1 //===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides Objective-C code generation targeting the Apple runtime.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGObjCRuntime.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtObjC.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/CodeGen/CGFunctionInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <cstdio>
40 
41 using namespace clang;
42 using namespace CodeGen;
43 
44 namespace {
45 
46 // FIXME: We should find a nicer way to make the labels for metadata, string
47 // concatenation is lame.
48 
49 class ObjCCommonTypesHelper {
50 protected:
51   llvm::LLVMContext &VMContext;
52 
53 private:
54   // The types of these functions don't really matter because we
55   // should always bitcast before calling them.
56 
57   /// id objc_msgSend (id, SEL, ...)
58   ///
59   /// The default messenger, used for sends whose ABI is unchanged from
60   /// the all-integer/pointer case.
getMessageSendFn() const61   llvm::Constant *getMessageSendFn() const {
62     // Add the non-lazy-bind attribute, since objc_msgSend is likely to
63     // be called a lot.
64     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
65     return
66       CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
67                                                         params, true),
68                                 "objc_msgSend",
69                                 llvm::AttributeSet::get(CGM.getLLVMContext(),
70                                               llvm::AttributeSet::FunctionIndex,
71                                                  llvm::Attribute::NonLazyBind));
72   }
73 
74   /// void objc_msgSend_stret (id, SEL, ...)
75   ///
76   /// The messenger used when the return value is an aggregate returned
77   /// by indirect reference in the first argument, and therefore the
78   /// self and selector parameters are shifted over by one.
getMessageSendStretFn() const79   llvm::Constant *getMessageSendStretFn() const {
80     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
81     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy,
82                                                              params, true),
83                                      "objc_msgSend_stret");
84 
85   }
86 
87   /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...)
88   ///
89   /// The messenger used when the return value is returned on the x87
90   /// floating-point stack; without a special entrypoint, the nil case
91   /// would be unbalanced.
getMessageSendFpretFn() const92   llvm::Constant *getMessageSendFpretFn() const {
93     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
94     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.DoubleTy,
95                                                              params, true),
96                                      "objc_msgSend_fpret");
97 
98   }
99 
100   /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...)
101   ///
102   /// The messenger used when the return value is returned in two values on the
103   /// x87 floating point stack; without a special entrypoint, the nil case
104   /// would be unbalanced. Only used on 64-bit X86.
getMessageSendFp2retFn() const105   llvm::Constant *getMessageSendFp2retFn() const {
106     llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
107     llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(VMContext);
108     llvm::Type *resultType =
109       llvm::StructType::get(longDoubleType, longDoubleType, nullptr);
110 
111     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(resultType,
112                                                              params, true),
113                                      "objc_msgSend_fp2ret");
114   }
115 
116   /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...)
117   ///
118   /// The messenger used for super calls, which have different dispatch
119   /// semantics.  The class passed is the superclass of the current
120   /// class.
getMessageSendSuperFn() const121   llvm::Constant *getMessageSendSuperFn() const {
122     llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy };
123     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
124                                                              params, true),
125                                      "objc_msgSendSuper");
126   }
127 
128   /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...)
129   ///
130   /// A slightly different messenger used for super calls.  The class
131   /// passed is the current class.
getMessageSendSuperFn2() const132   llvm::Constant *getMessageSendSuperFn2() const {
133     llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy };
134     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
135                                                              params, true),
136                                      "objc_msgSendSuper2");
137   }
138 
139   /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super,
140   ///                              SEL op, ...)
141   ///
142   /// The messenger used for super calls which return an aggregate indirectly.
getMessageSendSuperStretFn() const143   llvm::Constant *getMessageSendSuperStretFn() const {
144     llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy };
145     return CGM.CreateRuntimeFunction(
146       llvm::FunctionType::get(CGM.VoidTy, params, true),
147       "objc_msgSendSuper_stret");
148   }
149 
150   /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super,
151   ///                               SEL op, ...)
152   ///
153   /// objc_msgSendSuper_stret with the super2 semantics.
getMessageSendSuperStretFn2() const154   llvm::Constant *getMessageSendSuperStretFn2() const {
155     llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy };
156     return CGM.CreateRuntimeFunction(
157       llvm::FunctionType::get(CGM.VoidTy, params, true),
158       "objc_msgSendSuper2_stret");
159   }
160 
getMessageSendSuperFpretFn() const161   llvm::Constant *getMessageSendSuperFpretFn() const {
162     // There is no objc_msgSendSuper_fpret? How can that work?
163     return getMessageSendSuperFn();
164   }
165 
getMessageSendSuperFpretFn2() const166   llvm::Constant *getMessageSendSuperFpretFn2() const {
167     // There is no objc_msgSendSuper_fpret? How can that work?
168     return getMessageSendSuperFn2();
169   }
170 
171 protected:
172   CodeGen::CodeGenModule &CGM;
173 
174 public:
175   llvm::Type *ShortTy, *IntTy, *LongTy, *LongLongTy;
176   llvm::Type *Int8PtrTy, *Int8PtrPtrTy;
177   llvm::Type *IvarOffsetVarTy;
178 
179   /// ObjectPtrTy - LLVM type for object handles (typeof(id))
180   llvm::Type *ObjectPtrTy;
181 
182   /// PtrObjectPtrTy - LLVM type for id *
183   llvm::Type *PtrObjectPtrTy;
184 
185   /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL))
186   llvm::Type *SelectorPtrTy;
187 
188 private:
189   /// ProtocolPtrTy - LLVM type for external protocol handles
190   /// (typeof(Protocol))
191   llvm::Type *ExternalProtocolPtrTy;
192 
193 public:
getExternalProtocolPtrTy()194   llvm::Type *getExternalProtocolPtrTy() {
195     if (!ExternalProtocolPtrTy) {
196       // FIXME: It would be nice to unify this with the opaque type, so that the
197       // IR comes out a bit cleaner.
198       CodeGen::CodeGenTypes &Types = CGM.getTypes();
199       ASTContext &Ctx = CGM.getContext();
200       llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType());
201       ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T);
202     }
203 
204     return ExternalProtocolPtrTy;
205   }
206 
207   // SuperCTy - clang type for struct objc_super.
208   QualType SuperCTy;
209   // SuperPtrCTy - clang type for struct objc_super *.
210   QualType SuperPtrCTy;
211 
212   /// SuperTy - LLVM type for struct objc_super.
213   llvm::StructType *SuperTy;
214   /// SuperPtrTy - LLVM type for struct objc_super *.
215   llvm::Type *SuperPtrTy;
216 
217   /// PropertyTy - LLVM type for struct objc_property (struct _prop_t
218   /// in GCC parlance).
219   llvm::StructType *PropertyTy;
220 
221   /// PropertyListTy - LLVM type for struct objc_property_list
222   /// (_prop_list_t in GCC parlance).
223   llvm::StructType *PropertyListTy;
224   /// PropertyListPtrTy - LLVM type for struct objc_property_list*.
225   llvm::Type *PropertyListPtrTy;
226 
227   // MethodTy - LLVM type for struct objc_method.
228   llvm::StructType *MethodTy;
229 
230   /// CacheTy - LLVM type for struct objc_cache.
231   llvm::Type *CacheTy;
232   /// CachePtrTy - LLVM type for struct objc_cache *.
233   llvm::Type *CachePtrTy;
234 
getGetPropertyFn()235   llvm::Constant *getGetPropertyFn() {
236     CodeGen::CodeGenTypes &Types = CGM.getTypes();
237     ASTContext &Ctx = CGM.getContext();
238     // id objc_getProperty (id, SEL, ptrdiff_t, bool)
239     SmallVector<CanQualType,4> Params;
240     CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
241     CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
242     Params.push_back(IdType);
243     Params.push_back(SelType);
244     Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified());
245     Params.push_back(Ctx.BoolTy);
246     llvm::FunctionType *FTy =
247         Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(
248             IdType, false, false, Params, FunctionType::ExtInfo(),
249             RequiredArgs::All));
250     return CGM.CreateRuntimeFunction(FTy, "objc_getProperty");
251   }
252 
getSetPropertyFn()253   llvm::Constant *getSetPropertyFn() {
254     CodeGen::CodeGenTypes &Types = CGM.getTypes();
255     ASTContext &Ctx = CGM.getContext();
256     // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool)
257     SmallVector<CanQualType,6> Params;
258     CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
259     CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
260     Params.push_back(IdType);
261     Params.push_back(SelType);
262     Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified());
263     Params.push_back(IdType);
264     Params.push_back(Ctx.BoolTy);
265     Params.push_back(Ctx.BoolTy);
266     llvm::FunctionType *FTy =
267         Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(
268             Ctx.VoidTy, false, false, Params, FunctionType::ExtInfo(),
269             RequiredArgs::All));
270     return CGM.CreateRuntimeFunction(FTy, "objc_setProperty");
271   }
272 
getOptimizedSetPropertyFn(bool atomic,bool copy)273   llvm::Constant *getOptimizedSetPropertyFn(bool atomic, bool copy) {
274     CodeGen::CodeGenTypes &Types = CGM.getTypes();
275     ASTContext &Ctx = CGM.getContext();
276     // void objc_setProperty_atomic(id self, SEL _cmd,
277     //                              id newValue, ptrdiff_t offset);
278     // void objc_setProperty_nonatomic(id self, SEL _cmd,
279     //                                 id newValue, ptrdiff_t offset);
280     // void objc_setProperty_atomic_copy(id self, SEL _cmd,
281     //                                   id newValue, ptrdiff_t offset);
282     // void objc_setProperty_nonatomic_copy(id self, SEL _cmd,
283     //                                      id newValue, ptrdiff_t offset);
284 
285     SmallVector<CanQualType,4> Params;
286     CanQualType IdType = Ctx.getCanonicalParamType(Ctx.getObjCIdType());
287     CanQualType SelType = Ctx.getCanonicalParamType(Ctx.getObjCSelType());
288     Params.push_back(IdType);
289     Params.push_back(SelType);
290     Params.push_back(IdType);
291     Params.push_back(Ctx.getPointerDiffType()->getCanonicalTypeUnqualified());
292     llvm::FunctionType *FTy =
293         Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(
294             Ctx.VoidTy, false, false, Params, FunctionType::ExtInfo(),
295             RequiredArgs::All));
296     const char *name;
297     if (atomic && copy)
298       name = "objc_setProperty_atomic_copy";
299     else if (atomic && !copy)
300       name = "objc_setProperty_atomic";
301     else if (!atomic && copy)
302       name = "objc_setProperty_nonatomic_copy";
303     else
304       name = "objc_setProperty_nonatomic";
305 
306     return CGM.CreateRuntimeFunction(FTy, name);
307   }
308 
getCopyStructFn()309   llvm::Constant *getCopyStructFn() {
310     CodeGen::CodeGenTypes &Types = CGM.getTypes();
311     ASTContext &Ctx = CGM.getContext();
312     // void objc_copyStruct (void *, const void *, size_t, bool, bool)
313     SmallVector<CanQualType,5> Params;
314     Params.push_back(Ctx.VoidPtrTy);
315     Params.push_back(Ctx.VoidPtrTy);
316     Params.push_back(Ctx.LongTy);
317     Params.push_back(Ctx.BoolTy);
318     Params.push_back(Ctx.BoolTy);
319     llvm::FunctionType *FTy =
320         Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(
321             Ctx.VoidTy, false, false, Params, FunctionType::ExtInfo(),
322             RequiredArgs::All));
323     return CGM.CreateRuntimeFunction(FTy, "objc_copyStruct");
324   }
325 
326   /// This routine declares and returns address of:
327   /// void objc_copyCppObjectAtomic(
328   ///         void *dest, const void *src,
329   ///         void (*copyHelper) (void *dest, const void *source));
getCppAtomicObjectFunction()330   llvm::Constant *getCppAtomicObjectFunction() {
331     CodeGen::CodeGenTypes &Types = CGM.getTypes();
332     ASTContext &Ctx = CGM.getContext();
333     /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper);
334     SmallVector<CanQualType,3> Params;
335     Params.push_back(Ctx.VoidPtrTy);
336     Params.push_back(Ctx.VoidPtrTy);
337     Params.push_back(Ctx.VoidPtrTy);
338     llvm::FunctionType *FTy =
339       Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(Ctx.VoidTy, false, false,
340                                                           Params,
341                                                           FunctionType::ExtInfo(),
342                                                           RequiredArgs::All));
343     return CGM.CreateRuntimeFunction(FTy, "objc_copyCppObjectAtomic");
344   }
345 
getEnumerationMutationFn()346   llvm::Constant *getEnumerationMutationFn() {
347     CodeGen::CodeGenTypes &Types = CGM.getTypes();
348     ASTContext &Ctx = CGM.getContext();
349     // void objc_enumerationMutation (id)
350     SmallVector<CanQualType,1> Params;
351     Params.push_back(Ctx.getCanonicalParamType(Ctx.getObjCIdType()));
352     llvm::FunctionType *FTy =
353         Types.GetFunctionType(Types.arrangeLLVMFunctionInfo(
354             Ctx.VoidTy, false, false, Params, FunctionType::ExtInfo(),
355             RequiredArgs::All));
356     return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation");
357   }
358 
359   /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function.
getGcReadWeakFn()360   llvm::Constant *getGcReadWeakFn() {
361     // id objc_read_weak (id *)
362     llvm::Type *args[] = { ObjectPtrTy->getPointerTo() };
363     llvm::FunctionType *FTy =
364       llvm::FunctionType::get(ObjectPtrTy, args, false);
365     return CGM.CreateRuntimeFunction(FTy, "objc_read_weak");
366   }
367 
368   /// GcAssignWeakFn -- LLVM objc_assign_weak function.
getGcAssignWeakFn()369   llvm::Constant *getGcAssignWeakFn() {
370     // id objc_assign_weak (id, id *)
371     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
372     llvm::FunctionType *FTy =
373       llvm::FunctionType::get(ObjectPtrTy, args, false);
374     return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak");
375   }
376 
377   /// GcAssignGlobalFn -- LLVM objc_assign_global function.
getGcAssignGlobalFn()378   llvm::Constant *getGcAssignGlobalFn() {
379     // id objc_assign_global(id, id *)
380     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
381     llvm::FunctionType *FTy =
382       llvm::FunctionType::get(ObjectPtrTy, args, false);
383     return CGM.CreateRuntimeFunction(FTy, "objc_assign_global");
384   }
385 
386   /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function.
getGcAssignThreadLocalFn()387   llvm::Constant *getGcAssignThreadLocalFn() {
388     // id objc_assign_threadlocal(id src, id * dest)
389     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
390     llvm::FunctionType *FTy =
391       llvm::FunctionType::get(ObjectPtrTy, args, false);
392     return CGM.CreateRuntimeFunction(FTy, "objc_assign_threadlocal");
393   }
394 
395   /// GcAssignIvarFn -- LLVM objc_assign_ivar function.
getGcAssignIvarFn()396   llvm::Constant *getGcAssignIvarFn() {
397     // id objc_assign_ivar(id, id *, ptrdiff_t)
398     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(),
399                            CGM.PtrDiffTy };
400     llvm::FunctionType *FTy =
401       llvm::FunctionType::get(ObjectPtrTy, args, false);
402     return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar");
403   }
404 
405   /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function.
GcMemmoveCollectableFn()406   llvm::Constant *GcMemmoveCollectableFn() {
407     // void *objc_memmove_collectable(void *dst, const void *src, size_t size)
408     llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy };
409     llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, args, false);
410     return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable");
411   }
412 
413   /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function.
getGcAssignStrongCastFn()414   llvm::Constant *getGcAssignStrongCastFn() {
415     // id objc_assign_strongCast(id, id *)
416     llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
417     llvm::FunctionType *FTy =
418       llvm::FunctionType::get(ObjectPtrTy, args, false);
419     return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast");
420   }
421 
422   /// ExceptionThrowFn - LLVM objc_exception_throw function.
getExceptionThrowFn()423   llvm::Constant *getExceptionThrowFn() {
424     // void objc_exception_throw(id)
425     llvm::Type *args[] = { ObjectPtrTy };
426     llvm::FunctionType *FTy =
427       llvm::FunctionType::get(CGM.VoidTy, args, false);
428     return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw");
429   }
430 
431   /// ExceptionRethrowFn - LLVM objc_exception_rethrow function.
getExceptionRethrowFn()432   llvm::Constant *getExceptionRethrowFn() {
433     // void objc_exception_rethrow(void)
434     llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false);
435     return CGM.CreateRuntimeFunction(FTy, "objc_exception_rethrow");
436   }
437 
438   /// SyncEnterFn - LLVM object_sync_enter function.
getSyncEnterFn()439   llvm::Constant *getSyncEnterFn() {
440     // int objc_sync_enter (id)
441     llvm::Type *args[] = { ObjectPtrTy };
442     llvm::FunctionType *FTy =
443       llvm::FunctionType::get(CGM.IntTy, args, false);
444     return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter");
445   }
446 
447   /// SyncExitFn - LLVM object_sync_exit function.
getSyncExitFn()448   llvm::Constant *getSyncExitFn() {
449     // int objc_sync_exit (id)
450     llvm::Type *args[] = { ObjectPtrTy };
451     llvm::FunctionType *FTy =
452       llvm::FunctionType::get(CGM.IntTy, args, false);
453     return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit");
454   }
455 
getSendFn(bool IsSuper) const456   llvm::Constant *getSendFn(bool IsSuper) const {
457     return IsSuper ? getMessageSendSuperFn() : getMessageSendFn();
458   }
459 
getSendFn2(bool IsSuper) const460   llvm::Constant *getSendFn2(bool IsSuper) const {
461     return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn();
462   }
463 
getSendStretFn(bool IsSuper) const464   llvm::Constant *getSendStretFn(bool IsSuper) const {
465     return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn();
466   }
467 
getSendStretFn2(bool IsSuper) const468   llvm::Constant *getSendStretFn2(bool IsSuper) const {
469     return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn();
470   }
471 
getSendFpretFn(bool IsSuper) const472   llvm::Constant *getSendFpretFn(bool IsSuper) const {
473     return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn();
474   }
475 
getSendFpretFn2(bool IsSuper) const476   llvm::Constant *getSendFpretFn2(bool IsSuper) const {
477     return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn();
478   }
479 
getSendFp2retFn(bool IsSuper) const480   llvm::Constant *getSendFp2retFn(bool IsSuper) const {
481     return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn();
482   }
483 
getSendFp2RetFn2(bool IsSuper) const484   llvm::Constant *getSendFp2RetFn2(bool IsSuper) const {
485     return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn();
486   }
487 
488   ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm);
489 };
490 
491 /// ObjCTypesHelper - Helper class that encapsulates lazy
492 /// construction of varies types used during ObjC generation.
493 class ObjCTypesHelper : public ObjCCommonTypesHelper {
494 public:
495   /// SymtabTy - LLVM type for struct objc_symtab.
496   llvm::StructType *SymtabTy;
497   /// SymtabPtrTy - LLVM type for struct objc_symtab *.
498   llvm::Type *SymtabPtrTy;
499   /// ModuleTy - LLVM type for struct objc_module.
500   llvm::StructType *ModuleTy;
501 
502   /// ProtocolTy - LLVM type for struct objc_protocol.
503   llvm::StructType *ProtocolTy;
504   /// ProtocolPtrTy - LLVM type for struct objc_protocol *.
505   llvm::Type *ProtocolPtrTy;
506   /// ProtocolExtensionTy - LLVM type for struct
507   /// objc_protocol_extension.
508   llvm::StructType *ProtocolExtensionTy;
509   /// ProtocolExtensionTy - LLVM type for struct
510   /// objc_protocol_extension *.
511   llvm::Type *ProtocolExtensionPtrTy;
512   /// MethodDescriptionTy - LLVM type for struct
513   /// objc_method_description.
514   llvm::StructType *MethodDescriptionTy;
515   /// MethodDescriptionListTy - LLVM type for struct
516   /// objc_method_description_list.
517   llvm::StructType *MethodDescriptionListTy;
518   /// MethodDescriptionListPtrTy - LLVM type for struct
519   /// objc_method_description_list *.
520   llvm::Type *MethodDescriptionListPtrTy;
521   /// ProtocolListTy - LLVM type for struct objc_property_list.
522   llvm::StructType *ProtocolListTy;
523   /// ProtocolListPtrTy - LLVM type for struct objc_property_list*.
524   llvm::Type *ProtocolListPtrTy;
525   /// CategoryTy - LLVM type for struct objc_category.
526   llvm::StructType *CategoryTy;
527   /// ClassTy - LLVM type for struct objc_class.
528   llvm::StructType *ClassTy;
529   /// ClassPtrTy - LLVM type for struct objc_class *.
530   llvm::Type *ClassPtrTy;
531   /// ClassExtensionTy - LLVM type for struct objc_class_ext.
532   llvm::StructType *ClassExtensionTy;
533   /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *.
534   llvm::Type *ClassExtensionPtrTy;
535   // IvarTy - LLVM type for struct objc_ivar.
536   llvm::StructType *IvarTy;
537   /// IvarListTy - LLVM type for struct objc_ivar_list.
538   llvm::Type *IvarListTy;
539   /// IvarListPtrTy - LLVM type for struct objc_ivar_list *.
540   llvm::Type *IvarListPtrTy;
541   /// MethodListTy - LLVM type for struct objc_method_list.
542   llvm::Type *MethodListTy;
543   /// MethodListPtrTy - LLVM type for struct objc_method_list *.
544   llvm::Type *MethodListPtrTy;
545 
546   /// ExceptionDataTy - LLVM type for struct _objc_exception_data.
547   llvm::Type *ExceptionDataTy;
548 
549   /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function.
getExceptionTryEnterFn()550   llvm::Constant *getExceptionTryEnterFn() {
551     llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
552     return CGM.CreateRuntimeFunction(
553       llvm::FunctionType::get(CGM.VoidTy, params, false),
554       "objc_exception_try_enter");
555   }
556 
557   /// ExceptionTryExitFn - LLVM objc_exception_try_exit function.
getExceptionTryExitFn()558   llvm::Constant *getExceptionTryExitFn() {
559     llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
560     return CGM.CreateRuntimeFunction(
561       llvm::FunctionType::get(CGM.VoidTy, params, false),
562       "objc_exception_try_exit");
563   }
564 
565   /// ExceptionExtractFn - LLVM objc_exception_extract function.
getExceptionExtractFn()566   llvm::Constant *getExceptionExtractFn() {
567     llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
568     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
569                                                              params, false),
570                                      "objc_exception_extract");
571   }
572 
573   /// ExceptionMatchFn - LLVM objc_exception_match function.
getExceptionMatchFn()574   llvm::Constant *getExceptionMatchFn() {
575     llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy };
576     return CGM.CreateRuntimeFunction(
577       llvm::FunctionType::get(CGM.Int32Ty, params, false),
578       "objc_exception_match");
579 
580   }
581 
582   /// SetJmpFn - LLVM _setjmp function.
getSetJmpFn()583   llvm::Constant *getSetJmpFn() {
584     // This is specifically the prototype for x86.
585     llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() };
586     return
587       CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.Int32Ty,
588                                                         params, false),
589                                 "_setjmp",
590                                 llvm::AttributeSet::get(CGM.getLLVMContext(),
591                                               llvm::AttributeSet::FunctionIndex,
592                                                  llvm::Attribute::NonLazyBind));
593   }
594 
595 public:
596   ObjCTypesHelper(CodeGen::CodeGenModule &cgm);
597 };
598 
599 /// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's
600 /// modern abi
601 class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper {
602 public:
603 
604   // MethodListnfABITy - LLVM for struct _method_list_t
605   llvm::StructType *MethodListnfABITy;
606 
607   // MethodListnfABIPtrTy - LLVM for struct _method_list_t*
608   llvm::Type *MethodListnfABIPtrTy;
609 
610   // ProtocolnfABITy = LLVM for struct _protocol_t
611   llvm::StructType *ProtocolnfABITy;
612 
613   // ProtocolnfABIPtrTy = LLVM for struct _protocol_t*
614   llvm::Type *ProtocolnfABIPtrTy;
615 
616   // ProtocolListnfABITy - LLVM for struct _objc_protocol_list
617   llvm::StructType *ProtocolListnfABITy;
618 
619   // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list*
620   llvm::Type *ProtocolListnfABIPtrTy;
621 
622   // ClassnfABITy - LLVM for struct _class_t
623   llvm::StructType *ClassnfABITy;
624 
625   // ClassnfABIPtrTy - LLVM for struct _class_t*
626   llvm::Type *ClassnfABIPtrTy;
627 
628   // IvarnfABITy - LLVM for struct _ivar_t
629   llvm::StructType *IvarnfABITy;
630 
631   // IvarListnfABITy - LLVM for struct _ivar_list_t
632   llvm::StructType *IvarListnfABITy;
633 
634   // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t*
635   llvm::Type *IvarListnfABIPtrTy;
636 
637   // ClassRonfABITy - LLVM for struct _class_ro_t
638   llvm::StructType *ClassRonfABITy;
639 
640   // ImpnfABITy - LLVM for id (*)(id, SEL, ...)
641   llvm::Type *ImpnfABITy;
642 
643   // CategorynfABITy - LLVM for struct _category_t
644   llvm::StructType *CategorynfABITy;
645 
646   // New types for nonfragile abi messaging.
647 
648   // MessageRefTy - LLVM for:
649   // struct _message_ref_t {
650   //   IMP messenger;
651   //   SEL name;
652   // };
653   llvm::StructType *MessageRefTy;
654   // MessageRefCTy - clang type for struct _message_ref_t
655   QualType MessageRefCTy;
656 
657   // MessageRefPtrTy - LLVM for struct _message_ref_t*
658   llvm::Type *MessageRefPtrTy;
659   // MessageRefCPtrTy - clang type for struct _message_ref_t*
660   QualType MessageRefCPtrTy;
661 
662   // SuperMessageRefTy - LLVM for:
663   // struct _super_message_ref_t {
664   //   SUPER_IMP messenger;
665   //   SEL name;
666   // };
667   llvm::StructType *SuperMessageRefTy;
668 
669   // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
670   llvm::Type *SuperMessageRefPtrTy;
671 
getMessageSendFixupFn()672   llvm::Constant *getMessageSendFixupFn() {
673     // id objc_msgSend_fixup(id, struct message_ref_t*, ...)
674     llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
675     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
676                                                              params, true),
677                                      "objc_msgSend_fixup");
678   }
679 
getMessageSendFpretFixupFn()680   llvm::Constant *getMessageSendFpretFixupFn() {
681     // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...)
682     llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
683     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
684                                                              params, true),
685                                      "objc_msgSend_fpret_fixup");
686   }
687 
getMessageSendStretFixupFn()688   llvm::Constant *getMessageSendStretFixupFn() {
689     // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...)
690     llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
691     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
692                                                              params, true),
693                                      "objc_msgSend_stret_fixup");
694   }
695 
getMessageSendSuper2FixupFn()696   llvm::Constant *getMessageSendSuper2FixupFn() {
697     // id objc_msgSendSuper2_fixup (struct objc_super *,
698     //                              struct _super_message_ref_t*, ...)
699     llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy };
700     return  CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
701                                                               params, true),
702                                       "objc_msgSendSuper2_fixup");
703   }
704 
getMessageSendSuper2StretFixupFn()705   llvm::Constant *getMessageSendSuper2StretFixupFn() {
706     // id objc_msgSendSuper2_stret_fixup(struct objc_super *,
707     //                                   struct _super_message_ref_t*, ...)
708     llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy };
709     return  CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
710                                                               params, true),
711                                       "objc_msgSendSuper2_stret_fixup");
712   }
713 
getObjCEndCatchFn()714   llvm::Constant *getObjCEndCatchFn() {
715     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(CGM.VoidTy, false),
716                                      "objc_end_catch");
717 
718   }
719 
getObjCBeginCatchFn()720   llvm::Constant *getObjCBeginCatchFn() {
721     llvm::Type *params[] = { Int8PtrTy };
722     return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy,
723                                                              params, false),
724                                      "objc_begin_catch");
725   }
726 
727   llvm::StructType *EHTypeTy;
728   llvm::Type *EHTypePtrTy;
729 
730   ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm);
731 };
732 
733 class CGObjCCommonMac : public CodeGen::CGObjCRuntime {
734 public:
735   class SKIP_SCAN {
736   public:
737     unsigned skip;
738     unsigned scan;
SKIP_SCAN(unsigned _skip=0,unsigned _scan=0)739     SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0)
740       : skip(_skip), scan(_scan) {}
741   };
742 
743   /// opcode for captured block variables layout 'instructions'.
744   /// In the following descriptions, 'I' is the value of the immediate field.
745   /// (field following the opcode).
746   ///
747   enum BLOCK_LAYOUT_OPCODE {
748     /// An operator which affects how the following layout should be
749     /// interpreted.
750     ///   I == 0: Halt interpretation and treat everything else as
751     ///           a non-pointer.  Note that this instruction is equal
752     ///           to '\0'.
753     ///   I != 0: Currently unused.
754     BLOCK_LAYOUT_OPERATOR            = 0,
755 
756     /// The next I+1 bytes do not contain a value of object pointer type.
757     /// Note that this can leave the stream unaligned, meaning that
758     /// subsequent word-size instructions do not begin at a multiple of
759     /// the pointer size.
760     BLOCK_LAYOUT_NON_OBJECT_BYTES    = 1,
761 
762     /// The next I+1 words do not contain a value of object pointer type.
763     /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for
764     /// when the required skip quantity is a multiple of the pointer size.
765     BLOCK_LAYOUT_NON_OBJECT_WORDS    = 2,
766 
767     /// The next I+1 words are __strong pointers to Objective-C
768     /// objects or blocks.
769     BLOCK_LAYOUT_STRONG              = 3,
770 
771     /// The next I+1 words are pointers to __block variables.
772     BLOCK_LAYOUT_BYREF               = 4,
773 
774     /// The next I+1 words are __weak pointers to Objective-C
775     /// objects or blocks.
776     BLOCK_LAYOUT_WEAK                = 5,
777 
778     /// The next I+1 words are __unsafe_unretained pointers to
779     /// Objective-C objects or blocks.
780     BLOCK_LAYOUT_UNRETAINED          = 6
781 
782     /// The next I+1 words are block or object pointers with some
783     /// as-yet-unspecified ownership semantics.  If we add more
784     /// flavors of ownership semantics, values will be taken from
785     /// this range.
786     ///
787     /// This is included so that older tools can at least continue
788     /// processing the layout past such things.
789     //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10,
790 
791     /// All other opcodes are reserved.  Halt interpretation and
792     /// treat everything else as opaque.
793   };
794 
795   class RUN_SKIP {
796   public:
797     enum BLOCK_LAYOUT_OPCODE opcode;
798     CharUnits block_var_bytepos;
799     CharUnits block_var_size;
RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode=BLOCK_LAYOUT_OPERATOR,CharUnits BytePos=CharUnits::Zero (),CharUnits Size=CharUnits::Zero ())800     RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR,
801              CharUnits BytePos = CharUnits::Zero(),
802              CharUnits Size = CharUnits::Zero())
803     : opcode(Opcode), block_var_bytepos(BytePos),  block_var_size(Size) {}
804 
805     // Allow sorting based on byte pos.
operator <(const RUN_SKIP & b) const806     bool operator<(const RUN_SKIP &b) const {
807       return block_var_bytepos < b.block_var_bytepos;
808     }
809   };
810 
811 protected:
812   llvm::LLVMContext &VMContext;
813   // FIXME! May not be needing this after all.
814   unsigned ObjCABI;
815 
816   // arc/mrr layout of captured block literal variables.
817   SmallVector<RUN_SKIP, 16> RunSkipBlockVars;
818 
819   /// LazySymbols - Symbols to generate a lazy reference for. See
820   /// DefinedSymbols and FinishModule().
821   llvm::SetVector<IdentifierInfo*> LazySymbols;
822 
823   /// DefinedSymbols - External symbols which are defined by this
824   /// module. The symbols in this list and LazySymbols are used to add
825   /// special linker symbols which ensure that Objective-C modules are
826   /// linked properly.
827   llvm::SetVector<IdentifierInfo*> DefinedSymbols;
828 
829   /// ClassNames - uniqued class names.
830   llvm::StringMap<llvm::GlobalVariable*> ClassNames;
831 
832   /// MethodVarNames - uniqued method variable names.
833   llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames;
834 
835   /// DefinedCategoryNames - list of category names in form Class_Category.
836   llvm::SmallSetVector<std::string, 16> DefinedCategoryNames;
837 
838   /// MethodVarTypes - uniqued method type signatures. We have to use
839   /// a StringMap here because have no other unique reference.
