1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkColorPriv.h"
9 #include "SkEndian.h"
10 #include "SkFloatBits.h"
11 #include "SkFloatingPoint.h"
12 #include "SkHalf.h"
13 #include "SkMathPriv.h"
14 #include "SkPoint.h"
15 #include "SkRandom.h"
16 #include "Test.h"
17
test_clz(skiatest::Reporter * reporter)18 static void test_clz(skiatest::Reporter* reporter) {
19 REPORTER_ASSERT(reporter, 32 == SkCLZ(0));
20 REPORTER_ASSERT(reporter, 31 == SkCLZ(1));
21 REPORTER_ASSERT(reporter, 1 == SkCLZ(1 << 30));
22 REPORTER_ASSERT(reporter, 0 == SkCLZ(~0U));
23
24 SkRandom rand;
25 for (int i = 0; i < 1000; ++i) {
26 uint32_t mask = rand.nextU();
27 // need to get some zeros for testing, but in some obscure way so the
28 // compiler won't "see" that, and work-around calling the functions.
29 mask >>= (mask & 31);
30 int intri = SkCLZ(mask);
31 int porta = SkCLZ_portable(mask);
32 REPORTER_ASSERT(reporter, intri == porta);
33 }
34 }
35
36 ///////////////////////////////////////////////////////////////////////////////
37
sk_fsel(float pred,float result_ge,float result_lt)38 static float sk_fsel(float pred, float result_ge, float result_lt) {
39 return pred >= 0 ? result_ge : result_lt;
40 }
41
fast_floor(float x)42 static float fast_floor(float x) {
43 // float big = sk_fsel(x, 0x1.0p+23, -0x1.0p+23);
44 float big = sk_fsel(x, (float)(1 << 23), -(float)(1 << 23));
45 return (float)(x + big) - big;
46 }
47
std_floor(float x)48 static float std_floor(float x) {
49 return sk_float_floor(x);
50 }
51
test_floor_value(skiatest::Reporter * reporter,float value)52 static void test_floor_value(skiatest::Reporter* reporter, float value) {
53 float fast = fast_floor(value);
54 float std = std_floor(value);
55 if (std != fast) {
56 ERRORF(reporter, "fast_floor(%.9g) == %.9g != %.9g == std_floor(%.9g)",
57 value, fast, std, value);
58 }
59 }
60
test_floor(skiatest::Reporter * reporter)61 static void test_floor(skiatest::Reporter* reporter) {
62 static const float gVals[] = {
63 0, 1, 1.1f, 1.01f, 1.001f, 1.0001f, 1.00001f, 1.000001f, 1.0000001f
64 };
65
66 for (size_t i = 0; i < SK_ARRAY_COUNT(gVals); ++i) {
67 test_floor_value(reporter, gVals[i]);
68 // test_floor_value(reporter, -gVals[i]);
69 }
70 }
71
72 ///////////////////////////////////////////////////////////////////////////////
73
74 // test that SkMul16ShiftRound and SkMulDiv255Round return the same result
test_muldivround(skiatest::Reporter * reporter)75 static void test_muldivround(skiatest::Reporter* reporter) {
76 #if 0
77 // this "complete" test is too slow, so we test a random sampling of it
78
79 for (int a = 0; a <= 32767; ++a) {
80 for (int b = 0; b <= 32767; ++b) {
81 unsigned prod0 = SkMul16ShiftRound(a, b, 8);
82 unsigned prod1 = SkMulDiv255Round(a, b);
83 SkASSERT(prod0 == prod1);
84 }
85 }
86 #endif
87
88 SkRandom rand;
89 for (int i = 0; i < 10000; ++i) {
90 unsigned a = rand.nextU() & 0x7FFF;
91 unsigned b = rand.nextU() & 0x7FFF;
92
93 unsigned prod0 = SkMul16ShiftRound(a, b, 8);
94 unsigned prod1 = SkMulDiv255Round(a, b);
95
96 REPORTER_ASSERT(reporter, prod0 == prod1);
97 }
98 }
99
float_blend(int src,int dst,float unit)100 static float float_blend(int src, int dst, float unit) {
101 return dst + (src - dst) * unit;
102 }
103
