1 //===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// This file defines a set of templates that efficiently compute a dominator
12 /// tree over a generic graph. This is used typically in LLVM for fast
13 /// dominance queries on the CFG, but is fully generic w.r.t. the underlying
14 /// graph types.
15 ///
16 //===----------------------------------------------------------------------===//
17 
18 #ifndef LLVM_SUPPORT_GENERICDOMTREE_H
19 #define LLVM_SUPPORT_GENERICDOMTREE_H
20 
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DepthFirstIterator.h"
23 #include "llvm/ADT/GraphTraits.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>
30 
31 namespace llvm {
32 
33 /// \brief Base class that other, more interesting dominator analyses
34 /// inherit from.
35 template <class NodeT> class DominatorBase {
36 protected:
37   std::vector<NodeT *> Roots;
38   bool IsPostDominators;
DominatorBase(bool isPostDom)39   explicit DominatorBase(bool isPostDom)
40       : Roots(), IsPostDominators(isPostDom) {}
DominatorBase(DominatorBase && Arg)41   DominatorBase(DominatorBase &&Arg)
42       : Roots(std::move(Arg.Roots)),
43         IsPostDominators(std::move(Arg.IsPostDominators)) {
44     Arg.Roots.clear();
45   }
46   DominatorBase &operator=(DominatorBase &&RHS) {
47     Roots = std::move(RHS.Roots);
48     IsPostDominators = std::move(RHS.IsPostDominators);
49     RHS.Roots.clear();
50     return *this;
51   }
52 
53 public:
54   /// getRoots - Return the root blocks of the current CFG.  This may include
55   /// multiple blocks if we are computing post dominators.  For forward
56   /// dominators, this will always be a single block (the entry node).
57   ///
getRoots()58   const std::vector<NodeT *> &getRoots() const { return Roots; }
59 
60   /// isPostDominator - Returns true if analysis based of postdoms
61   ///
isPostDominator()62   bool isPostDominator() const { return IsPostDominators; }
63 };
64 
65 template <class NodeT> class DominatorTreeBase;
66 struct PostDominatorTree;
67 
68 /// \brief Base class for the actual dominator tree node.
69 template <class NodeT> class DomTreeNodeBase {
70   NodeT *TheBB;
71   DomTreeNodeBase<NodeT> *IDom;
72   std::vector<DomTreeNodeBase<NodeT> *> Children;
73   mutable int DFSNumIn, DFSNumOut;
74 
75   template <class N> friend class DominatorTreeBase;
76   friend struct PostDominatorTree;
77 
78 public:
79   typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
80   typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
81       const_iterator;
82 
begin()83   iterator begin() { return Children.begin(); }
end()84   iterator end() { return Children.end(); }
begin()85   const_iterator begin() const { return Children.begin(); }
end()86   const_iterator end() const { return Children.end(); }
87 
getBlock()88   NodeT *getBlock() const { return TheBB; }
getIDom()89   DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
getChildren()90   const std::vector<DomTreeNodeBase<NodeT> *> &getChildren() const {
91     return Children;
92   }
93 
DomTreeNodeBase(NodeT * BB,DomTreeNodeBase<NodeT> * iDom)94   DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
95       : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) {}
96 
97   std::unique_ptr<DomTreeNodeBase<NodeT>>
addChild(std::unique_ptr<DomTreeNodeBase<NodeT>> C)98   addChild(std::unique_ptr<DomTreeNodeBase<NodeT>> C) {
99     Children.push_back(C.get());
100     return C;
101   }
102 
getNumChildren()103   size_t getNumChildren() const { return Children.size(); }
104 
clearAllChildren()105   void clearAllChildren() { Children.clear(); }
106 
compare(const DomTreeNodeBase<NodeT> * Other)107   bool compare(const DomTreeNodeBase<NodeT> *Other) const {
108     if (getNumChildren() != Other->getNumChildren())
109       return true;
110 
111     SmallPtrSet<const NodeT *, 4> OtherChildren;
112     for (const_iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
113       const NodeT *Nd = (*I)->getBlock();
114       OtherChildren.insert(Nd);
115     }
116 
117     for (const_iterator I = begin(), E = end(); I != E; ++I) {
118       const NodeT *N = (*I)->getBlock();
119       if (OtherChildren.count(N) == 0)
120         return true;
121     }
122     return false;
123   }
124 
setIDom(DomTreeNodeBase<NodeT> * NewIDom)125   void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
126     assert(IDom && "No immediate dominator?");
127     if (IDom != NewIDom) {
128       typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
129           std::find(IDom->Children.begin(), IDom->Children.end(), this);
130       assert(I != IDom->Children.end() &&
131              "Not in immediate dominator children set!");
132       // I am no longer your child...