840   llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes;
841 
842   /// MethodDefinitions - map of methods which have been defined in
843   /// this translation unit.
844   llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions;
845 
846   /// PropertyNames - uniqued method variable names.
847   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames;
848 
849   /// ClassReferences - uniqued class references.
850   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences;
851 
852   /// SelectorReferences - uniqued selector references.
853   llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences;
854 
855   /// Protocols - Protocols for which an objc_protocol structure has
856   /// been emitted. Forward declarations are handled by creating an
857   /// empty structure whose initializer is filled in when/if defined.
858   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols;
859 
860   /// DefinedProtocols - Protocols which have actually been
861   /// defined. We should not need this, see FIXME in GenerateProtocol.
862   llvm::DenseSet<IdentifierInfo*> DefinedProtocols;
863 
864   /// DefinedClasses - List of defined classes.
865   SmallVector<llvm::GlobalValue*, 16> DefinedClasses;
866 
867   /// ImplementedClasses - List of @implemented classes.
868   SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses;
869 
870   /// DefinedNonLazyClasses - List of defined "non-lazy" classes.
871   SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses;
872 
873   /// DefinedCategories - List of defined categories.
874   SmallVector<llvm::GlobalValue*, 16> DefinedCategories;
875 
876   /// DefinedNonLazyCategories - List of defined "non-lazy" categories.
877   SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories;
878 
879   /// GetNameForMethod - Return a name for the given method.
880   /// \param[out] NameOut - The return value.
881   void GetNameForMethod(const ObjCMethodDecl *OMD,
882                         const ObjCContainerDecl *CD,
883                         SmallVectorImpl<char> &NameOut);
884 
885   /// GetMethodVarName - Return a unique constant for the given
886   /// selector's name. The return value has type char *.
887   llvm::Constant *GetMethodVarName(Selector Sel);
888   llvm::Constant *GetMethodVarName(IdentifierInfo *Ident);
889 
890   /// GetMethodVarType - Return a unique constant for the given
891   /// method's type encoding string. The return value has type char *.
892 
893   // FIXME: This is a horrible name.
894   llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D,
895                                    bool Extended = false);
896   llvm::Constant *GetMethodVarType(const FieldDecl *D);
897 
898   /// GetPropertyName - Return a unique constant for the given
899   /// name. The return value has type char *.
900   llvm::Constant *GetPropertyName(IdentifierInfo *Ident);
901 
902   // FIXME: This can be dropped once string functions are unified.
903   llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD,
904                                         const Decl *Container);
905 
906   /// GetClassName - Return a unique constant for the given selector's
907   /// runtime name (which may change via use of objc_runtime_name attribute on
908   /// class or protocol definition. The return value has type char *.
909   llvm::Constant *GetClassName(StringRef RuntimeName);
910 
911   llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD);
912 
913   /// BuildIvarLayout - Builds ivar layout bitmap for the class
914   /// implementation for the __strong or __weak case.
915   ///
916   /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there
917   ///   are any weak ivars defined directly in the class.  Meaningless unless
918   ///   building a weak layout.  Does not guarantee that the layout will
919   ///   actually have any entries, because the ivar might be under-aligned.
920   llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI,
921                                   CharUnits beginOffset,
922                                   CharUnits endOffset,
923                                   bool forStrongLayout,
924                                   bool hasMRCWeakIvars);
925 
BuildStrongIvarLayout(const ObjCImplementationDecl * OI,CharUnits beginOffset,CharUnits endOffset)926   llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI,
927                                         CharUnits beginOffset,
928                                         CharUnits endOffset) {
929     return BuildIvarLayout(OI, beginOffset, endOffset, true, false);
930   }
931 
BuildWeakIvarLayout(const ObjCImplementationDecl * OI,CharUnits beginOffset,CharUnits endOffset,bool hasMRCWeakIvars)932   llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI,
933                                       CharUnits beginOffset,
934                                       CharUnits endOffset,
935                                       bool hasMRCWeakIvars) {
936     return BuildIvarLayout(OI, beginOffset, endOffset, false, hasMRCWeakIvars);
937   }
938 
939   Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout);
940 
941   void UpdateRunSkipBlockVars(bool IsByref,
942                               Qualifiers::ObjCLifetime LifeTime,
943                               CharUnits FieldOffset,
944                               CharUnits FieldSize);
945 
946   void BuildRCBlockVarRecordLayout(const RecordType *RT,
947                                    CharUnits BytePos, bool &HasUnion,
948                                    bool ByrefLayout=false);
949 
950   void BuildRCRecordLayout(const llvm::StructLayout *RecLayout,
951                            const RecordDecl *RD,
952                            ArrayRef<const FieldDecl*> RecFields,
953                            CharUnits BytePos, bool &HasUnion,
954                            bool ByrefLayout);
955 
956   uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout);
957 
958   llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout);
959 
960   /// GetIvarLayoutName - Returns a unique constant for the given
961   /// ivar layout bitmap.
962   llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident,
963                                     const ObjCCommonTypesHelper &ObjCTypes);
964 
965   /// EmitPropertyList - Emit the given property list. The return
966   /// value has type PropertyListPtrTy.
967   llvm::Constant *EmitPropertyList(Twine Name,
968                                    const Decl *Container,
969                                    const ObjCContainerDecl *OCD,
970                                    const ObjCCommonTypesHelper &ObjCTypes);
971 
972   /// EmitProtocolMethodTypes - Generate the array of extended method type
973   /// strings. The return value has type Int8PtrPtrTy.
974   llvm::Constant *EmitProtocolMethodTypes(Twine Name,
975                                           ArrayRef<llvm::Constant*> MethodTypes,
976                                        const ObjCCommonTypesHelper &ObjCTypes);
977 
978   /// PushProtocolProperties - Push protocol's property on the input stack.
979   void PushProtocolProperties(
980     llvm::SmallPtrSet<const IdentifierInfo*, 16> &PropertySet,
981     SmallVectorImpl<llvm::Constant*> &Properties,
982     const Decl *Container,
983     const ObjCProtocolDecl *Proto,
984     const ObjCCommonTypesHelper &ObjCTypes);
985 
986   /// GetProtocolRef - Return a reference to the internal protocol
987   /// description, creating an empty one if it has not been
988   /// defined. The return value has type ProtocolPtrTy.
989   llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD);
990 
991 public:
992   /// CreateMetadataVar - Create a global variable with internal
993   /// linkage for use by the Objective-C runtime.
994   ///
995   /// This is a convenience wrapper which not only creates the
996   /// variable, but also sets the section and alignment and adds the
997   /// global to the "llvm.used" list.
998   ///
999   /// \param Name - The variable name.
1000   /// \param Init - The variable initializer; this is also used to
1001   /// define the type of the variable.
1002   /// \param Section - The section the variable should go into, or empty.
1003   /// \param Align - The alignment for the variable, or 0.
1004   /// \param AddToUsed - Whether the variable should be added to
1005   /// "llvm.used".
1006   llvm::GlobalVariable *CreateMetadataVar(Twine Name, llvm::Constant *Init,
1007                                           StringRef Section, CharUnits Align,
1008                                           bool AddToUsed);
1009 
1010 protected:
1011   CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF,
1012                                   ReturnValueSlot Return,
1013                                   QualType ResultType,
1014                                   llvm::Value *Sel,
1015                                   llvm::Value *Arg0,
1016                                   QualType Arg0Ty,
1017                                   bool IsSuper,
1018                                   const CallArgList &CallArgs,
1019                                   const ObjCMethodDecl *OMD,
1020                                   const ObjCInterfaceDecl *ClassReceiver,
1021                                   const ObjCCommonTypesHelper &ObjCTypes);
1022 
1023   /// EmitImageInfo - Emit the image info marker used to encode some module
1024   /// level information.
1025   void EmitImageInfo();
1026 
1027 public:
CGObjCCommonMac(CodeGen::CodeGenModule & cgm)1028   CGObjCCommonMac(CodeGen::CodeGenModule &cgm) :
1029     CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) { }
1030 
isNonFragileABI() const1031   bool isNonFragileABI() const {
1032     return ObjCABI == 2;
1033   }
1034 
1035   ConstantAddress GenerateConstantString(const StringLiteral *SL) override;
1036 
1037   llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
1038                                  const ObjCContainerDecl *CD=nullptr) override;
1039 
1040   void GenerateProtocol(const ObjCProtocolDecl *PD) override;
1041 
1042   /// GetOrEmitProtocol - Get the protocol object for the given
1043   /// declaration, emitting it if necessary. The return value has type
1044   /// ProtocolPtrTy.
1045   virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0;
1046 
1047   /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1048   /// object for the given declaration, emitting it if needed. These
1049   /// forward references will be filled in with empty bodies if no
1050   /// definition is seen. The return value has type ProtocolPtrTy.
1051   virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0;
1052   llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM,
1053                                      const CGBlockInfo &blockInfo) override;
1054   llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM,
1055                                      const CGBlockInfo &blockInfo) override;
1056 
1057   llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM,
1058                                    QualType T) override;
1059 };
1060 
1061 class CGObjCMac : public CGObjCCommonMac {
1062 private:
1063   ObjCTypesHelper ObjCTypes;
1064 
1065   /// EmitModuleInfo - Another marker encoding module level
1066   /// information.
1067   void EmitModuleInfo();
1068 
1069   /// EmitModuleSymols - Emit module symbols, the list of defined
1070   /// classes and categories. The result has type SymtabPtrTy.
1071   llvm::Constant *EmitModuleSymbols();
1072 
1073   /// FinishModule - Write out global data structures at the end of
1074   /// processing a translation unit.
1075   void FinishModule();
1076 
1077   /// EmitClassExtension - Generate the class extension structure used
1078   /// to store the weak ivar layout and properties. The return value
1079   /// has type ClassExtensionPtrTy.
1080   llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID,
1081                                      CharUnits instanceSize,
1082                                      bool hasMRCWeakIvars);
1083 
1084   /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1085   /// for the given class.
1086   llvm::Value *EmitClassRef(CodeGenFunction &CGF,
1087                             const ObjCInterfaceDecl *ID);
1088 
1089   llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF,
1090                                   IdentifierInfo *II);
1091 
1092   llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
1093 
1094   /// EmitSuperClassRef - Emits reference to class's main metadata class.
1095   llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID);
1096 
1097   /// EmitIvarList - Emit the ivar list for the given
1098   /// implementation. If ForClass is true the list of class ivars
1099   /// (i.e. metaclass ivars) is emitted, otherwise the list of
1100   /// interface ivars will be emitted. The return value has type
1101   /// IvarListPtrTy.
1102   llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID,
1103                                bool ForClass);
1104 
1105   /// EmitMetaClass - Emit a forward reference to the class structure
1106   /// for the metaclass of the given interface. The return value has
1107   /// type ClassPtrTy.
1108   llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID);
1109 
1110   /// EmitMetaClass - Emit a class structure for the metaclass of the
1111   /// given implementation. The return value has type ClassPtrTy.
1112   llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID,
1113                                 llvm::Constant *Protocols,
1114                                 ArrayRef<llvm::Constant*> Methods);
1115 
1116   llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD);
1117 
1118   llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD);
1119 
1120   /// EmitMethodList - Emit the method list for the given
1121   /// implementation. The return value has type MethodListPtrTy.
1122   llvm::Constant *EmitMethodList(Twine Name,
1123                                  const char *Section,
1124                                  ArrayRef<llvm::Constant*> Methods);
1125 
1126   /// EmitMethodDescList - Emit a method description list for a list of
1127   /// method declarations.
1128   ///  - TypeName: The name for the type containing the methods.
1129   ///  - IsProtocol: True iff these methods are for a protocol.
1130   ///  - ClassMethds: True iff these are class methods.
1131   ///  - Required: When true, only "required" methods are
1132   ///    listed. Similarly, when false only "optional" methods are
1133   ///    listed. For classes this should always be true.
1134   ///  - begin, end: The method list to output.
1135   ///
1136   /// The return value has type MethodDescriptionListPtrTy.
1137   llvm::Constant *EmitMethodDescList(Twine Name,
1138                                      const char *Section,
1139                                      ArrayRef<llvm::Constant*> Methods);
1140 
1141   /// GetOrEmitProtocol - Get the protocol object for the given
1142   /// declaration, emitting it if necessary. The return value has type
1143   /// ProtocolPtrTy.
1144   llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override;
1145 
1146   /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1147   /// object for the given declaration, emitting it if needed. These
1148   /// forward references will be filled in with empty bodies if no
1149   /// definition is seen. The return value has type ProtocolPtrTy.
1150   llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override;
1151 
1152   /// EmitProtocolExtension - Generate the protocol extension
1153   /// structure used to store optional instance and class methods, and
1154   /// protocol properties. The return value has type
1155   /// ProtocolExtensionPtrTy.
1156   llvm::Constant *
1157   EmitProtocolExtension(const ObjCProtocolDecl *PD,
1158                         ArrayRef<llvm::Constant*> OptInstanceMethods,
1159                         ArrayRef<llvm::Constant*> OptClassMethods,
1160                         ArrayRef<llvm::Constant*> MethodTypesExt);
1161 
1162   /// EmitProtocolList - Generate the list of referenced
1163   /// protocols. The return value has type ProtocolListPtrTy.
1164   llvm::Constant *EmitProtocolList(Twine Name,
1165                                    ObjCProtocolDecl::protocol_iterator begin,
1166                                    ObjCProtocolDecl::protocol_iterator end);
1167 
1168   /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
1169   /// for the given selector.
1170   llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel);
1171   Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel);
1172 
1173 public:
1174   CGObjCMac(CodeGen::CodeGenModule &cgm);
1175 
1176   llvm::Function *ModuleInitFunction() override;
1177 
1178   CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1179                                       ReturnValueSlot Return,
1180                                       QualType ResultType,
1181                                       Selector Sel, llvm::Value *Receiver,
1182                                       const CallArgList &CallArgs,
1183                                       const ObjCInterfaceDecl *Class,
1184                                       const ObjCMethodDecl *Method) override;
1185 
1186   CodeGen::RValue
1187   GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1188                            ReturnValueSlot Return, QualType ResultType,
1189                            Selector Sel, const ObjCInterfaceDecl *Class,
1190                            bool isCategoryImpl, llvm::Value *Receiver,
1191                            bool IsClassMessage, const CallArgList &CallArgs,
1192                            const ObjCMethodDecl *Method) override;
1193 
1194   llvm::Value *GetClass(CodeGenFunction &CGF,
1195                         const ObjCInterfaceDecl *ID) override;
1196 
1197   llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
1198   Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
1199 
1200   /// The NeXT/Apple runtimes do not support typed selectors; just emit an
1201   /// untyped one.
1202   llvm::Value *GetSelector(CodeGenFunction &CGF,
1203                            const ObjCMethodDecl *Method) override;
1204 
1205   llvm::Constant *GetEHType(QualType T) override;
1206 
1207   void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
1208 
1209   void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
1210 
RegisterAlias(const ObjCCompatibleAliasDecl * OAD)1211   void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {}
1212 
1213   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1214                                    const ObjCProtocolDecl *PD) override;
1215 
1216   llvm::Constant *GetPropertyGetFunction() override;
1217   llvm::Constant *GetPropertySetFunction() override;
1218   llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
1219                                                   bool copy) override;
1220   llvm::Constant *GetGetStructFunction() override;
1221   llvm::Constant *GetSetStructFunction() override;
1222   llvm::Constant *GetCppAtomicObjectGetFunction() override;
1223   llvm::Constant *GetCppAtomicObjectSetFunction() override;
1224   llvm::Constant *EnumerationMutationFunction() override;
1225 
1226   void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
1227                    const ObjCAtTryStmt &S) override;
1228   void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
1229                             const ObjCAtSynchronizedStmt &S) override;
1230   void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S);
1231   void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S,
1232                      bool ClearInsertionPoint=true) override;
1233   llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
1234                                  Address AddrWeakObj) override;
1235   void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
1236                           llvm::Value *src, Address dst) override;
1237   void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
1238                             llvm::Value *src, Address dest,
1239                             bool threadlocal = false) override;
1240   void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
1241                           llvm::Value *src, Address dest,
1242                           llvm::Value *ivarOffset) override;
1243   void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
1244                                 llvm::Value *src, Address dest) override;
1245   void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
1246                                 Address dest, Address src,
1247                                 llvm::Value *size) override;
1248 
1249   LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy,
1250                               llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
1251                               unsigned CVRQualifiers) override;
1252   llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
1253                               const ObjCInterfaceDecl *Interface,
1254                               const ObjCIvarDecl *Ivar) override;
1255 
1256   /// GetClassGlobal - Return the global variable for the Objective-C
1257   /// class of the given name.
GetClassGlobal(const std::string & Name,bool Weak=false)1258   llvm::GlobalVariable *GetClassGlobal(const std::string &Name,
1259                                        bool Weak = false) override {
1260     llvm_unreachable("CGObjCMac::GetClassGlobal");
1261   }
1262 };
1263 
1264 class CGObjCNonFragileABIMac : public CGObjCCommonMac {
1265 private:
1266   ObjCNonFragileABITypesHelper ObjCTypes;
1267   llvm::GlobalVariable* ObjCEmptyCacheVar;
1268   llvm::GlobalVariable* ObjCEmptyVtableVar;
1269 
1270   /// SuperClassReferences - uniqued super class references.
1271   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences;
1272 
1273   /// MetaClassReferences - uniqued meta class references.
1274   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences;
1275 
1276   /// EHTypeReferences - uniqued class ehtype references.
1277   llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences;
1278 
1279   /// VTableDispatchMethods - List of methods for which we generate
1280   /// vtable-based message dispatch.
1281   llvm::DenseSet<Selector> VTableDispatchMethods;
1282 
1283   /// DefinedMetaClasses - List of defined meta-classes.
1284   std::vector<llvm::GlobalValue*> DefinedMetaClasses;
1285 
1286   /// isVTableDispatchedSelector - Returns true if SEL is a
1287   /// vtable-based selector.
1288   bool isVTableDispatchedSelector(Selector Sel);
1289 
1290   /// FinishNonFragileABIModule - Write out global data structures at the end of
1291   /// processing a translation unit.
1292   void FinishNonFragileABIModule();
1293 
1294   /// AddModuleClassList - Add the given list of class pointers to the
1295   /// module with the provided symbol and section names.
1296   void AddModuleClassList(ArrayRef<llvm::GlobalValue*> Container,
1297                           const char *SymbolName,
1298                           const char *SectionName);
1299 
1300   llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags,
1301                                               unsigned InstanceStart,
1302                                               unsigned InstanceSize,
1303                                               const ObjCImplementationDecl *ID);
1304   llvm::GlobalVariable * BuildClassMetaData(const std::string &ClassName,
1305                                             llvm::Constant *IsAGV,
1306                                             llvm::Constant *SuperClassGV,
1307                                             llvm::Constant *ClassRoGV,
1308                                             bool HiddenVisibility,
1309                                             bool Weak);
1310 
1311   llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD);
1312 
1313   llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD);
1314 
1315   /// EmitMethodList - Emit the method list for the given
1316   /// implementation. The return value has type MethodListnfABITy.
1317   llvm::Constant *EmitMethodList(Twine Name,
1318                                  const char *Section,
1319                                  ArrayRef<llvm::Constant*> Methods);
1320   /// EmitIvarList - Emit the ivar list for the given
1321   /// implementation. If ForClass is true the list of class ivars
1322   /// (i.e. metaclass ivars) is emitted, otherwise the list of
1323   /// interface ivars will be emitted. The return value has type
1324   /// IvarListnfABIPtrTy.
1325   llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID);
1326 
1327   llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
1328                                     const ObjCIvarDecl *Ivar,
1329                                     unsigned long int offset);
1330 
1331   /// GetOrEmitProtocol - Get the protocol object for the given
1332   /// declaration, emitting it if necessary. The return value has type
1333   /// ProtocolPtrTy.
1334   llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override;
1335 
1336   /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1337   /// object for the given declaration, emitting it if needed. These
1338   /// forward references will be filled in with empty bodies if no
1339   /// definition is seen. The return value has type ProtocolPtrTy.
1340   llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override;
1341 
1342   /// EmitProtocolList - Generate the list of referenced
1343   /// protocols. The return value has type ProtocolListPtrTy.
1344   llvm::Constant *EmitProtocolList(Twine Name,
1345                                    ObjCProtocolDecl::protocol_iterator begin,
1346                                    ObjCProtocolDecl::protocol_iterator end);
1347 
1348   CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF,
1349                                         ReturnValueSlot Return,
1350                                         QualType ResultType,
1351                                         Selector Sel,
1352                                         llvm::Value *Receiver,
1353                                         QualType Arg0Ty,
1354                                         bool IsSuper,
1355                                         const CallArgList &CallArgs,
1356                                         const ObjCMethodDecl *Method);
1357 
1358   /// GetClassGlobal - Return the global variable for the Objective-C
1359   /// class of the given name.
1360   llvm::GlobalVariable *GetClassGlobal(const std::string &Name,
1361                                        bool Weak = false) override;
1362 
1363   /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1364   /// for the given class reference.
1365   llvm::Value *EmitClassRef(CodeGenFunction &CGF,
1366                             const ObjCInterfaceDecl *ID);
1367 
1368   llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF,
1369                                   IdentifierInfo *II, bool Weak,
1370                                   const ObjCInterfaceDecl *ID);
1371 
1372   llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
1373 
1374   /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1375   /// for the given super class reference.
1376   llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF,
1377                                  const ObjCInterfaceDecl *ID);
1378 
1379   /// EmitMetaClassRef - Return a Value * of the address of _class_t
1380   /// meta-data
1381   llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF,
1382                                 const ObjCInterfaceDecl *ID, bool Weak);
1383 
1384   /// ObjCIvarOffsetVariable - Returns the ivar offset variable for
1385   /// the given ivar.
1386   ///
1387   llvm::GlobalVariable * ObjCIvarOffsetVariable(
1388     const ObjCInterfaceDecl *ID,
1389     const ObjCIvarDecl *Ivar);
1390 
1391   /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
1392   /// for the given selector.
1393   llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel);
1394   Address EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel);
1395 
1396   /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C
1397   /// interface. The return value has type EHTypePtrTy.
1398   llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID,
1399                                   bool ForDefinition);
1400 
getMetaclassSymbolPrefix() const1401   const char *getMetaclassSymbolPrefix() const {
1402     return "OBJC_METACLASS_$_";
1403   }
1404 
getClassSymbolPrefix() const1405   const char *getClassSymbolPrefix() const {
1406     return "OBJC_CLASS_$_";
1407   }
1408 
1409   void GetClassSizeInfo(const ObjCImplementationDecl *OID,
1410                         uint32_t &InstanceStart,
1411                         uint32_t &InstanceSize);
1412 
1413   // Shamelessly stolen from Analysis/CFRefCount.cpp
GetNullarySelector(const char * name) const1414   Selector GetNullarySelector(const char* name) const {
1415     IdentifierInfo* II = &CGM.getContext().Idents.get(name);
1416     return CGM.getContext().Selectors.getSelector(0, &II);
1417   }
1418 
GetUnarySelector(const char * name) const1419   Selector GetUnarySelector(const char* name) const {
1420     IdentifierInfo* II = &CGM.getContext().Idents.get(name);
1421     return CGM.getContext().Selectors.getSelector(1, &II);
1422   }
1423 
1424   /// ImplementationIsNonLazy - Check whether the given category or
1425   /// class implementation is "non-lazy".
1426   bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const;
1427 
IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction & CGF,const ObjCIvarDecl * IV)1428   bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF,
1429                                    const ObjCIvarDecl *IV) {
1430     // Annotate the load as an invariant load iff inside an instance method
1431     // and ivar belongs to instance method's class and one of its super class.
1432     // This check is needed because the ivar offset is a lazily
1433     // initialised value that may depend on objc_msgSend to perform a fixup on
1434     // the first message dispatch.
1435     //
1436     // An additional opportunity to mark the load as invariant arises when the
1437     // base of the ivar access is a parameter to an Objective C method.
1438     // However, because the parameters are not available in the current
1439     // interface, we cannot perform this check.
1440     if (const ObjCMethodDecl *MD =
1441           dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl))
1442       if (MD->isInstanceMethod())
1443         if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
1444           return IV->getContainingInterface()->isSuperClassOf(ID);
1445     return false;
1446   }
1447 
1448 public:
1449   CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm);
1450   // FIXME. All stubs for now!
1451   llvm::Function *ModuleInitFunction() override;
1452 
1453   CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1454                                       ReturnValueSlot Return,
1455                                       QualType ResultType, Selector Sel,
1456                                       llvm::Value *Receiver,
1457                                       const CallArgList &CallArgs,
1458                                       const ObjCInterfaceDecl *Class,
1459                                       const ObjCMethodDecl *Method) override;
1460 
1461   CodeGen::RValue
1462   GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1463                            ReturnValueSlot Return, QualType ResultType,
1464                            Selector Sel, const ObjCInterfaceDecl *Class,
1465                            bool isCategoryImpl, llvm::Value *Receiver,
1466                            bool IsClassMessage, const CallArgList &CallArgs,
1467                            const ObjCMethodDecl *Method) override;
1468 
1469   llvm::Value *GetClass(CodeGenFunction &CGF,
1470                         const ObjCInterfaceDecl *ID) override;
1471 
GetSelector(CodeGenFunction & CGF,Selector Sel)1472   llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override
1473     { return EmitSelector(CGF, Sel); }
GetAddrOfSelector(CodeGenFunction & CGF,Selector Sel)1474   Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override
1475     { return EmitSelectorAddr(CGF, Sel); }
1476 
1477   /// The NeXT/Apple runtimes do not support typed selectors; just emit an
1478   /// untyped one.
GetSelector(CodeGenFunction & CGF,const ObjCMethodDecl * Method)1479   llvm::Value *GetSelector(CodeGenFunction &CGF,
1480                            const ObjCMethodDecl *Method) override
1481     { return EmitSelector(CGF, Method->getSelector()); }
1482 
1483   void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
1484 
1485   void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
1486 
RegisterAlias(const ObjCCompatibleAliasDecl * OAD)1487   void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {}
1488 
1489   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1490                                    const ObjCProtocolDecl *PD) override;
1491 
1492   llvm::Constant *GetEHType(QualType T) override;
1493 
GetPropertyGetFunction()1494   llvm::Constant *GetPropertyGetFunction() override {
1495     return ObjCTypes.getGetPropertyFn();
1496   }
GetPropertySetFunction()1497   llvm::Constant *GetPropertySetFunction() override {
1498     return ObjCTypes.getSetPropertyFn();
1499   }
1500 
GetOptimizedPropertySetFunction(bool atomic,bool copy)1501   llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
1502                                                   bool copy) override {
1503     return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy);
1504   }
1505 
GetSetStructFunction()1506   llvm::Constant *GetSetStructFunction() override {
1507     return ObjCTypes.getCopyStructFn();
1508   }
GetGetStructFunction()1509   llvm::Constant *GetGetStructFunction() override {
1510     return ObjCTypes.getCopyStructFn();
1511   }
GetCppAtomicObjectSetFunction()1512   llvm::Constant *GetCppAtomicObjectSetFunction() override {
1513     return ObjCTypes.getCppAtomicObjectFunction();
1514   }
GetCppAtomicObjectGetFunction()1515   llvm::Constant *GetCppAtomicObjectGetFunction() override {
1516     return ObjCTypes.getCppAtomicObjectFunction();
1517   }
1518 
EnumerationMutationFunction()1519   llvm::Constant *EnumerationMutationFunction() override {
1520     return ObjCTypes.getEnumerationMutationFn();
1521   }
1522 
1523   void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
1524                    const ObjCAtTryStmt &S) override;
1525   void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
1526                             const ObjCAtSynchronizedStmt &S) override;
1527   void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S,
1528                      bool ClearInsertionPoint=true) override;
1529   llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
1530                                  Address AddrWeakObj) override;
1531   void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
1532                           llvm::Value *src, Address edst) override;
1533   void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
1534                             llvm::Value *src, Address dest,
1535                             bool threadlocal = false) override;
1536   void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
1537                           llvm::Value *src, Address dest,
1538                           llvm::Value *ivarOffset) override;
1539   void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
1540                                 llvm::Value *src, Address dest) override;
1541   void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
1542                                 Address dest, Address src,
1543                                 llvm::Value *size) override;
1544   LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy,
1545                               llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
1546                               unsigned CVRQualifiers) override;
1547   llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
1548                               const ObjCInterfaceDecl *Interface,
1549                               const ObjCIvarDecl *Ivar) override;
1550 };
1551 
1552 /// A helper class for performing the null-initialization of a return
1553 /// value.
1554 struct NullReturnState {
1555   llvm::BasicBlock *NullBB;
NullReturnState__anon0ea151f90111::NullReturnState1556   NullReturnState() : NullBB(nullptr) {}
1557 
1558   /// Perform a null-check of the given receiver.
init__anon0ea151f90111::NullReturnState1559   void init(CodeGenFunction &CGF, llvm::Value *receiver) {
1560     // Make blocks for the null-receiver and call edges.
1561     NullBB = CGF.createBasicBlock("msgSend.null-receiver");
1562     llvm::BasicBlock *callBB = CGF.createBasicBlock("msgSend.call");
1563 
1564     // Check for a null receiver and, if there is one, jump to the
1565     // null-receiver block.  There's no point in trying to avoid it:
1566     // we're always going to put *something* there, because otherwise
1567     // we shouldn't have done this null-check in the first place.
1568     llvm::Value *isNull = CGF.Builder.CreateIsNull(receiver);
1569     CGF.Builder.CreateCondBr(isNull, NullBB, callBB);
1570 
1571     // Otherwise, start performing the call.
1572     CGF.EmitBlock(callBB);
1573   }
1574 
1575   /// Complete the null-return operation.  It is valid to call this
1576   /// regardless of whether 'init' has been called.
complete__anon0ea151f90111::NullReturnState1577   RValue complete(CodeGenFunction &CGF, RValue result, QualType resultType,
1578                   const CallArgList &CallArgs,
1579                   const ObjCMethodDecl *Method) {
1580     // If we never had to do a null-check, just use the raw result.
1581     if (!NullBB) return result;
1582 
1583     // The continuation block.  This will be left null if we don't have an
1584     // IP, which can happen if the method we're calling is marked noreturn.
1585     llvm::BasicBlock *contBB = nullptr;
1586 
1587     // Finish the call path.
1588     llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock();
1589     if (callBB) {
1590       contBB = CGF.createBasicBlock("msgSend.cont");
1591       CGF.Builder.CreateBr(contBB);
1592     }
1593 
1594     // Okay, start emitting the null-receiver block.
1595     CGF.EmitBlock(NullBB);
1596 
1597     // Release any consumed arguments we've got.
1598     if (Method) {
1599       CallArgList::const_iterator I = CallArgs.begin();
1600       for (ObjCMethodDecl::param_const_iterator i = Method->param_begin(),
1601            e = Method->param_end(); i != e; ++i, ++I) {
1602         const ParmVarDecl *ParamDecl = (*i);
1603         if (ParamDecl->hasAttr<NSConsumedAttr>()) {
1604           RValue RV = I->RV;
1605           assert(RV.isScalar() &&
1606                  "NullReturnState::complete - arg not on object");
1607           CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime);
1608         }
1609       }
1610     }
1611 
1612     // The phi code below assumes that we haven't needed any control flow yet.
1613     assert(CGF.Builder.GetInsertBlock() == NullBB);
1614 
1615     // If we've got a void return, just jump to the continuation block.
1616     if (result.isScalar() && resultType->isVoidType()) {
1617       // No jumps required if the message-send was noreturn.
1618       if (contBB) CGF.EmitBlock(contBB);
1619       return result;
1620     }
1621 
1622     // If we've got a scalar return, build a phi.
1623     if (result.isScalar()) {
1624       // Derive the null-initialization value.
1625       llvm::Constant *null = CGF.CGM.EmitNullConstant(resultType);
1626 
1627       // If no join is necessary, just flow out.
1628       if (!contBB) return RValue::get(null);
1629 
1630       // Otherwise, build a phi.
1631       CGF.EmitBlock(contBB);
1632       llvm::PHINode *phi = CGF.Builder.CreatePHI(null->getType(), 2);
1633       phi->addIncoming(result.getScalarVal(), callBB);
1634       phi->addIncoming(null, NullBB);
1635       return RValue::get(phi);
1636     }
1637 
1638     // If we've got an aggregate return, null the buffer out.