blend31(int src,int dst,int a31)104 static int blend31(int src, int dst, int a31) {
105 return dst + ((src - dst) * a31 * 2114 >> 16);
106 // return dst + ((src - dst) * a31 * 33 >> 10);
107 }
108
blend31_slow(int src,int dst,int a31)109 static int blend31_slow(int src, int dst, int a31) {
110 int prod = src * a31 + (31 - a31) * dst + 16;
111 prod = (prod + (prod >> 5)) >> 5;
112 return prod;
113 }
114
blend31_round(int src,int dst,int a31)115 static int blend31_round(int src, int dst, int a31) {
116 int prod = (src - dst) * a31 + 16;
117 prod = (prod + (prod >> 5)) >> 5;
118 return dst + prod;
119 }
120
blend31_old(int src,int dst,int a31)121 static int blend31_old(int src, int dst, int a31) {
122 a31 += a31 >> 4;
123 return dst + ((src - dst) * a31 >> 5);
124 }
125
126 // suppress unused code warning
127 static int (*blend_functions[])(int, int, int) = {
128 blend31,
129 blend31_slow,
130 blend31_round,
131 blend31_old
132 };
133
test_blend31()134 static void test_blend31() {
135 int failed = 0;
136 int death = 0;
137 if (false) { // avoid bit rot, suppress warning
138 failed = (*blend_functions[0])(0,0,0);
139 }
140 for (int src = 0; src <= 255; src++) {
141 for (int dst = 0; dst <= 255; dst++) {
142 for (int a = 0; a <= 31; a++) {
143 // int r0 = blend31(src, dst, a);
144 // int r0 = blend31_round(src, dst, a);
145 // int r0 = blend31_old(src, dst, a);
146 int r0 = blend31_slow(src, dst, a);
147
148 float f = float_blend(src, dst, a / 31.f);
149 int r1 = (int)f;
150 int r2 = SkScalarRoundToInt(f);
151
152 if (r0 != r1 && r0 != r2) {
153 SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n",
154 src, dst, a, r0, f);
155 failed += 1;
156 }
157 if (r0 > 255) {
158 death += 1;
159 SkDebugf("death src:%d dst:%d a:%d result:%d float:%g\n",
160 src, dst, a, r0, f);
161 }
162 }
163 }
164 }
165 SkDebugf("---- failed %d death %d\n", failed, death);
166 }
167
test_blend(skiatest::Reporter * reporter)168 static void test_blend(skiatest::Reporter* reporter) {
169 for (int src = 0; src <= 255; src++) {
170 for (int dst = 0; dst <= 255; dst++) {
171 for (int a = 0; a <= 255; a++) {
172 int r0 = SkAlphaBlend255(src, dst, a);
173 float f1 = float_blend(src, dst, a / 255.f);
174 int r1 = SkScalarRoundToInt(f1);
175
176 if (r0 != r1) {
177 float diff = sk_float_abs(f1 - r1);
178 diff = sk_float_abs(diff - 0.5f);
179 if (diff > (1 / 255.f)) {
180 ERRORF(reporter, "src:%d dst:%d a:%d "
181 "result:%d float:%g\n", src, dst, a, r0, f1);
182 }
183 }
184 }
185 }
186 }
187 }
188
check_length(skiatest::Reporter * reporter,const SkPoint & p,SkScalar targetLen)189 static void check_length(skiatest::Reporter* reporter,
190 const SkPoint& p, SkScalar targetLen) {
191 float x = SkScalarToFloat(p.fX);
192 float y = SkScalarToFloat(p.fY);
193 float len = sk_float_sqrt(x*x + y*y);
194
195 len /= SkScalarToFloat(targetLen);
196
197 REPORTER_ASSERT(reporter, len > 0.999f && len < 1.001f);
198 }
199
nextFloat(SkRandom & rand)200 static float nextFloat(SkRandom& rand) {
201 SkFloatIntUnion data;
202 data.fSignBitInt = rand.nextU();
203 return data.fFloat;
204 }
205
206 /* returns true if a == b as resulting from (int)x. Since it is undefined
207 what to do if the float exceeds 2^32-1, we check for that explicitly.
