1 //===-- RegAllocBasic.cpp - Basic Register Allocator ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RABasic function pass, which provides a minimal
11 // implementation of the basic register allocator.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/Passes.h"
16 #include "AllocationOrder.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "Spiller.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/CodeGen/CalcSpillWeights.h"
22 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
23 #include "llvm/CodeGen/LiveRangeEdit.h"
24 #include "llvm/CodeGen/LiveRegMatrix.h"
25 #include "llvm/CodeGen/LiveStackAnalysis.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RegAllocRegistry.h"
32 #include "llvm/CodeGen/VirtRegMap.h"
33 #include "llvm/PassAnalysisSupport.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetRegisterInfo.h"
37 #include <cstdlib>
38 #include <queue>
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "regalloc"
43 
44 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
45                                       createBasicRegisterAllocator);
46 
47 namespace {
48   struct CompSpillWeight {
operator ()__anon97ef1a410111::CompSpillWeight49     bool operator()(LiveInterval *A, LiveInterval *B) const {
50       return A->weight < B->weight;
51     }
52   };
53 }
54 
55 namespace {
56 /// RABasic provides a minimal implementation of the basic register allocation
57 /// algorithm. It prioritizes live virtual registers by spill weight and spills
58 /// whenever a register is unavailable. This is not practical in production but
59 /// provides a useful baseline both for measuring other allocators and comparing
60 /// the speed of the basic algorithm against other styles of allocators.
61 class RABasic : public MachineFunctionPass, public RegAllocBase
62 {
63   // context
64   MachineFunction *MF;
65 
66   // state
67   std::unique_ptr<Spiller> SpillerInstance;
68   std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
69                       CompSpillWeight> Queue;
70 
71   // Scratch space.  Allocated here to avoid repeated malloc calls in
72   // selectOrSplit().
73   BitVector UsableRegs;
74 
75 public:
76   RABasic();
77 
78   /// Return the pass name.
getPassName() const79   const char* getPassName() const override {
80     return "Basic Register Allocator";
81   }
82 
83   /// RABasic analysis usage.
84   void getAnalysisUsage(AnalysisUsage &AU) const override;
85 
86   void releaseMemory() override;
87 
spiller()88   Spiller &spiller() override { return *SpillerInstance; }
89 
enqueue(LiveInterval * LI)90   void enqueue(LiveInterval *LI) override {
91     Queue.push(LI);
92   }
93 
dequeue()94   LiveInterval *dequeue() override {
95     if (Queue.empty())
96       return nullptr;
97     LiveInterval *LI = Queue.top();
98     Queue.pop();
99     return LI;
100   }
101 
102   unsigned selectOrSplit(LiveInterval &VirtReg,
103                          SmallVectorImpl<unsigned> &SplitVRegs) override;
104 
105   /// Perform register allocation.
106   bool runOnMachineFunction(MachineFunction &mf) override;
107 
108   // Helper for spilling all live virtual registers currently unified under preg
109   // that interfere with the most recently queried lvr.  Return true if spilling
110   // was successful, and append any new spilled/split intervals to splitLVRs.
111   bool spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
112                           SmallVectorImpl<unsigned> &SplitVRegs);
113 
114   static char ID;
115 };
116 
117 char RABasic::ID = 0;
118 
119 } // end anonymous namespace
120 
RABasic()121 RABasic::RABasic(): MachineFunctionPass(ID) {
122   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
123   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
124   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
125   initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
126   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
127   initializeLiveStacksPass(*PassRegistry::getPassRegistry());
128   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
129   initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
130   initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
131   initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
132 }
133 
getAnalysisUsage(AnalysisUsage & AU) const134 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
135   AU.setPreservesCFG();
136   AU.addRequired<AAResultsWrapperPass>();
137   AU.addPreserved<AAResultsWrapperPass>();
138   AU.addRequired<LiveIntervals>();
139   AU.addPreserved<LiveIntervals>();
140   AU.addPreserved<SlotIndexes>();
141   AU.addRequired<LiveDebugVariables>();
142   AU.addPreserved<LiveDebugVariables>();
143   AU.addRequired<LiveStacks>();
144   AU.addPreserved<LiveStacks>();
145   AU.addRequired<MachineBlockFrequencyInfo>();
146   AU.addPreserved<MachineBlockFrequencyInfo>();
147   AU.addRequiredID(MachineDominatorsID);
148   AU.addPreservedID(MachineDominatorsID);
149   AU.addRequired<MachineLoopInfo>();
150   AU.addPreserved<MachineLoopInfo>();
151   AU.addRequired<VirtRegMap>();
152   AU.addPreserved<VirtRegMap>();
153   AU.addRequired<LiveRegMatrix>();
154   AU.addPreserved<LiveRegMatrix>();
155   MachineFunctionPass::getAnalysisUsage(AU);
156 }
157 
releaseMemory()158 void RABasic::releaseMemory() {
159   SpillerInstance.reset();
160 }
161 
162 
163 // Spill or split all live virtual registers currently unified under PhysReg
164 // that interfere with VirtReg. The newly spilled or split live intervals are
165 // returned by appending them to SplitVRegs.
spillInterferences(LiveInterval & VirtReg,unsigned PhysReg,SmallVectorImpl<unsigned> & SplitVRegs)166 bool RABasic::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
167                                  SmallVectorImpl<unsigned> &SplitVRegs) {
168   // Record each interference and determine if all are spillable before mutating
169   // either the union or live intervals.