1639     // FIXME: maybe we should be doing things differently for all the
1640     // cases where the ABI has us returning (1) non-agg values in
1641     // memory or (2) agg values in registers.
1642     if (result.isAggregate()) {
1643       assert(result.isAggregate() && "null init of non-aggregate result?");
1644       CGF.EmitNullInitialization(result.getAggregateAddress(), resultType);
1645       if (contBB) CGF.EmitBlock(contBB);
1646       return result;
1647     }
1648 
1649     // Complex types.
1650     CGF.EmitBlock(contBB);
1651     CodeGenFunction::ComplexPairTy callResult = result.getComplexVal();
1652 
1653     // Find the scalar type and its zero value.
1654     llvm::Type *scalarTy = callResult.first->getType();
1655     llvm::Constant *scalarZero = llvm::Constant::getNullValue(scalarTy);
1656 
1657     // Build phis for both coordinates.
1658     llvm::PHINode *real = CGF.Builder.CreatePHI(scalarTy, 2);
1659     real->addIncoming(callResult.first, callBB);
1660     real->addIncoming(scalarZero, NullBB);
1661     llvm::PHINode *imag = CGF.Builder.CreatePHI(scalarTy, 2);
1662     imag->addIncoming(callResult.second, callBB);
1663     imag->addIncoming(scalarZero, NullBB);
1664     return RValue::getComplex(real, imag);
1665   }
1666 };
1667 
1668 } // end anonymous namespace
1669 
1670 /* *** Helper Functions *** */
1671 
1672 /// getConstantGEP() - Help routine to construct simple GEPs.
getConstantGEP(llvm::LLVMContext & VMContext,llvm::GlobalVariable * C,unsigned idx0,unsigned idx1)1673 static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext,
1674                                       llvm::GlobalVariable *C, unsigned idx0,
1675                                       unsigned idx1) {
1676   llvm::Value *Idxs[] = {
1677     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0),
1678     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1)
1679   };
1680   return llvm::ConstantExpr::getGetElementPtr(C->getValueType(), C, Idxs);
1681 }
1682 
1683 /// hasObjCExceptionAttribute - Return true if this class or any super
1684 /// class has the __objc_exception__ attribute.
hasObjCExceptionAttribute(ASTContext & Context,const ObjCInterfaceDecl * OID)1685 static bool hasObjCExceptionAttribute(ASTContext &Context,
1686                                       const ObjCInterfaceDecl *OID) {
1687   if (OID->hasAttr<ObjCExceptionAttr>())
1688     return true;
1689   if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
1690     return hasObjCExceptionAttribute(Context, Super);
1691   return false;
1692 }
1693 
1694 /* *** CGObjCMac Public Interface *** */
1695 
CGObjCMac(CodeGen::CodeGenModule & cgm)1696 CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm),
1697                                                     ObjCTypes(cgm) {
1698   ObjCABI = 1;
1699   EmitImageInfo();
1700 }
1701 
1702 /// GetClass - Return a reference to the class for the given interface
1703 /// decl.
GetClass(CodeGenFunction & CGF,const ObjCInterfaceDecl * ID)1704 llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF,
1705                                  const ObjCInterfaceDecl *ID) {
1706   return EmitClassRef(CGF, ID);
1707 }
1708 
1709 /// GetSelector - Return the pointer to the unique'd string for this selector.
GetSelector(CodeGenFunction & CGF,Selector Sel)1710 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) {
1711   return EmitSelector(CGF, Sel);
1712 }
GetAddrOfSelector(CodeGenFunction & CGF,Selector Sel)1713 Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
1714   return EmitSelectorAddr(CGF, Sel);
1715 }
GetSelector(CodeGenFunction & CGF,const ObjCMethodDecl * Method)1716 llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl
1717                                     *Method) {
1718   return EmitSelector(CGF, Method->getSelector());
1719 }
1720 
GetEHType(QualType T)1721 llvm::Constant *CGObjCMac::GetEHType(QualType T) {
1722   if (T->isObjCIdType() ||
1723       T->isObjCQualifiedIdType()) {
1724     return CGM.GetAddrOfRTTIDescriptor(
1725               CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true);
1726   }
1727   if (T->isObjCClassType() ||
1728       T->isObjCQualifiedClassType()) {
1729     return CGM.GetAddrOfRTTIDescriptor(
1730              CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true);
1731   }
1732   if (T->isObjCObjectPointerType())
1733     return CGM.GetAddrOfRTTIDescriptor(T,  /*ForEH=*/true);
1734 
1735   llvm_unreachable("asking for catch type for ObjC type in fragile runtime");
1736 }
1737 
1738 /// Generate a constant CFString object.
1739 /*
1740   struct __builtin_CFString {
1741   const int *isa; // point to __CFConstantStringClassReference
1742   int flags;
1743   const char *str;
1744   long length;
1745   };
1746 */
1747 
1748 /// or Generate a constant NSString object.
1749 /*
1750    struct __builtin_NSString {
1751      const int *isa; // point to __NSConstantStringClassReference
1752      const char *str;
1753      unsigned int length;
1754    };
1755 */
1756 
GenerateConstantString(const StringLiteral * SL)1757 ConstantAddress CGObjCCommonMac::GenerateConstantString(
1758   const StringLiteral *SL) {
1759   return (CGM.getLangOpts().NoConstantCFStrings == 0 ?
1760           CGM.GetAddrOfConstantCFString(SL) :
1761           CGM.GetAddrOfConstantString(SL));
1762 }
1763 
1764 enum {
1765   kCFTaggedObjectID_Integer = (1 << 1) + 1
1766 };
1767 
1768 /// Generates a message send where the super is the receiver.  This is
1769 /// a message send to self with special delivery semantics indicating
1770 /// which class's method should be called.
1771 CodeGen::RValue
GenerateMessageSendSuper(CodeGen::CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,const ObjCInterfaceDecl * Class,bool isCategoryImpl,llvm::Value * Receiver,bool IsClassMessage,const CodeGen::CallArgList & CallArgs,const ObjCMethodDecl * Method)1772 CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1773                                     ReturnValueSlot Return,
1774                                     QualType ResultType,
1775                                     Selector Sel,
1776                                     const ObjCInterfaceDecl *Class,
1777                                     bool isCategoryImpl,
1778                                     llvm::Value *Receiver,
1779                                     bool IsClassMessage,
1780                                     const CodeGen::CallArgList &CallArgs,
1781                                     const ObjCMethodDecl *Method) {
1782   // Create and init a super structure; this is a (receiver, class)
1783   // pair we will pass to objc_msgSendSuper.
1784   Address ObjCSuper =
1785     CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(),
1786                          "objc_super");
1787   llvm::Value *ReceiverAsObject =
1788     CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
1789   CGF.Builder.CreateStore(
1790       ReceiverAsObject,
1791       CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero()));
1792 
1793   // If this is a class message the metaclass is passed as the target.
1794   llvm::Value *Target;
1795   if (IsClassMessage) {
1796     if (isCategoryImpl) {
1797       // Message sent to 'super' in a class method defined in a category
1798       // implementation requires an odd treatment.
1799       // If we are in a class method, we must retrieve the
1800       // _metaclass_ for the current class, pointed at by
1801       // the class's "isa" pointer.  The following assumes that
1802       // isa" is the first ivar in a class (which it must be).
1803       Target = EmitClassRef(CGF, Class->getSuperClass());
1804       Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0);
1805       Target = CGF.Builder.CreateAlignedLoad(Target, CGF.getPointerAlign());
1806     } else {
1807       llvm::Constant *MetaClassPtr = EmitMetaClassRef(Class);
1808       llvm::Value *SuperPtr =
1809           CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1);
1810       llvm::Value *Super =
1811         CGF.Builder.CreateAlignedLoad(SuperPtr, CGF.getPointerAlign());
1812       Target = Super;
1813     }
1814   } else if (isCategoryImpl)
1815     Target = EmitClassRef(CGF, Class->getSuperClass());
1816   else {
1817     llvm::Value *ClassPtr = EmitSuperClassRef(Class);
1818     ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1);
1819     Target = CGF.Builder.CreateAlignedLoad(ClassPtr, CGF.getPointerAlign());
1820   }
1821   // FIXME: We shouldn't need to do this cast, rectify the ASTContext and
1822   // ObjCTypes types.
1823   llvm::Type *ClassTy =
1824     CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType());
1825   Target = CGF.Builder.CreateBitCast(Target, ClassTy);
1826   CGF.Builder.CreateStore(Target,
1827           CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize()));
1828   return EmitMessageSend(CGF, Return, ResultType,
1829                          EmitSelector(CGF, Sel),
1830                          ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
1831                          true, CallArgs, Method, Class, ObjCTypes);
1832 }
1833 
1834 /// Generate code for a message send expression.
GenerateMessageSend(CodeGen::CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,llvm::Value * Receiver,const CallArgList & CallArgs,const ObjCInterfaceDecl * Class,const ObjCMethodDecl * Method)1835 CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1836                                                ReturnValueSlot Return,
1837                                                QualType ResultType,
1838                                                Selector Sel,
1839                                                llvm::Value *Receiver,
1840                                                const CallArgList &CallArgs,
1841                                                const ObjCInterfaceDecl *Class,
1842                                                const ObjCMethodDecl *Method) {
1843   return EmitMessageSend(CGF, Return, ResultType,
1844                          EmitSelector(CGF, Sel),
1845                          Receiver, CGF.getContext().getObjCIdType(),
1846                          false, CallArgs, Method, Class, ObjCTypes);
1847 }
1848 
isWeakLinkedClass(const ObjCInterfaceDecl * ID)1849 static bool isWeakLinkedClass(const ObjCInterfaceDecl *ID) {
1850   do {
1851     if (ID->isWeakImported())
1852       return true;
1853   } while ((ID = ID->getSuperClass()));
1854 
1855   return false;
1856 }
1857 
1858 CodeGen::RValue
EmitMessageSend(CodeGen::CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,llvm::Value * Sel,llvm::Value * Arg0,QualType Arg0Ty,bool IsSuper,const CallArgList & CallArgs,const ObjCMethodDecl * Method,const ObjCInterfaceDecl * ClassReceiver,const ObjCCommonTypesHelper & ObjCTypes)1859 CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF,
1860                                  ReturnValueSlot Return,
1861                                  QualType ResultType,
1862                                  llvm::Value *Sel,
1863                                  llvm::Value *Arg0,
1864                                  QualType Arg0Ty,
1865                                  bool IsSuper,
1866                                  const CallArgList &CallArgs,
1867                                  const ObjCMethodDecl *Method,
1868                                  const ObjCInterfaceDecl *ClassReceiver,
1869                                  const ObjCCommonTypesHelper &ObjCTypes) {
1870   CallArgList ActualArgs;
1871   if (!IsSuper)
1872     Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy);
1873   ActualArgs.add(RValue::get(Arg0), Arg0Ty);
1874   ActualArgs.add(RValue::get(Sel), CGF.getContext().getObjCSelType());
1875   ActualArgs.addFrom(CallArgs);
1876 
1877   // If we're calling a method, use the formal signature.
1878   MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1879 
1880   if (Method)
1881     assert(CGM.getContext().getCanonicalType(Method->getReturnType()) ==
1882                CGM.getContext().getCanonicalType(ResultType) &&
1883            "Result type mismatch!");
1884 
1885   bool ReceiverCanBeNull = true;
1886 
1887   // Super dispatch assumes that self is non-null; even the messenger
1888   // doesn't have a null check internally.
1889   if (IsSuper) {
1890     ReceiverCanBeNull = false;
1891 
1892   // If this is a direct dispatch of a class method, check whether the class,
1893   // or anything in its hierarchy, was weak-linked.
1894   } else if (ClassReceiver && Method && Method->isClassMethod()) {
1895     ReceiverCanBeNull = isWeakLinkedClass(ClassReceiver);
1896 
1897   // If we're emitting a method, and self is const (meaning just ARC, for now),
1898   // and the receiver is a load of self, then self is a valid object.
1899   } else if (auto CurMethod =
1900                dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl)) {
1901     auto Self = CurMethod->getSelfDecl();
1902     if (Self->getType().isConstQualified()) {
1903       if (auto LI = dyn_cast<llvm::LoadInst>(Arg0->stripPointerCasts())) {
1904         llvm::Value *SelfAddr = CGF.GetAddrOfLocalVar(Self).getPointer();
1905         if (SelfAddr == LI->getPointerOperand()) {
1906           ReceiverCanBeNull = false;
1907         }
1908       }
1909     }
1910   }
1911 
1912   NullReturnState nullReturn;
1913 
1914   llvm::Constant *Fn = nullptr;
1915   if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) {
1916     if (ReceiverCanBeNull) nullReturn.init(CGF, Arg0);
1917     Fn = (ObjCABI == 2) ?  ObjCTypes.getSendStretFn2(IsSuper)
1918       : ObjCTypes.getSendStretFn(IsSuper);
1919   } else if (CGM.ReturnTypeUsesFPRet(ResultType)) {
1920     Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper)
1921       : ObjCTypes.getSendFpretFn(IsSuper);
1922   } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) {
1923     Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper)
1924       : ObjCTypes.getSendFp2retFn(IsSuper);
1925   } else {
1926     // arm64 uses objc_msgSend for stret methods and yet null receiver check
1927     // must be made for it.
1928     if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(MSI.CallInfo))
1929       nullReturn.init(CGF, Arg0);
1930     Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper)
1931       : ObjCTypes.getSendFn(IsSuper);
1932   }
1933 
1934   // Emit a null-check if there's a consumed argument other than the receiver.
1935   bool RequiresNullCheck = false;
1936   if (ReceiverCanBeNull && CGM.getLangOpts().ObjCAutoRefCount && Method) {
1937     for (const auto *ParamDecl : Method->params()) {
1938       if (ParamDecl->hasAttr<NSConsumedAttr>()) {
1939         if (!nullReturn.NullBB)
1940           nullReturn.init(CGF, Arg0);
1941         RequiresNullCheck = true;
1942         break;
1943       }
1944     }
1945   }
1946 
1947   llvm::Instruction *CallSite;
1948   Fn = llvm::ConstantExpr::getBitCast(Fn, MSI.MessengerType);
1949   RValue rvalue = CGF.EmitCall(MSI.CallInfo, Fn, Return, ActualArgs,
1950                                CGCalleeInfo(), &CallSite);
1951 
1952   // Mark the call as noreturn if the method is marked noreturn and the
1953   // receiver cannot be null.
1954   if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) {
1955     llvm::CallSite(CallSite).setDoesNotReturn();
1956   }
1957 
1958   return nullReturn.complete(CGF, rvalue, ResultType, CallArgs,
1959                              RequiresNullCheck ? Method : nullptr);
1960 }
1961 
GetGCAttrTypeForType(ASTContext & Ctx,QualType FQT,bool pointee=false)1962 static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT,
1963                                            bool pointee = false) {
1964   // Note that GC qualification applies recursively to C pointer types
1965   // that aren't otherwise decorated.  This is weird, but it's probably
1966   // an intentional workaround to the unreliable placement of GC qualifiers.
1967   if (FQT.isObjCGCStrong())
1968     return Qualifiers::Strong;
1969 
1970   if (FQT.isObjCGCWeak())
1971     return Qualifiers::Weak;
1972 
1973   if (auto ownership = FQT.getObjCLifetime()) {
1974     // Ownership does not apply recursively to C pointer types.
1975     if (pointee) return Qualifiers::GCNone;
1976     switch (ownership) {
1977     case Qualifiers::OCL_Weak: return Qualifiers::Weak;
1978     case Qualifiers::OCL_Strong: return Qualifiers::Strong;
1979     case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone;
1980     case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?");
1981     case Qualifiers::OCL_None: llvm_unreachable("known nonzero");
1982     }
1983     llvm_unreachable("bad objc ownership");
1984   }
1985 
1986   // Treat unqualified retainable pointers as strong.
1987   if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
1988     return Qualifiers::Strong;
1989 
1990   // Walk into C pointer types, but only in GC.
1991   if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) {
1992     if (const PointerType *PT = FQT->getAs<PointerType>())
1993       return GetGCAttrTypeForType(Ctx, PT->getPointeeType(), /*pointee*/ true);
1994   }
1995 
1996   return Qualifiers::GCNone;
1997 }
1998 
1999 namespace {
2000   struct IvarInfo {
2001     CharUnits Offset;
2002     uint64_t SizeInWords;
IvarInfo__anon0ea151f90311::IvarInfo2003     IvarInfo(CharUnits offset, uint64_t sizeInWords)
2004       : Offset(offset), SizeInWords(sizeInWords) {}
2005 
2006     // Allow sorting based on byte pos.
operator <__anon0ea151f90311::IvarInfo2007     bool operator<(const IvarInfo &other) const {
2008       return Offset < other.Offset;
2009     }
2010   };
2011 
2012   /// A helper class for building GC layout strings.
2013   class IvarLayoutBuilder {
2014     CodeGenModule &CGM;
2015 
2016     /// The start of the layout.  Offsets will be relative to this value,
2017     /// and entries less than this value will be silently discarded.
2018     CharUnits InstanceBegin;
2019 
2020     /// The end of the layout.  Offsets will never exceed this value.
2021     CharUnits InstanceEnd;
2022 
2023     /// Whether we're generating the strong layout or the weak layout.
2024     bool ForStrongLayout;
2025 
2026     /// Whether the offsets in IvarsInfo might be out-of-order.
2027     bool IsDisordered = false;
2028 
2029     llvm::SmallVector<IvarInfo, 8> IvarsInfo;
2030   public:
IvarLayoutBuilder(CodeGenModule & CGM,CharUnits instanceBegin,CharUnits instanceEnd,bool forStrongLayout)2031     IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin,
2032                       CharUnits instanceEnd, bool forStrongLayout)
2033       : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd),
2034         ForStrongLayout(forStrongLayout) {
2035     }
2036 
2037     void visitRecord(const RecordType *RT, CharUnits offset);
2038 
2039     template <class Iterator, class GetOffsetFn>
2040     void visitAggregate(Iterator begin, Iterator end,
2041                         CharUnits aggrOffset,
2042                         const GetOffsetFn &getOffset);
2043 
2044     void visitField(const FieldDecl *field, CharUnits offset);
2045 
2046     /// Add the layout of a block implementation.
2047     void visitBlock(const CGBlockInfo &blockInfo);
2048 
2049     /// Is there any information for an interesting bitmap?
hasBitmapData() const2050     bool hasBitmapData() const { return !IvarsInfo.empty(); }
2051 
2052     llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC,
2053                                 llvm::SmallVectorImpl<unsigned char> &buffer);
2054 
dump(ArrayRef<unsigned char> buffer)2055     static void dump(ArrayRef<unsigned char> buffer) {
2056       const unsigned char *s = buffer.data();
2057       for (unsigned i = 0, e = buffer.size(); i < e; i++)
2058         if (!(s[i] & 0xf0))
2059           printf("0x0%x%s", s[i], s[i] != 0 ? ", " : "");
2060         else
2061           printf("0x%x%s",  s[i], s[i] != 0 ? ", " : "");
2062       printf("\n");
2063     }
2064   };
2065 }
2066 
BuildGCBlockLayout(CodeGenModule & CGM,const CGBlockInfo & blockInfo)2067 llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM,
2068                                                 const CGBlockInfo &blockInfo) {
2069 
2070   llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2071   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
2072     return nullPtr;
2073 
2074   IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize,
2075                             /*for strong layout*/ true);
2076 
2077   builder.visitBlock(blockInfo);
2078 
2079   if (!builder.hasBitmapData())
2080     return nullPtr;
2081 
2082   llvm::SmallVector<unsigned char, 32> buffer;
2083   llvm::Constant *C = builder.buildBitmap(*this, buffer);
2084   if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) {
2085     printf("\n block variable layout for block: ");
2086     builder.dump(buffer);
2087   }
2088 
2089   return C;
2090 }
2091 
visitBlock(const CGBlockInfo & blockInfo)2092 void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) {
2093   // __isa is the first field in block descriptor and must assume by runtime's
2094   // convention that it is GC'able.
2095   IvarsInfo.push_back(IvarInfo(CharUnits::Zero(), 1));
2096 
2097   const BlockDecl *blockDecl = blockInfo.getBlockDecl();
2098 
2099   // Ignore the optional 'this' capture: C++ objects are not assumed
2100   // to be GC'ed.
2101 
2102   CharUnits lastFieldOffset;
2103 
2104   // Walk the captured variables.
2105   for (const auto &CI : blockDecl->captures()) {
2106     const VarDecl *variable = CI.getVariable();
2107     QualType type = variable->getType();
2108 
2109     const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
2110 
2111     // Ignore constant captures.
2112     if (capture.isConstant()) continue;
2113 
2114     CharUnits fieldOffset = capture.getOffset();
2115 
2116     // Block fields are not necessarily ordered; if we detect that we're
2117     // adding them out-of-order, make sure we sort later.
2118     if (fieldOffset < lastFieldOffset)
2119       IsDisordered = true;
2120     lastFieldOffset = fieldOffset;
2121 
2122     // __block variables are passed by their descriptor address.
2123     if (CI.isByRef()) {
2124       IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1));
2125       continue;
2126     }
2127 
2128     assert(!type->isArrayType() && "array variable should not be caught");
2129     if (const RecordType *record = type->getAs<RecordType>()) {
2130       visitRecord(record, fieldOffset);
2131       continue;
2132     }
2133 
2134     Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), type);
2135 
2136     if (GCAttr == Qualifiers::Strong) {
2137       assert(CGM.getContext().getTypeSize(type)
2138                 == CGM.getTarget().getPointerWidth(0));
2139       IvarsInfo.push_back(IvarInfo(fieldOffset, /*size in words*/ 1));
2140     }
2141   }
2142 }
2143 
2144 
2145 /// getBlockCaptureLifetime - This routine returns life time of the captured
2146 /// block variable for the purpose of block layout meta-data generation. FQT is
2147 /// the type of the variable captured in the block.
getBlockCaptureLifetime(QualType FQT,bool ByrefLayout)2148 Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT,
2149                                                                   bool ByrefLayout) {
2150   // If it has an ownership qualifier, we're done.
2151   if (auto lifetime = FQT.getObjCLifetime())
2152     return lifetime;
2153 
2154   // If it doesn't, and this is ARC, it has no ownership.
2155   if (CGM.getLangOpts().ObjCAutoRefCount)
2156     return Qualifiers::OCL_None;
2157 
2158   // In MRC, retainable pointers are owned by non-__block variables.
2159   if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
2160     return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong;
2161 
2162   return Qualifiers::OCL_None;
2163 }
2164 
UpdateRunSkipBlockVars(bool IsByref,Qualifiers::ObjCLifetime LifeTime,CharUnits FieldOffset,CharUnits FieldSize)2165 void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref,
2166                                              Qualifiers::ObjCLifetime LifeTime,
2167                                              CharUnits FieldOffset,
2168                                              CharUnits FieldSize) {
2169   // __block variables are passed by their descriptor address.
2170   if (IsByref)
2171     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset,
2172                                         FieldSize));
2173   else if (LifeTime == Qualifiers::OCL_Strong)
2174     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset,
2175                                         FieldSize));
2176   else if (LifeTime == Qualifiers::OCL_Weak)
2177     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset,
2178                                         FieldSize));
2179   else if (LifeTime == Qualifiers::OCL_ExplicitNone)
2180     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset,
2181                                         FieldSize));
2182   else
2183     RunSkipBlockVars.push_back(RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES,
2184                                         FieldOffset,
2185                                         FieldSize));
2186 }
2187 
BuildRCRecordLayout(const llvm::StructLayout * RecLayout,const RecordDecl * RD,ArrayRef<const FieldDecl * > RecFields,CharUnits BytePos,bool & HasUnion,bool ByrefLayout)2188 void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout,
2189                                           const RecordDecl *RD,
2190                                           ArrayRef<const FieldDecl*> RecFields,
2191                                           CharUnits BytePos, bool &HasUnion,
2192                                           bool ByrefLayout) {
2193   bool IsUnion = (RD && RD->isUnion());
2194   CharUnits MaxUnionSize = CharUnits::Zero();
2195   const FieldDecl *MaxField = nullptr;
2196   const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr;
2197   CharUnits MaxFieldOffset = CharUnits::Zero();
2198   CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero();
2199 
2200   if (RecFields.empty())
2201     return;
2202   unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2203 
2204   for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2205     const FieldDecl *Field = RecFields[i];
2206     // Note that 'i' here is actually the field index inside RD of Field,
2207     // although this dependency is hidden.
2208     const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
2209     CharUnits FieldOffset =
2210       CGM.getContext().toCharUnitsFromBits(RL.getFieldOffset(i));
2211 
2212     // Skip over unnamed or bitfields
2213     if (!Field->getIdentifier() || Field->isBitField()) {
2214       LastFieldBitfieldOrUnnamed = Field;
2215       LastBitfieldOrUnnamedOffset = FieldOffset;
2216       continue;
2217     }
2218 
2219     LastFieldBitfieldOrUnnamed = nullptr;
2220     QualType FQT = Field->getType();
2221     if (FQT->isRecordType() || FQT->isUnionType()) {
2222       if (FQT->isUnionType())
2223         HasUnion = true;
2224 
2225       BuildRCBlockVarRecordLayout(FQT->getAs<RecordType>(),
2226                                   BytePos + FieldOffset, HasUnion);
2227       continue;
2228     }
2229 
2230     if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
2231       const ConstantArrayType *CArray =
2232         dyn_cast_or_null<ConstantArrayType>(Array);
2233       uint64_t ElCount = CArray->getSize().getZExtValue();
2234       assert(CArray && "only array with known element size is supported");
2235       FQT = CArray->getElementType();
2236       while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
2237         const ConstantArrayType *CArray =
2238           dyn_cast_or_null<ConstantArrayType>(Array);
2239         ElCount *= CArray->getSize().getZExtValue();
2240         FQT = CArray->getElementType();
2241       }
2242       if (FQT->isRecordType() && ElCount) {
2243         int OldIndex = RunSkipBlockVars.size() - 1;
2244         const RecordType *RT = FQT->getAs<RecordType>();
2245         BuildRCBlockVarRecordLayout(RT, BytePos + FieldOffset,
2246                                     HasUnion);
2247 
2248         // Replicate layout information for each array element. Note that
2249         // one element is already done.
2250         uint64_t ElIx = 1;
2251         for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) {
2252           CharUnits Size = CGM.getContext().getTypeSizeInChars(RT);
2253           for (int i = OldIndex+1; i <= FirstIndex; ++i)
2254             RunSkipBlockVars.push_back(
2255               RUN_SKIP(RunSkipBlockVars[i].opcode,
2256               RunSkipBlockVars[i].block_var_bytepos + Size*ElIx,
2257               RunSkipBlockVars[i].block_var_size));
2258         }
2259         continue;
2260       }
2261     }
2262     CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType());
2263     if (IsUnion) {
2264       CharUnits UnionIvarSize = FieldSize;
2265       if (UnionIvarSize > MaxUnionSize) {
2266         MaxUnionSize = UnionIvarSize;
2267         MaxField = Field;
2268         MaxFieldOffset = FieldOffset;
2269       }
2270     } else {
2271       UpdateRunSkipBlockVars(false,
2272                              getBlockCaptureLifetime(FQT, ByrefLayout),
2273                              BytePos + FieldOffset,
2274                              FieldSize);
2275     }
2276   }
2277 
2278   if (LastFieldBitfieldOrUnnamed) {
2279     if (LastFieldBitfieldOrUnnamed->isBitField()) {
2280       // Last field was a bitfield. Must update the info.
2281       uint64_t BitFieldSize
2282         = LastFieldBitfieldOrUnnamed->getBitWidthValue(CGM.getContext());
2283       unsigned UnsSize = (BitFieldSize / ByteSizeInBits) +
2284                         ((BitFieldSize % ByteSizeInBits) != 0);
2285       CharUnits Size = CharUnits::fromQuantity(UnsSize);
2286       Size += LastBitfieldOrUnnamedOffset;
2287       UpdateRunSkipBlockVars(false,
2288                              getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(),
2289                                                      ByrefLayout),
2290                              BytePos + LastBitfieldOrUnnamedOffset,
2291                              Size);
2292     } else {
2293       assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed");
2294       // Last field was unnamed. Must update skip info.
2295       CharUnits FieldSize
2296         = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType());
2297       UpdateRunSkipBlockVars(false,
2298                              getBlockCaptureLifetime(LastFieldBitfieldOrUnnamed->getType(),
2299                                                      ByrefLayout),
2300                              BytePos + LastBitfieldOrUnnamedOffset,
2301                              FieldSize);
2302     }
2303   }
2304 
2305   if (MaxField)
2306     UpdateRunSkipBlockVars(false,
2307                            getBlockCaptureLifetime(MaxField->getType(), ByrefLayout),
2308                            BytePos + MaxFieldOffset,
2309                            MaxUnionSize);
2310 }
2311 
BuildRCBlockVarRecordLayout(const RecordType * RT,CharUnits BytePos,bool & HasUnion,bool ByrefLayout)2312 void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT,
2313                                                   CharUnits BytePos,
2314                                                   bool &HasUnion,
2315                                                   bool ByrefLayout) {
2316   const RecordDecl *RD = RT->getDecl();
2317   SmallVector<const FieldDecl*, 16> Fields(RD->fields());
2318   llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0));
2319   const llvm::StructLayout *RecLayout =
2320     CGM.getDataLayout().getStructLayout(cast<llvm::StructType>(Ty));
2321 
2322   BuildRCRecordLayout(RecLayout, RD, Fields, BytePos, HasUnion, ByrefLayout);
2323 }
2324 
2325 /// InlineLayoutInstruction - This routine produce an inline instruction for the
2326 /// block variable layout if it can. If not, it returns 0. Rules are as follow:
2327 /// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world,
2328 /// an inline layout of value 0x0000000000000xyz is interpreted as follows:
2329 /// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by
2330 /// y captured object of BLOCK_LAYOUT_BYREF. Followed by
2331 /// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero
2332 /// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no
2333 /// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured.
InlineLayoutInstruction(SmallVectorImpl<unsigned char> & Layout)2334 uint64_t CGObjCCommonMac::InlineLayoutInstruction(
2335                                     SmallVectorImpl<unsigned char> &Layout) {
2336   uint64_t Result = 0;
2337   if (Layout.size() <= 3) {
2338     unsigned size = Layout.size();
2339     unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0;
2340     unsigned char inst;
2341     enum BLOCK_LAYOUT_OPCODE opcode ;
2342     switch (size) {
2343       case 3:
2344         inst = Layout[0];
2345         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2346         if (opcode == BLOCK_LAYOUT_STRONG)
2347           strong_word_count = (inst & 0xF)+1;
2348         else
2349           return 0;
2350         inst = Layout[1];
2351         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2352         if (opcode == BLOCK_LAYOUT_BYREF)
2353           byref_word_count = (inst & 0xF)+1;
2354         else
2355           return 0;
2356         inst = Layout[2];
2357         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2358         if (opcode == BLOCK_LAYOUT_WEAK)
2359           weak_word_count = (inst & 0xF)+1;
2360         else
2361           return 0;
2362         break;
2363 
2364       case 2:
2365         inst = Layout[0];
2366         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2367         if (opcode == BLOCK_LAYOUT_STRONG) {
2368           strong_word_count = (inst & 0xF)+1;
2369           inst = Layout[1];
2370           opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2371           if (opcode == BLOCK_LAYOUT_BYREF)
2372             byref_word_count = (inst & 0xF)+1;
2373           else if (opcode == BLOCK_LAYOUT_WEAK)
2374             weak_word_count = (inst & 0xF)+1;
2375           else
2376             return 0;
2377         }
2378         else if (opcode == BLOCK_LAYOUT_BYREF) {
2379           byref_word_count = (inst & 0xF)+1;
2380           inst = Layout[1];
2381           opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2382           if (opcode == BLOCK_LAYOUT_WEAK)
2383             weak_word_count = (inst & 0xF)+1;
2384           else
2385             return 0;
2386         }
2387         else
2388           return 0;
2389         break;
2390 
2391       case 1:
2392         inst = Layout[0];
2393         opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2394         if (opcode == BLOCK_LAYOUT_STRONG)
2395           strong_word_count = (inst & 0xF)+1;
2396         else if (opcode == BLOCK_LAYOUT_BYREF)
2397           byref_word_count = (inst & 0xF)+1;
2398         else if (opcode == BLOCK_LAYOUT_WEAK)
2399           weak_word_count = (inst & 0xF)+1;
2400         else
2401           return 0;
2402         break;
2403 
2404       default:
2405         return 0;
2406     }
2407 
2408     // Cannot inline when any of the word counts is 15. Because this is one less
2409     // than the actual work count (so 15 means 16 actual word counts),
2410     // and we can only display 0 thru 15 word counts.