208 */
equal_float_native_skia(float x,uint32_t ni,uint32_t si)209 static bool equal_float_native_skia(float x, uint32_t ni, uint32_t si) {
210 if (!(x == x)) { // NAN
211 return ((int32_t)si) == SK_MaxS32 || ((int32_t)si) == SK_MinS32;
212 }
213 // for out of range, C is undefined, but skia always should return NaN32
214 if (x > SK_MaxS32) {
215 return ((int32_t)si) == SK_MaxS32;
216 }
217 if (x < -SK_MaxS32) {
218 return ((int32_t)si) == SK_MinS32;
219 }
220 return si == ni;
221 }
222
assert_float_equal(skiatest::Reporter * reporter,const char op[],float x,uint32_t ni,uint32_t si)223 static void assert_float_equal(skiatest::Reporter* reporter, const char op[],
224 float x, uint32_t ni, uint32_t si) {
225 if (!equal_float_native_skia(x, ni, si)) {
226 ERRORF(reporter, "%s float %g bits %x native %x skia %x\n",
227 op, x, SkFloat2Bits(x), ni, si);
228 }
229 }
230
test_float_cast(skiatest::Reporter * reporter,float x)231 static void test_float_cast(skiatest::Reporter* reporter, float x) {
232 int ix = (int)x;
233 int iix = SkFloatToIntCast(x);
234 assert_float_equal(reporter, "cast", x, ix, iix);
235 }
236
test_float_floor(skiatest::Reporter * reporter,float x)237 static void test_float_floor(skiatest::Reporter* reporter, float x) {
238 int ix = (int)floor(x);
239 int iix = SkFloatToIntFloor(x);
240 assert_float_equal(reporter, "floor", x, ix, iix);
241 }
242
test_float_round(skiatest::Reporter * reporter,float x)243 static void test_float_round(skiatest::Reporter* reporter, float x) {
244 double xx = x + 0.5; // need intermediate double to avoid temp loss
245 int ix = (int)floor(xx);
246 int iix = SkFloatToIntRound(x);
247 assert_float_equal(reporter, "round", x, ix, iix);
248 }
249
test_float_ceil(skiatest::Reporter * reporter,float x)250 static void test_float_ceil(skiatest::Reporter* reporter, float x) {
251 int ix = (int)ceil(x);
252 int iix = SkFloatToIntCeil(x);
253 assert_float_equal(reporter, "ceil", x, ix, iix);
254 }
255
test_float_conversions(skiatest::Reporter * reporter,float x)256 static void test_float_conversions(skiatest::Reporter* reporter, float x) {
257 test_float_cast(reporter, x);
258 test_float_floor(reporter, x);
259 test_float_round(reporter, x);
260 test_float_ceil(reporter, x);
261 }
262
test_int2float(skiatest::Reporter * reporter,int ival)263 static void test_int2float(skiatest::Reporter* reporter, int ival) {
264 float x0 = (float)ival;
265 float x1 = SkIntToFloatCast(ival);
266 REPORTER_ASSERT(reporter, x0 == x1);
267 }
268
unittest_fastfloat(skiatest::Reporter * reporter)269 static void unittest_fastfloat(skiatest::Reporter* reporter) {
270 SkRandom rand;
271 size_t i;
272
273 static const float gFloats[] = {
274 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
275 0.000000001f, 1000000000.f, // doesn't overflow
276 0.0000000001f, 10000000000.f // does overflow
277 };
278 for (i = 0; i < SK_ARRAY_COUNT(gFloats); i++) {
279 test_float_conversions(reporter, gFloats[i]);
280 test_float_conversions(reporter, -gFloats[i]);
281 }
282
283 for (int outer = 0; outer < 100; outer++) {
284 rand.setSeed(outer);
285 for (i = 0; i < 100000; i++) {
286 float x = nextFloat(rand);
287 test_float_conversions(reporter, x);
288 }
289
290 test_int2float(reporter, 0);
291 test_int2float(reporter, 1);
292 test_int2float(reporter, -1);
293 for (i = 0; i < 100000; i++) {
294 // for now only test ints that are 24bits or less, since we don't
295 // round (down) large ints the same as IEEE...