133       IDom->Children.erase(I);
134 
135       // Switch to new dominator
136       IDom = NewIDom;
137       IDom->Children.push_back(this);
138     }
139   }
140 
141   /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
142   /// not call them.
getDFSNumIn()143   unsigned getDFSNumIn() const { return DFSNumIn; }
getDFSNumOut()144   unsigned getDFSNumOut() const { return DFSNumOut; }
145 
146 private:
147   // Return true if this node is dominated by other. Use this only if DFS info
148   // is valid.
DominatedBy(const DomTreeNodeBase<NodeT> * other)149   bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
150     return this->DFSNumIn >= other->DFSNumIn &&
151            this->DFSNumOut <= other->DFSNumOut;
152   }
153 };
154 
155 template <class NodeT>
156 raw_ostream &operator<<(raw_ostream &o, const DomTreeNodeBase<NodeT> *Node) {
157   if (Node->getBlock())
158     Node->getBlock()->printAsOperand(o, false);
159   else
160     o << " <<exit node>>";
161 
162   o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
163 
164   return o << "\n";
165 }
166 
167 template <class NodeT>
PrintDomTree(const DomTreeNodeBase<NodeT> * N,raw_ostream & o,unsigned Lev)168 void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
169                   unsigned Lev) {
170   o.indent(2 * Lev) << "[" << Lev << "] " << N;
171   for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
172                                                        E = N->end();
173        I != E; ++I)
174     PrintDomTree<NodeT>(*I, o, Lev + 1);
175 }
176 
177 // The calculate routine is provided in a separate header but referenced here.
178 template <class FuncT, class N>
179 void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT,
180                FuncT &F);
181 
182 /// \brief Core dominator tree base class.
183 ///
184 /// This class is a generic template over graph nodes. It is instantiated for
185 /// various graphs in the LLVM IR or in the code generator.
186 template <class NodeT> class DominatorTreeBase : public DominatorBase<NodeT> {
187   DominatorTreeBase(const DominatorTreeBase &) = delete;
188   DominatorTreeBase &operator=(const DominatorTreeBase &) = delete;
189 
dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> * A,const DomTreeNodeBase<NodeT> * B)190   bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
191                                const DomTreeNodeBase<NodeT> *B) const {
192     assert(A != B);
193     assert(isReachableFromEntry(B));
194     assert(isReachableFromEntry(A));
195 
196     const DomTreeNodeBase<NodeT> *IDom;
197     while ((IDom = B->getIDom()) != nullptr && IDom != A && IDom != B)
198       B = IDom; // Walk up the tree
199     return IDom != nullptr;
200   }
201 
202   /// \brief Wipe this tree's state without releasing any resources.
203   ///
204   /// This is essentially a post-move helper only. It leaves the object in an
205   /// assignable and destroyable state, but otherwise invalid.
wipe()206   void wipe() {
207     DomTreeNodes.clear();
208     IDoms.clear();
209     Vertex.clear();
210     Info.clear();
211     RootNode = nullptr;
212   }
213 
214 protected:
215   typedef DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>
216       DomTreeNodeMapType;
217   DomTreeNodeMapType DomTreeNodes;
218   DomTreeNodeBase<NodeT> *RootNode;
219 
220   mutable bool DFSInfoValid;
221   mutable unsigned int SlowQueries;
222   // Information record used during immediate dominators computation.
223   struct InfoRec {
224     unsigned DFSNum;
225     unsigned Parent;
226     unsigned Semi;
227     NodeT *Label;
228 
InfoRecInfoRec229     InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(nullptr) {}
230   };
231 
232   DenseMap<NodeT *, NodeT *> IDoms;
233 
234   // Vertex - Map the DFS number to the NodeT*
235   std::vector<NodeT *> Vertex;
236 
237   // Info - Collection of information used during the computation of idoms.