2411     if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16)
2412       return 0;
2413 
2414     unsigned count =
2415       (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0);
2416 
2417     if (size == count) {
2418       if (strong_word_count)
2419         Result = strong_word_count;
2420       Result <<= 4;
2421       if (byref_word_count)
2422         Result += byref_word_count;
2423       Result <<= 4;
2424       if (weak_word_count)
2425         Result += weak_word_count;
2426     }
2427   }
2428   return Result;
2429 }
2430 
getBitmapBlockLayout(bool ComputeByrefLayout)2431 llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) {
2432   llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2433   if (RunSkipBlockVars.empty())
2434     return nullPtr;
2435   unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0);
2436   unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2437   unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits;
2438 
2439   // Sort on byte position; captures might not be allocated in order,
2440   // and unions can do funny things.
2441   llvm::array_pod_sort(RunSkipBlockVars.begin(), RunSkipBlockVars.end());
2442   SmallVector<unsigned char, 16> Layout;
2443 
2444   unsigned size = RunSkipBlockVars.size();
2445   for (unsigned i = 0; i < size; i++) {
2446     enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode;
2447     CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos;
2448     CharUnits end_byte_pos = start_byte_pos;
2449     unsigned j = i+1;
2450     while (j < size) {
2451       if (opcode == RunSkipBlockVars[j].opcode) {
2452         end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos;
2453         i++;
2454       }
2455       else
2456         break;
2457     }
2458     CharUnits size_in_bytes =
2459     end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size;
2460     if (j < size) {
2461       CharUnits gap =
2462       RunSkipBlockVars[j].block_var_bytepos -
2463       RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size;
2464       size_in_bytes += gap;
2465     }
2466     CharUnits residue_in_bytes = CharUnits::Zero();
2467     if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) {
2468       residue_in_bytes = size_in_bytes % WordSizeInBytes;
2469       size_in_bytes -= residue_in_bytes;
2470       opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS;
2471     }
2472 
2473     unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes;
2474     while (size_in_words >= 16) {
2475       // Note that value in imm. is one less that the actual
2476       // value. So, 0xf means 16 words follow!
2477       unsigned char inst = (opcode << 4) | 0xf;
2478       Layout.push_back(inst);
2479       size_in_words -= 16;
2480     }
2481     if (size_in_words > 0) {
2482       // Note that value in imm. is one less that the actual
2483       // value. So, we subtract 1 away!
2484       unsigned char inst = (opcode << 4) | (size_in_words-1);
2485       Layout.push_back(inst);
2486     }
2487     if (residue_in_bytes > CharUnits::Zero()) {
2488       unsigned char inst =
2489       (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1);
2490       Layout.push_back(inst);
2491     }
2492   }
2493 
2494   while (!Layout.empty()) {
2495     unsigned char inst = Layout.back();
2496     enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2497     if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS)
2498       Layout.pop_back();
2499     else
2500       break;
2501   }
2502 
2503   uint64_t Result = InlineLayoutInstruction(Layout);
2504   if (Result != 0) {
2505     // Block variable layout instruction has been inlined.
2506     if (CGM.getLangOpts().ObjCGCBitmapPrint) {
2507       if (ComputeByrefLayout)
2508         printf("\n Inline BYREF variable layout: ");
2509       else
2510         printf("\n Inline block variable layout: ");
2511       printf("0x0%" PRIx64 "", Result);
2512       if (auto numStrong = (Result & 0xF00) >> 8)
2513         printf(", BL_STRONG:%d", (int) numStrong);
2514       if (auto numByref = (Result & 0x0F0) >> 4)
2515         printf(", BL_BYREF:%d", (int) numByref);
2516       if (auto numWeak = (Result & 0x00F) >> 0)
2517         printf(", BL_WEAK:%d", (int) numWeak);
2518       printf(", BL_OPERATOR:0\n");
2519     }
2520     return llvm::ConstantInt::get(CGM.IntPtrTy, Result);
2521   }
2522 
2523   unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0;
2524   Layout.push_back(inst);
2525   std::string BitMap;
2526   for (unsigned i = 0, e = Layout.size(); i != e; i++)
2527     BitMap += Layout[i];
2528 
2529   if (CGM.getLangOpts().ObjCGCBitmapPrint) {
2530     if (ComputeByrefLayout)
2531       printf("\n Byref variable layout: ");
2532     else
2533       printf("\n Block variable layout: ");
2534     for (unsigned i = 0, e = BitMap.size(); i != e; i++) {
2535       unsigned char inst = BitMap[i];
2536       enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2537       unsigned delta = 1;
2538       switch (opcode) {
2539         case BLOCK_LAYOUT_OPERATOR:
2540           printf("BL_OPERATOR:");
2541           delta = 0;
2542           break;
2543         case BLOCK_LAYOUT_NON_OBJECT_BYTES:
2544           printf("BL_NON_OBJECT_BYTES:");
2545           break;
2546         case BLOCK_LAYOUT_NON_OBJECT_WORDS:
2547           printf("BL_NON_OBJECT_WORD:");
2548           break;
2549         case BLOCK_LAYOUT_STRONG:
2550           printf("BL_STRONG:");
2551           break;
2552         case BLOCK_LAYOUT_BYREF:
2553           printf("BL_BYREF:");
2554           break;
2555         case BLOCK_LAYOUT_WEAK:
2556           printf("BL_WEAK:");
2557           break;
2558         case BLOCK_LAYOUT_UNRETAINED:
2559           printf("BL_UNRETAINED:");
2560           break;
2561       }
2562       // Actual value of word count is one more that what is in the imm.
2563       // field of the instruction
2564       printf("%d", (inst & 0xf) + delta);
2565       if (i < e-1)
2566         printf(", ");
2567       else
2568         printf("\n");
2569     }
2570   }
2571 
2572   llvm::GlobalVariable *Entry = CreateMetadataVar(
2573       "OBJC_CLASS_NAME_",
2574       llvm::ConstantDataArray::getString(VMContext, BitMap, false),
2575       "__TEXT,__objc_classname,cstring_literals", CharUnits::One(), true);
2576   return getConstantGEP(VMContext, Entry, 0, 0);
2577 }
2578 
BuildRCBlockLayout(CodeGenModule & CGM,const CGBlockInfo & blockInfo)2579 llvm::Constant *CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM,
2580                                                     const CGBlockInfo &blockInfo) {
2581   assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
2582 
2583   RunSkipBlockVars.clear();
2584   bool hasUnion = false;
2585 
2586   unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(0);
2587   unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2588   unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits;
2589 
2590   const BlockDecl *blockDecl = blockInfo.getBlockDecl();
2591 
2592   // Calculate the basic layout of the block structure.
2593   const llvm::StructLayout *layout =
2594   CGM.getDataLayout().getStructLayout(blockInfo.StructureType);
2595 
2596   // Ignore the optional 'this' capture: C++ objects are not assumed
2597   // to be GC'ed.
2598   if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero())
2599     UpdateRunSkipBlockVars(false, Qualifiers::OCL_None,
2600                            blockInfo.BlockHeaderForcedGapOffset,
2601                            blockInfo.BlockHeaderForcedGapSize);
2602   // Walk the captured variables.
2603   for (const auto &CI : blockDecl->captures()) {
2604     const VarDecl *variable = CI.getVariable();
2605     QualType type = variable->getType();
2606 
2607     const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
2608 
2609     // Ignore constant captures.
2610     if (capture.isConstant()) continue;
2611 
2612     CharUnits fieldOffset =
2613        CharUnits::fromQuantity(layout->getElementOffset(capture.getIndex()));
2614 
2615     assert(!type->isArrayType() && "array variable should not be caught");
2616     if (!CI.isByRef())
2617       if (const RecordType *record = type->getAs<RecordType>()) {
2618         BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion);
2619         continue;
2620       }
2621     CharUnits fieldSize;
2622     if (CI.isByRef())
2623       fieldSize = CharUnits::fromQuantity(WordSizeInBytes);
2624     else
2625       fieldSize = CGM.getContext().getTypeSizeInChars(type);
2626     UpdateRunSkipBlockVars(CI.isByRef(), getBlockCaptureLifetime(type, false),
2627                            fieldOffset, fieldSize);
2628   }
2629   return getBitmapBlockLayout(false);
2630 }
2631 
2632 
BuildByrefLayout(CodeGen::CodeGenModule & CGM,QualType T)2633 llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM,
2634                                                   QualType T) {
2635   assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
2636   assert(!T->isArrayType() && "__block array variable should not be caught");
2637   CharUnits fieldOffset;
2638   RunSkipBlockVars.clear();
2639   bool hasUnion = false;
2640   if (const RecordType *record = T->getAs<RecordType>()) {
2641     BuildRCBlockVarRecordLayout(record, fieldOffset, hasUnion, true /*ByrefLayout */);
2642     llvm::Constant *Result = getBitmapBlockLayout(true);
2643     if (isa<llvm::ConstantInt>(Result))
2644       Result = llvm::ConstantExpr::getIntToPtr(Result, CGM.Int8PtrTy);
2645     return Result;
2646   }
2647   llvm::Constant *nullPtr = llvm::Constant::getNullValue(CGM.Int8PtrTy);
2648   return nullPtr;
2649 }
2650 
GenerateProtocolRef(CodeGenFunction & CGF,const ObjCProtocolDecl * PD)2651 llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF,
2652                                             const ObjCProtocolDecl *PD) {
2653   // FIXME: I don't understand why gcc generates this, or where it is
2654   // resolved. Investigate. Its also wasteful to look this up over and over.
2655   LazySymbols.insert(&CGM.getContext().Idents.get("Protocol"));
2656 
2657   return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD),
2658                                         ObjCTypes.getExternalProtocolPtrTy());
2659 }
2660 
GenerateProtocol(const ObjCProtocolDecl * PD)2661 void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) {
2662   // FIXME: We shouldn't need this, the protocol decl should contain enough
2663   // information to tell us whether this was a declaration or a definition.
2664   DefinedProtocols.insert(PD->getIdentifier());
2665 
2666   // If we have generated a forward reference to this protocol, emit
2667   // it now. Otherwise do nothing, the protocol objects are lazily
2668   // emitted.
2669   if (Protocols.count(PD->getIdentifier()))
2670     GetOrEmitProtocol(PD);
2671 }
2672 
GetProtocolRef(const ObjCProtocolDecl * PD)2673 llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) {
2674   if (DefinedProtocols.count(PD->getIdentifier()))
2675     return GetOrEmitProtocol(PD);
2676 
2677   return GetOrEmitProtocolRef(PD);
2678 }
2679 
2680 /*
2681 // Objective-C 1.0 extensions
2682 struct _objc_protocol {
2683 struct _objc_protocol_extension *isa;
2684 char *protocol_name;
2685 struct _objc_protocol_list *protocol_list;
2686 struct _objc__method_prototype_list *instance_methods;
2687 struct _objc__method_prototype_list *class_methods
2688 };
2689 
2690 See EmitProtocolExtension().
2691 */
GetOrEmitProtocol(const ObjCProtocolDecl * PD)2692 llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) {
2693   llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()];
2694 
2695   // Early exit if a defining object has already been generated.
2696   if (Entry && Entry->hasInitializer())
2697     return Entry;
2698 
2699   // Use the protocol definition, if there is one.
2700   if (const ObjCProtocolDecl *Def = PD->getDefinition())
2701     PD = Def;
2702 
2703   // FIXME: I don't understand why gcc generates this, or where it is
2704   // resolved. Investigate. Its also wasteful to look this up over and over.
2705   LazySymbols.insert(&CGM.getContext().Idents.get("Protocol"));
2706 
2707   // Construct method lists.
2708   std::vector<llvm::Constant*> InstanceMethods, ClassMethods;
2709   std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods;
2710   std::vector<llvm::Constant*> MethodTypesExt, OptMethodTypesExt;
2711   for (const auto *MD : PD->instance_methods()) {
2712     llvm::Constant *C = GetMethodDescriptionConstant(MD);
2713     if (!C)
2714       return GetOrEmitProtocolRef(PD);
2715 
2716     if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
2717       OptInstanceMethods.push_back(C);
2718       OptMethodTypesExt.push_back(GetMethodVarType(MD, true));
2719     } else {
2720       InstanceMethods.push_back(C);
2721       MethodTypesExt.push_back(GetMethodVarType(MD, true));
2722     }
2723   }
2724 
2725   for (const auto *MD : PD->class_methods()) {
2726     llvm::Constant *C = GetMethodDescriptionConstant(MD);
2727     if (!C)
2728       return GetOrEmitProtocolRef(PD);
2729 
2730     if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
2731       OptClassMethods.push_back(C);
2732       OptMethodTypesExt.push_back(GetMethodVarType(MD, true));
2733     } else {
2734       ClassMethods.push_back(C);
2735       MethodTypesExt.push_back(GetMethodVarType(MD, true));
2736     }
2737   }
2738 
2739   MethodTypesExt.insert(MethodTypesExt.end(),
2740                         OptMethodTypesExt.begin(), OptMethodTypesExt.end());
2741 
2742   llvm::Constant *Values[] = {
2743       EmitProtocolExtension(PD, OptInstanceMethods, OptClassMethods,
2744                             MethodTypesExt),
2745       GetClassName(PD->getObjCRuntimeNameAsString()),
2746       EmitProtocolList("OBJC_PROTOCOL_REFS_" + PD->getName(),
2747                        PD->protocol_begin(), PD->protocol_end()),
2748       EmitMethodDescList("OBJC_PROTOCOL_INSTANCE_METHODS_" + PD->getName(),
2749                          "__OBJC,__cat_inst_meth,regular,no_dead_strip",
2750                          InstanceMethods),
2751       EmitMethodDescList("OBJC_PROTOCOL_CLASS_METHODS_" + PD->getName(),
2752                          "__OBJC,__cat_cls_meth,regular,no_dead_strip",
2753                          ClassMethods)};
2754   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolTy,
2755                                                    Values);
2756 
2757   if (Entry) {
2758     // Already created, update the initializer.
2759     assert(Entry->hasPrivateLinkage());
2760     Entry->setInitializer(Init);
2761   } else {
2762     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy,
2763                                      false, llvm::GlobalValue::PrivateLinkage,
2764                                      Init, "OBJC_PROTOCOL_" + PD->getName());
2765     Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
2766     // FIXME: Is this necessary? Why only for protocol?
2767     Entry->setAlignment(4);
2768 
2769     Protocols[PD->getIdentifier()] = Entry;
2770   }
2771   CGM.addCompilerUsedGlobal(Entry);
2772 
2773   return Entry;
2774 }
2775 
GetOrEmitProtocolRef(const ObjCProtocolDecl * PD)2776 llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) {
2777   llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
2778 
2779   if (!Entry) {
2780     // We use the initializer as a marker of whether this is a forward
2781     // reference or not. At module finalization we add the empty
2782     // contents for protocols which were referenced but never defined.
2783     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy,
2784                                      false, llvm::GlobalValue::PrivateLinkage,
2785                                      nullptr, "OBJC_PROTOCOL_" + PD->getName());
2786     Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
2787     // FIXME: Is this necessary? Why only for protocol?
2788     Entry->setAlignment(4);
2789   }
2790 
2791   return Entry;
2792 }
2793 
2794 /*
2795   struct _objc_protocol_extension {
2796   uint32_t size;
2797   struct objc_method_description_list *optional_instance_methods;
2798   struct objc_method_description_list *optional_class_methods;
2799   struct objc_property_list *instance_properties;
2800   const char ** extendedMethodTypes;
2801   };
2802 */
2803 llvm::Constant *
EmitProtocolExtension(const ObjCProtocolDecl * PD,ArrayRef<llvm::Constant * > OptInstanceMethods,ArrayRef<llvm::Constant * > OptClassMethods,ArrayRef<llvm::Constant * > MethodTypesExt)2804 CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD,
2805                                  ArrayRef<llvm::Constant*> OptInstanceMethods,
2806                                  ArrayRef<llvm::Constant*> OptClassMethods,
2807                                  ArrayRef<llvm::Constant*> MethodTypesExt) {
2808   uint64_t Size =
2809     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy);
2810   llvm::Constant *Values[] = {
2811       llvm::ConstantInt::get(ObjCTypes.IntTy, Size),
2812       EmitMethodDescList("OBJC_PROTOCOL_INSTANCE_METHODS_OPT_" + PD->getName(),
2813                          "__OBJC,__cat_inst_meth,regular,no_dead_strip",
2814                          OptInstanceMethods),
2815       EmitMethodDescList("OBJC_PROTOCOL_CLASS_METHODS_OPT_" + PD->getName(),
2816                          "__OBJC,__cat_cls_meth,regular,no_dead_strip",
2817                          OptClassMethods),
2818       EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD,
2819                        ObjCTypes),
2820       EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(),
2821                               MethodTypesExt, ObjCTypes)};
2822 
2823   // Return null if no extension bits are used.
2824   if (Values[1]->isNullValue() && Values[2]->isNullValue() &&
2825       Values[3]->isNullValue() && Values[4]->isNullValue())
2826     return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy);
2827 
2828   llvm::Constant *Init =
2829     llvm::ConstantStruct::get(ObjCTypes.ProtocolExtensionTy, Values);
2830 
2831   // No special section, but goes in llvm.used
2832   return CreateMetadataVar("\01l_OBJC_PROTOCOLEXT_" + PD->getName(), Init,
2833                            StringRef(), CGM.getPointerAlign(), true);
2834 }
2835 
2836 /*
2837   struct objc_protocol_list {
2838     struct objc_protocol_list *next;
2839     long count;
2840     Protocol *list[];
2841   };
2842 */
2843 llvm::Constant *
EmitProtocolList(Twine Name,ObjCProtocolDecl::protocol_iterator begin,ObjCProtocolDecl::protocol_iterator end)2844 CGObjCMac::EmitProtocolList(Twine Name,
2845                             ObjCProtocolDecl::protocol_iterator begin,
2846                             ObjCProtocolDecl::protocol_iterator end) {
2847   SmallVector<llvm::Constant *, 16> ProtocolRefs;
2848 
2849   for (; begin != end; ++begin)
2850     ProtocolRefs.push_back(GetProtocolRef(*begin));
2851 
2852   // Just return null for empty protocol lists
2853   if (ProtocolRefs.empty())
2854     return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
2855 
2856   // This list is null terminated.
2857   ProtocolRefs.push_back(llvm::Constant::getNullValue(ObjCTypes.ProtocolPtrTy));
2858 
2859   llvm::Constant *Values[3];
2860   // This field is only used by the runtime.
2861   Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
2862   Values[1] = llvm::ConstantInt::get(ObjCTypes.LongTy,
2863                                      ProtocolRefs.size() - 1);
2864   Values[2] =
2865     llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolPtrTy,
2866                                                   ProtocolRefs.size()),
2867                              ProtocolRefs);
2868 
2869   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
2870   llvm::GlobalVariable *GV =
2871     CreateMetadataVar(Name, Init, "__OBJC,__cat_cls_meth,regular,no_dead_strip",
2872                       CGM.getPointerAlign(), false);
2873   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy);
2874 }
2875 
2876 void CGObjCCommonMac::
PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo *,16> & PropertySet,SmallVectorImpl<llvm::Constant * > & Properties,const Decl * Container,const ObjCProtocolDecl * Proto,const ObjCCommonTypesHelper & ObjCTypes)2877 PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet,
2878                        SmallVectorImpl<llvm::Constant *> &Properties,
2879                        const Decl *Container,
2880                        const ObjCProtocolDecl *Proto,
2881                        const ObjCCommonTypesHelper &ObjCTypes) {
2882   for (const auto *P : Proto->protocols())
2883     PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes);
2884   for (const auto *PD : Proto->properties()) {
2885     if (!PropertySet.insert(PD->getIdentifier()).second)
2886       continue;
2887     llvm::Constant *Prop[] = {
2888       GetPropertyName(PD->getIdentifier()),
2889       GetPropertyTypeString(PD, Container)
2890     };
2891     Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, Prop));
2892   }
2893 }
2894 
2895 /*
2896   struct _objc_property {
2897     const char * const name;
2898     const char * const attributes;
2899   };
2900 
2901   struct _objc_property_list {
2902     uint32_t entsize; // sizeof (struct _objc_property)
2903     uint32_t prop_count;
2904     struct _objc_property[prop_count];
2905   };
2906 */
EmitPropertyList(Twine Name,const Decl * Container,const ObjCContainerDecl * OCD,const ObjCCommonTypesHelper & ObjCTypes)2907 llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name,
2908                                        const Decl *Container,
2909                                        const ObjCContainerDecl *OCD,
2910                                        const ObjCCommonTypesHelper &ObjCTypes) {
2911   SmallVector<llvm::Constant *, 16> Properties;
2912   llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
2913 
2914   auto AddProperty = [&](const ObjCPropertyDecl *PD) {
2915     llvm::Constant *Prop[] = {GetPropertyName(PD->getIdentifier()),
2916                               GetPropertyTypeString(PD, Container)};
2917     Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy, Prop));
2918   };
2919   if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
2920     for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
2921       for (auto *PD : ClassExt->properties()) {
2922         PropertySet.insert(PD->getIdentifier());
2923         AddProperty(PD);
2924       }
2925   for (const auto *PD : OCD->properties()) {
2926     // Don't emit duplicate metadata for properties that were already in a
2927     // class extension.
2928     if (!PropertySet.insert(PD->getIdentifier()).second)
2929       continue;
2930     AddProperty(PD);
2931   }
2932 
2933   if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD)) {
2934     for (const auto *P : OID->all_referenced_protocols())
2935       PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes);
2936   }
2937   else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD)) {
2938     for (const auto *P : CD->protocols())
2939       PushProtocolProperties(PropertySet, Properties, Container, P, ObjCTypes);
2940   }
2941 
2942   // Return null for empty list.
2943   if (Properties.empty())
2944     return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
2945 
2946   unsigned PropertySize =
2947     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.PropertyTy);
2948   llvm::Constant *Values[3];
2949   Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, PropertySize);
2950   Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Properties.size());
2951   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.PropertyTy,
2952                                              Properties.size());
2953   Values[2] = llvm::ConstantArray::get(AT, Properties);
2954   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
2955 
2956   llvm::GlobalVariable *GV =
2957     CreateMetadataVar(Name, Init,
2958                       (ObjCABI == 2) ? "__DATA, __objc_const" :
2959                       "__OBJC,__property,regular,no_dead_strip",
2960                       CGM.getPointerAlign(),
2961                       true);
2962   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy);
2963 }
2964 
2965 llvm::Constant *
EmitProtocolMethodTypes(Twine Name,ArrayRef<llvm::Constant * > MethodTypes,const ObjCCommonTypesHelper & ObjCTypes)2966 CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name,
2967                                          ArrayRef<llvm::Constant*> MethodTypes,
2968                                          const ObjCCommonTypesHelper &ObjCTypes) {
2969   // Return null for empty list.
2970   if (MethodTypes.empty())
2971     return llvm::Constant::getNullValue(ObjCTypes.Int8PtrPtrTy);
2972 
2973   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
2974                                              MethodTypes.size());
2975   llvm::Constant *Init = llvm::ConstantArray::get(AT, MethodTypes);
2976 
2977   llvm::GlobalVariable *GV = CreateMetadataVar(
2978       Name, Init, (ObjCABI == 2) ? "__DATA, __objc_const" : StringRef(),
2979       CGM.getPointerAlign(), true);
2980   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.Int8PtrPtrTy);
2981 }
2982 
2983 /*
2984   struct objc_method_description_list {
2985   int count;
2986   struct objc_method_description list[];
2987   };
2988 */
2989 llvm::Constant *
GetMethodDescriptionConstant(const ObjCMethodDecl * MD)2990 CGObjCMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) {
2991   llvm::Constant *Desc[] = {
2992     llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
2993                                    ObjCTypes.SelectorPtrTy),
2994     GetMethodVarType(MD)
2995   };
2996   if (!Desc[1])
2997     return nullptr;
2998 
2999   return llvm::ConstantStruct::get(ObjCTypes.MethodDescriptionTy,
3000                                    Desc);
3001 }
3002 
3003 llvm::Constant *
EmitMethodDescList(Twine Name,const char * Section,ArrayRef<llvm::Constant * > Methods)3004 CGObjCMac::EmitMethodDescList(Twine Name, const char *Section,
3005                               ArrayRef<llvm::Constant*> Methods) {
3006   // Return null for empty list.
3007   if (Methods.empty())
3008     return llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy);
3009 
3010   llvm::Constant *Values[2];
3011   Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size());
3012   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodDescriptionTy,
3013                                              Methods.size());
3014   Values[1] = llvm::ConstantArray::get(AT, Methods);
3015   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
3016 
3017   llvm::GlobalVariable *GV =
3018     CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true);
3019   return llvm::ConstantExpr::getBitCast(GV,
3020                                         ObjCTypes.MethodDescriptionListPtrTy);
3021 }
3022 
3023 /*
3024   struct _objc_category {
3025   char *category_name;
3026   char *class_name;
3027   struct _objc_method_list *instance_methods;
3028   struct _objc_method_list *class_methods;
3029   struct _objc_protocol_list *protocols;
3030   uint32_t size; // <rdar://4585769>
3031   struct _objc_property_list *instance_properties;
3032   };
3033 */
GenerateCategory(const ObjCCategoryImplDecl * OCD)3034 void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3035   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy);
3036 
3037   // FIXME: This is poor design, the OCD should have a pointer to the category
3038   // decl. Additionally, note that Category can be null for the @implementation
3039   // w/o an @interface case. Sema should just create one for us as it does for
3040   // @implementation so everyone else can live life under a clear blue sky.
3041   const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
3042   const ObjCCategoryDecl *Category =
3043     Interface->FindCategoryDeclaration(OCD->getIdentifier());
3044 
3045   SmallString<256> ExtName;
3046   llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_'
3047                                      << OCD->getName();
3048 
3049   SmallVector<llvm::Constant *, 16> InstanceMethods, ClassMethods;
3050   for (const auto *I : OCD->instance_methods())
3051     // Instance methods should always be defined.
3052     InstanceMethods.push_back(GetMethodConstant(I));
3053 
3054   for (const auto *I : OCD->class_methods())
3055     // Class methods should always be defined.
3056     ClassMethods.push_back(GetMethodConstant(I));
3057 
3058   llvm::Constant *Values[7];
3059   Values[0] = GetClassName(OCD->getName());
3060   Values[1] = GetClassName(Interface->getObjCRuntimeNameAsString());
3061   LazySymbols.insert(Interface->getIdentifier());
3062   Values[2] = EmitMethodList("OBJC_CATEGORY_INSTANCE_METHODS_" + ExtName.str(),
3063                              "__OBJC,__cat_inst_meth,regular,no_dead_strip",
3064                              InstanceMethods);
3065   Values[3] = EmitMethodList("OBJC_CATEGORY_CLASS_METHODS_" + ExtName.str(),
3066                              "__OBJC,__cat_cls_meth,regular,no_dead_strip",
3067                              ClassMethods);
3068   if (Category) {
3069     Values[4] =
3070         EmitProtocolList("OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(),
3071                          Category->protocol_begin(), Category->protocol_end());
3072   } else {
3073     Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
3074   }
3075   Values[5] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
3076 
3077   // If there is no category @interface then there can be no properties.
3078   if (Category) {
3079     Values[6] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(),
3080                                  OCD, Category, ObjCTypes);
3081   } else {
3082     Values[6] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
3083   }
3084 
3085   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.CategoryTy,
3086                                                    Values);
3087 
3088   llvm::GlobalVariable *GV =
3089       CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Init,
3090                         "__OBJC,__category,regular,no_dead_strip",
3091                         CGM.getPointerAlign(), true);
3092   DefinedCategories.push_back(GV);
3093   DefinedCategoryNames.insert(ExtName.str());
3094   // method definition entries must be clear for next implementation.
3095   MethodDefinitions.clear();
3096 }
3097 
3098 enum FragileClassFlags {
3099   /// Apparently: is not a meta-class.
3100   FragileABI_Class_Factory                 = 0x00001,
3101 
3102   /// Is a meta-class.
3103   FragileABI_Class_Meta                    = 0x00002,
3104 
3105   /// Has a non-trivial constructor or destructor.
3106   FragileABI_Class_HasCXXStructors         = 0x02000,
3107 
3108   /// Has hidden visibility.
3109   FragileABI_Class_Hidden                  = 0x20000,
3110 
3111   /// Class implementation was compiled under ARC.
3112   FragileABI_Class_CompiledByARC           = 0x04000000,
3113 
3114   /// Class implementation was compiled under MRC and has MRC weak ivars.
3115   /// Exclusive with CompiledByARC.
3116   FragileABI_Class_HasMRCWeakIvars         = 0x08000000,
3117 };
3118 
3119 enum NonFragileClassFlags {
3120   /// Is a meta-class.
3121   NonFragileABI_Class_Meta                 = 0x00001,
3122 
3123   /// Is a root class.
3124   NonFragileABI_Class_Root                 = 0x00002,
3125 
3126   /// Has a non-trivial constructor or destructor.
3127   NonFragileABI_Class_HasCXXStructors      = 0x00004,
3128 
3129   /// Has hidden visibility.
3130   NonFragileABI_Class_Hidden               = 0x00010,
3131 
3132   /// Has the exception attribute.
3133   NonFragileABI_Class_Exception            = 0x00020,
3134 
3135   /// (Obsolete) ARC-specific: this class has a .release_ivars method
3136   NonFragileABI_Class_HasIvarReleaser      = 0x00040,
3137 
3138   /// Class implementation was compiled under ARC.
3139   NonFragileABI_Class_CompiledByARC        = 0x00080,
3140 
3141   /// Class has non-trivial destructors, but zero-initialization is okay.
3142   NonFragileABI_Class_HasCXXDestructorOnly = 0x00100,
3143 
3144   /// Class implementation was compiled under MRC and has MRC weak ivars.
3145   /// Exclusive with CompiledByARC.
3146   NonFragileABI_Class_HasMRCWeakIvars      = 0x00200,
3147 };
3148 
hasWeakMember(QualType type)3149 static bool hasWeakMember(QualType type) {
3150   if (type.getObjCLifetime() == Qualifiers::OCL_Weak) {
3151     return true;
3152   }
3153 
3154   if (auto recType = type->getAs<RecordType>()) {
3155     for (auto field : recType->getDecl()->fields()) {
3156       if (hasWeakMember(field->getType()))
3157         return true;
3158     }
3159   }
3160 
3161   return false;
3162 }
3163 
3164 /// For compatibility, we only want to set the "HasMRCWeakIvars" flag
3165 /// (and actually fill in a layout string) if we really do have any
3166 /// __weak ivars.
hasMRCWeakIvars(CodeGenModule & CGM,const ObjCImplementationDecl * ID)3167 static bool hasMRCWeakIvars(CodeGenModule &CGM,
3168                             const ObjCImplementationDecl *ID) {
3169   if (!CGM.getLangOpts().ObjCWeak) return false;
3170   assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
3171 
3172   for (const ObjCIvarDecl *ivar =
3173          ID->getClassInterface()->all_declared_ivar_begin();
3174        ivar; ivar = ivar->getNextIvar()) {
3175     if (hasWeakMember(ivar->getType()))
3176       return true;
3177   }
3178 
3179   return false;
3180 }
3181 
3182 /*
3183   struct _objc_class {
3184   Class isa;
3185   Class super_class;
3186   const char *name;
3187   long version;
3188   long info;
3189   long instance_size;
3190   struct _objc_ivar_list *ivars;
3191   struct _objc_method_list *methods;
3192   struct _objc_cache *cache;
3193   struct _objc_protocol_list *protocols;
3194   // Objective-C 1.0 extensions (<rdr://4585769>)
3195   const char *ivar_layout;
3196   struct _objc_class_ext *ext;
3197   };
3198 
3199   See EmitClassExtension();
3200 */
GenerateClass(const ObjCImplementationDecl * ID)3201 void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) {
3202   DefinedSymbols.insert(ID->getIdentifier());
3203 
3204   std::string ClassName = ID->getNameAsString();
3205   // FIXME: Gross
3206   ObjCInterfaceDecl *Interface =
3207     const_cast<ObjCInterfaceDecl*>(ID->getClassInterface());
3208   llvm::Constant *Protocols =
3209       EmitProtocolList("OBJC_CLASS_PROTOCOLS_" + ID->getName(),
3210                        Interface->all_referenced_protocol_begin(),
3211                        Interface->all_referenced_protocol_end());
3212   unsigned Flags = FragileABI_Class_Factory;
3213   if (ID->hasNonZeroConstructors() || ID->hasDestructors())
3214     Flags |= FragileABI_Class_HasCXXStructors;
3215 
3216   bool hasMRCWeak = false;
3217 
3218   if (CGM.getLangOpts().ObjCAutoRefCount)
3219     Flags |= FragileABI_Class_CompiledByARC;
3220   else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID)))
3221     Flags |= FragileABI_Class_HasMRCWeakIvars;
3222 
3223   CharUnits Size =
3224     CGM.getContext().getASTObjCImplementationLayout(ID).getSize();
3225 
3226   // FIXME: Set CXX-structors flag.
