
D | thumb2-it-block.ll | 12 %abs2 = select i1 %cmp2, i32 %sub2, i32 %b 13 %add = add nsw i32 %abs1, %abs2
|
/external/eigen/unsupported/Eigen/src/LevenbergMarquardt/ |
D | LMonestep.h | 112 actred = 1. - numext::abs2(fnorm1 / m_fnorm); in minimizeOneStep() 117 temp1 = numext::abs2(m_wa3.stableNorm() / m_fnorm); in minimizeOneStep() 118 temp2 = numext::abs2(sqrt(m_par) * pnorm / m_fnorm); in minimizeOneStep()
|
/external/eigen/test/eigen2/ |
D | product.h | 17 return !((m1-m2).cwise().abs2().maxCoeff() < epsilon * epsilon 18 * std::max(m1.cwise().abs2().maxCoeff(), m2.cwise().abs2().maxCoeff()));
|
/external/eigen/Eigen/src/Eigenvalues/ |
D | SelfAdjointEigenSolver.h | 659 …const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0))… 697 Scalar a2 = numext::abs2(scaledMat(0,0)); 698 Scalar c2 = numext::abs2(scaledMat(1,1)); 699 Scalar b2 = numext::abs2(scaledMat(1,0)); 751 RealScalar e2 = numext::abs2(subdiag[end-1]);
|
D | Tridiagonalization.h | 471 RealScalar v1norm2 = numext::abs2(mat(2,0)); 483 RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2);
|
/external/eigen/doc/snippets/ |
D | Cwise_abs2.cpp | 2 cout << v.abs2() << endl;
|
/external/eigen/unsupported/Eigen/src/AutoDiff/ |
D | AutoDiffScalar.h | 551 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2, 552 using numext::abs2; 553 return ReturnType(abs2(x.value()), x.derivatives() * (Scalar(2)*x.value()));) 615 return ReturnType(tan(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cos(x.value()))));) 620 return ReturnType(asin(x.value()),x.derivatives() * (Scalar(1)/sqrt(1-numext::abs2(x.value()))));) 625 …return ReturnType(acos(x.value()),x.derivatives() * (Scalar(-1)/sqrt(1-numext::abs2(x.value()))));)
|
/external/eigen/blas/ |
D | level1_impl.h | 123 norm = scale*sqrt((numext::abs2(a/scale)) + (numext::abs2(b/scale))); in EIGEN_BLAS_FUNC()
|
/external/eigen/Eigen/src/plugins/ |
D | ArrayCwiseUnaryOps.h | 24 abs2() const in abs2() function
|
/external/eigen/bench/ |
D | bench_norm.cpp | 38 ssq += internal::abs2(ax/scale); in lapackNorm() 42 ssq = Scalar(1) + ssq * internal::abs2(scale/ax); in lapackNorm() 211 return abig * internal::sqrt(Scalar(1) + internal::abs2(asml/abig)); in pblueNorm()
|
/external/eigen/Eigen/src/Householder/ |
D | Householder.h | 87 beta = sqrt(numext::abs2(c0) + tailSqNorm); in makeHouseholder()
|