238   DenseMap<NodeT *, InfoRec> Info;
239 
reset()240   void reset() {
241     DomTreeNodes.clear();
242     IDoms.clear();
243     this->Roots.clear();
244     Vertex.clear();
245     RootNode = nullptr;
246     DFSInfoValid = false;
247     SlowQueries = 0;
248   }
249 
250   // NewBB is split and now it has one successor. Update dominator tree to
251   // reflect this change.
252   template <class N, class GraphT>
Split(DominatorTreeBase<typename GraphT::NodeType> & DT,typename GraphT::NodeType * NewBB)253   void Split(DominatorTreeBase<typename GraphT::NodeType> &DT,
254              typename GraphT::NodeType *NewBB) {
255     assert(std::distance(GraphT::child_begin(NewBB),
256                          GraphT::child_end(NewBB)) == 1 &&
257            "NewBB should have a single successor!");
258     typename GraphT::NodeType *NewBBSucc = *GraphT::child_begin(NewBB);
259 
260     std::vector<typename GraphT::NodeType *> PredBlocks;
261     typedef GraphTraits<Inverse<N>> InvTraits;
262     for (typename InvTraits::ChildIteratorType
263              PI = InvTraits::child_begin(NewBB),
264              PE = InvTraits::child_end(NewBB);
265          PI != PE; ++PI)
266       PredBlocks.push_back(*PI);
267 
268     assert(!PredBlocks.empty() && "No predblocks?");
269 
270     bool NewBBDominatesNewBBSucc = true;
271     for (typename InvTraits::ChildIteratorType
272              PI = InvTraits::child_begin(NewBBSucc),
273              E = InvTraits::child_end(NewBBSucc);
274          PI != E; ++PI) {
275       typename InvTraits::NodeType *ND = *PI;
276       if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
277           DT.isReachableFromEntry(ND)) {
278         NewBBDominatesNewBBSucc = false;
279         break;
280       }
281     }
282 
283     // Find NewBB's immediate dominator and create new dominator tree node for
284     // NewBB.
285     NodeT *NewBBIDom = nullptr;
286     unsigned i = 0;
287     for (i = 0; i < PredBlocks.size(); ++i)
288       if (DT.isReachableFromEntry(PredBlocks[i])) {
289         NewBBIDom = PredBlocks[i];
290         break;
291       }
292 
293     // It's possible that none of the predecessors of NewBB are reachable;
294     // in that case, NewBB itself is unreachable, so nothing needs to be
295     // changed.
296     if (!NewBBIDom)
297       return;
298 
299     for (i = i + 1; i < PredBlocks.size(); ++i) {
300       if (DT.isReachableFromEntry(PredBlocks[i]))
301         NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
302     }
303 
304     // Create the new dominator tree node... and set the idom of NewBB.
305     DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
306 
307     // If NewBB strictly dominates other blocks, then it is now the immediate
308     // dominator of NewBBSucc.  Update the dominator tree as appropriate.
309     if (NewBBDominatesNewBBSucc) {
310       DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
311       DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
312     }
313   }
314 
315 public:
DominatorTreeBase(bool isPostDom)316   explicit DominatorTreeBase(bool isPostDom)
317       : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
318 
DominatorTreeBase(DominatorTreeBase && Arg)319   DominatorTreeBase(DominatorTreeBase &&Arg)
320       : DominatorBase<NodeT>(
321             std::move(static_cast<DominatorBase<NodeT> &>(Arg))),
322         DomTreeNodes(std::move(Arg.DomTreeNodes)),
323         RootNode(std::move(Arg.RootNode)),
324         DFSInfoValid(std::move(Arg.DFSInfoValid)),
325         SlowQueries(std::move(Arg.SlowQueries)), IDoms(std::move(Arg.IDoms)),
326         Vertex(std::move(Arg.Vertex)), Info(std::move(Arg.Info)) {
327     Arg.wipe();
328   }
329   DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
330     DominatorBase<NodeT>::operator=(
331         std::move(static_cast<DominatorBase<NodeT> &>(RHS)));
332     DomTreeNodes = std::move(RHS.DomTreeNodes);
333     RootNode = std::move(RHS.RootNode);
334     DFSInfoValid = std::move(RHS.DFSInfoValid);
335     SlowQueries = std::move(RHS.SlowQueries);
336     IDoms = std::move(RHS.IDoms);
337     Vertex = std::move(RHS.Vertex);
338     Info = std::move(RHS.Info);
339     RHS.wipe();
340     return *this;
341   }
342 
343   /// compare - Return false if the other dominator tree base matches this
344   /// dominator tree base. Otherwise return true.