3227   if (ID->getClassInterface()->getVisibility() == HiddenVisibility)
3228     Flags |= FragileABI_Class_Hidden;
3229 
3230   SmallVector<llvm::Constant *, 16> InstanceMethods, ClassMethods;
3231   for (const auto *I : ID->instance_methods())
3232     // Instance methods should always be defined.
3233     InstanceMethods.push_back(GetMethodConstant(I));
3234 
3235   for (const auto *I : ID->class_methods())
3236     // Class methods should always be defined.
3237     ClassMethods.push_back(GetMethodConstant(I));
3238 
3239   for (const auto *PID : ID->property_impls()) {
3240     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3241       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3242 
3243       if (ObjCMethodDecl *MD = PD->getGetterMethodDecl())
3244         if (llvm::Constant *C = GetMethodConstant(MD))
3245           InstanceMethods.push_back(C);
3246       if (ObjCMethodDecl *MD = PD->getSetterMethodDecl())
3247         if (llvm::Constant *C = GetMethodConstant(MD))
3248           InstanceMethods.push_back(C);
3249     }
3250   }
3251 
3252   llvm::Constant *Values[12];
3253   Values[ 0] = EmitMetaClass(ID, Protocols, ClassMethods);
3254   if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) {
3255     // Record a reference to the super class.
3256     LazySymbols.insert(Super->getIdentifier());
3257 
3258     Values[ 1] =
3259       llvm::ConstantExpr::getBitCast(GetClassName(Super->getObjCRuntimeNameAsString()),
3260                                      ObjCTypes.ClassPtrTy);
3261   } else {
3262     Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy);
3263   }
3264   Values[ 2] = GetClassName(ID->getObjCRuntimeNameAsString());
3265   // Version is always 0.
3266   Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0);
3267   Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags);
3268   Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size.getQuantity());
3269   Values[ 6] = EmitIvarList(ID, false);
3270   Values[7] = EmitMethodList("OBJC_INSTANCE_METHODS_" + ID->getName(),
3271                              "__OBJC,__inst_meth,regular,no_dead_strip",
3272                              InstanceMethods);
3273   // cache is always NULL.
3274   Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy);
3275   Values[ 9] = Protocols;
3276   Values[10] = BuildStrongIvarLayout(ID, CharUnits::Zero(), Size);
3277   Values[11] = EmitClassExtension(ID, Size, hasMRCWeak);
3278   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy,
3279                                                    Values);
3280   std::string Name("OBJC_CLASS_");
3281   Name += ClassName;
3282   const char *Section = "__OBJC,__class,regular,no_dead_strip";
3283   // Check for a forward reference.
3284   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3285   if (GV) {
3286     assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3287            "Forward metaclass reference has incorrect type.");
3288     GV->setInitializer(Init);
3289     GV->setSection(Section);
3290     GV->setAlignment(CGM.getPointerAlign().getQuantity());
3291     CGM.addCompilerUsedGlobal(GV);
3292   } else
3293     GV = CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true);
3294   DefinedClasses.push_back(GV);
3295   ImplementedClasses.push_back(Interface);
3296   // method definition entries must be clear for next implementation.
3297   MethodDefinitions.clear();
3298 }
3299 
EmitMetaClass(const ObjCImplementationDecl * ID,llvm::Constant * Protocols,ArrayRef<llvm::Constant * > Methods)3300 llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID,
3301                                          llvm::Constant *Protocols,
3302                                          ArrayRef<llvm::Constant*> Methods) {
3303   unsigned Flags = FragileABI_Class_Meta;
3304   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy);
3305 
3306   if (ID->getClassInterface()->getVisibility() == HiddenVisibility)
3307     Flags |= FragileABI_Class_Hidden;
3308 
3309   llvm::Constant *Values[12];
3310   // The isa for the metaclass is the root of the hierarchy.
3311   const ObjCInterfaceDecl *Root = ID->getClassInterface();
3312   while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
3313     Root = Super;
3314   Values[ 0] =
3315     llvm::ConstantExpr::getBitCast(GetClassName(Root->getObjCRuntimeNameAsString()),
3316                                    ObjCTypes.ClassPtrTy);
3317   // The super class for the metaclass is emitted as the name of the
3318   // super class. The runtime fixes this up to point to the
3319   // *metaclass* for the super class.
3320   if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) {
3321     Values[ 1] =
3322       llvm::ConstantExpr::getBitCast(GetClassName(Super->getObjCRuntimeNameAsString()),
3323                                      ObjCTypes.ClassPtrTy);
3324   } else {
3325     Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy);
3326   }
3327   Values[ 2] = GetClassName(ID->getObjCRuntimeNameAsString());
3328   // Version is always 0.
3329   Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0);
3330   Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags);
3331   Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size);
3332   Values[ 6] = EmitIvarList(ID, true);
3333   Values[7] =
3334       EmitMethodList("OBJC_CLASS_METHODS_" + ID->getNameAsString(),
3335                      "__OBJC,__cls_meth,regular,no_dead_strip", Methods);
3336   // cache is always NULL.
3337   Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy);
3338   Values[ 9] = Protocols;
3339   // ivar_layout for metaclass is always NULL.
3340   Values[10] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
3341   // The class extension is always unused for metaclasses.
3342   Values[11] = llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy);
3343   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy,
3344                                                    Values);
3345 
3346   std::string Name("OBJC_METACLASS_");
3347   Name += ID->getName();
3348 
3349   // Check for a forward reference.
3350   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3351   if (GV) {
3352     assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3353            "Forward metaclass reference has incorrect type.");
3354     GV->setInitializer(Init);
3355   } else {
3356     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3357                                   llvm::GlobalValue::PrivateLinkage,
3358                                   Init, Name);
3359   }
3360   GV->setSection("__OBJC,__meta_class,regular,no_dead_strip");
3361   GV->setAlignment(4);
3362   CGM.addCompilerUsedGlobal(GV);
3363 
3364   return GV;
3365 }
3366 
EmitMetaClassRef(const ObjCInterfaceDecl * ID)3367 llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) {
3368   std::string Name = "OBJC_METACLASS_" + ID->getNameAsString();
3369 
3370   // FIXME: Should we look these up somewhere other than the module. Its a bit
3371   // silly since we only generate these while processing an implementation, so
3372   // exactly one pointer would work if know when we entered/exitted an
3373   // implementation block.
3374 
3375   // Check for an existing forward reference.
3376   // Previously, metaclass with internal linkage may have been defined.
3377   // pass 'true' as 2nd argument so it is returned.
3378   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3379   if (!GV)
3380     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3381                                   llvm::GlobalValue::PrivateLinkage, nullptr,
3382                                   Name);
3383 
3384   assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3385          "Forward metaclass reference has incorrect type.");
3386   return GV;
3387 }
3388 
EmitSuperClassRef(const ObjCInterfaceDecl * ID)3389 llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) {
3390   std::string Name = "OBJC_CLASS_" + ID->getNameAsString();
3391   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
3392 
3393   if (!GV)
3394     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3395                                   llvm::GlobalValue::PrivateLinkage, nullptr,
3396                                   Name);
3397 
3398   assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
3399          "Forward class metadata reference has incorrect type.");
3400   return GV;
3401 }
3402 
3403 /*
3404   Emit a "class extension", which in this specific context means extra
3405   data that doesn't fit in the normal fragile-ABI class structure, and
3406   has nothing to do with the language concept of a class extension.
3407 
3408   struct objc_class_ext {
3409   uint32_t size;
3410   const char *weak_ivar_layout;
3411   struct _objc_property_list *properties;
3412   };
3413 */
3414 llvm::Constant *
EmitClassExtension(const ObjCImplementationDecl * ID,CharUnits InstanceSize,bool hasMRCWeakIvars)3415 CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID,
3416                               CharUnits InstanceSize, bool hasMRCWeakIvars) {
3417   uint64_t Size =
3418     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy);
3419 
3420   llvm::Constant *Values[3];
3421   Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
3422   Values[1] = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize,
3423                                   hasMRCWeakIvars);
3424   Values[2] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ID->getName(),
3425                                ID, ID->getClassInterface(), ObjCTypes);
3426 
3427   // Return null if no extension bits are used.
3428   if (Values[1]->isNullValue() && Values[2]->isNullValue())
3429     return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy);
3430 
3431   llvm::Constant *Init =
3432     llvm::ConstantStruct::get(ObjCTypes.ClassExtensionTy, Values);
3433   return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), Init,
3434                            "__OBJC,__class_ext,regular,no_dead_strip",
3435                            CGM.getPointerAlign(), true);
3436 }
3437 
3438 /*
3439   struct objc_ivar {
3440     char *ivar_name;
3441     char *ivar_type;
3442     int ivar_offset;
3443   };
3444 
3445   struct objc_ivar_list {
3446     int ivar_count;
3447     struct objc_ivar list[count];
3448   };
3449 */
EmitIvarList(const ObjCImplementationDecl * ID,bool ForClass)3450 llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID,
3451                                         bool ForClass) {
3452   std::vector<llvm::Constant*> Ivars;
3453 
3454   // When emitting the root class GCC emits ivar entries for the
3455   // actual class structure. It is not clear if we need to follow this
3456   // behavior; for now lets try and get away with not doing it. If so,
3457   // the cleanest solution would be to make up an ObjCInterfaceDecl
3458   // for the class.
3459   if (ForClass)
3460     return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
3461 
3462   const ObjCInterfaceDecl *OID = ID->getClassInterface();
3463 
3464   for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin();
3465        IVD; IVD = IVD->getNextIvar()) {
3466     // Ignore unnamed bit-fields.
3467     if (!IVD->getDeclName())
3468       continue;
3469     llvm::Constant *Ivar[] = {
3470       GetMethodVarName(IVD->getIdentifier()),
3471       GetMethodVarType(IVD),
3472       llvm::ConstantInt::get(ObjCTypes.IntTy,
3473                              ComputeIvarBaseOffset(CGM, OID, IVD))
3474     };
3475     Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarTy, Ivar));
3476   }
3477 
3478   // Return null for empty list.
3479   if (Ivars.empty())
3480     return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
3481 
3482   llvm::Constant *Values[2];
3483   Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size());
3484   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarTy,
3485                                              Ivars.size());
3486   Values[1] = llvm::ConstantArray::get(AT, Ivars);
3487   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
3488 
3489   llvm::GlobalVariable *GV;
3490   if (ForClass)
3491     GV =
3492         CreateMetadataVar("OBJC_CLASS_VARIABLES_" + ID->getName(), Init,
3493                           "__OBJC,__class_vars,regular,no_dead_strip",
3494                           CGM.getPointerAlign(), true);
3495   else
3496     GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), Init,
3497                            "__OBJC,__instance_vars,regular,no_dead_strip",
3498                            CGM.getPointerAlign(), true);
3499   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy);
3500 }
3501 
3502 /*
3503   struct objc_method {
3504   SEL method_name;
3505   char *method_types;
3506   void *method;
3507   };
3508 
3509   struct objc_method_list {
3510   struct objc_method_list *obsolete;
3511   int count;
3512   struct objc_method methods_list[count];
3513   };
3514 */
3515 
3516 /// GetMethodConstant - Return a struct objc_method constant for the
3517 /// given method if it has been defined. The result is null if the
3518 /// method has not been defined. The return value has type MethodPtrTy.
GetMethodConstant(const ObjCMethodDecl * MD)3519 llvm::Constant *CGObjCMac::GetMethodConstant(const ObjCMethodDecl *MD) {
3520   llvm::Function *Fn = GetMethodDefinition(MD);
3521   if (!Fn)
3522     return nullptr;
3523 
3524   llvm::Constant *Method[] = {
3525     llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
3526                                    ObjCTypes.SelectorPtrTy),
3527     GetMethodVarType(MD),
3528     llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy)
3529   };
3530   return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method);
3531 }
3532 
EmitMethodList(Twine Name,const char * Section,ArrayRef<llvm::Constant * > Methods)3533 llvm::Constant *CGObjCMac::EmitMethodList(Twine Name,
3534                                           const char *Section,
3535                                           ArrayRef<llvm::Constant*> Methods) {
3536   // Return null for empty list.
3537   if (Methods.empty())
3538     return llvm::Constant::getNullValue(ObjCTypes.MethodListPtrTy);
3539 
3540   llvm::Constant *Values[3];
3541   Values[0] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
3542   Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size());
3543   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy,
3544                                              Methods.size());
3545   Values[2] = llvm::ConstantArray::get(AT, Methods);
3546   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
3547 
3548   llvm::GlobalVariable *GV =
3549     CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true);
3550   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListPtrTy);
3551 }
3552 
GenerateMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD)3553 llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD,
3554                                                 const ObjCContainerDecl *CD) {
3555   SmallString<256> Name;
3556   GetNameForMethod(OMD, CD, Name);
3557 
3558   CodeGenTypes &Types = CGM.getTypes();
3559   llvm::FunctionType *MethodTy =
3560     Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
3561   llvm::Function *Method =
3562     llvm::Function::Create(MethodTy,
3563                            llvm::GlobalValue::InternalLinkage,
3564                            Name.str(),
3565                            &CGM.getModule());
3566   MethodDefinitions.insert(std::make_pair(OMD, Method));
3567 
3568   return Method;
3569 }
3570 
CreateMetadataVar(Twine Name,llvm::Constant * Init,StringRef Section,CharUnits Align,bool AddToUsed)3571 llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name,
3572                                                          llvm::Constant *Init,
3573                                                          StringRef Section,
3574                                                          CharUnits Align,
3575                                                          bool AddToUsed) {
3576   llvm::Type *Ty = Init->getType();
3577   llvm::GlobalVariable *GV =
3578     new llvm::GlobalVariable(CGM.getModule(), Ty, false,
3579                              llvm::GlobalValue::PrivateLinkage, Init, Name);
3580   if (!Section.empty())
3581     GV->setSection(Section);
3582   GV->setAlignment(Align.getQuantity());
3583   if (AddToUsed)
3584     CGM.addCompilerUsedGlobal(GV);
3585   return GV;
3586 }
3587 
ModuleInitFunction()3588 llvm::Function *CGObjCMac::ModuleInitFunction() {
3589   // Abuse this interface function as a place to finalize.
3590   FinishModule();
3591   return nullptr;
3592 }
3593 
GetPropertyGetFunction()3594 llvm::Constant *CGObjCMac::GetPropertyGetFunction() {
3595   return ObjCTypes.getGetPropertyFn();
3596 }
3597 
GetPropertySetFunction()3598 llvm::Constant *CGObjCMac::GetPropertySetFunction() {
3599   return ObjCTypes.getSetPropertyFn();
3600 }
3601 
GetOptimizedPropertySetFunction(bool atomic,bool copy)3602 llvm::Constant *CGObjCMac::GetOptimizedPropertySetFunction(bool atomic,
3603                                                            bool copy) {
3604   return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy);
3605 }
3606 
GetGetStructFunction()3607 llvm::Constant *CGObjCMac::GetGetStructFunction() {
3608   return ObjCTypes.getCopyStructFn();
3609 }
GetSetStructFunction()3610 llvm::Constant *CGObjCMac::GetSetStructFunction() {
3611   return ObjCTypes.getCopyStructFn();
3612 }
3613 
GetCppAtomicObjectGetFunction()3614 llvm::Constant *CGObjCMac::GetCppAtomicObjectGetFunction() {
3615   return ObjCTypes.getCppAtomicObjectFunction();
3616 }
GetCppAtomicObjectSetFunction()3617 llvm::Constant *CGObjCMac::GetCppAtomicObjectSetFunction() {
3618   return ObjCTypes.getCppAtomicObjectFunction();
3619 }
3620 
EnumerationMutationFunction()3621 llvm::Constant *CGObjCMac::EnumerationMutationFunction() {
3622   return ObjCTypes.getEnumerationMutationFn();
3623 }
3624 
EmitTryStmt(CodeGenFunction & CGF,const ObjCAtTryStmt & S)3625 void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) {
3626   return EmitTryOrSynchronizedStmt(CGF, S);
3627 }
3628 
EmitSynchronizedStmt(CodeGenFunction & CGF,const ObjCAtSynchronizedStmt & S)3629 void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF,
3630                                      const ObjCAtSynchronizedStmt &S) {
3631   return EmitTryOrSynchronizedStmt(CGF, S);
3632 }
3633 
3634 namespace {
3635   struct PerformFragileFinally final : EHScopeStack::Cleanup {
3636     const Stmt &S;
3637     Address SyncArgSlot;
3638     Address CallTryExitVar;
3639     Address ExceptionData;
3640     ObjCTypesHelper &ObjCTypes;
PerformFragileFinally__anon0ea151f90511::PerformFragileFinally3641     PerformFragileFinally(const Stmt *S,
3642                           Address SyncArgSlot,
3643                           Address CallTryExitVar,
3644                           Address ExceptionData,
3645                           ObjCTypesHelper *ObjCTypes)
3646       : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar),
3647         ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {}
3648 
Emit__anon0ea151f90511::PerformFragileFinally3649     void Emit(CodeGenFunction &CGF, Flags flags) override {
3650       // Check whether we need to call objc_exception_try_exit.
3651       // In optimized code, this branch will always be folded.
3652       llvm::BasicBlock *FinallyCallExit =
3653         CGF.createBasicBlock("finally.call_exit");
3654       llvm::BasicBlock *FinallyNoCallExit =
3655         CGF.createBasicBlock("finally.no_call_exit");
3656       CGF.Builder.CreateCondBr(CGF.Builder.CreateLoad(CallTryExitVar),
3657                                FinallyCallExit, FinallyNoCallExit);
3658 
3659       CGF.EmitBlock(FinallyCallExit);
3660       CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryExitFn(),
3661                                   ExceptionData.getPointer());
3662 
3663       CGF.EmitBlock(FinallyNoCallExit);
3664 
3665       if (isa<ObjCAtTryStmt>(S)) {
3666         if (const ObjCAtFinallyStmt* FinallyStmt =
3667               cast<ObjCAtTryStmt>(S).getFinallyStmt()) {
3668           // Don't try to do the @finally if this is an EH cleanup.
3669           if (flags.isForEHCleanup()) return;
3670 
3671           // Save the current cleanup destination in case there's
3672           // control flow inside the finally statement.
3673           llvm::Value *CurCleanupDest =
3674             CGF.Builder.CreateLoad(CGF.getNormalCleanupDestSlot());
3675 
3676           CGF.EmitStmt(FinallyStmt->getFinallyBody());
3677 
3678           if (CGF.HaveInsertPoint()) {
3679             CGF.Builder.CreateStore(CurCleanupDest,
3680                                     CGF.getNormalCleanupDestSlot());
3681           } else {
3682             // Currently, the end of the cleanup must always exist.
3683             CGF.EnsureInsertPoint();
3684           }
3685         }
3686       } else {
3687         // Emit objc_sync_exit(expr); as finally's sole statement for
3688         // @synchronized.
3689         llvm::Value *SyncArg = CGF.Builder.CreateLoad(SyncArgSlot);
3690         CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg);
3691       }
3692     }
3693   };
3694 
3695   class FragileHazards {
3696     CodeGenFunction &CGF;
3697     SmallVector<llvm::Value*, 20> Locals;
3698     llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry;
3699 
3700     llvm::InlineAsm *ReadHazard;
3701     llvm::InlineAsm *WriteHazard;
3702 
3703     llvm::FunctionType *GetAsmFnType();
3704 
3705     void collectLocals();
3706     void emitReadHazard(CGBuilderTy &Builder);
3707 
3708   public:
3709     FragileHazards(CodeGenFunction &CGF);
3710 
3711     void emitWriteHazard();
3712     void emitHazardsInNewBlocks();
3713   };
3714 }
3715 
3716 /// Create the fragile-ABI read and write hazards based on the current
3717 /// state of the function, which is presumed to be immediately prior
3718 /// to a @try block.  These hazards are used to maintain correct
3719 /// semantics in the face of optimization and the fragile ABI's
3720 /// cavalier use of setjmp/longjmp.
FragileHazards(CodeGenFunction & CGF)3721 FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) {
3722   collectLocals();
3723 
3724   if (Locals.empty()) return;
3725 
3726   // Collect all the blocks in the function.
3727   for (llvm::Function::iterator
3728          I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I)
3729     BlocksBeforeTry.insert(&*I);
3730 
3731   llvm::FunctionType *AsmFnTy = GetAsmFnType();
3732 
3733   // Create a read hazard for the allocas.  This inhibits dead-store
3734   // optimizations and forces the values to memory.  This hazard is
3735   // inserted before any 'throwing' calls in the protected scope to
3736   // reflect the possibility that the variables might be read from the
3737   // catch block if the call throws.
3738   {
3739     std::string Constraint;
3740     for (unsigned I = 0, E = Locals.size(); I != E; ++I) {
3741       if (I) Constraint += ',';
3742       Constraint += "*m";
3743     }
3744 
3745     ReadHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false);
3746   }
3747 
3748   // Create a write hazard for the allocas.  This inhibits folding
3749   // loads across the hazard.  This hazard is inserted at the
3750   // beginning of the catch path to reflect the possibility that the
3751   // variables might have been written within the protected scope.
3752   {
3753     std::string Constraint;
3754     for (unsigned I = 0, E = Locals.size(); I != E; ++I) {
3755       if (I) Constraint += ',';
3756       Constraint += "=*m";
3757     }
3758 
3759     WriteHazard = llvm::InlineAsm::get(AsmFnTy, "", Constraint, true, false);
3760   }
3761 }
3762 
3763 /// Emit a write hazard at the current location.
emitWriteHazard()3764 void FragileHazards::emitWriteHazard() {
3765   if (Locals.empty()) return;
3766 
3767   CGF.EmitNounwindRuntimeCall(WriteHazard, Locals);
3768 }
3769 
emitReadHazard(CGBuilderTy & Builder)3770 void FragileHazards::emitReadHazard(CGBuilderTy &Builder) {
3771   assert(!Locals.empty());
3772   llvm::CallInst *call = Builder.CreateCall(ReadHazard, Locals);
3773   call->setDoesNotThrow();
3774   call->setCallingConv(CGF.getRuntimeCC());
3775 }
3776 
3777 /// Emit read hazards in all the protected blocks, i.e. all the blocks
3778 /// which have been inserted since the beginning of the try.
emitHazardsInNewBlocks()3779 void FragileHazards::emitHazardsInNewBlocks() {
3780   if (Locals.empty()) return;
3781 
3782   CGBuilderTy Builder(CGF, CGF.getLLVMContext());
3783 
3784   // Iterate through all blocks, skipping those prior to the try.
3785   for (llvm::Function::iterator
3786          FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) {
3787     llvm::BasicBlock &BB = *FI;
3788     if (BlocksBeforeTry.count(&BB)) continue;
3789 
3790     // Walk through all the calls in the block.
3791     for (llvm::BasicBlock::iterator
3792            BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) {
3793       llvm::Instruction &I = *BI;
3794 
3795       // Ignore instructions that aren't non-intrinsic calls.
3796       // These are the only calls that can possibly call longjmp.
3797       if (!isa<llvm::CallInst>(I) && !isa<llvm::InvokeInst>(I)) continue;
3798       if (isa<llvm::IntrinsicInst>(I))
3799         continue;
3800 
3801       // Ignore call sites marked nounwind.  This may be questionable,
3802       // since 'nounwind' doesn't necessarily mean 'does not call longjmp'.
3803       llvm::CallSite CS(&I);
3804       if (CS.doesNotThrow()) continue;
3805 
3806       // Insert a read hazard before the call.  This will ensure that
3807       // any writes to the locals are performed before making the
3808       // call.  If the call throws, then this is sufficient to
3809       // guarantee correctness as long as it doesn't also write to any
3810       // locals.
3811       Builder.SetInsertPoint(&BB, BI);
3812       emitReadHazard(Builder);
3813     }
3814   }
3815 }
3816 
addIfPresent(llvm::DenseSet<llvm::Value * > & S,llvm::Value * V)3817 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, llvm::Value *V) {
3818   if (V) S.insert(V);
3819 }
3820 
addIfPresent(llvm::DenseSet<llvm::Value * > & S,Address V)3821 static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) {
3822   if (V.isValid()) S.insert(V.getPointer());
3823 }
3824 
collectLocals()3825 void FragileHazards::collectLocals() {
3826   // Compute a set of allocas to ignore.
3827   llvm::DenseSet<llvm::Value*> AllocasToIgnore;
3828   addIfPresent(AllocasToIgnore, CGF.ReturnValue);
3829   addIfPresent(AllocasToIgnore, CGF.NormalCleanupDest);
3830 
3831   // Collect all the allocas currently in the function.  This is
3832   // probably way too aggressive.
3833   llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock();
3834   for (llvm::BasicBlock::iterator
3835          I = Entry.begin(), E = Entry.end(); I != E; ++I)
3836     if (isa<llvm::AllocaInst>(*I) && !AllocasToIgnore.count(&*I))
3837       Locals.push_back(&*I);
3838 }
3839 
GetAsmFnType()3840 llvm::FunctionType *FragileHazards::GetAsmFnType() {
3841   SmallVector<llvm::Type *, 16> tys(Locals.size());
3842   for (unsigned i = 0, e = Locals.size(); i != e; ++i)
3843     tys[i] = Locals[i]->getType();
3844   return llvm::FunctionType::get(CGF.VoidTy, tys, false);
3845 }
3846 
3847 /*
3848 
3849   Objective-C setjmp-longjmp (sjlj) Exception Handling
3850   --
3851 
3852   A catch buffer is a setjmp buffer plus:
3853     - a pointer to the exception that was caught
3854     - a pointer to the previous exception data buffer
3855     - two pointers of reserved storage
3856   Therefore catch buffers form a stack, with a pointer to the top
3857   of the stack kept in thread-local storage.
3858 
3859   objc_exception_try_enter pushes a catch buffer onto the EH stack.
3860   objc_exception_try_exit pops the given catch buffer, which is
3861     required to be the top of the EH stack.
3862   objc_exception_throw pops the top of the EH stack, writes the
3863     thrown exception into the appropriate field, and longjmps
3864     to the setjmp buffer.  It crashes the process (with a printf
3865     and an abort()) if there are no catch buffers on the stack.
3866   objc_exception_extract just reads the exception pointer out of the
3867     catch buffer.
3868 
3869   There's no reason an implementation couldn't use a light-weight
3870   setjmp here --- something like __builtin_setjmp, but API-compatible
3871   with the heavyweight setjmp.  This will be more important if we ever
3872   want to implement correct ObjC/C++ exception interactions for the
3873   fragile ABI.
3874 
3875   Note that for this use of setjmp/longjmp to be correct, we may need
3876   to mark some local variables volatile: if a non-volatile local
3877   variable is modified between the setjmp and the longjmp, it has
3878   indeterminate value.  For the purposes of LLVM IR, it may be
3879   sufficient to make loads and stores within the @try (to variables
3880   declared outside the @try) volatile.  This is necessary for
3881   optimized correctness, but is not currently being done; this is
3882   being tracked as rdar://problem/8160285
3883 
3884   The basic framework for a @try-catch-finally is as follows:
3885   {
3886   objc_exception_data d;
3887   id _rethrow = null;
3888   bool _call_try_exit = true;
3889 
3890   objc_exception_try_enter(&d);
3891   if (!setjmp(d.jmp_buf)) {
3892   ... try body ...
3893   } else {
3894   // exception path
3895   id _caught = objc_exception_extract(&d);
3896 
3897   // enter new try scope for handlers
3898   if (!setjmp(d.jmp_buf)) {
3899   ... match exception and execute catch blocks ...
3900 
3901   // fell off end, rethrow.
3902   _rethrow = _caught;
3903   ... jump-through-finally to finally_rethrow ...
3904   } else {
3905   // exception in catch block
3906   _rethrow = objc_exception_extract(&d);
3907   _call_try_exit = false;
3908   ... jump-through-finally to finally_rethrow ...
3909   }
3910   }
3911   ... jump-through-finally to finally_end ...
3912 
3913   finally:
3914   if (_call_try_exit)
3915   objc_exception_try_exit(&d);
3916 
3917   ... finally block ....
3918   ... dispatch to finally destination ...
3919 
3920   finally_rethrow:
3921   objc_exception_throw(_rethrow);
3922 
3923   finally_end:
3924   }
3925 
3926   This framework differs slightly from the one gcc uses, in that gcc
3927   uses _rethrow to determine if objc_exception_try_exit should be called
3928   and if the object should be rethrown. This breaks in the face of
3929   throwing nil and introduces unnecessary branches.
3930 
3931   We specialize this framework for a few particular circumstances:
3932 
3933   - If there are no catch blocks, then we avoid emitting the second
3934   exception handling context.
3935 
3936   - If there is a catch-all catch block (i.e. @catch(...) or @catch(id
3937   e)) we avoid emitting the code to rethrow an uncaught exception.
3938 
3939   - FIXME: If there is no @finally block we can do a few more
3940   simplifications.
3941 
3942   Rethrows and Jumps-Through-Finally
3943   --
3944 
3945   '@throw;' is supported by pushing the currently-caught exception
3946   onto ObjCEHStack while the @catch blocks are emitted.
3947 
3948   Branches through the @finally block are handled with an ordinary
3949   normal cleanup.  We do not register an EH cleanup; fragile-ABI ObjC
3950   exceptions are not compatible with C++ exceptions, and this is
3951   hardly the only place where this will go wrong.
3952 
3953   @synchronized(expr) { stmt; } is emitted as if it were:
3954     id synch_value = expr;
3955     objc_sync_enter(synch_value);
3956     @try { stmt; } @finally { objc_sync_exit(synch_value); }
3957 */
3958 
EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction & CGF,const Stmt & S)3959 void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
3960                                           const Stmt &S) {
3961   bool isTry = isa<ObjCAtTryStmt>(S);
3962 
3963   // A destination for the fall-through edges of the catch handlers to
3964   // jump to.
3965   CodeGenFunction::JumpDest FinallyEnd =
3966     CGF.getJumpDestInCurrentScope("finally.end");
3967 
3968   // A destination for the rethrow edge of the catch handlers to jump
3969   // to.
3970   CodeGenFunction::JumpDest FinallyRethrow =
3971     CGF.getJumpDestInCurrentScope("finally.rethrow");
3972 
3973   // For @synchronized, call objc_sync_enter(sync.expr). The
3974   // evaluation of the expression must occur before we enter the
3975   // @synchronized.  We can't avoid a temp here because we need the
3976   // value to be preserved.  If the backend ever does liveness
3977   // correctly after setjmp, this will be unnecessary.
3978   Address SyncArgSlot = Address::invalid();
3979   if (!isTry) {
3980     llvm::Value *SyncArg =
3981       CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr());
3982     SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy);
3983     CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg);
3984 
3985     SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(),
3986                                        CGF.getPointerAlign(), "sync.arg");
3987     CGF.Builder.CreateStore(SyncArg, SyncArgSlot);
3988   }
3989 
3990   // Allocate memory for the setjmp buffer.  This needs to be kept
3991   // live throughout the try and catch blocks.
3992   Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy,
3993                                                CGF.getPointerAlign(),
3994                                                "exceptiondata.ptr");
3995 
3996   // Create the fragile hazards.  Note that this will not capture any
3997   // of the allocas required for exception processing, but will
3998   // capture the current basic block (which extends all the way to the
3999   // setjmp call) as "before the @try".
4000   FragileHazards Hazards(CGF);
4001 
4002   // Create a flag indicating whether the cleanup needs to call
4003   // objc_exception_try_exit.  This is true except when
4004   //   - no catches match and we're branching through the cleanup
4005   //     just to rethrow the exception, or
4006   //   - a catch matched and we're falling out of the catch handler.
4007   // The setjmp-safety rule here is that we should always store to this
4008   // variable in a place that dominates the branch through the cleanup
4009   // without passing through any setjmps.