296 int ival = rand.nextU() & 0xFFFFFF;
297 test_int2float(reporter, ival);
298 test_int2float(reporter, -ival);
299 }
300 }
301 }
302
make_zero()303 static float make_zero() {
304 return sk_float_sin(0);
305 }
306
unittest_isfinite(skiatest::Reporter * reporter)307 static void unittest_isfinite(skiatest::Reporter* reporter) {
308 float nan = sk_float_asin(2);
309 float inf = 1.0f / make_zero();
310 float big = 3.40282e+038f;
311
312 REPORTER_ASSERT(reporter, !SkScalarIsNaN(inf));
313 REPORTER_ASSERT(reporter, !SkScalarIsNaN(-inf));
314 REPORTER_ASSERT(reporter, !SkScalarIsFinite(inf));
315 REPORTER_ASSERT(reporter, !SkScalarIsFinite(-inf));
316
317 REPORTER_ASSERT(reporter, SkScalarIsNaN(nan));
318 REPORTER_ASSERT(reporter, !SkScalarIsNaN(big));
319 REPORTER_ASSERT(reporter, !SkScalarIsNaN(-big));
320 REPORTER_ASSERT(reporter, !SkScalarIsNaN(0));
321
322 REPORTER_ASSERT(reporter, !SkScalarIsFinite(nan));
323 REPORTER_ASSERT(reporter, SkScalarIsFinite(big));
324 REPORTER_ASSERT(reporter, SkScalarIsFinite(-big));
325 REPORTER_ASSERT(reporter, SkScalarIsFinite(0));
326 }
327
unittest_half(skiatest::Reporter * reporter)328 static void unittest_half(skiatest::Reporter* reporter) {
329 static const float gFloats[] = {
330 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3,
331 -0.f, -1.f, -0.5f, -0.499999f, -0.5000001f, -1.f/3
332 };
333
334 for (size_t i = 0; i < SK_ARRAY_COUNT(gFloats); ++i) {
335 SkHalf h = SkFloatToHalf(gFloats[i]);
336 float f = SkHalfToFloat(h);
337 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, gFloats[i]));
338 }
339
340 // check some special values
341 union FloatUnion {
342 uint32_t fU;
343 float fF;
344 };
345
346 static const FloatUnion largestPositiveHalf = { ((142 << 23) | (1023 << 13)) };
347 SkHalf h = SkFloatToHalf(largestPositiveHalf.fF);
348 float f = SkHalfToFloat(h);
349 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestPositiveHalf.fF));
350
351 static const FloatUnion largestNegativeHalf = { (1u << 31) | (142u << 23) | (1023u << 13) };
352 h = SkFloatToHalf(largestNegativeHalf.fF);
353 f = SkHalfToFloat(h);
354 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestNegativeHalf.fF));
355
356 static const FloatUnion smallestPositiveHalf = { 102 << 23 };
357 h = SkFloatToHalf(smallestPositiveHalf.fF);
358 f = SkHalfToFloat(h);
359 REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, smallestPositiveHalf.fF));
360
361 static const FloatUnion overflowHalf = { ((143 << 23) | (1023 << 13)) };
362 h = SkFloatToHalf(overflowHalf.fF);
363 f = SkHalfToFloat(h);
364 REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) );
365
366 static const FloatUnion underflowHalf = { 101 << 23 };
367 h = SkFloatToHalf(underflowHalf.fF);
368 f = SkHalfToFloat(h);
369 REPORTER_ASSERT(reporter, f == 0.0f );
370
371 static const FloatUnion inf32 = { 255 << 23 };
372 h = SkFloatToHalf(inf32.fF);
373 f = SkHalfToFloat(h);
374 REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) );
375
376 static const FloatUnion nan32 = { 255 << 23 | 1 };
377 h = SkFloatToHalf(nan32.fF);
378 f = SkHalfToFloat(h);
379 REPORTER_ASSERT(reporter, SkScalarIsNaN(f) );