compare(const DominatorTreeBase & Other)345   bool compare(const DominatorTreeBase &Other) const {
346 
347     const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
348     if (DomTreeNodes.size() != OtherDomTreeNodes.size())
349       return true;
350 
351     for (typename DomTreeNodeMapType::const_iterator
352              I = this->DomTreeNodes.begin(),
353              E = this->DomTreeNodes.end();
354          I != E; ++I) {
355       NodeT *BB = I->first;
356       typename DomTreeNodeMapType::const_iterator OI =
357           OtherDomTreeNodes.find(BB);
358       if (OI == OtherDomTreeNodes.end())
359         return true;
360 
361       DomTreeNodeBase<NodeT> &MyNd = *I->second;
362       DomTreeNodeBase<NodeT> &OtherNd = *OI->second;
363 
364       if (MyNd.compare(&OtherNd))
365         return true;
366     }
367 
368     return false;
369   }
370 
releaseMemory()371   void releaseMemory() { reset(); }
372 
373   /// getNode - return the (Post)DominatorTree node for the specified basic
374   /// block.  This is the same as using operator[] on this class.  The result
375   /// may (but is not required to) be null for a forward (backwards)
376   /// statically unreachable block.
getNode(NodeT * BB)377   DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
378     auto I = DomTreeNodes.find(BB);
379     if (I != DomTreeNodes.end())
380       return I->second.get();
381     return nullptr;
382   }
383 
384   /// See getNode.
385   DomTreeNodeBase<NodeT> *operator[](NodeT *BB) const { return getNode(BB); }
386 
387   /// getRootNode - This returns the entry node for the CFG of the function.  If
388   /// this tree represents the post-dominance relations for a function, however,
389   /// this root may be a node with the block == NULL.  This is the case when
390   /// there are multiple exit nodes from a particular function.  Consumers of
391   /// post-dominance information must be capable of dealing with this
392   /// possibility.
393   ///
getRootNode()394   DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
getRootNode()395   const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
396 
397   /// Get all nodes dominated by R, including R itself.
getDescendants(NodeT * R,SmallVectorImpl<NodeT * > & Result)398   void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
399     Result.clear();
400     const DomTreeNodeBase<NodeT> *RN = getNode(R);
401     if (!RN)
402       return; // If R is unreachable, it will not be present in the DOM tree.
403     SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
404     WL.push_back(RN);
405 
406     while (!WL.empty()) {
407       const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
408       Result.push_back(N->getBlock());
409       WL.append(N->begin(), N->end());
410     }
411   }
412 
413   /// properlyDominates - Returns true iff A dominates B and A != B.
414   /// Note that this is not a constant time operation!
415   ///
properlyDominates(const DomTreeNodeBase<NodeT> * A,const DomTreeNodeBase<NodeT> * B)416   bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
417                          const DomTreeNodeBase<NodeT> *B) const {
418     if (!A || !B)
419       return false;
420     if (A == B)
421       return false;
422     return dominates(A, B);
423   }
424 
425   bool properlyDominates(const NodeT *A, const NodeT *B) const;
426 
427   /// isReachableFromEntry - Return true if A is dominated by the entry
428   /// block of the function containing it.
isReachableFromEntry(const NodeT * A)429   bool isReachableFromEntry(const NodeT *A) const {
430     assert(!this->isPostDominator() &&
431            "This is not implemented for post dominators");
432     return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
433   }
434 
isReachableFromEntry(const DomTreeNodeBase<NodeT> * A)435   bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
436 
437   /// dominates - Returns true iff A dominates B.  Note that this is not a
438   /// constant time operation!
