Home
last modified time | relevance | path

Searched refs:abs2 (Results 1 – 25 of 48) sorted by relevance

12

/external/eigen/unsupported/Eigen/src/NonLinearOptimization/
Ddogleg.h95 …/ qnorm * numext::abs2(sgnorm / delta) + sqrt(numext::abs2(temp - delta / qnorm) + (1.-numext::abs… in dogleg()
96 alpha = delta / qnorm * (1. - numext::abs2(sgnorm / delta)) / temp; in dogleg()
DLevenbergMarquardt.h288 actred = 1. - numext::abs2(fnorm1 / fnorm); in minimizeOneStep()
293 temp1 = numext::abs2(wa3.stableNorm() / fnorm); in minimizeOneStep()
294 temp2 = numext::abs2(sqrt(par) * pnorm / fnorm); in minimizeOneStep()
538 actred = 1. - numext::abs2(fnorm1 / fnorm); in minimizeOptimumStorageOneStep()
543 temp1 = numext::abs2(wa3.stableNorm() / fnorm); in minimizeOptimumStorageOneStep()
544 temp2 = numext::abs2(sqrt(par) * pnorm / fnorm); in minimizeOptimumStorageOneStep()
DHybridNonLinearSolver.h257 actred = 1. - numext::abs2(fnorm1 / fnorm); in solveOneStep()
264 prered = 1. - numext::abs2(temp / fnorm); in solveOneStep()
500 actred = 1. - numext::abs2(fnorm1 / fnorm); in solveNumericalDiffOneStep()
507 prered = 1. - numext::abs2(temp / fnorm); in solveNumericalDiffOneStep()
/external/eigen/unsupported/Eigen/src/Polynomials/
DPolynomialSolver.h86 RealScalar norm2 = numext::abs2( m_roots[0] ); in selectComplexRoot_withRespectToNorm()
89 const RealScalar currNorm2 = numext::abs2( m_roots[i] ); in selectComplexRoot_withRespectToNorm()
125 RealScalar abs2(0);
135 abs2 = m_roots[i].real() * m_roots[i].real();
140 if( pred( currAbs2, abs2 ) )
142 abs2 = currAbs2;
/external/eigen/Eigen/src/Core/
DStableNorm.h25 ssq = ssq * numext::abs2(scale/maxCoeff); in stable_norm_kernel()
100 if(ax > ab2) abig += numext::abs2(ax*s2m); in blueNorm_impl()
101 else if(ax < b1) asml += numext::abs2(ax*s1m); in blueNorm_impl()
102 else amed += numext::abs2(ax); in blueNorm_impl()
136 return abig * sqrt(RealScalar(1) + numext::abs2(asml/abig)); in blueNorm_impl()
DMathFunctions.h599 inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
601 return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
696 return numext::abs2(x) <= numext::abs2(y) * prec * prec;
701 return numext::abs2(x - y) <= (min)(numext::abs2(x), numext::abs2(y)) * prec * prec;
DFuzzy.h45 return x.cwiseAbs2().sum() <= numext::abs2(prec) * y.cwiseAbs2().sum();
63 return x.cwiseAbs2().sum() <= numext::abs2(prec * y);
DGlobalFunctions.h86 EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(abs2,scalar_abs2_op)
/external/eigen/unsupported/test/
DFFTW.cpp40 totalpower += numext::abs2(acc); in fft_rmse()
43 difpower += numext::abs2(dif); in fft_rmse()
57 totalpower += (numext::abs2( buf1[k] ) + numext::abs2(buf2[k]) )/2.; in dif_rmse()
58 difpower += numext::abs2(buf1[k] - buf2[k]); in dif_rmse()
Dmpreal_support.cpp30 VERIFY(Eigen::internal::isApprox(A.array().abs2().sum(), A.squaredNorm())); in test_mpreal_support()
32 VERIFY_IS_APPROX(A.array().abs2().sqrt(), A.array().abs()); in test_mpreal_support()
/external/eigen/Eigen/src/Jacobi/
DJacobi.h97 RealScalar w = sqrt(numext::abs2(tau) + RealScalar(1)); in makeJacobi()
108 RealScalar n = RealScalar(1) / sqrt(numext::abs2(t)+RealScalar(1)); in makeJacobi()