380
381 }
382
383 template <typename RSqrtFn>
test_rsqrt(skiatest::Reporter * reporter,RSqrtFn rsqrt)384 static void test_rsqrt(skiatest::Reporter* reporter, RSqrtFn rsqrt) {
385 const float maxRelativeError = 6.50196699e-4f;
386
387 // test close to 0 up to 1
388 float input = 0.000001f;
389 for (int i = 0; i < 1000; ++i) {
390 float exact = 1.0f/sk_float_sqrt(input);
391 float estimate = rsqrt(input);
392 float relativeError = sk_float_abs(exact - estimate)/exact;
393 REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
394 input += 0.001f;
395 }
396
397 // test 1 to ~100
398 input = 1.0f;
399 for (int i = 0; i < 1000; ++i) {
400 float exact = 1.0f/sk_float_sqrt(input);
401 float estimate = rsqrt(input);
402 float relativeError = sk_float_abs(exact - estimate)/exact;
403 REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
404 input += 0.01f;
405 }
406
407 // test some big numbers
408 input = 1000000.0f;
409 for (int i = 0; i < 100; ++i) {
410 float exact = 1.0f/sk_float_sqrt(input);
411 float estimate = rsqrt(input);
412 float relativeError = sk_float_abs(exact - estimate)/exact;
413 REPORTER_ASSERT(reporter, relativeError <= maxRelativeError);
414 input += 754326.f;
415 }
416 }
417
test_muldiv255(skiatest::Reporter * reporter)418 static void test_muldiv255(skiatest::Reporter* reporter) {
419 for (int a = 0; a <= 255; a++) {
420 for (int b = 0; b <= 255; b++) {
421 int ab = a * b;
422 float s = ab / 255.0f;
423 int round = (int)floorf(s + 0.5f);
424 int trunc = (int)floorf(s);
425
426 int iround = SkMulDiv255Round(a, b);
427 int itrunc = SkMulDiv255Trunc(a, b);
428
429 REPORTER_ASSERT(reporter, iround == round);
430 REPORTER_ASSERT(reporter, itrunc == trunc);
431
432 REPORTER_ASSERT(reporter, itrunc <= iround);
433 REPORTER_ASSERT(reporter, iround <= a);
434 REPORTER_ASSERT(reporter, iround <= b);
435 }
436 }
437 }
438
test_muldiv255ceiling(skiatest::Reporter * reporter)439 static void test_muldiv255ceiling(skiatest::Reporter* reporter) {
440 for (int c = 0; c <= 255; c++) {
441 for (int a = 0; a <= 255; a++) {
442 int product = (c * a + 255);
443 int expected_ceiling = (product + (product >> 8)) >> 8;
444 int webkit_ceiling = (c * a + 254) / 255;
445 REPORTER_ASSERT(reporter, expected_ceiling == webkit_ceiling);
446 int skia_ceiling = SkMulDiv255Ceiling(c, a);
447 REPORTER_ASSERT(reporter, skia_ceiling == webkit_ceiling);
448 }
449 }
450 }
451
test_copysign(skiatest::Reporter * reporter)452 static void test_copysign(skiatest::Reporter* reporter) {
453 static const int32_t gTriples[] = {
454 // x, y, expected result
455 0, 0, 0,
456 0, 1, 0,
457 0, -1, 0,
458 1, 0, 1,
459 1, 1, 1,
460 1, -1, -1,
461 -1, 0, 1,
462 -1, 1, 1,
463 -1, -1, -1,
464 };
465 for (size_t i = 0; i < SK_ARRAY_COUNT(gTriples); i += 3) {
466 REPORTER_ASSERT(reporter,
467 SkCopySign32(gTriples[i], gTriples[i+1]) == gTriples[i+2]);
468 float x = (float)gTriples[i];
469 float y = (float)gTriples[i+1];
470 float expected = (float)gTriples[i+2];
471 REPORTER_ASSERT(reporter, sk_float_copysign(x, y) == expected);
472 }
473
474 SkRandom rand;
475 for (int j = 0; j < 1000; j++) {
476 int ix = rand.nextS();