439   ///
dominates(const DomTreeNodeBase<NodeT> * A,const DomTreeNodeBase<NodeT> * B)440   bool dominates(const DomTreeNodeBase<NodeT> *A,
441                  const DomTreeNodeBase<NodeT> *B) const {
442     // A node trivially dominates itself.
443     if (B == A)
444       return true;
445 
446     // An unreachable node is dominated by anything.
447     if (!isReachableFromEntry(B))
448       return true;
449 
450     // And dominates nothing.
451     if (!isReachableFromEntry(A))
452       return false;
453 
454     // Compare the result of the tree walk and the dfs numbers, if expensive
455     // checks are enabled.
456 #ifdef XDEBUG
457     assert((!DFSInfoValid ||
458             (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
459            "Tree walk disagrees with dfs numbers!");
460 #endif
461 
462     if (DFSInfoValid)
463       return B->DominatedBy(A);
464 
465     // If we end up with too many slow queries, just update the
466     // DFS numbers on the theory that we are going to keep querying.
467     SlowQueries++;
468     if (SlowQueries > 32) {
469       updateDFSNumbers();
470       return B->DominatedBy(A);
471     }
472 
473     return dominatedBySlowTreeWalk(A, B);
474   }
475 
476   bool dominates(const NodeT *A, const NodeT *B) const;
477 
getRoot()478   NodeT *getRoot() const {
479     assert(this->Roots.size() == 1 && "Should always have entry node!");
480     return this->Roots[0];
481   }
482 
483   /// findNearestCommonDominator - Find nearest common dominator basic block
484   /// for basic block A and B. If there is no such block then return NULL.
findNearestCommonDominator(NodeT * A,NodeT * B)485   NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
486     assert(A->getParent() == B->getParent() &&
487            "Two blocks are not in same function");
488 
489     // If either A or B is a entry block then it is nearest common dominator
490     // (for forward-dominators).
491     if (!this->isPostDominator()) {
492       NodeT &Entry = A->getParent()->front();
493       if (A == &Entry || B == &Entry)
494         return &Entry;
495     }
496 
497     // If B dominates A then B is nearest common dominator.
498     if (dominates(B, A))
499       return B;
500 
501     // If A dominates B then A is nearest common dominator.
502     if (dominates(A, B))
503       return A;
504 
505     DomTreeNodeBase<NodeT> *NodeA = getNode(A);
506     DomTreeNodeBase<NodeT> *NodeB = getNode(B);
507 
508     // If we have DFS info, then we can avoid all allocations by just querying
509     // it from each IDom. Note that because we call 'dominates' twice above, we
510     // expect to call through this code at most 16 times in a row without
511     // building valid DFS information. This is important as below is a *very*
512     // slow tree walk.
513     if (DFSInfoValid) {
514       DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
515       while (IDomA) {
516         if (NodeB->DominatedBy(IDomA))
517           return IDomA->getBlock();
518         IDomA = IDomA->getIDom();
519       }
520       return nullptr;
521     }
522 
523     // Collect NodeA dominators set.
524     SmallPtrSet<DomTreeNodeBase<NodeT> *, 16> NodeADoms;
525     NodeADoms.insert(NodeA);
526     DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
527     while (IDomA) {
528       NodeADoms.insert(IDomA);
529       IDomA = IDomA->getIDom();
530     }
531 
532     // Walk NodeB immediate dominators chain and find common dominator node.
533     DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
534     while (IDomB) {
535       if (NodeADoms.count(IDomB) != 0)
536         return IDomB->getBlock();
537 
538       IDomB = IDomB->getIDom();
539     }
540 
541     return nullptr;
542   }
543 
findNearestCommonDominator(const NodeT * A,const NodeT * B)544   const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
545     // Cast away the const qualifiers here. This is ok since
546     // const is re-introduced on the return type.
547     return findNearestCommonDominator(const_cast<NodeT *>(A),
548                                       const_cast<NodeT *>(B));
549   }
550 
551   //===--------------------------------------------------------------------===//
552   // API to update (Post)DominatorTree information based on modifications to
553   // the CFG...