181 RealScalar p2 = numext::abs2(ps); in makeGivens()
183 RealScalar q2 = numext::abs2(qs); in makeGivens()
196 RealScalar p2 = numext::abs2(ps); in makeGivens()
198 RealScalar q2 = numext::abs2(qs); in makeGivens()
234 Scalar u = sqrt(Scalar(1) + numext::abs2(t)); in makeGivens()
244 Scalar u = sqrt(Scalar(1) + numext::abs2(t)); in makeGivens()
/external/eigen/test/
Darray.cpp181 VERIFY_IS_APPROX(m1.abs(), sqrt(numext::abs2(m1))); in array_real()
183 …VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1)… in array_real()
184 VERIFY_IS_APPROX(numext::abs2(real(m1)) + numext::abs2(imag(m1)), numext::abs2(m1)); in array_real()
Deigen2support.cpp49 using numext::abs2; in eigen2support()
52 VERIFY_IS_EQUAL(ei_abs2(s1), abs2(s1)); in eigen2support()
Dstable_norm.cpp55 while(numext::abs2(factor)<RealScalar(1e-4)) in stable_norm()
60 while(numext::abs2(factor)<RealScalar(1e-4)) in stable_norm()
/external/llvm/test/CodeGen/ARM/
Dthumb2-it-block.ll12 %abs2 = select i1 %cmp2, i32 %sub2, i32 %b
13 %add = add nsw i32 %abs1, %abs2
/external/eigen/unsupported/Eigen/src/LevenbergMarquardt/
DLMonestep.h112 actred = 1. - numext::abs2(fnorm1 / m_fnorm); in minimizeOneStep()
117 temp1 = numext::abs2(m_wa3.stableNorm() / m_fnorm); in minimizeOneStep()
118 temp2 = numext::abs2(sqrt(m_par) * pnorm / m_fnorm); in minimizeOneStep()
/external/eigen/test/eigen2/
Dproduct.h17 return !((m1-m2).cwise().abs2().maxCoeff() < epsilon * epsilon
18 * std::max(m1.cwise().abs2().maxCoeff(), m2.cwise().abs2().maxCoeff()));
/external/eigen/Eigen/src/Eigenvalues/
DSelfAdjointEigenSolver.h659 …const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0))…
697 Scalar a2 = numext::abs2(scaledMat(0,0));
698 Scalar c2 = numext::abs2(scaledMat(1,1));
699 Scalar b2 = numext::abs2(scaledMat(1,0));
751 RealScalar e2 = numext::abs2(subdiag[end-1]);
DTridiagonalization.h471 RealScalar v1norm2 = numext::abs2(mat(2,0));
483 RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2);
/external/eigen/doc/snippets/
DCwise_abs2.cpp2 cout << v.abs2() << endl;
/external/eigen/unsupported/Eigen/src/AutoDiff/
DAutoDiffScalar.h551 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2,
552 using numext::abs2;
553 return ReturnType(abs2(x.value()), x.derivatives() * (Scalar(2)*x.value()));)
615 return ReturnType(tan(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cos(x.value()))));)
620 return ReturnType(asin(x.value()),x.derivatives() * (Scalar(1)/sqrt(1-numext::abs2(x.value()))));)
625 …return ReturnType(acos(x.value()),x.derivatives() * (Scalar(-1)/sqrt(1-numext::abs2(x.value()))));)
/external/eigen/blas/
Dlevel1_impl.h123 norm = scale*sqrt((numext::abs2(a/scale)) + (numext::abs2(b/scale))); in EIGEN_BLAS_FUNC()
/external/eigen/Eigen/src/plugins/
DArrayCwiseUnaryOps.h24 abs2() const in abs2() function
/external/eigen/bench/
Dbench_norm.cpp38 ssq += internal::abs2(ax/scale); in lapackNorm()
42 ssq = Scalar(1) + ssq * internal::abs2(scale/ax); in lapackNorm()
211 return abig * internal::sqrt(Scalar(1) + internal::abs2(asml/abig)); in pblueNorm()
/external/eigen/Eigen/src/Householder/
DHouseholder.h87 beta = sqrt(numext::abs2(c0) + tailSqNorm); in makeHouseholder()

12