4010   Address CallTryExitVar = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(),
4011                                                 CharUnits::One(),
4012                                                 "_call_try_exit");
4013 
4014   // A slot containing the exception to rethrow.  Only needed when we
4015   // have both a @catch and a @finally.
4016   Address PropagatingExnVar = Address::invalid();
4017 
4018   // Push a normal cleanup to leave the try scope.
4019   CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S,
4020                                                  SyncArgSlot,
4021                                                  CallTryExitVar,
4022                                                  ExceptionData,
4023                                                  &ObjCTypes);
4024 
4025   // Enter a try block:
4026   //  - Call objc_exception_try_enter to push ExceptionData on top of
4027   //    the EH stack.
4028   CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(),
4029                               ExceptionData.getPointer());
4030 
4031   //  - Call setjmp on the exception data buffer.
4032   llvm::Constant *Zero = llvm::ConstantInt::get(CGF.Builder.getInt32Ty(), 0);
4033   llvm::Value *GEPIndexes[] = { Zero, Zero, Zero };
4034   llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP(
4035       ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes,
4036       "setjmp_buffer");
4037   llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall(
4038       ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result");
4039   SetJmpResult->setCanReturnTwice();
4040 
4041   // If setjmp returned 0, enter the protected block; otherwise,
4042   // branch to the handler.
4043   llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try");
4044   llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler");
4045   llvm::Value *DidCatch =
4046     CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception");
4047   CGF.Builder.CreateCondBr(DidCatch, TryHandler, TryBlock);
4048 
4049   // Emit the protected block.
4050   CGF.EmitBlock(TryBlock);
4051   CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar);
4052   CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody()
4053                      : cast<ObjCAtSynchronizedStmt>(S).getSynchBody());
4054 
4055   CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP();
4056 
4057   // Emit the exception handler block.
4058   CGF.EmitBlock(TryHandler);
4059 
4060   // Don't optimize loads of the in-scope locals across this point.
4061   Hazards.emitWriteHazard();
4062 
4063   // For a @synchronized (or a @try with no catches), just branch
4064   // through the cleanup to the rethrow block.
4065   if (!isTry || !cast<ObjCAtTryStmt>(S).getNumCatchStmts()) {
4066     // Tell the cleanup not to re-pop the exit.
4067     CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar);
4068     CGF.EmitBranchThroughCleanup(FinallyRethrow);
4069 
4070   // Otherwise, we have to match against the caught exceptions.
4071   } else {
4072     // Retrieve the exception object.  We may emit multiple blocks but
4073     // nothing can cross this so the value is already in SSA form.
4074     llvm::CallInst *Caught =
4075       CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4076                                   ExceptionData.getPointer(), "caught");
4077 
4078     // Push the exception to rethrow onto the EH value stack for the
4079     // benefit of any @throws in the handlers.
4080     CGF.ObjCEHValueStack.push_back(Caught);
4081 
4082     const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(&S);
4083 
4084     bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr);
4085 
4086     llvm::BasicBlock *CatchBlock = nullptr;
4087     llvm::BasicBlock *CatchHandler = nullptr;
4088     if (HasFinally) {
4089       // Save the currently-propagating exception before
4090       // objc_exception_try_enter clears the exception slot.
4091       PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(),
4092                                                CGF.getPointerAlign(),
4093                                                "propagating_exception");
4094       CGF.Builder.CreateStore(Caught, PropagatingExnVar);
4095 
4096       // Enter a new exception try block (in case a @catch block
4097       // throws an exception).
4098       CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(),
4099                                   ExceptionData.getPointer());
4100 
4101       llvm::CallInst *SetJmpResult =
4102         CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(),
4103                                     SetJmpBuffer, "setjmp.result");
4104       SetJmpResult->setCanReturnTwice();
4105 
4106       llvm::Value *Threw =
4107         CGF.Builder.CreateIsNotNull(SetJmpResult, "did_catch_exception");
4108 
4109       CatchBlock = CGF.createBasicBlock("catch");
4110       CatchHandler = CGF.createBasicBlock("catch_for_catch");
4111       CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock);
4112 
4113       CGF.EmitBlock(CatchBlock);
4114     }
4115 
4116     CGF.Builder.CreateStore(CGF.Builder.getInt1(HasFinally), CallTryExitVar);
4117 
4118     // Handle catch list. As a special case we check if everything is
4119     // matched and avoid generating code for falling off the end if
4120     // so.
4121     bool AllMatched = false;
4122     for (unsigned I = 0, N = AtTryStmt->getNumCatchStmts(); I != N; ++I) {
4123       const ObjCAtCatchStmt *CatchStmt = AtTryStmt->getCatchStmt(I);
4124 
4125       const VarDecl *CatchParam = CatchStmt->getCatchParamDecl();
4126       const ObjCObjectPointerType *OPT = nullptr;
4127 
4128       // catch(...) always matches.
4129       if (!CatchParam) {
4130         AllMatched = true;
4131       } else {
4132         OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>();
4133 
4134         // catch(id e) always matches under this ABI, since only
4135         // ObjC exceptions end up here in the first place.
4136         // FIXME: For the time being we also match id<X>; this should
4137         // be rejected by Sema instead.
4138         if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType()))
4139           AllMatched = true;
4140       }
4141 
4142       // If this is a catch-all, we don't need to test anything.
4143       if (AllMatched) {
4144         CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF);
4145 
4146         if (CatchParam) {
4147           CGF.EmitAutoVarDecl(*CatchParam);
4148           assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
4149 
4150           // These types work out because ConvertType(id) == i8*.
4151           EmitInitOfCatchParam(CGF, Caught, CatchParam);
4152         }
4153 
4154         CGF.EmitStmt(CatchStmt->getCatchBody());
4155 
4156         // The scope of the catch variable ends right here.
4157         CatchVarCleanups.ForceCleanup();
4158 
4159         CGF.EmitBranchThroughCleanup(FinallyEnd);
4160         break;
4161       }
4162 
4163       assert(OPT && "Unexpected non-object pointer type in @catch");
4164       const ObjCObjectType *ObjTy = OPT->getObjectType();
4165 
4166       // FIXME: @catch (Class c) ?
4167       ObjCInterfaceDecl *IDecl = ObjTy->getInterface();
4168       assert(IDecl && "Catch parameter must have Objective-C type!");
4169 
4170       // Check if the @catch block matches the exception object.
4171       llvm::Value *Class = EmitClassRef(CGF, IDecl);
4172 
4173       llvm::Value *matchArgs[] = { Class, Caught };
4174       llvm::CallInst *Match =
4175         CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(),
4176                                     matchArgs, "match");
4177 
4178       llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match");
4179       llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next");
4180 
4181       CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"),
4182                                MatchedBlock, NextCatchBlock);
4183 
4184       // Emit the @catch block.
4185       CGF.EmitBlock(MatchedBlock);
4186 
4187       // Collect any cleanups for the catch variable.  The scope lasts until
4188       // the end of the catch body.
4189       CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF);
4190 
4191       CGF.EmitAutoVarDecl(*CatchParam);
4192       assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
4193 
4194       // Initialize the catch variable.
4195       llvm::Value *Tmp =
4196         CGF.Builder.CreateBitCast(Caught,
4197                                   CGF.ConvertType(CatchParam->getType()));
4198       EmitInitOfCatchParam(CGF, Tmp, CatchParam);
4199 
4200       CGF.EmitStmt(CatchStmt->getCatchBody());
4201 
4202       // We're done with the catch variable.
4203       CatchVarCleanups.ForceCleanup();
4204 
4205       CGF.EmitBranchThroughCleanup(FinallyEnd);
4206 
4207       CGF.EmitBlock(NextCatchBlock);
4208     }
4209 
4210     CGF.ObjCEHValueStack.pop_back();
4211 
4212     // If nothing wanted anything to do with the caught exception,
4213     // kill the extract call.
4214     if (Caught->use_empty())
4215       Caught->eraseFromParent();
4216 
4217     if (!AllMatched)
4218       CGF.EmitBranchThroughCleanup(FinallyRethrow);
4219 
4220     if (HasFinally) {
4221       // Emit the exception handler for the @catch blocks.
4222       CGF.EmitBlock(CatchHandler);
4223 
4224       // In theory we might now need a write hazard, but actually it's
4225       // unnecessary because there's no local-accessing code between
4226       // the try's write hazard and here.
4227       //Hazards.emitWriteHazard();
4228 
4229       // Extract the new exception and save it to the
4230       // propagating-exception slot.
4231       assert(PropagatingExnVar.isValid());
4232       llvm::CallInst *NewCaught =
4233         CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4234                                     ExceptionData.getPointer(), "caught");
4235       CGF.Builder.CreateStore(NewCaught, PropagatingExnVar);
4236 
4237       // Don't pop the catch handler; the throw already did.
4238       CGF.Builder.CreateStore(CGF.Builder.getFalse(), CallTryExitVar);
4239       CGF.EmitBranchThroughCleanup(FinallyRethrow);
4240     }
4241   }
4242 
4243   // Insert read hazards as required in the new blocks.
4244   Hazards.emitHazardsInNewBlocks();
4245 
4246   // Pop the cleanup.
4247   CGF.Builder.restoreIP(TryFallthroughIP);
4248   if (CGF.HaveInsertPoint())
4249     CGF.Builder.CreateStore(CGF.Builder.getTrue(), CallTryExitVar);
4250   CGF.PopCleanupBlock();
4251   CGF.EmitBlock(FinallyEnd.getBlock(), true);
4252 
4253   // Emit the rethrow block.
4254   CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
4255   CGF.EmitBlock(FinallyRethrow.getBlock(), true);
4256   if (CGF.HaveInsertPoint()) {
4257     // If we have a propagating-exception variable, check it.
4258     llvm::Value *PropagatingExn;
4259     if (PropagatingExnVar.isValid()) {
4260       PropagatingExn = CGF.Builder.CreateLoad(PropagatingExnVar);
4261 
4262     // Otherwise, just look in the buffer for the exception to throw.
4263     } else {
4264       llvm::CallInst *Caught =
4265         CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4266                                     ExceptionData.getPointer());
4267       PropagatingExn = Caught;
4268     }
4269 
4270     CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(),
4271                                 PropagatingExn);
4272     CGF.Builder.CreateUnreachable();
4273   }
4274 
4275   CGF.Builder.restoreIP(SavedIP);
4276 }
4277 
EmitThrowStmt(CodeGen::CodeGenFunction & CGF,const ObjCAtThrowStmt & S,bool ClearInsertionPoint)4278 void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
4279                               const ObjCAtThrowStmt &S,
4280                               bool ClearInsertionPoint) {
4281   llvm::Value *ExceptionAsObject;
4282 
4283   if (const Expr *ThrowExpr = S.getThrowExpr()) {
4284     llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
4285     ExceptionAsObject =
4286       CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy);
4287   } else {
4288     assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
4289            "Unexpected rethrow outside @catch block.");
4290     ExceptionAsObject = CGF.ObjCEHValueStack.back();
4291   }
4292 
4293   CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject)
4294     ->setDoesNotReturn();
4295   CGF.Builder.CreateUnreachable();
4296 
4297   // Clear the insertion point to indicate we are in unreachable code.
4298   if (ClearInsertionPoint)
4299     CGF.Builder.ClearInsertionPoint();
4300 }
4301 
4302 /// EmitObjCWeakRead - Code gen for loading value of a __weak
4303 /// object: objc_read_weak (id *src)
4304 ///
EmitObjCWeakRead(CodeGen::CodeGenFunction & CGF,Address AddrWeakObj)4305 llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
4306                                           Address AddrWeakObj) {
4307   llvm::Type* DestTy = AddrWeakObj.getElementType();
4308   AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj,
4309                                           ObjCTypes.PtrObjectPtrTy);
4310   llvm::Value *read_weak =
4311     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(),
4312                                 AddrWeakObj.getPointer(), "weakread");
4313   read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy);
4314   return read_weak;
4315 }
4316 
4317 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
4318 /// objc_assign_weak (id src, id *dst)
4319 ///
EmitObjCWeakAssign(CodeGen::CodeGenFunction & CGF,llvm::Value * src,Address dst)4320 void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
4321                                    llvm::Value *src, Address dst) {
4322   llvm::Type * SrcTy = src->getType();
4323   if (!isa<llvm::PointerType>(SrcTy)) {
4324     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4325     assert(Size <= 8 && "does not support size > 8");
4326     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
4327       : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
4328     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4329   }
4330   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4331   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4332   llvm::Value *args[] = { src, dst.getPointer() };
4333   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(),
4334                               args, "weakassign");
4335   return;
4336 }
4337 
4338 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
4339 /// objc_assign_global (id src, id *dst)
4340 ///
EmitObjCGlobalAssign(CodeGen::CodeGenFunction & CGF,llvm::Value * src,Address dst,bool threadlocal)4341 void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
4342                                      llvm::Value *src, Address dst,
4343                                      bool threadlocal) {
4344   llvm::Type * SrcTy = src->getType();
4345   if (!isa<llvm::PointerType>(SrcTy)) {
4346     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4347     assert(Size <= 8 && "does not support size > 8");
4348     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
4349       : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
4350     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4351   }
4352   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4353   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4354   llvm::Value *args[] = { src, dst.getPointer() };
4355   if (!threadlocal)
4356     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(),
4357                                 args, "globalassign");
4358   else
4359     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(),
4360                                 args, "threadlocalassign");
4361   return;
4362 }
4363 
4364 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
4365 /// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset)
4366 ///
EmitObjCIvarAssign(CodeGen::CodeGenFunction & CGF,llvm::Value * src,Address dst,llvm::Value * ivarOffset)4367 void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
4368                                    llvm::Value *src, Address dst,
4369                                    llvm::Value *ivarOffset) {
4370   assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL");
4371   llvm::Type * SrcTy = src->getType();
4372   if (!isa<llvm::PointerType>(SrcTy)) {
4373     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4374     assert(Size <= 8 && "does not support size > 8");
4375     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
4376       : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
4377     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4378   }
4379   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4380   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4381   llvm::Value *args[] = { src, dst.getPointer(), ivarOffset };
4382   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args);
4383   return;
4384 }
4385 
4386 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
4387 /// objc_assign_strongCast (id src, id *dst)
4388 ///
EmitObjCStrongCastAssign(CodeGen::CodeGenFunction & CGF,llvm::Value * src,Address dst)4389 void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
4390                                          llvm::Value *src, Address dst) {
4391   llvm::Type * SrcTy = src->getType();
4392   if (!isa<llvm::PointerType>(SrcTy)) {
4393     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4394     assert(Size <= 8 && "does not support size > 8");
4395     src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
4396       : CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
4397     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4398   }
4399   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4400   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
4401   llvm::Value *args[] = { src, dst.getPointer() };
4402   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(),
4403                               args, "strongassign");
4404   return;
4405 }
4406 
EmitGCMemmoveCollectable(CodeGen::CodeGenFunction & CGF,Address DestPtr,Address SrcPtr,llvm::Value * size)4407 void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
4408                                          Address DestPtr,
4409                                          Address SrcPtr,
4410                                          llvm::Value *size) {
4411   SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy);
4412   DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy);
4413   llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size };
4414   CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args);
4415 }
4416 
4417 /// EmitObjCValueForIvar - Code Gen for ivar reference.
4418 ///
EmitObjCValueForIvar(CodeGen::CodeGenFunction & CGF,QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)4419 LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF,
4420                                        QualType ObjectTy,
4421                                        llvm::Value *BaseValue,
4422                                        const ObjCIvarDecl *Ivar,
4423                                        unsigned CVRQualifiers) {
4424   const ObjCInterfaceDecl *ID =
4425     ObjectTy->getAs<ObjCObjectType>()->getInterface();
4426   return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
4427                                   EmitIvarOffset(CGF, ID, Ivar));
4428 }
4429 
EmitIvarOffset(CodeGen::CodeGenFunction & CGF,const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)4430 llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
4431                                        const ObjCInterfaceDecl *Interface,
4432                                        const ObjCIvarDecl *Ivar) {
4433   uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar);
4434   return llvm::ConstantInt::get(
4435     CGM.getTypes().ConvertType(CGM.getContext().LongTy),
4436     Offset);
4437 }
4438 
4439 /* *** Private Interface *** */
4440 
4441 /// EmitImageInfo - Emit the image info marker used to encode some module
4442 /// level information.
4443 ///
4444 /// See: <rdr://4810609&4810587&4810587>
4445 /// struct IMAGE_INFO {
4446 ///   unsigned version;
4447 ///   unsigned flags;
4448 /// };
4449 enum ImageInfoFlags {
4450   eImageInfo_FixAndContinue      = (1 << 0), // This flag is no longer set by clang.
4451   eImageInfo_GarbageCollected    = (1 << 1),
4452   eImageInfo_GCOnly              = (1 << 2),
4453   eImageInfo_OptimizedByDyld     = (1 << 3), // This flag is set by the dyld shared cache.
4454 
4455   // A flag indicating that the module has no instances of a @synthesize of a
4456   // superclass variable. <rdar://problem/6803242>
4457   eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang.
4458   eImageInfo_ImageIsSimulated    = (1 << 5)
4459 };
4460 
EmitImageInfo()4461 void CGObjCCommonMac::EmitImageInfo() {
4462   unsigned version = 0; // Version is unused?
4463   const char *Section = (ObjCABI == 1) ?
4464     "__OBJC, __image_info,regular" :
4465     "__DATA, __objc_imageinfo, regular, no_dead_strip";
4466 
4467   // Generate module-level named metadata to convey this information to the
4468   // linker and code-gen.
4469   llvm::Module &Mod = CGM.getModule();
4470 
4471   // Add the ObjC ABI version to the module flags.
4472   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Version", ObjCABI);
4473   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Version",
4474                     version);
4475   Mod.addModuleFlag(llvm::Module::Error, "Objective-C Image Info Section",
4476                     llvm::MDString::get(VMContext,Section));
4477 
4478   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
4479     // Non-GC overrides those files which specify GC.
4480     Mod.addModuleFlag(llvm::Module::Override,
4481                       "Objective-C Garbage Collection", (uint32_t)0);
4482   } else {
4483     // Add the ObjC garbage collection value.
4484     Mod.addModuleFlag(llvm::Module::Error,
4485                       "Objective-C Garbage Collection",
4486                       eImageInfo_GarbageCollected);
4487 
4488     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
4489       // Add the ObjC GC Only value.
4490       Mod.addModuleFlag(llvm::Module::Error, "Objective-C GC Only",
4491                         eImageInfo_GCOnly);
4492 
4493       // Require that GC be specified and set to eImageInfo_GarbageCollected.
4494       llvm::Metadata *Ops[2] = {
4495           llvm::MDString::get(VMContext, "Objective-C Garbage Collection"),
4496           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
4497               llvm::Type::getInt32Ty(VMContext), eImageInfo_GarbageCollected))};
4498       Mod.addModuleFlag(llvm::Module::Require, "Objective-C GC Only",
4499                         llvm::MDNode::get(VMContext, Ops));
4500     }
4501   }
4502 
4503   // Indicate whether we're compiling this to run on a simulator.
4504   const llvm::Triple &Triple = CGM.getTarget().getTriple();
4505   if ((Triple.isiOS() || Triple.isWatchOS()) &&
4506       (Triple.getArch() == llvm::Triple::x86 ||
4507        Triple.getArch() == llvm::Triple::x86_64))
4508     Mod.addModuleFlag(llvm::Module::Error, "Objective-C Is Simulated",
4509                       eImageInfo_ImageIsSimulated);
4510 }
4511 
4512 // struct objc_module {
4513 //   unsigned long version;
4514 //   unsigned long size;
4515 //   const char *name;
4516 //   Symtab symtab;
4517 // };
4518 
4519 // FIXME: Get from somewhere
4520 static const int ModuleVersion = 7;
4521 
EmitModuleInfo()4522 void CGObjCMac::EmitModuleInfo() {
4523   uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy);
4524 
4525   llvm::Constant *Values[] = {
4526     llvm::ConstantInt::get(ObjCTypes.LongTy, ModuleVersion),
4527     llvm::ConstantInt::get(ObjCTypes.LongTy, Size),
4528     // This used to be the filename, now it is unused. <rdr://4327263>
4529     GetClassName(StringRef("")),
4530     EmitModuleSymbols()
4531   };
4532   CreateMetadataVar("OBJC_MODULES",
4533                     llvm::ConstantStruct::get(ObjCTypes.ModuleTy, Values),
4534                     "__OBJC,__module_info,regular,no_dead_strip",
4535                     CGM.getPointerAlign(), true);
4536 }
4537 
EmitModuleSymbols()4538 llvm::Constant *CGObjCMac::EmitModuleSymbols() {
4539   unsigned NumClasses = DefinedClasses.size();
4540   unsigned NumCategories = DefinedCategories.size();
4541 
4542   // Return null if no symbols were defined.
4543   if (!NumClasses && !NumCategories)
4544     return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy);
4545 
4546   llvm::Constant *Values[5];
4547   Values[0] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0);
4548   Values[1] = llvm::Constant::getNullValue(ObjCTypes.SelectorPtrTy);
4549   Values[2] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumClasses);
4550   Values[3] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumCategories);
4551 
4552   // The runtime expects exactly the list of defined classes followed
4553   // by the list of defined categories, in a single array.
4554   SmallVector<llvm::Constant*, 8> Symbols(NumClasses + NumCategories);
4555   for (unsigned i=0; i<NumClasses; i++) {
4556     const ObjCInterfaceDecl *ID = ImplementedClasses[i];
4557     assert(ID);
4558     if (ObjCImplementationDecl *IMP = ID->getImplementation())
4559       // We are implementing a weak imported interface. Give it external linkage
4560       if (ID->isWeakImported() && !IMP->isWeakImported())
4561         DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
4562 
4563     Symbols[i] = llvm::ConstantExpr::getBitCast(DefinedClasses[i],
4564                                                 ObjCTypes.Int8PtrTy);
4565   }
4566   for (unsigned i=0; i<NumCategories; i++)
4567     Symbols[NumClasses + i] =
4568       llvm::ConstantExpr::getBitCast(DefinedCategories[i],
4569                                      ObjCTypes.Int8PtrTy);
4570 
4571   Values[4] =
4572     llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
4573                                                   Symbols.size()),
4574                              Symbols);
4575 
4576   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
4577 
4578   llvm::GlobalVariable *GV = CreateMetadataVar(
4579       "OBJC_SYMBOLS", Init, "__OBJC,__symbols,regular,no_dead_strip",
4580       CGM.getPointerAlign(), true);
4581   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy);
4582 }
4583 
EmitClassRefFromId(CodeGenFunction & CGF,IdentifierInfo * II)4584 llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF,
4585                                            IdentifierInfo *II) {
4586   LazySymbols.insert(II);
4587 
4588   llvm::GlobalVariable *&Entry = ClassReferences[II];
4589 
4590   if (!Entry) {
4591     llvm::Constant *Casted =
4592     llvm::ConstantExpr::getBitCast(GetClassName(II->getName()),
4593                                    ObjCTypes.ClassPtrTy);
4594     Entry = CreateMetadataVar(
4595         "OBJC_CLASS_REFERENCES_", Casted,
4596         "__OBJC,__cls_refs,literal_pointers,no_dead_strip",
4597         CGM.getPointerAlign(), true);
4598   }
4599 
4600   return CGF.Builder.CreateAlignedLoad(Entry, CGF.getPointerAlign());
4601 }
4602 
EmitClassRef(CodeGenFunction & CGF,const ObjCInterfaceDecl * ID)4603 llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF,
4604                                      const ObjCInterfaceDecl *ID) {
4605   return EmitClassRefFromId(CGF, ID->getIdentifier());
4606 }
4607 
EmitNSAutoreleasePoolClassRef(CodeGenFunction & CGF)4608 llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
4609   IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool");
4610   return EmitClassRefFromId(CGF, II);
4611 }
4612 
EmitSelector(CodeGenFunction & CGF,Selector Sel)4613 llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) {
4614   return CGF.Builder.CreateLoad(EmitSelectorAddr(CGF, Sel));
4615 }
4616 
EmitSelectorAddr(CodeGenFunction & CGF,Selector Sel)4617 Address CGObjCMac::EmitSelectorAddr(CodeGenFunction &CGF, Selector Sel) {
4618   CharUnits Align = CGF.getPointerAlign();
4619 
4620   llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
4621   if (!Entry) {
4622     llvm::Constant *Casted =
4623       llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel),
4624                                      ObjCTypes.SelectorPtrTy);
4625     Entry = CreateMetadataVar(
4626         "OBJC_SELECTOR_REFERENCES_", Casted,
4627         "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true);
4628     Entry->setExternallyInitialized(true);
4629   }
4630 
4631   return Address(Entry, Align);
4632 }
4633 
GetClassName(StringRef RuntimeName)4634 llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) {
4635     llvm::GlobalVariable *&Entry = ClassNames[RuntimeName];
4636     if (!Entry)
4637       Entry = CreateMetadataVar(
4638           "OBJC_CLASS_NAME_",
4639           llvm::ConstantDataArray::getString(VMContext, RuntimeName),
4640           ((ObjCABI == 2) ? "__TEXT,__objc_classname,cstring_literals"
4641                           : "__TEXT,__cstring,cstring_literals"),
4642           CharUnits::One(), true);
4643     return getConstantGEP(VMContext, Entry, 0, 0);
4644 }
4645 
GetMethodDefinition(const ObjCMethodDecl * MD)4646 llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) {
4647   llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*>::iterator
4648       I = MethodDefinitions.find(MD);
4649   if (I != MethodDefinitions.end())
4650     return I->second;
4651 
4652   return nullptr;
4653 }
4654 
4655 /// GetIvarLayoutName - Returns a unique constant for the given
4656 /// ivar layout bitmap.
GetIvarLayoutName(IdentifierInfo * Ident,const ObjCCommonTypesHelper & ObjCTypes)4657 llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident,
4658                                        const ObjCCommonTypesHelper &ObjCTypes) {
4659   return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
4660 }
4661 
visitRecord(const RecordType * RT,CharUnits offset)4662 void IvarLayoutBuilder::visitRecord(const RecordType *RT,
4663                                     CharUnits offset) {
4664   const RecordDecl *RD = RT->getDecl();
4665 
4666   // If this is a union, remember that we had one, because it might mess
4667   // up the ordering of layout entries.
4668   if (RD->isUnion())
4669     IsDisordered = true;
4670 
4671   const ASTRecordLayout *recLayout = nullptr;
4672   visitAggregate(RD->field_begin(), RD->field_end(), offset,
4673                  [&](const FieldDecl *field) -> CharUnits {
4674     if (!recLayout)
4675       recLayout = &CGM.getContext().getASTRecordLayout(RD);
4676     auto offsetInBits = recLayout->getFieldOffset(field->getFieldIndex());
4677     return CGM.getContext().toCharUnitsFromBits(offsetInBits);
4678   });
4679 }
4680 
4681 template <class Iterator, class GetOffsetFn>
visitAggregate(Iterator begin,Iterator end,CharUnits aggregateOffset,const GetOffsetFn & getOffset)4682 void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end,
4683                                        CharUnits aggregateOffset,
4684                                        const GetOffsetFn &getOffset) {
4685   for (; begin != end; ++begin) {
4686     auto field = *begin;
4687 
4688     // Skip over bitfields.
4689     if (field->isBitField()) {
4690       continue;
4691     }
4692 
4693     // Compute the offset of the field within the aggregate.
4694     CharUnits fieldOffset = aggregateOffset + getOffset(field);
4695 
4696     visitField(field, fieldOffset);
4697   }
4698 }
4699 
4700 /// Collect layout information for the given fields into IvarsInfo.
visitField(const FieldDecl * field,CharUnits fieldOffset)4701 void IvarLayoutBuilder::visitField(const FieldDecl *field,
4702                                    CharUnits fieldOffset) {
4703   QualType fieldType = field->getType();
4704 
4705   // Drill down into arrays.
4706   uint64_t numElts = 1;
4707   while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) {
4708     numElts *= arrayType->getSize().getZExtValue();
4709     fieldType = arrayType->getElementType();
4710   }
4711 
4712   assert(!fieldType->isArrayType() && "ivar of non-constant array type?");
4713 
4714   // If we ended up with a zero-sized array, we've done what we can do within
4715   // the limits of this layout encoding.
4716   if (numElts == 0) return;
4717 
4718   // Recurse if the base element type is a record type.
4719   if (auto recType = fieldType->getAs<RecordType>()) {
4720     size_t oldEnd = IvarsInfo.size();
4721 
4722     visitRecord(recType, fieldOffset);
4723 
4724     // If we have an array, replicate the first entry's layout information.
4725     auto numEltEntries = IvarsInfo.size() - oldEnd;
4726     if (numElts != 1 && numEltEntries != 0) {
4727       CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType);
4728       for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) {
4729         // Copy the last numEltEntries onto the end of the array, adjusting
4730         // each for the element size.
4731         for (size_t i = 0; i != numEltEntries; ++i) {
4732           auto firstEntry = IvarsInfo[oldEnd + i];
4733           IvarsInfo.push_back(IvarInfo(firstEntry.Offset + eltIndex * eltSize,
4734                                        firstEntry.SizeInWords));
4735         }
4736       }
4737     }
4738 
4739     return;
4740   }
4741 
4742   // Classify the element type.
4743   Qualifiers::GC GCAttr = GetGCAttrTypeForType(CGM.getContext(), fieldType);
4744 
4745   // If it matches what we're looking for, add an entry.
4746   if ((ForStrongLayout && GCAttr == Qualifiers::Strong)
4747       || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) {
4748     assert(CGM.getContext().getTypeSizeInChars(fieldType)
4749              == CGM.getPointerSize());
4750     IvarsInfo.push_back(IvarInfo(fieldOffset, numElts));
4751   }
4752 }
4753 
4754 /// buildBitmap - This routine does the horsework of taking the offsets of
4755 /// strong/weak references and creating a bitmap.  The bitmap is also
4756 /// returned in the given buffer, suitable for being passed to \c dump().
buildBitmap(CGObjCCommonMac & CGObjC,llvm::SmallVectorImpl<unsigned char> & buffer)4757 llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC,
4758                                 llvm::SmallVectorImpl<unsigned char> &buffer) {
4759   // The bitmap is a series of skip/scan instructions, aligned to word
4760   // boundaries.  The skip is performed first.
4761   const unsigned char MaxNibble = 0xF;
4762   const unsigned char SkipMask = 0xF0, SkipShift = 4;
4763   const unsigned char ScanMask = 0x0F, ScanShift = 0;
4764 
4765   assert(!IvarsInfo.empty() && "generating bitmap for no data");
4766 
4767   // Sort the ivar info on byte position in case we encounterred a
4768   // union nested in the ivar list.
4769   if (IsDisordered) {
4770     // This isn't a stable sort, but our algorithm should handle it fine.
4771     llvm::array_pod_sort(IvarsInfo.begin(), IvarsInfo.end());
4772   } else {
4773 #ifndef NDEBUG
4774     for (unsigned i = 1; i != IvarsInfo.size(); ++i) {
4775       assert(IvarsInfo[i - 1].Offset <= IvarsInfo[i].Offset);
4776     }
4777 #endif
4778   }
4779   assert(IvarsInfo.back().Offset < InstanceEnd);
4780 
4781   assert(buffer.empty());
4782 
4783   // Skip the next N words.
4784   auto skip = [&](unsigned numWords) {
4785     assert(numWords > 0);
4786 
4787     // Try to merge into the previous byte.  Since scans happen second, we
4788     // can't do this if it includes a scan.
4789     if (!buffer.empty() && !(buffer.back() & ScanMask)) {
4790       unsigned lastSkip = buffer.back() >> SkipShift;
4791       if (lastSkip < MaxNibble) {
4792         unsigned claimed = std::min(MaxNibble - lastSkip, numWords);
4793         numWords -= claimed;
4794         lastSkip += claimed;
4795         buffer.back() = (lastSkip << SkipShift);
4796       }
4797     }
4798 
4799     while (numWords >= MaxNibble) {
4800       buffer.push_back(MaxNibble << SkipShift);
4801       numWords -= MaxNibble;
4802     }
4803     if (numWords) {
4804       buffer.push_back(numWords << SkipShift);
4805     }
4806   };
4807 
4808   // Scan the next N words.
4809   auto scan = [&](unsigned numWords) {
4810     assert(numWords > 0);
4811 
4812     // Try to merge into the previous byte.  Since scans happen second, we can
4813     // do this even if it includes a skip.