554 
555   /// addNewBlock - Add a new node to the dominator tree information.  This
556   /// creates a new node as a child of DomBB dominator node,linking it into
557   /// the children list of the immediate dominator.
addNewBlock(NodeT * BB,NodeT * DomBB)558   DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
559     assert(getNode(BB) == nullptr && "Block already in dominator tree!");
560     DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
561     assert(IDomNode && "Not immediate dominator specified for block!");
562     DFSInfoValid = false;
563     return (DomTreeNodes[BB] = IDomNode->addChild(
564                 llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
565   }
566 
567   /// changeImmediateDominator - This method is used to update the dominator
568   /// tree information when a node's immediate dominator changes.
569   ///
changeImmediateDominator(DomTreeNodeBase<NodeT> * N,DomTreeNodeBase<NodeT> * NewIDom)570   void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
571                                 DomTreeNodeBase<NodeT> *NewIDom) {
572     assert(N && NewIDom && "Cannot change null node pointers!");
573     DFSInfoValid = false;
574     N->setIDom(NewIDom);
575   }
576 
changeImmediateDominator(NodeT * BB,NodeT * NewBB)577   void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
578     changeImmediateDominator(getNode(BB), getNode(NewBB));
579   }
580 
581   /// eraseNode - Removes a node from the dominator tree. Block must not
582   /// dominate any other blocks. Removes node from its immediate dominator's
583   /// children list. Deletes dominator node associated with basic block BB.
eraseNode(NodeT * BB)584   void eraseNode(NodeT *BB) {
585     DomTreeNodeBase<NodeT> *Node = getNode(BB);
586     assert(Node && "Removing node that isn't in dominator tree.");
587     assert(Node->getChildren().empty() && "Node is not a leaf node.");
588 
589     // Remove node from immediate dominator's children list.
590     DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
591     if (IDom) {
592       typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
593           std::find(IDom->Children.begin(), IDom->Children.end(), Node);
594       assert(I != IDom->Children.end() &&
595              "Not in immediate dominator children set!");
596       // I am no longer your child...
597       IDom->Children.erase(I);
598     }
599 
600     DomTreeNodes.erase(BB);
601   }
602 
603   /// splitBlock - BB is split and now it has one successor. Update dominator
604   /// tree to reflect this change.
splitBlock(NodeT * NewBB)605   void splitBlock(NodeT *NewBB) {
606     if (this->IsPostDominators)
607       this->Split<Inverse<NodeT *>, GraphTraits<Inverse<NodeT *>>>(*this,
608                                                                    NewBB);
609     else
610       this->Split<NodeT *, GraphTraits<NodeT *>>(*this, NewBB);
611   }
612 
613   /// print - Convert to human readable form
614   ///
print(raw_ostream & o)615   void print(raw_ostream &o) const {
616     o << "=============================--------------------------------\n";
617     if (this->isPostDominator())
618       o << "Inorder PostDominator Tree: ";
619     else
620       o << "Inorder Dominator Tree: ";
621     if (!this->DFSInfoValid)
622       o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
623     o << "\n";
624 
625     // The postdom tree can have a null root if there are no returns.
626     if (getRootNode())
627       PrintDomTree<NodeT>(getRootNode(), o, 1);
628   }
629 
630 protected:
631   template <class GraphT>
632   friend typename GraphT::NodeType *
633   Eval(DominatorTreeBase<typename GraphT::NodeType> &DT,
634        typename GraphT::NodeType *V, unsigned LastLinked);
635 
636   template <class GraphT>
637   friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType> &DT,
638                           typename GraphT::NodeType *V, unsigned N);
639 
640   template <class FuncT, class N>
641   friend void
642   Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT, FuncT &F);
643 
644 
getNodeForBlock(NodeT * BB)645   DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
646     if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
647       return Node;
648 
649     // Haven't calculated this node yet?  Get or calculate the node for the
650     // immediate dominator.