477 REPORTER_ASSERT(reporter, SkCopySign32(ix, ix) == ix);
478 REPORTER_ASSERT(reporter, SkCopySign32(ix, -ix) == -ix);
479 REPORTER_ASSERT(reporter, SkCopySign32(-ix, ix) == ix);
480 REPORTER_ASSERT(reporter, SkCopySign32(-ix, -ix) == -ix);
481
482 SkScalar sx = rand.nextSScalar1();
483 REPORTER_ASSERT(reporter, SkScalarCopySign(sx, sx) == sx);
484 REPORTER_ASSERT(reporter, SkScalarCopySign(sx, -sx) == -sx);
485 REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, sx) == sx);
486 REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, -sx) == -sx);
487 }
488 }
489
DEF_TEST(Math,reporter)490 DEF_TEST(Math, reporter) {
491 int i;
492 SkRandom rand;
493
494 // these should assert
495 #if 0
496 SkToS8(128);
497 SkToS8(-129);
498 SkToU8(256);
499 SkToU8(-5);
500
501 SkToS16(32768);
502 SkToS16(-32769);
503 SkToU16(65536);
504 SkToU16(-5);
505
506 if (sizeof(size_t) > 4) {
507 SkToS32(4*1024*1024);
508 SkToS32(-4*1024*1024);
509 SkToU32(5*1024*1024);
510 SkToU32(-5);
511 }
512 #endif
513
514 test_muldiv255(reporter);
515 test_muldiv255ceiling(reporter);
516 test_copysign(reporter);
517
518 {
519 SkScalar x = SK_ScalarNaN;
520 REPORTER_ASSERT(reporter, SkScalarIsNaN(x));
521 }
522
523 for (i = 0; i < 1000; i++) {
524 int value = rand.nextS16();
525 int max = rand.nextU16();
526
527 int clamp = SkClampMax(value, max);
528 int clamp2 = value < 0 ? 0 : (value > max ? max : value);
529 REPORTER_ASSERT(reporter, clamp == clamp2);
530 }
531
532 for (i = 0; i < 10000; i++) {
533 SkPoint p;
534
535 // These random values are being treated as 32-bit-patterns, not as
536 // ints; calling SkIntToScalar() here produces crashes.
537 p.setLength((SkScalar) rand.nextS(),
538 (SkScalar) rand.nextS(),
539 SK_Scalar1);
540 check_length(reporter, p, SK_Scalar1);
541 p.setLength((SkScalar) (rand.nextS() >> 13),
542 (SkScalar) (rand.nextS() >> 13),
543 SK_Scalar1);
544 check_length(reporter, p, SK_Scalar1);
545 }
546
547 {
548 SkFixed result = SkFixedDiv(100, 100);
549 REPORTER_ASSERT(reporter, result == SK_Fixed1);
550 result = SkFixedDiv(1, SK_Fixed1);
551 REPORTER_ASSERT(reporter, result == 1);
552 }
553
554 unittest_fastfloat(reporter);
555 unittest_isfinite(reporter);
556 unittest_half(reporter);
557 test_rsqrt(reporter, sk_float_rsqrt);
558 test_rsqrt(reporter, sk_float_rsqrt_portable);
559
560 for (i = 0; i < 10000; i++) {
561 SkFixed numer = rand.nextS();
562 SkFixed denom = rand.nextS();
563 SkFixed result = SkFixedDiv(numer, denom);
564 int64_t check = SkLeftShift((int64_t)numer, 16) / denom;
565
566 (void)SkCLZ(numer);
567 (void)SkCLZ(denom);
568
569 REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32);
570 if (check > SK_MaxS32) {
571 check = SK_MaxS32;
572 } else if (check < -SK_MaxS32) {
573 check = SK_MinS32;
574 }
575 if (result != (int32_t)check) {
576 ERRORF(reporter, "\nFixed Divide: %8x / %8x -> %8x %8x\n", numer, denom, result, check);
577 }
578 REPORTER_ASSERT(reporter, result == (int32_t)check);
579 }
580
581 test_blend(reporter);
582
583 if (false) test_floor(reporter);
584
585 // disable for now
586 if (false) test_blend31(); // avoid bit rot, suppress warning