4814     if (!buffer.empty()) {
4815       unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift;
4816       if (lastScan < MaxNibble) {
4817         unsigned claimed = std::min(MaxNibble - lastScan, numWords);
4818         numWords -= claimed;
4819         lastScan += claimed;
4820         buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift);
4821       }
4822     }
4823 
4824     while (numWords >= MaxNibble) {
4825       buffer.push_back(MaxNibble << ScanShift);
4826       numWords -= MaxNibble;
4827     }
4828     if (numWords) {
4829       buffer.push_back(numWords << ScanShift);
4830     }
4831   };
4832 
4833   // One past the end of the last scan.
4834   unsigned endOfLastScanInWords = 0;
4835   const CharUnits WordSize = CGM.getPointerSize();
4836 
4837   // Consider all the scan requests.
4838   for (auto &request : IvarsInfo) {
4839     CharUnits beginOfScan = request.Offset - InstanceBegin;
4840 
4841     // Ignore scan requests that don't start at an even multiple of the
4842     // word size.  We can't encode them.
4843     if ((beginOfScan % WordSize) != 0) continue;
4844 
4845     // Ignore scan requests that start before the instance start.
4846     // This assumes that scans never span that boundary.  The boundary
4847     // isn't the true start of the ivars, because in the fragile-ARC case
4848     // it's rounded up to word alignment, but the test above should leave
4849     // us ignoring that possibility.
4850     if (beginOfScan.isNegative()) {
4851       assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin);
4852       continue;
4853     }
4854 
4855     unsigned beginOfScanInWords = beginOfScan / WordSize;
4856     unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords;
4857 
4858     // If the scan starts some number of words after the last one ended,
4859     // skip forward.
4860     if (beginOfScanInWords > endOfLastScanInWords) {
4861       skip(beginOfScanInWords - endOfLastScanInWords);
4862 
4863     // Otherwise, start scanning where the last left off.
4864     } else {
4865       beginOfScanInWords = endOfLastScanInWords;
4866 
4867       // If that leaves us with nothing to scan, ignore this request.
4868       if (beginOfScanInWords >= endOfScanInWords) continue;
4869     }
4870 
4871     // Scan to the end of the request.
4872     assert(beginOfScanInWords < endOfScanInWords);
4873     scan(endOfScanInWords - beginOfScanInWords);
4874     endOfLastScanInWords = endOfScanInWords;
4875   }
4876 
4877   if (buffer.empty())
4878     return llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
4879 
4880   // For GC layouts, emit a skip to the end of the allocation so that we
4881   // have precise information about the entire thing.  This isn't useful
4882   // or necessary for the ARC-style layout strings.
4883   if (CGM.getLangOpts().getGC() != LangOptions::NonGC) {
4884     unsigned lastOffsetInWords =
4885       (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize;
4886     if (lastOffsetInWords > endOfLastScanInWords) {
4887       skip(lastOffsetInWords - endOfLastScanInWords);
4888     }
4889   }
4890 
4891   // Null terminate the string.
4892   buffer.push_back(0);
4893 
4894   bool isNonFragileABI = CGObjC.isNonFragileABI();
4895 
4896   llvm::GlobalVariable *Entry = CGObjC.CreateMetadataVar(
4897       "OBJC_CLASS_NAME_",
4898       llvm::ConstantDataArray::get(CGM.getLLVMContext(), buffer),
4899       (isNonFragileABI ? "__TEXT,__objc_classname,cstring_literals"
4900                        : "__TEXT,__cstring,cstring_literals"),
4901       CharUnits::One(), true);
4902   return getConstantGEP(CGM.getLLVMContext(), Entry, 0, 0);
4903 }
4904 
4905 /// BuildIvarLayout - Builds ivar layout bitmap for the class
4906 /// implementation for the __strong or __weak case.
4907 /// The layout map displays which words in ivar list must be skipped
4908 /// and which must be scanned by GC (see below). String is built of bytes.
4909 /// Each byte is divided up in two nibbles (4-bit each). Left nibble is count
4910 /// of words to skip and right nibble is count of words to scan. So, each
4911 /// nibble represents up to 15 workds to skip or scan. Skipping the rest is
4912 /// represented by a 0x00 byte which also ends the string.
4913 /// 1. when ForStrongLayout is true, following ivars are scanned:
4914 /// - id, Class
4915 /// - object *
4916 /// - __strong anything
4917 ///
4918 /// 2. When ForStrongLayout is false, following ivars are scanned:
4919 /// - __weak anything
4920 ///
4921 llvm::Constant *
BuildIvarLayout(const ObjCImplementationDecl * OMD,CharUnits beginOffset,CharUnits endOffset,bool ForStrongLayout,bool HasMRCWeakIvars)4922 CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD,
4923                                  CharUnits beginOffset, CharUnits endOffset,
4924                                  bool ForStrongLayout, bool HasMRCWeakIvars) {
4925   // If this is MRC, and we're either building a strong layout or there
4926   // are no weak ivars, bail out early.
4927   llvm::Type *PtrTy = CGM.Int8PtrTy;
4928   if (CGM.getLangOpts().getGC() == LangOptions::NonGC &&
4929       !CGM.getLangOpts().ObjCAutoRefCount &&
4930       (ForStrongLayout || !HasMRCWeakIvars))
4931     return llvm::Constant::getNullValue(PtrTy);
4932 
4933   const ObjCInterfaceDecl *OI = OMD->getClassInterface();
4934   SmallVector<const ObjCIvarDecl*, 32> ivars;
4935 
4936   // GC layout strings include the complete object layout, possibly
4937   // inaccurately in the non-fragile ABI; the runtime knows how to fix this
4938   // up.
4939   //
4940   // ARC layout strings only include the class's ivars.  In non-fragile
4941   // runtimes, that means starting at InstanceStart, rounded up to word
4942   // alignment.  In fragile runtimes, there's no InstanceStart, so it means
4943   // starting at the offset of the first ivar, rounded up to word alignment.
4944   //
4945   // MRC weak layout strings follow the ARC style.
4946   CharUnits baseOffset;
4947   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
4948     for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin();
4949          IVD; IVD = IVD->getNextIvar())
4950       ivars.push_back(IVD);
4951 
4952     if (isNonFragileABI()) {
4953       baseOffset = beginOffset; // InstanceStart
4954     } else if (!ivars.empty()) {
4955       baseOffset =
4956         CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivars[0]));
4957     } else {
4958       baseOffset = CharUnits::Zero();
4959     }
4960 
4961     baseOffset = baseOffset.RoundUpToAlignment(CGM.getPointerAlign());
4962   }
4963   else {
4964     CGM.getContext().DeepCollectObjCIvars(OI, true, ivars);
4965 
4966     baseOffset = CharUnits::Zero();
4967   }
4968 
4969   if (ivars.empty())
4970     return llvm::Constant::getNullValue(PtrTy);
4971 
4972   IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout);
4973 
4974   builder.visitAggregate(ivars.begin(), ivars.end(), CharUnits::Zero(),
4975                          [&](const ObjCIvarDecl *ivar) -> CharUnits {
4976       return CharUnits::fromQuantity(ComputeIvarBaseOffset(CGM, OMD, ivar));
4977   });
4978 
4979   if (!builder.hasBitmapData())
4980     return llvm::Constant::getNullValue(PtrTy);
4981 
4982   llvm::SmallVector<unsigned char, 4> buffer;
4983   llvm::Constant *C = builder.buildBitmap(*this, buffer);
4984 
4985    if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) {
4986     printf("\n%s ivar layout for class '%s': ",
4987            ForStrongLayout ? "strong" : "weak",
4988            OMD->getClassInterface()->getName().str().c_str());
4989     builder.dump(buffer);
4990   }
4991   return C;
4992 }
4993 
GetMethodVarName(Selector Sel)4994 llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) {
4995   llvm::GlobalVariable *&Entry = MethodVarNames[Sel];
4996 
4997   // FIXME: Avoid std::string in "Sel.getAsString()"
4998   if (!Entry)
4999     Entry = CreateMetadataVar(
5000         "OBJC_METH_VAR_NAME_",
5001         llvm::ConstantDataArray::getString(VMContext, Sel.getAsString()),
5002         ((ObjCABI == 2) ? "__TEXT,__objc_methname,cstring_literals"
5003                         : "__TEXT,__cstring,cstring_literals"),
5004         CharUnits::One(), true);
5005 
5006   return getConstantGEP(VMContext, Entry, 0, 0);
5007 }
5008 
5009 // FIXME: Merge into a single cstring creation function.
GetMethodVarName(IdentifierInfo * ID)5010 llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) {
5011   return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID));
5012 }
5013 
GetMethodVarType(const FieldDecl * Field)5014 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) {
5015   std::string TypeStr;
5016   CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field);
5017 
5018   llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
5019 
5020   if (!Entry)
5021     Entry = CreateMetadataVar(
5022         "OBJC_METH_VAR_TYPE_",
5023         llvm::ConstantDataArray::getString(VMContext, TypeStr),
5024         ((ObjCABI == 2) ? "__TEXT,__objc_methtype,cstring_literals"
5025                         : "__TEXT,__cstring,cstring_literals"),
5026         CharUnits::One(), true);
5027 
5028   return getConstantGEP(VMContext, Entry, 0, 0);
5029 }
5030 
GetMethodVarType(const ObjCMethodDecl * D,bool Extended)5031 llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D,
5032                                                   bool Extended) {
5033   std::string TypeStr;
5034   if (CGM.getContext().getObjCEncodingForMethodDecl(D, TypeStr, Extended))
5035     return nullptr;
5036 
5037   llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
5038 
5039   if (!Entry)
5040     Entry = CreateMetadataVar(
5041         "OBJC_METH_VAR_TYPE_",
5042         llvm::ConstantDataArray::getString(VMContext, TypeStr),
5043         ((ObjCABI == 2) ? "__TEXT,__objc_methtype,cstring_literals"
5044                         : "__TEXT,__cstring,cstring_literals"),
5045         CharUnits::One(), true);
5046 
5047   return getConstantGEP(VMContext, Entry, 0, 0);
5048 }
5049 
5050 // FIXME: Merge into a single cstring creation function.
GetPropertyName(IdentifierInfo * Ident)5051 llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) {
5052   llvm::GlobalVariable *&Entry = PropertyNames[Ident];
5053 
5054   if (!Entry)
5055     Entry = CreateMetadataVar(
5056         "OBJC_PROP_NAME_ATTR_",
5057         llvm::ConstantDataArray::getString(VMContext, Ident->getName()),
5058         "__TEXT,__cstring,cstring_literals", CharUnits::One(), true);
5059 
5060   return getConstantGEP(VMContext, Entry, 0, 0);
5061 }
5062 
5063 // FIXME: Merge into a single cstring creation function.
5064 // FIXME: This Decl should be more precise.
5065 llvm::Constant *
GetPropertyTypeString(const ObjCPropertyDecl * PD,const Decl * Container)5066 CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD,
5067                                        const Decl *Container) {
5068   std::string TypeStr;
5069   CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr);
5070   return GetPropertyName(&CGM.getContext().Idents.get(TypeStr));
5071 }
5072 
GetNameForMethod(const ObjCMethodDecl * D,const ObjCContainerDecl * CD,SmallVectorImpl<char> & Name)5073 void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D,
5074                                        const ObjCContainerDecl *CD,
5075                                        SmallVectorImpl<char> &Name) {
5076   llvm::raw_svector_ostream OS(Name);
5077   assert (CD && "Missing container decl in GetNameForMethod");
5078   OS << '\01' << (D->isInstanceMethod() ? '-' : '+')
5079      << '[' << CD->getName();
5080   if (const ObjCCategoryImplDecl *CID =
5081       dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext()))
5082     OS << '(' << *CID << ')';
5083   OS << ' ' << D->getSelector().getAsString() << ']';
5084 }
5085 
FinishModule()5086 void CGObjCMac::FinishModule() {
5087   EmitModuleInfo();
5088 
5089   // Emit the dummy bodies for any protocols which were referenced but
5090   // never defined.
5091   for (llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*>::iterator
5092          I = Protocols.begin(), e = Protocols.end(); I != e; ++I) {
5093     if (I->second->hasInitializer())
5094       continue;
5095 
5096     llvm::Constant *Values[5];
5097     Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy);
5098     Values[1] = GetClassName(I->first->getName());
5099     Values[2] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
5100     Values[3] = Values[4] =
5101       llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy);
5102     I->second->setInitializer(llvm::ConstantStruct::get(ObjCTypes.ProtocolTy,
5103                                                         Values));
5104     CGM.addCompilerUsedGlobal(I->second);
5105   }
5106 
5107   // Add assembler directives to add lazy undefined symbol references
5108   // for classes which are referenced but not defined. This is
5109   // important for correct linker interaction.
5110   //
5111   // FIXME: It would be nice if we had an LLVM construct for this.
5112   if (!LazySymbols.empty() || !DefinedSymbols.empty()) {
5113     SmallString<256> Asm;
5114     Asm += CGM.getModule().getModuleInlineAsm();
5115     if (!Asm.empty() && Asm.back() != '\n')
5116       Asm += '\n';
5117 
5118     llvm::raw_svector_ostream OS(Asm);
5119     for (llvm::SetVector<IdentifierInfo*>::iterator I = DefinedSymbols.begin(),
5120            e = DefinedSymbols.end(); I != e; ++I)
5121       OS << "\t.objc_class_name_" << (*I)->getName() << "=0\n"
5122          << "\t.globl .objc_class_name_" << (*I)->getName() << "\n";
5123     for (llvm::SetVector<IdentifierInfo*>::iterator I = LazySymbols.begin(),
5124          e = LazySymbols.end(); I != e; ++I) {
5125       OS << "\t.lazy_reference .objc_class_name_" << (*I)->getName() << "\n";
5126     }
5127 
5128     for (size_t i = 0, e = DefinedCategoryNames.size(); i < e; ++i) {
5129       OS << "\t.objc_category_name_" << DefinedCategoryNames[i] << "=0\n"
5130          << "\t.globl .objc_category_name_" << DefinedCategoryNames[i] << "\n";
5131     }
5132 
5133     CGM.getModule().setModuleInlineAsm(OS.str());
5134   }
5135 }
5136 
CGObjCNonFragileABIMac(CodeGen::CodeGenModule & cgm)5137 CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm)
5138   : CGObjCCommonMac(cgm),
5139     ObjCTypes(cgm) {
5140   ObjCEmptyCacheVar = ObjCEmptyVtableVar = nullptr;
5141   ObjCABI = 2;
5142 }
5143 
5144 /* *** */
5145 
ObjCCommonTypesHelper(CodeGen::CodeGenModule & cgm)5146 ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm)
5147   : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr)
5148 {
5149   CodeGen::CodeGenTypes &Types = CGM.getTypes();
5150   ASTContext &Ctx = CGM.getContext();
5151 
5152   ShortTy = Types.ConvertType(Ctx.ShortTy);
5153   IntTy = Types.ConvertType(Ctx.IntTy);
5154   LongTy = Types.ConvertType(Ctx.LongTy);
5155   LongLongTy = Types.ConvertType(Ctx.LongLongTy);
5156   Int8PtrTy = CGM.Int8PtrTy;
5157   Int8PtrPtrTy = CGM.Int8PtrPtrTy;
5158 
5159   // arm64 targets use "int" ivar offset variables. All others,
5160   // including OS X x86_64 and Windows x86_64, use "long" ivar offsets.
5161   if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64)
5162     IvarOffsetVarTy = IntTy;
5163   else
5164     IvarOffsetVarTy = LongTy;
5165 
5166   ObjectPtrTy = Types.ConvertType(Ctx.getObjCIdType());
5167   PtrObjectPtrTy = llvm::PointerType::getUnqual(ObjectPtrTy);
5168   SelectorPtrTy = Types.ConvertType(Ctx.getObjCSelType());
5169 
5170   // I'm not sure I like this. The implicit coordination is a bit
5171   // gross. We should solve this in a reasonable fashion because this
5172   // is a pretty common task (match some runtime data structure with
5173   // an LLVM data structure).
5174 
5175   // FIXME: This is leaked.
5176   // FIXME: Merge with rewriter code?
5177 
5178   // struct _objc_super {
5179   //   id self;
5180   //   Class cls;
5181   // }
5182   RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct,
5183                                       Ctx.getTranslationUnitDecl(),
5184                                       SourceLocation(), SourceLocation(),
5185                                       &Ctx.Idents.get("_objc_super"));
5186   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5187                                 nullptr, Ctx.getObjCIdType(), nullptr, nullptr,
5188                                 false, ICIS_NoInit));
5189   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5190                                 nullptr, Ctx.getObjCClassType(), nullptr,
5191                                 nullptr, false, ICIS_NoInit));
5192   RD->completeDefinition();
5193 
5194   SuperCTy = Ctx.getTagDeclType(RD);
5195   SuperPtrCTy = Ctx.getPointerType(SuperCTy);
5196 
5197   SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy));
5198   SuperPtrTy = llvm::PointerType::getUnqual(SuperTy);
5199 
5200   // struct _prop_t {
5201   //   char *name;
5202   //   char *attributes;
5203   // }
5204   PropertyTy = llvm::StructType::create("struct._prop_t",
5205                                         Int8PtrTy, Int8PtrTy, nullptr);
5206 
5207   // struct _prop_list_t {
5208   //   uint32_t entsize;      // sizeof(struct _prop_t)
5209   //   uint32_t count_of_properties;
5210   //   struct _prop_t prop_list[count_of_properties];
5211   // }
5212   PropertyListTy =
5213     llvm::StructType::create("struct._prop_list_t", IntTy, IntTy,
5214                              llvm::ArrayType::get(PropertyTy, 0), nullptr);
5215   // struct _prop_list_t *
5216   PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy);
5217 
5218   // struct _objc_method {
5219   //   SEL _cmd;
5220   //   char *method_type;
5221   //   char *_imp;
5222   // }
5223   MethodTy = llvm::StructType::create("struct._objc_method",
5224                                       SelectorPtrTy, Int8PtrTy, Int8PtrTy,
5225                                       nullptr);
5226 
5227   // struct _objc_cache *
5228   CacheTy = llvm::StructType::create(VMContext, "struct._objc_cache");
5229   CachePtrTy = llvm::PointerType::getUnqual(CacheTy);
5230 
5231 }
5232 
ObjCTypesHelper(CodeGen::CodeGenModule & cgm)5233 ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm)
5234   : ObjCCommonTypesHelper(cgm) {
5235   // struct _objc_method_description {
5236   //   SEL name;
5237   //   char *types;
5238   // }
5239   MethodDescriptionTy =
5240     llvm::StructType::create("struct._objc_method_description",
5241                              SelectorPtrTy, Int8PtrTy, nullptr);
5242 
5243   // struct _objc_method_description_list {
5244   //   int count;
5245   //   struct _objc_method_description[1];
5246   // }
5247   MethodDescriptionListTy = llvm::StructType::create(
5248       "struct._objc_method_description_list", IntTy,
5249       llvm::ArrayType::get(MethodDescriptionTy, 0), nullptr);
5250 
5251   // struct _objc_method_description_list *
5252   MethodDescriptionListPtrTy =
5253     llvm::PointerType::getUnqual(MethodDescriptionListTy);
5254 
5255   // Protocol description structures
5256 
5257   // struct _objc_protocol_extension {
5258   //   uint32_t size;  // sizeof(struct _objc_protocol_extension)
5259   //   struct _objc_method_description_list *optional_instance_methods;
5260   //   struct _objc_method_description_list *optional_class_methods;
5261   //   struct _objc_property_list *instance_properties;
5262   //   const char ** extendedMethodTypes;
5263   // }
5264   ProtocolExtensionTy =
5265     llvm::StructType::create("struct._objc_protocol_extension",
5266                              IntTy, MethodDescriptionListPtrTy,
5267                              MethodDescriptionListPtrTy, PropertyListPtrTy,
5268                              Int8PtrPtrTy, nullptr);
5269 
5270   // struct _objc_protocol_extension *
5271   ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy);
5272 
5273   // Handle recursive construction of Protocol and ProtocolList types
5274 
5275   ProtocolTy =
5276     llvm::StructType::create(VMContext, "struct._objc_protocol");
5277 
5278   ProtocolListTy =
5279     llvm::StructType::create(VMContext, "struct._objc_protocol_list");
5280   ProtocolListTy->setBody(llvm::PointerType::getUnqual(ProtocolListTy),
5281                           LongTy,
5282                           llvm::ArrayType::get(ProtocolTy, 0),
5283                           nullptr);
5284 
5285   // struct _objc_protocol {
5286   //   struct _objc_protocol_extension *isa;
5287   //   char *protocol_name;
5288   //   struct _objc_protocol **_objc_protocol_list;
5289   //   struct _objc_method_description_list *instance_methods;
5290   //   struct _objc_method_description_list *class_methods;
5291   // }
5292   ProtocolTy->setBody(ProtocolExtensionPtrTy, Int8PtrTy,
5293                       llvm::PointerType::getUnqual(ProtocolListTy),
5294                       MethodDescriptionListPtrTy,
5295                       MethodDescriptionListPtrTy,
5296                       nullptr);
5297 
5298   // struct _objc_protocol_list *
5299   ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy);
5300 
5301   ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy);
5302 
5303   // Class description structures
5304 
5305   // struct _objc_ivar {
5306   //   char *ivar_name;
5307   //   char *ivar_type;
5308   //   int  ivar_offset;
5309   // }
5310   IvarTy = llvm::StructType::create("struct._objc_ivar",
5311                                     Int8PtrTy, Int8PtrTy, IntTy, nullptr);
5312 
5313   // struct _objc_ivar_list *
5314   IvarListTy =
5315     llvm::StructType::create(VMContext, "struct._objc_ivar_list");
5316   IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy);
5317 
5318   // struct _objc_method_list *
5319   MethodListTy =
5320     llvm::StructType::create(VMContext, "struct._objc_method_list");
5321   MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy);
5322 
5323   // struct _objc_class_extension *
5324   ClassExtensionTy =
5325     llvm::StructType::create("struct._objc_class_extension",
5326                              IntTy, Int8PtrTy, PropertyListPtrTy, nullptr);
5327   ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy);
5328 
5329   ClassTy = llvm::StructType::create(VMContext, "struct._objc_class");
5330 
5331   // struct _objc_class {
5332   //   Class isa;
5333   //   Class super_class;
5334   //   char *name;
5335   //   long version;
5336   //   long info;
5337   //   long instance_size;
5338   //   struct _objc_ivar_list *ivars;
5339   //   struct _objc_method_list *methods;
5340   //   struct _objc_cache *cache;
5341   //   struct _objc_protocol_list *protocols;
5342   //   char *ivar_layout;
5343   //   struct _objc_class_ext *ext;
5344   // };
5345   ClassTy->setBody(llvm::PointerType::getUnqual(ClassTy),
5346                    llvm::PointerType::getUnqual(ClassTy),
5347                    Int8PtrTy,
5348                    LongTy,
5349                    LongTy,
5350                    LongTy,
5351                    IvarListPtrTy,
5352                    MethodListPtrTy,
5353                    CachePtrTy,
5354                    ProtocolListPtrTy,
5355                    Int8PtrTy,
5356                    ClassExtensionPtrTy,
5357                    nullptr);
5358 
5359   ClassPtrTy = llvm::PointerType::getUnqual(ClassTy);
5360 
5361   // struct _objc_category {
5362   //   char *category_name;
5363   //   char *class_name;
5364   //   struct _objc_method_list *instance_method;
5365   //   struct _objc_method_list *class_method;
5366   //   uint32_t size;  // sizeof(struct _objc_category)
5367   //   struct _objc_property_list *instance_properties;// category's @property
5368   // }
5369   CategoryTy =
5370     llvm::StructType::create("struct._objc_category",
5371                              Int8PtrTy, Int8PtrTy, MethodListPtrTy,
5372                              MethodListPtrTy, ProtocolListPtrTy,
5373                              IntTy, PropertyListPtrTy, nullptr);
5374 
5375   // Global metadata structures
5376 
5377   // struct _objc_symtab {
5378   //   long sel_ref_cnt;
5379   //   SEL *refs;
5380   //   short cls_def_cnt;
5381   //   short cat_def_cnt;
5382   //   char *defs[cls_def_cnt + cat_def_cnt];
5383   // }
5384   SymtabTy =
5385     llvm::StructType::create("struct._objc_symtab",
5386                              LongTy, SelectorPtrTy, ShortTy, ShortTy,
5387                              llvm::ArrayType::get(Int8PtrTy, 0), nullptr);
5388   SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy);
5389 
5390   // struct _objc_module {
5391   //   long version;
5392   //   long size;   // sizeof(struct _objc_module)
5393   //   char *name;
5394   //   struct _objc_symtab* symtab;
5395   //  }
5396   ModuleTy =
5397     llvm::StructType::create("struct._objc_module",
5398                              LongTy, LongTy, Int8PtrTy, SymtabPtrTy, nullptr);
5399 
5400 
5401   // FIXME: This is the size of the setjmp buffer and should be target
5402   // specific. 18 is what's used on 32-bit X86.
5403   uint64_t SetJmpBufferSize = 18;
5404 
5405   // Exceptions
5406   llvm::Type *StackPtrTy = llvm::ArrayType::get(CGM.Int8PtrTy, 4);
5407 
5408   ExceptionDataTy =
5409     llvm::StructType::create("struct._objc_exception_data",
5410                              llvm::ArrayType::get(CGM.Int32Ty,SetJmpBufferSize),
5411                              StackPtrTy, nullptr);
5412 
5413 }
5414 
ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule & cgm)5415 ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm)
5416   : ObjCCommonTypesHelper(cgm) {
5417   // struct _method_list_t {
5418   //   uint32_t entsize;  // sizeof(struct _objc_method)
5419   //   uint32_t method_count;
5420   //   struct _objc_method method_list[method_count];
5421   // }
5422   MethodListnfABITy =
5423     llvm::StructType::create("struct.__method_list_t", IntTy, IntTy,
5424                              llvm::ArrayType::get(MethodTy, 0), nullptr);
5425   // struct method_list_t *
5426   MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy);
5427 
5428   // struct _protocol_t {
5429   //   id isa;  // NULL
5430   //   const char * const protocol_name;
5431   //   const struct _protocol_list_t * protocol_list; // super protocols
5432   //   const struct method_list_t * const instance_methods;
5433   //   const struct method_list_t * const class_methods;
5434   //   const struct method_list_t *optionalInstanceMethods;
5435   //   const struct method_list_t *optionalClassMethods;
5436   //   const struct _prop_list_t * properties;
5437   //   const uint32_t size;  // sizeof(struct _protocol_t)
5438   //   const uint32_t flags;  // = 0
5439   //   const char ** extendedMethodTypes;
5440   //   const char *demangledName;
5441   // }
5442 
5443   // Holder for struct _protocol_list_t *
5444   ProtocolListnfABITy =
5445     llvm::StructType::create(VMContext, "struct._objc_protocol_list");
5446 
5447   ProtocolnfABITy =
5448     llvm::StructType::create("struct._protocol_t", ObjectPtrTy, Int8PtrTy,
5449                              llvm::PointerType::getUnqual(ProtocolListnfABITy),
5450                              MethodListnfABIPtrTy, MethodListnfABIPtrTy,
5451                              MethodListnfABIPtrTy, MethodListnfABIPtrTy,
5452                              PropertyListPtrTy, IntTy, IntTy, Int8PtrPtrTy,
5453                              Int8PtrTy,
5454                              nullptr);
5455 
5456   // struct _protocol_t*
5457   ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy);
5458 
5459   // struct _protocol_list_t {
5460   //   long protocol_count;   // Note, this is 32/64 bit
5461   //   struct _protocol_t *[protocol_count];
5462   // }
5463   ProtocolListnfABITy->setBody(LongTy,
5464                                llvm::ArrayType::get(ProtocolnfABIPtrTy, 0),
5465                                nullptr);
5466 
5467   // struct _objc_protocol_list*
5468   ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy);
5469 
5470   // struct _ivar_t {
5471   //   unsigned [long] int *offset;  // pointer to ivar offset location
5472   //   char *name;
5473   //   char *type;
5474   //   uint32_t alignment;
5475   //   uint32_t size;
5476   // }
5477   IvarnfABITy = llvm::StructType::create(
5478       "struct._ivar_t", llvm::PointerType::getUnqual(IvarOffsetVarTy),
5479       Int8PtrTy, Int8PtrTy, IntTy, IntTy, nullptr);
5480 
5481   // struct _ivar_list_t {
5482   //   uint32 entsize;  // sizeof(struct _ivar_t)
5483   //   uint32 count;
5484   //   struct _iver_t list[count];
5485   // }
5486   IvarListnfABITy =
5487     llvm::StructType::create("struct._ivar_list_t", IntTy, IntTy,
5488                              llvm::ArrayType::get(IvarnfABITy, 0), nullptr);
5489 
5490   IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy);
5491 
5492   // struct _class_ro_t {
5493   //   uint32_t const flags;
5494   //   uint32_t const instanceStart;
5495   //   uint32_t const instanceSize;
5496   //   uint32_t const reserved;  // only when building for 64bit targets
5497   //   const uint8_t * const ivarLayout;
5498   //   const char *const name;
5499   //   const struct _method_list_t * const baseMethods;
5500   //   const struct _objc_protocol_list *const baseProtocols;
5501   //   const struct _ivar_list_t *const ivars;
5502   //   const uint8_t * const weakIvarLayout;
5503   //   const struct _prop_list_t * const properties;
5504   // }
5505 
5506   // FIXME. Add 'reserved' field in 64bit abi mode!
5507   ClassRonfABITy = llvm::StructType::create("struct._class_ro_t",
5508                                             IntTy, IntTy, IntTy, Int8PtrTy,
5509                                             Int8PtrTy, MethodListnfABIPtrTy,
5510                                             ProtocolListnfABIPtrTy,
5511                                             IvarListnfABIPtrTy,
5512                                             Int8PtrTy, PropertyListPtrTy,
5513                                             nullptr);
5514 
5515   // ImpnfABITy - LLVM for id (*)(id, SEL, ...)
5516   llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
5517   ImpnfABITy = llvm::FunctionType::get(ObjectPtrTy, params, false)
5518                  ->getPointerTo();
5519 
5520   // struct _class_t {
5521   //   struct _class_t *isa;
5522   //   struct _class_t * const superclass;
5523   //   void *cache;
5524   //   IMP *vtable;
5525   //   struct class_ro_t *ro;
5526   // }
5527 
5528   ClassnfABITy = llvm::StructType::create(VMContext, "struct._class_t");
5529   ClassnfABITy->setBody(llvm::PointerType::getUnqual(ClassnfABITy),
5530                         llvm::PointerType::getUnqual(ClassnfABITy),
5531                         CachePtrTy,
5532                         llvm::PointerType::getUnqual(ImpnfABITy),
5533                         llvm::PointerType::getUnqual(ClassRonfABITy),
5534                         nullptr);
5535 
5536   // LLVM for struct _class_t *
5537   ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy);
5538 
5539   // struct _category_t {
5540   //   const char * const name;
5541   //   struct _class_t *const cls;
5542   //   const struct _method_list_t * const instance_methods;
5543   //   const struct _method_list_t * const class_methods;
5544   //   const struct _protocol_list_t * const protocols;
5545   //   const struct _prop_list_t * const properties;
5546   // }
5547   CategorynfABITy = llvm::StructType::create("struct._category_t",
5548                                              Int8PtrTy, ClassnfABIPtrTy,
5549                                              MethodListnfABIPtrTy,
5550                                              MethodListnfABIPtrTy,
5551                                              ProtocolListnfABIPtrTy,
5552                                              PropertyListPtrTy,
5553                                              nullptr);
5554 
5555   // New types for nonfragile abi messaging.