651     NodeT *IDom = getIDom(BB);
652 
653     assert(IDom || this->DomTreeNodes[nullptr]);
654     DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
655 
656     // Add a new tree node for this NodeT, and link it as a child of
657     // IDomNode
658     return (this->DomTreeNodes[BB] = IDomNode->addChild(
659                 llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
660   }
661 
getIDom(NodeT * BB)662   NodeT *getIDom(NodeT *BB) const { return IDoms.lookup(BB); }
663 
addRoot(NodeT * BB)664   void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
665 
666 public:
667   /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
668   /// dominator tree in dfs order.
updateDFSNumbers()669   void updateDFSNumbers() const {
670 
671     if (DFSInfoValid) {
672       SlowQueries = 0;
673       return;
674     }
675 
676     unsigned DFSNum = 0;
677 
678     SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
679                           typename DomTreeNodeBase<NodeT>::const_iterator>,
680                 32> WorkStack;
681 
682     const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
683 
684     if (!ThisRoot)
685       return;
686 
687     // Even in the case of multiple exits that form the post dominator root
688     // nodes, do not iterate over all exits, but start from the virtual root
689     // node. Otherwise bbs, that are not post dominated by any exit but by the
690     // virtual root node, will never be assigned a DFS number.
691     WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
692     ThisRoot->DFSNumIn = DFSNum++;
693 
694     while (!WorkStack.empty()) {
695       const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
696       typename DomTreeNodeBase<NodeT>::const_iterator ChildIt =
697           WorkStack.back().second;
698 
699       // If we visited all of the children of this node, "recurse" back up the
700       // stack setting the DFOutNum.
701       if (ChildIt == Node->end()) {
702         Node->DFSNumOut = DFSNum++;
703         WorkStack.pop_back();
704       } else {
705         // Otherwise, recursively visit this child.
706         const DomTreeNodeBase<NodeT> *Child = *ChildIt;
707         ++WorkStack.back().second;
708 
709         WorkStack.push_back(std::make_pair(Child, Child->begin()));
710         Child->DFSNumIn = DFSNum++;
711       }
712     }
713 
714     SlowQueries = 0;
715     DFSInfoValid = true;
716   }
717 
718   /// recalculate - compute a dominator tree for the given function
recalculate(FT & F)719   template <class FT> void recalculate(FT &F) {
720     typedef GraphTraits<FT *> TraitsTy;
721     reset();
722     this->Vertex.push_back(nullptr);
723 
724     if (!this->IsPostDominators) {
725       // Initialize root
726       NodeT *entry = TraitsTy::getEntryNode(&F);
727       this->Roots.push_back(entry);
728       this->IDoms[entry] = nullptr;
729       this->DomTreeNodes[entry] = nullptr;
730 
731       Calculate<FT, NodeT *>(*this, F);
732     } else {
733       // Initialize the roots list
734       for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
735                                              E = TraitsTy::nodes_end(&F);
736            I != E; ++I) {
737         if (TraitsTy::child_begin(&*I) == TraitsTy::child_end(&*I))
738           addRoot(&*I);
739 
740         // Prepopulate maps so that we don't get iterator invalidation issues
741         // later.
742         this->IDoms[&*I] = nullptr;
743         this->DomTreeNodes[&*I] = nullptr;
744       }
745 
746       Calculate<FT, Inverse<NodeT *>>(*this, F);
747     }
748   }
749 };
750 
751 // These two functions are declared out of line as a workaround for building
752 // with old (< r147295) versions of clang because of pr11642.
753 template <class NodeT>
dominates(const NodeT * A,const NodeT * B)754 bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) const {
755   if (A == B)
756     return true;
757 
758   // Cast away the const qualifiers here. This is ok since
759   // this function doesn't actually return the values returned
760   // from getNode.
761   return dominates(getNode(const_cast<NodeT *>(A)),
762                    getNode(const_cast<NodeT *>(B)));
763 }
764 template <class NodeT>
properlyDominates(const NodeT * A,const NodeT * B)765 bool DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A,
766                                                  const NodeT *B) const {
767   if (A == B)
768     return false;
769 
770   // Cast away the const qualifiers here. This is ok since
771   // this function doesn't actually return the values returned
772   // from getNode.
773   return dominates(getNode(const_cast<NodeT *>(A)),
774                    getNode(const_cast<NodeT *>(B)));
775 }
776 
777 }
778 
779 #endif
780