587
588 test_muldivround(reporter);
589 test_clz(reporter);
590 }
591
592 template <typename T> struct PairRec {
593 T fYin;
594 T fYang;
595 };
596
DEF_TEST(TestEndian,reporter)597 DEF_TEST(TestEndian, reporter) {
598 static const PairRec<uint16_t> g16[] = {
599 { 0x0, 0x0 },
600 { 0xFFFF, 0xFFFF },
601 { 0x1122, 0x2211 },
602 };
603 static const PairRec<uint32_t> g32[] = {
604 { 0x0, 0x0 },
605 { 0xFFFFFFFF, 0xFFFFFFFF },
606 { 0x11223344, 0x44332211 },
607 };
608 static const PairRec<uint64_t> g64[] = {
609 { 0x0, 0x0 },
610 { 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL },
611 { 0x1122334455667788ULL, 0x8877665544332211ULL },
612 };
613
614 REPORTER_ASSERT(reporter, 0x1122 == SkTEndianSwap16<0x2211>::value);
615 REPORTER_ASSERT(reporter, 0x11223344 == SkTEndianSwap32<0x44332211>::value);
616 REPORTER_ASSERT(reporter, 0x1122334455667788ULL == SkTEndianSwap64<0x8877665544332211ULL>::value);
617
618 for (size_t i = 0; i < SK_ARRAY_COUNT(g16); ++i) {
619 REPORTER_ASSERT(reporter, g16[i].fYang == SkEndianSwap16(g16[i].fYin));
620 }
621 for (size_t i = 0; i < SK_ARRAY_COUNT(g32); ++i) {
622 REPORTER_ASSERT(reporter, g32[i].fYang == SkEndianSwap32(g32[i].fYin));
623 }
624 for (size_t i = 0; i < SK_ARRAY_COUNT(g64); ++i) {
625 REPORTER_ASSERT(reporter, g64[i].fYang == SkEndianSwap64(g64[i].fYin));
626 }
627 }
628
629 template <typename T>
test_divmod(skiatest::Reporter * r)630 static void test_divmod(skiatest::Reporter* r) {
631 const struct {
632 T numer;
633 T denom;
634 } kEdgeCases[] = {
635 {(T)17, (T)17},
636 {(T)17, (T)4},
637 {(T)0, (T)17},
638 // For unsigned T these negatives are just some large numbers. Doesn't hurt to test them.
639 {(T)-17, (T)-17},
640 {(T)-17, (T)4},
641 {(T)17, (T)-4},
642 {(T)-17, (T)-4},
643 };
644
645 for (size_t i = 0; i < SK_ARRAY_COUNT(kEdgeCases); i++) {
646 const T numer = kEdgeCases[i].numer;
647 const T denom = kEdgeCases[i].denom;
648 T div, mod;
649 SkTDivMod(numer, denom, &div, &mod);
650 REPORTER_ASSERT(r, numer/denom == div);
651 REPORTER_ASSERT(r, numer%denom == mod);
652 }
653
654 SkRandom rand;
655 for (size_t i = 0; i < 10000; i++) {
656 const T numer = (T)rand.nextS();
657 T denom = 0;
658 while (0 == denom) {
659 denom = (T)rand.nextS();
660 }
661 T div, mod;
662 SkTDivMod(numer, denom, &div, &mod);
663 REPORTER_ASSERT(r, numer/denom == div);
664 REPORTER_ASSERT(r, numer%denom == mod);
665 }
666 }
667
DEF_TEST(divmod_u8,r)668 DEF_TEST(divmod_u8, r) {
669 test_divmod<uint8_t>(r);
670 }
671
DEF_TEST(divmod_u16,r)672 DEF_TEST(divmod_u16, r) {
673 test_divmod<uint16_t>(r);
674 }
675
DEF_TEST(divmod_u32,r)676 DEF_TEST(divmod_u32, r) {
677 test_divmod<uint32_t>(r);
678 }
679
DEF_TEST(divmod_u64,r)680 DEF_TEST(divmod_u64, r) {
681 test_divmod<uint64_t>(r);
682 }
683
DEF_TEST(divmod_s8,r)684 DEF_TEST(divmod_s8, r) {
685 test_divmod<int8_t>(r);
686 }
687
DEF_TEST(divmod_s16,r)688 DEF_TEST(divmod_s16, r) {
689 test_divmod<int16_t>(r);
690 }
691
DEF_TEST(divmod_s32,r)692 DEF_TEST(divmod_s32, r) {
693 test_divmod<int32_t>(r);
694 }
695
DEF_TEST(divmod_s64,r)696 DEF_TEST(divmod_s64, r) {
697 test_divmod<int64_t>(r);
698 }
699