170   SmallVector<LiveInterval*, 8> Intfs;
171 
172   // Collect interferences assigned to any alias of the physical register.
173   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
174     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
175     Q.collectInterferingVRegs();
176     if (Q.seenUnspillableVReg())
177       return false;
178     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
179       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
180       if (!Intf->isSpillable() || Intf->weight > VirtReg.weight)
181         return false;
182       Intfs.push_back(Intf);
183     }
184   }
185   DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
186         " interferences with " << VirtReg << "\n");
187   assert(!Intfs.empty() && "expected interference");
188 
189   // Spill each interfering vreg allocated to PhysReg or an alias.
190   for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
191     LiveInterval &Spill = *Intfs[i];
192 
193     // Skip duplicates.
194     if (!VRM->hasPhys(Spill.reg))
195       continue;
196 
197     // Deallocate the interfering vreg by removing it from the union.
198     // A LiveInterval instance may not be in a union during modification!
199     Matrix->unassign(Spill);
200 
201     // Spill the extracted interval.
202     LiveRangeEdit LRE(&Spill, SplitVRegs, *MF, *LIS, VRM);
203     spiller().spill(LRE);
204   }
205   return true;
206 }
207 
208 // Driver for the register assignment and splitting heuristics.
209 // Manages iteration over the LiveIntervalUnions.
210 //
211 // This is a minimal implementation of register assignment and splitting that
212 // spills whenever we run out of registers.
213 //
214 // selectOrSplit can only be called once per live virtual register. We then do a
215 // single interference test for each register the correct class until we find an
216 // available register. So, the number of interference tests in the worst case is
217 // |vregs| * |machineregs|. And since the number of interference tests is
218 // minimal, there is no value in caching them outside the scope of
219 // selectOrSplit().
selectOrSplit(LiveInterval & VirtReg,SmallVectorImpl<unsigned> & SplitVRegs)220 unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
221                                 SmallVectorImpl<unsigned> &SplitVRegs) {
222   // Populate a list of physical register spill candidates.
223   SmallVector<unsigned, 8> PhysRegSpillCands;
224 
225   // Check for an available register in this class.
226   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
227   while (unsigned PhysReg = Order.next()) {
228     // Check for interference in PhysReg
229     switch (Matrix->checkInterference(VirtReg, PhysReg)) {
230     case LiveRegMatrix::IK_Free:
231       // PhysReg is available, allocate it.
232       return PhysReg;
233 
234     case LiveRegMatrix::IK_VirtReg:
235       // Only virtual registers in the way, we may be able to spill them.
236       PhysRegSpillCands.push_back(PhysReg);
237       continue;
238 
239     default:
240       // RegMask or RegUnit interference.
241       continue;
242     }
243   }
244 
245   // Try to spill another interfering reg with less spill weight.
246   for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
247        PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
248     if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs))
249       continue;
250 
251     assert(!Matrix->checkInterference(VirtReg, *PhysRegI) &&
252            "Interference after spill.");
253     // Tell the caller to allocate to this newly freed physical register.
254     return *PhysRegI;
255   }
256 
257   // No other spill candidates were found, so spill the current VirtReg.
258   DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
259   if (!VirtReg.isSpillable())
260     return ~0u;
261   LiveRangeEdit LRE(&VirtReg, SplitVRegs, *MF, *LIS, VRM);
262   spiller().spill(LRE);
263 
264   // The live virtual register requesting allocation was spilled, so tell
265   // the caller not to allocate anything during this round.
266   return 0;
267 }
268 
runOnMachineFunction(MachineFunction & mf)269 bool RABasic::runOnMachineFunction(MachineFunction &mf) {
270   DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
271                << "********** Function: "
272                << mf.getName() << '\n');
273 
274   MF = &mf;
275   RegAllocBase::init(getAnalysis<VirtRegMap>(),
276                      getAnalysis<LiveIntervals>(),
277                      getAnalysis<LiveRegMatrix>());
278 
279   calculateSpillWeightsAndHints(*LIS, *MF, VRM,
280                                 getAnalysis<MachineLoopInfo>(),
281                                 getAnalysis<MachineBlockFrequencyInfo>());
282 
283   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
284 
285   allocatePhysRegs();
286 
287   // Diagnostic output before rewriting
288   DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
289 
290   releaseMemory();
291   return true;
292 }
293 
createBasicRegisterAllocator()294 FunctionPass* llvm::createBasicRegisterAllocator()
295 {
296   return new RABasic();
297 }
298