5556   CodeGen::CodeGenTypes &Types = CGM.getTypes();
5557   ASTContext &Ctx = CGM.getContext();
5558 
5559   // MessageRefTy - LLVM for:
5560   // struct _message_ref_t {
5561   //   IMP messenger;
5562   //   SEL name;
5563   // };
5564 
5565   // First the clang type for struct _message_ref_t
5566   RecordDecl *RD = RecordDecl::Create(Ctx, TTK_Struct,
5567                                       Ctx.getTranslationUnitDecl(),
5568                                       SourceLocation(), SourceLocation(),
5569                                       &Ctx.Idents.get("_message_ref_t"));
5570   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5571                                 nullptr, Ctx.VoidPtrTy, nullptr, nullptr, false,
5572                                 ICIS_NoInit));
5573   RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5574                                 nullptr, Ctx.getObjCSelType(), nullptr, nullptr,
5575                                 false, ICIS_NoInit));
5576   RD->completeDefinition();
5577 
5578   MessageRefCTy = Ctx.getTagDeclType(RD);
5579   MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy);
5580   MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy));
5581 
5582   // MessageRefPtrTy - LLVM for struct _message_ref_t*
5583   MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy);
5584 
5585   // SuperMessageRefTy - LLVM for:
5586   // struct _super_message_ref_t {
5587   //   SUPER_IMP messenger;
5588   //   SEL name;
5589   // };
5590   SuperMessageRefTy =
5591     llvm::StructType::create("struct._super_message_ref_t",
5592                              ImpnfABITy, SelectorPtrTy, nullptr);
5593 
5594   // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
5595   SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy);
5596 
5597 
5598   // struct objc_typeinfo {
5599   //   const void** vtable; // objc_ehtype_vtable + 2
5600   //   const char*  name;    // c++ typeinfo string
5601   //   Class        cls;
5602   // };
5603   EHTypeTy =
5604     llvm::StructType::create("struct._objc_typeinfo",
5605                              llvm::PointerType::getUnqual(Int8PtrTy),
5606                              Int8PtrTy, ClassnfABIPtrTy, nullptr);
5607   EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy);
5608 }
5609 
ModuleInitFunction()5610 llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() {
5611   FinishNonFragileABIModule();
5612 
5613   return nullptr;
5614 }
5615 
5616 void CGObjCNonFragileABIMac::
AddModuleClassList(ArrayRef<llvm::GlobalValue * > Container,const char * SymbolName,const char * SectionName)5617 AddModuleClassList(ArrayRef<llvm::GlobalValue*> Container,
5618                    const char *SymbolName,
5619                    const char *SectionName) {
5620   unsigned NumClasses = Container.size();
5621 
5622   if (!NumClasses)
5623     return;
5624 
5625   SmallVector<llvm::Constant*, 8> Symbols(NumClasses);
5626   for (unsigned i=0; i<NumClasses; i++)
5627     Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i],
5628                                                 ObjCTypes.Int8PtrTy);
5629   llvm::Constant *Init =
5630     llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
5631                                                   Symbols.size()),
5632                              Symbols);
5633 
5634   llvm::GlobalVariable *GV =
5635     new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
5636                              llvm::GlobalValue::PrivateLinkage,
5637                              Init,
5638                              SymbolName);
5639   GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType()));
5640   GV->setSection(SectionName);
5641   CGM.addCompilerUsedGlobal(GV);
5642 }
5643 
FinishNonFragileABIModule()5644 void CGObjCNonFragileABIMac::FinishNonFragileABIModule() {
5645   // nonfragile abi has no module definition.
5646 
5647   // Build list of all implemented class addresses in array
5648   // L_OBJC_LABEL_CLASS_$.
5649 
5650   for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) {
5651     const ObjCInterfaceDecl *ID = ImplementedClasses[i];
5652     assert(ID);
5653     if (ObjCImplementationDecl *IMP = ID->getImplementation())
5654       // We are implementing a weak imported interface. Give it external linkage
5655       if (ID->isWeakImported() && !IMP->isWeakImported()) {
5656         DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
5657         DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
5658       }
5659   }
5660 
5661   AddModuleClassList(DefinedClasses, "OBJC_LABEL_CLASS_$",
5662                      "__DATA, __objc_classlist, regular, no_dead_strip");
5663 
5664   AddModuleClassList(DefinedNonLazyClasses, "OBJC_LABEL_NONLAZY_CLASS_$",
5665                      "__DATA, __objc_nlclslist, regular, no_dead_strip");
5666 
5667   // Build list of all implemented category addresses in array
5668   // L_OBJC_LABEL_CATEGORY_$.
5669   AddModuleClassList(DefinedCategories, "OBJC_LABEL_CATEGORY_$",
5670                      "__DATA, __objc_catlist, regular, no_dead_strip");
5671   AddModuleClassList(DefinedNonLazyCategories, "OBJC_LABEL_NONLAZY_CATEGORY_$",
5672                      "__DATA, __objc_nlcatlist, regular, no_dead_strip");
5673 
5674   EmitImageInfo();
5675 }
5676 
5677 /// isVTableDispatchedSelector - Returns true if SEL is not in the list of
5678 /// VTableDispatchMethods; false otherwise. What this means is that
5679 /// except for the 19 selectors in the list, we generate 32bit-style
5680 /// message dispatch call for all the rest.
isVTableDispatchedSelector(Selector Sel)5681 bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) {
5682   // At various points we've experimented with using vtable-based
5683   // dispatch for all methods.
5684   switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
5685   case CodeGenOptions::Legacy:
5686     return false;
5687   case CodeGenOptions::NonLegacy:
5688     return true;
5689   case CodeGenOptions::Mixed:
5690     break;
5691   }
5692 
5693   // If so, see whether this selector is in the white-list of things which must
5694   // use the new dispatch convention. We lazily build a dense set for this.
5695   if (VTableDispatchMethods.empty()) {
5696     VTableDispatchMethods.insert(GetNullarySelector("alloc"));
5697     VTableDispatchMethods.insert(GetNullarySelector("class"));
5698     VTableDispatchMethods.insert(GetNullarySelector("self"));
5699     VTableDispatchMethods.insert(GetNullarySelector("isFlipped"));
5700     VTableDispatchMethods.insert(GetNullarySelector("length"));
5701     VTableDispatchMethods.insert(GetNullarySelector("count"));
5702 
5703     // These are vtable-based if GC is disabled.
5704     // Optimistically use vtable dispatch for hybrid compiles.
5705     if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
5706       VTableDispatchMethods.insert(GetNullarySelector("retain"));
5707       VTableDispatchMethods.insert(GetNullarySelector("release"));
5708       VTableDispatchMethods.insert(GetNullarySelector("autorelease"));
5709     }
5710 
5711     VTableDispatchMethods.insert(GetUnarySelector("allocWithZone"));
5712     VTableDispatchMethods.insert(GetUnarySelector("isKindOfClass"));
5713     VTableDispatchMethods.insert(GetUnarySelector("respondsToSelector"));
5714     VTableDispatchMethods.insert(GetUnarySelector("objectForKey"));
5715     VTableDispatchMethods.insert(GetUnarySelector("objectAtIndex"));
5716     VTableDispatchMethods.insert(GetUnarySelector("isEqualToString"));
5717     VTableDispatchMethods.insert(GetUnarySelector("isEqual"));
5718 
5719     // These are vtable-based if GC is enabled.
5720     // Optimistically use vtable dispatch for hybrid compiles.
5721     if (CGM.getLangOpts().getGC() != LangOptions::NonGC) {
5722       VTableDispatchMethods.insert(GetNullarySelector("hash"));
5723       VTableDispatchMethods.insert(GetUnarySelector("addObject"));
5724 
5725       // "countByEnumeratingWithState:objects:count"
5726       IdentifierInfo *KeyIdents[] = {
5727         &CGM.getContext().Idents.get("countByEnumeratingWithState"),
5728         &CGM.getContext().Idents.get("objects"),
5729         &CGM.getContext().Idents.get("count")
5730       };
5731       VTableDispatchMethods.insert(
5732         CGM.getContext().Selectors.getSelector(3, KeyIdents));
5733     }
5734   }
5735 
5736   return VTableDispatchMethods.count(Sel);
5737 }
5738 
5739 /// BuildClassRoTInitializer - generate meta-data for:
5740 /// struct _class_ro_t {
5741 ///   uint32_t const flags;
5742 ///   uint32_t const instanceStart;
5743 ///   uint32_t const instanceSize;
5744 ///   uint32_t const reserved;  // only when building for 64bit targets
5745 ///   const uint8_t * const ivarLayout;
5746 ///   const char *const name;
5747 ///   const struct _method_list_t * const baseMethods;
5748 ///   const struct _protocol_list_t *const baseProtocols;
5749 ///   const struct _ivar_list_t *const ivars;
5750 ///   const uint8_t * const weakIvarLayout;
5751 ///   const struct _prop_list_t * const properties;
5752 /// }
5753 ///
BuildClassRoTInitializer(unsigned flags,unsigned InstanceStart,unsigned InstanceSize,const ObjCImplementationDecl * ID)5754 llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer(
5755   unsigned flags,
5756   unsigned InstanceStart,
5757   unsigned InstanceSize,
5758   const ObjCImplementationDecl *ID) {
5759   std::string ClassName = ID->getObjCRuntimeNameAsString();
5760   llvm::Constant *Values[10]; // 11 for 64bit targets!
5761 
5762   CharUnits beginInstance = CharUnits::fromQuantity(InstanceStart);
5763   CharUnits endInstance = CharUnits::fromQuantity(InstanceSize);
5764 
5765   bool hasMRCWeak = false;
5766   if (CGM.getLangOpts().ObjCAutoRefCount)
5767     flags |= NonFragileABI_Class_CompiledByARC;
5768   else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID)))
5769     flags |= NonFragileABI_Class_HasMRCWeakIvars;
5770 
5771   Values[ 0] = llvm::ConstantInt::get(ObjCTypes.IntTy, flags);
5772   Values[ 1] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceStart);
5773   Values[ 2] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceSize);
5774   // FIXME. For 64bit targets add 0 here.
5775   Values[ 3] = (flags & NonFragileABI_Class_Meta)
5776     ? GetIvarLayoutName(nullptr, ObjCTypes)
5777     : BuildStrongIvarLayout(ID, beginInstance, endInstance);
5778   Values[ 4] = GetClassName(ID->getObjCRuntimeNameAsString());
5779   // const struct _method_list_t * const baseMethods;
5780   std::vector<llvm::Constant*> Methods;
5781   std::string MethodListName("\01l_OBJC_$_");
5782   if (flags & NonFragileABI_Class_Meta) {
5783     MethodListName += "CLASS_METHODS_";
5784     MethodListName += ID->getObjCRuntimeNameAsString();
5785     for (const auto *I : ID->class_methods())
5786       // Class methods should always be defined.
5787       Methods.push_back(GetMethodConstant(I));
5788   } else {
5789     MethodListName += "INSTANCE_METHODS_";
5790     MethodListName += ID->getObjCRuntimeNameAsString();
5791     for (const auto *I : ID->instance_methods())
5792       // Instance methods should always be defined.
5793       Methods.push_back(GetMethodConstant(I));
5794 
5795     for (const auto *PID : ID->property_impls()) {
5796       if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize){
5797         ObjCPropertyDecl *PD = PID->getPropertyDecl();
5798 
5799         if (ObjCMethodDecl *MD = PD->getGetterMethodDecl())
5800           if (llvm::Constant *C = GetMethodConstant(MD))
5801             Methods.push_back(C);
5802         if (ObjCMethodDecl *MD = PD->getSetterMethodDecl())
5803           if (llvm::Constant *C = GetMethodConstant(MD))
5804             Methods.push_back(C);
5805       }
5806     }
5807   }
5808   Values[ 5] = EmitMethodList(MethodListName,
5809                               "__DATA, __objc_const", Methods);
5810 
5811   const ObjCInterfaceDecl *OID = ID->getClassInterface();
5812   assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer");
5813   Values[ 6] = EmitProtocolList("\01l_OBJC_CLASS_PROTOCOLS_$_"
5814                                 + OID->getObjCRuntimeNameAsString(),
5815                                 OID->all_referenced_protocol_begin(),
5816                                 OID->all_referenced_protocol_end());
5817 
5818   if (flags & NonFragileABI_Class_Meta) {
5819     Values[ 7] = llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy);
5820     Values[ 8] = GetIvarLayoutName(nullptr, ObjCTypes);
5821     Values[ 9] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
5822   } else {
5823     Values[ 7] = EmitIvarList(ID);
5824     Values[ 8] = BuildWeakIvarLayout(ID, beginInstance, endInstance,
5825                                      hasMRCWeak);
5826     Values[ 9] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(),
5827                                   ID, ID->getClassInterface(), ObjCTypes);
5828   }
5829   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassRonfABITy,
5830                                                    Values);
5831   llvm::GlobalVariable *CLASS_RO_GV =
5832     new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassRonfABITy, false,
5833                              llvm::GlobalValue::PrivateLinkage,
5834                              Init,
5835                              (flags & NonFragileABI_Class_Meta) ?
5836                              std::string("\01l_OBJC_METACLASS_RO_$_")+ClassName :
5837                              std::string("\01l_OBJC_CLASS_RO_$_")+ClassName);
5838   CLASS_RO_GV->setAlignment(
5839     CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassRonfABITy));
5840   CLASS_RO_GV->setSection("__DATA, __objc_const");
5841   return CLASS_RO_GV;
5842 
5843 }
5844 
5845 /// BuildClassMetaData - This routine defines that to-level meta-data
5846 /// for the given ClassName for:
5847 /// struct _class_t {
5848 ///   struct _class_t *isa;
5849 ///   struct _class_t * const superclass;
5850 ///   void *cache;
5851 ///   IMP *vtable;
5852 ///   struct class_ro_t *ro;
5853 /// }
5854 ///
BuildClassMetaData(const std::string & ClassName,llvm::Constant * IsAGV,llvm::Constant * SuperClassGV,llvm::Constant * ClassRoGV,bool HiddenVisibility,bool Weak)5855 llvm::GlobalVariable *CGObjCNonFragileABIMac::BuildClassMetaData(
5856     const std::string &ClassName, llvm::Constant *IsAGV, llvm::Constant *SuperClassGV,
5857     llvm::Constant *ClassRoGV, bool HiddenVisibility, bool Weak) {
5858   llvm::Constant *Values[] = {
5859     IsAGV,
5860     SuperClassGV,
5861     ObjCEmptyCacheVar,  // &ObjCEmptyCacheVar
5862     ObjCEmptyVtableVar, // &ObjCEmptyVtableVar
5863     ClassRoGV           // &CLASS_RO_GV
5864   };
5865   if (!Values[1])
5866     Values[1] = llvm::Constant::getNullValue(ObjCTypes.ClassnfABIPtrTy);
5867   if (!Values[3])
5868     Values[3] = llvm::Constant::getNullValue(
5869                   llvm::PointerType::getUnqual(ObjCTypes.ImpnfABITy));
5870   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassnfABITy,
5871                                                    Values);
5872   llvm::GlobalVariable *GV = GetClassGlobal(ClassName, Weak);
5873   GV->setInitializer(Init);
5874   GV->setSection("__DATA, __objc_data");
5875   GV->setAlignment(
5876     CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ClassnfABITy));
5877   if (HiddenVisibility)
5878     GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
5879   return GV;
5880 }
5881 
5882 bool
ImplementationIsNonLazy(const ObjCImplDecl * OD) const5883 CGObjCNonFragileABIMac::ImplementationIsNonLazy(const ObjCImplDecl *OD) const {
5884   return OD->getClassMethod(GetNullarySelector("load")) != nullptr;
5885 }
5886 
GetClassSizeInfo(const ObjCImplementationDecl * OID,uint32_t & InstanceStart,uint32_t & InstanceSize)5887 void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID,
5888                                               uint32_t &InstanceStart,
5889                                               uint32_t &InstanceSize) {
5890   const ASTRecordLayout &RL =
5891     CGM.getContext().getASTObjCImplementationLayout(OID);
5892 
5893   // InstanceSize is really instance end.
5894   InstanceSize = RL.getDataSize().getQuantity();
5895 
5896   // If there are no fields, the start is the same as the end.
5897   if (!RL.getFieldCount())
5898     InstanceStart = InstanceSize;
5899   else
5900     InstanceStart = RL.getFieldOffset(0) / CGM.getContext().getCharWidth();
5901 }
5902 
GenerateClass(const ObjCImplementationDecl * ID)5903 void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) {
5904   std::string ClassName = ID->getObjCRuntimeNameAsString();
5905   if (!ObjCEmptyCacheVar) {
5906     ObjCEmptyCacheVar = new llvm::GlobalVariable(
5907       CGM.getModule(),
5908       ObjCTypes.CacheTy,
5909       false,
5910       llvm::GlobalValue::ExternalLinkage,
5911       nullptr,
5912       "_objc_empty_cache");
5913 
5914     // Make this entry NULL for any iOS device target, any iOS simulator target,
5915     // OS X with deployment target 10.9 or later.
5916     const llvm::Triple &Triple = CGM.getTarget().getTriple();
5917     if (Triple.isiOS() || Triple.isWatchOS() ||
5918         (Triple.isMacOSX() && !Triple.isMacOSXVersionLT(10, 9)))
5919       // This entry will be null.
5920       ObjCEmptyVtableVar = nullptr;
5921     else
5922       ObjCEmptyVtableVar = new llvm::GlobalVariable(
5923                                                     CGM.getModule(),
5924                                                     ObjCTypes.ImpnfABITy,
5925                                                     false,
5926                                                     llvm::GlobalValue::ExternalLinkage,
5927                                                     nullptr,
5928                                                     "_objc_empty_vtable");
5929   }
5930   assert(ID->getClassInterface() &&
5931          "CGObjCNonFragileABIMac::GenerateClass - class is 0");
5932   // FIXME: Is this correct (that meta class size is never computed)?
5933   uint32_t InstanceStart =
5934     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy);
5935   uint32_t InstanceSize = InstanceStart;
5936   uint32_t flags = NonFragileABI_Class_Meta;
5937   llvm::SmallString<64> ObjCMetaClassName(getMetaclassSymbolPrefix());
5938   llvm::SmallString<64> ObjCClassName(getClassSymbolPrefix());
5939   llvm::SmallString<64> TClassName;
5940 
5941   llvm::GlobalVariable *SuperClassGV, *IsAGV;
5942 
5943   // Build the flags for the metaclass.
5944   bool classIsHidden =
5945     ID->getClassInterface()->getVisibility() == HiddenVisibility;
5946   if (classIsHidden)
5947     flags |= NonFragileABI_Class_Hidden;
5948 
5949   // FIXME: why is this flag set on the metaclass?
5950   // ObjC metaclasses have no fields and don't really get constructed.
5951   if (ID->hasNonZeroConstructors() || ID->hasDestructors()) {
5952     flags |= NonFragileABI_Class_HasCXXStructors;
5953     if (!ID->hasNonZeroConstructors())
5954       flags |= NonFragileABI_Class_HasCXXDestructorOnly;
5955   }
5956 
5957   if (!ID->getClassInterface()->getSuperClass()) {
5958     // class is root
5959     flags |= NonFragileABI_Class_Root;
5960     TClassName = ObjCClassName;
5961     TClassName += ClassName;
5962     SuperClassGV = GetClassGlobal(TClassName.str(),
5963                                   ID->getClassInterface()->isWeakImported());
5964     TClassName = ObjCMetaClassName;
5965     TClassName += ClassName;
5966     IsAGV = GetClassGlobal(TClassName.str(),
5967                            ID->getClassInterface()->isWeakImported());
5968   } else {
5969     // Has a root. Current class is not a root.
5970     const ObjCInterfaceDecl *Root = ID->getClassInterface();
5971     while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
5972       Root = Super;
5973     TClassName = ObjCMetaClassName ;
5974     TClassName += Root->getObjCRuntimeNameAsString();
5975     IsAGV = GetClassGlobal(TClassName.str(),
5976                            Root->isWeakImported());
5977 
5978     // work on super class metadata symbol.
5979     TClassName = ObjCMetaClassName;
5980     TClassName += ID->getClassInterface()->getSuperClass()->getObjCRuntimeNameAsString();
5981     SuperClassGV = GetClassGlobal(
5982                                   TClassName.str(),
5983                                   ID->getClassInterface()->getSuperClass()->isWeakImported());
5984   }
5985   llvm::GlobalVariable *CLASS_RO_GV = BuildClassRoTInitializer(flags,
5986                                                                InstanceStart,
5987                                                                InstanceSize,ID);
5988   TClassName = ObjCMetaClassName;
5989   TClassName += ClassName;
5990   llvm::GlobalVariable *MetaTClass = BuildClassMetaData(
5991       TClassName.str(), IsAGV, SuperClassGV, CLASS_RO_GV, classIsHidden,
5992       ID->getClassInterface()->isWeakImported());
5993   DefinedMetaClasses.push_back(MetaTClass);
5994 
5995   // Metadata for the class
5996   flags = 0;
5997   if (classIsHidden)
5998     flags |= NonFragileABI_Class_Hidden;
5999 
6000   if (ID->hasNonZeroConstructors() || ID->hasDestructors()) {
6001     flags |= NonFragileABI_Class_HasCXXStructors;
6002 
6003     // Set a flag to enable a runtime optimization when a class has
6004     // fields that require destruction but which don't require
6005     // anything except zero-initialization during construction.  This
6006     // is most notably true of __strong and __weak types, but you can
6007     // also imagine there being C++ types with non-trivial default
6008     // constructors that merely set all fields to null.
6009     if (!ID->hasNonZeroConstructors())
6010       flags |= NonFragileABI_Class_HasCXXDestructorOnly;
6011   }
6012 
6013   if (hasObjCExceptionAttribute(CGM.getContext(), ID->getClassInterface()))
6014     flags |= NonFragileABI_Class_Exception;
6015 
6016   if (!ID->getClassInterface()->getSuperClass()) {
6017     flags |= NonFragileABI_Class_Root;
6018     SuperClassGV = nullptr;
6019   } else {
6020     // Has a root. Current class is not a root.
6021     TClassName = ObjCClassName;
6022     TClassName += ID->getClassInterface()->getSuperClass()->getObjCRuntimeNameAsString();
6023     SuperClassGV = GetClassGlobal(
6024                                   TClassName.str(),
6025                                   ID->getClassInterface()->getSuperClass()->isWeakImported());
6026   }
6027   GetClassSizeInfo(ID, InstanceStart, InstanceSize);
6028   CLASS_RO_GV = BuildClassRoTInitializer(flags,
6029                                          InstanceStart,
6030                                          InstanceSize,
6031                                          ID);
6032 
6033   TClassName = ObjCClassName;
6034   TClassName += ClassName;
6035   llvm::GlobalVariable *ClassMD =
6036     BuildClassMetaData(TClassName.str(), MetaTClass, SuperClassGV, CLASS_RO_GV,
6037                        classIsHidden,
6038                        ID->getClassInterface()->isWeakImported());
6039   DefinedClasses.push_back(ClassMD);
6040   ImplementedClasses.push_back(ID->getClassInterface());
6041 
6042   // Determine if this class is also "non-lazy".
6043   if (ImplementationIsNonLazy(ID))
6044     DefinedNonLazyClasses.push_back(ClassMD);
6045 
6046   // Force the definition of the EHType if necessary.
6047   if (flags & NonFragileABI_Class_Exception)
6048     GetInterfaceEHType(ID->getClassInterface(), true);
6049   // Make sure method definition entries are all clear for next implementation.
6050   MethodDefinitions.clear();
6051 }
6052 
6053 /// GenerateProtocolRef - This routine is called to generate code for
6054 /// a protocol reference expression; as in:
6055 /// @code
6056 ///   @protocol(Proto1);
6057 /// @endcode
6058 /// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1
6059 /// which will hold address of the protocol meta-data.
6060 ///
GenerateProtocolRef(CodeGenFunction & CGF,const ObjCProtocolDecl * PD)6061 llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF,
6062                                                          const ObjCProtocolDecl *PD) {
6063 
6064   // This routine is called for @protocol only. So, we must build definition
6065   // of protocol's meta-data (not a reference to it!)
6066   //
6067   llvm::Constant *Init =
6068     llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD),
6069                                    ObjCTypes.getExternalProtocolPtrTy());
6070 
6071   std::string ProtocolName("\01l_OBJC_PROTOCOL_REFERENCE_$_");
6072   ProtocolName += PD->getObjCRuntimeNameAsString();
6073 
6074   CharUnits Align = CGF.getPointerAlign();
6075 
6076   llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName);
6077   if (PTGV)
6078     return CGF.Builder.CreateAlignedLoad(PTGV, Align);
6079   PTGV = new llvm::GlobalVariable(
6080     CGM.getModule(),
6081     Init->getType(), false,
6082     llvm::GlobalValue::WeakAnyLinkage,
6083     Init,
6084     ProtocolName);
6085   PTGV->setSection("__DATA, __objc_protorefs, coalesced, no_dead_strip");
6086   PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6087   PTGV->setAlignment(Align.getQuantity());
6088   CGM.addCompilerUsedGlobal(PTGV);
6089   return CGF.Builder.CreateAlignedLoad(PTGV, Align);
6090 }
6091 
6092 /// GenerateCategory - Build metadata for a category implementation.
6093 /// struct _category_t {
6094 ///   const char * const name;
6095 ///   struct _class_t *const cls;
6096 ///   const struct _method_list_t * const instance_methods;
6097 ///   const struct _method_list_t * const class_methods;
6098 ///   const struct _protocol_list_t * const protocols;
6099 ///   const struct _prop_list_t * const properties;
6100 /// }
6101 ///
GenerateCategory(const ObjCCategoryImplDecl * OCD)6102 void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
6103   const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
6104   const char *Prefix = "\01l_OBJC_$_CATEGORY_";
6105 
6106   llvm::SmallString<64> ExtCatName(Prefix);
6107   ExtCatName += Interface->getObjCRuntimeNameAsString();
6108   ExtCatName += "_$_";
6109   ExtCatName += OCD->getNameAsString();
6110 
6111   llvm::SmallString<64> ExtClassName(getClassSymbolPrefix());
6112   ExtClassName += Interface->getObjCRuntimeNameAsString();
6113 
6114   llvm::Constant *Values[6];
6115   Values[0] = GetClassName(OCD->getIdentifier()->getName());
6116   // meta-class entry symbol
6117   llvm::GlobalVariable *ClassGV =
6118       GetClassGlobal(ExtClassName.str(), Interface->isWeakImported());
6119 
6120   Values[1] = ClassGV;
6121   std::vector<llvm::Constant*> Methods;
6122   llvm::SmallString<64> MethodListName(Prefix);
6123 
6124   MethodListName += "INSTANCE_METHODS_";
6125   MethodListName += Interface->getObjCRuntimeNameAsString();
6126   MethodListName += "_$_";
6127   MethodListName += OCD->getName();
6128 
6129   for (const auto *I : OCD->instance_methods())
6130     // Instance methods should always be defined.
6131     Methods.push_back(GetMethodConstant(I));
6132 
6133   Values[2] = EmitMethodList(MethodListName.str(),
6134                              "__DATA, __objc_const",
6135                              Methods);
6136 
6137   MethodListName = Prefix;
6138   MethodListName += "CLASS_METHODS_";
6139   MethodListName += Interface->getObjCRuntimeNameAsString();
6140   MethodListName += "_$_";
6141   MethodListName += OCD->getNameAsString();
6142 
6143   Methods.clear();
6144   for (const auto *I : OCD->class_methods())
6145     // Class methods should always be defined.
6146     Methods.push_back(GetMethodConstant(I));
6147 
6148   Values[3] = EmitMethodList(MethodListName.str(),
6149                              "__DATA, __objc_const",
6150                              Methods);
6151   const ObjCCategoryDecl *Category =
6152     Interface->FindCategoryDeclaration(OCD->getIdentifier());
6153   if (Category) {
6154     SmallString<256> ExtName;
6155     llvm::raw_svector_ostream(ExtName) << Interface->getObjCRuntimeNameAsString() << "_$_"
6156                                        << OCD->getName();
6157     Values[4] = EmitProtocolList("\01l_OBJC_CATEGORY_PROTOCOLS_$_"
6158                                    + Interface->getObjCRuntimeNameAsString() + "_$_"
6159                                    + Category->getName(),
6160                                    Category->protocol_begin(),
6161                                    Category->protocol_end());
6162     Values[5] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ExtName.str(),
6163                                  OCD, Category, ObjCTypes);
6164   } else {
6165     Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy);
6166     Values[5] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
6167   }
6168 
6169   llvm::Constant *Init =
6170     llvm::ConstantStruct::get(ObjCTypes.CategorynfABITy,
6171                               Values);
6172   llvm::GlobalVariable *GCATV
6173     = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CategorynfABITy,
6174                                false,
6175                                llvm::GlobalValue::PrivateLinkage,
6176                                Init,
6177                                ExtCatName.str());
6178   GCATV->setAlignment(
6179     CGM.getDataLayout().getABITypeAlignment(ObjCTypes.CategorynfABITy));
6180   GCATV->setSection("__DATA, __objc_const");
6181   CGM.addCompilerUsedGlobal(GCATV);
6182   DefinedCategories.push_back(GCATV);
6183 
6184   // Determine if this category is also "non-lazy".
6185   if (ImplementationIsNonLazy(OCD))
6186     DefinedNonLazyCategories.push_back(GCATV);
6187   // method definition entries must be clear for next implementation.
6188   MethodDefinitions.clear();
6189 }
6190 
6191 /// GetMethodConstant - Return a struct objc_method constant for the
6192 /// given method if it has been defined. The result is null if the
6193 /// method has not been defined. The return value has type MethodPtrTy.
GetMethodConstant(const ObjCMethodDecl * MD)6194 llvm::Constant *CGObjCNonFragileABIMac::GetMethodConstant(
6195   const ObjCMethodDecl *MD) {
6196   llvm::Function *Fn = GetMethodDefinition(MD);
6197   if (!Fn)
6198     return nullptr;
6199 
6200   llvm::Constant *Method[] = {
6201     llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
6202                                    ObjCTypes.SelectorPtrTy),
6203     GetMethodVarType(MD),
6204     llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy)
6205   };
6206   return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method);
6207 }
6208 
6209 /// EmitMethodList - Build meta-data for method declarations
6210 /// struct _method_list_t {
6211 ///   uint32_t entsize;  // sizeof(struct _objc_method)
6212 ///   uint32_t method_count;
6213 ///   struct _objc_method method_list[method_count];
6214 /// }
6215 ///
6216 llvm::Constant *
EmitMethodList(Twine Name,const char * Section,ArrayRef<llvm::Constant * > Methods)6217 CGObjCNonFragileABIMac::EmitMethodList(Twine Name,
6218                                        const char *Section,
6219                                        ArrayRef<llvm::Constant*> Methods) {
6220   // Return null for empty list.
6221   if (Methods.empty())
6222     return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy);
6223 
6224   llvm::Constant *Values[3];
6225   // sizeof(struct _objc_method)
6226   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy);
6227   Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
6228   // method_count
6229   Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size());
6230   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy,
6231                                              Methods.size());
6232   Values[2] = llvm::ConstantArray::get(AT, Methods);
6233   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
6234 
6235   llvm::GlobalVariable *GV =
6236     new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
6237                              llvm::GlobalValue::PrivateLinkage, Init, Name);
6238   GV->setAlignment(CGM.getDataLayout().getABITypeAlignment(Init->getType()));
6239   GV->setSection(Section);
6240   CGM.addCompilerUsedGlobal(GV);
6241   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.MethodListnfABIPtrTy);
6242 }
6243 
6244 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for
6245 /// the given ivar.
6246 llvm::GlobalVariable *
ObjCIvarOffsetVariable(const ObjCInterfaceDecl * ID,const ObjCIvarDecl * Ivar)6247 CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
6248                                                const ObjCIvarDecl *Ivar) {
6249 
6250   const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
6251   llvm::SmallString<64> Name("OBJC_IVAR_$_");
6252   Name += Container->getObjCRuntimeNameAsString();
6253   Name += ".";
6254   Name += Ivar->getName();
6255   llvm::GlobalVariable *IvarOffsetGV =
6256     CGM.getModule().getGlobalVariable(Name);
6257   if (!IvarOffsetGV)
6258     IvarOffsetGV = new llvm::GlobalVariable(
6259       CGM.getModule(), ObjCTypes.IvarOffsetVarTy, false,
6260       llvm::GlobalValue::ExternalLinkage, nullptr, Name.str());
6261   return IvarOffsetGV;
6262 }
6263 
6264 llvm::Constant *
EmitIvarOffsetVar(const ObjCInterfaceDecl * ID,const ObjCIvarDecl * Ivar,unsigned long int Offset)6265 CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
6266                                           const ObjCIvarDecl *Ivar,
6267                                           unsigned long int Offset) {
6268   llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar);
6269   IvarOffsetGV->setInitializer(
6270       llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset));
6271   IvarOffsetGV->setAlignment(
6272       CGM.getDataLayout().getABITypeAlignment(ObjCTypes.IvarOffsetVarTy));
6273 
6274   // FIXME: This matches gcc, but shouldn't the visibility be set on the use as
6275   // well (i.e., in ObjCIvarOffsetVariable).
6276   if (Ivar->getAccessControl() == ObjCIvarDecl::Private ||
6277       Ivar->getAccessControl() == ObjCIvarDecl::Package ||
6278       ID->getVisibility() == HiddenVisibility)
6279     IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6280   else
6281     IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility);
6282   IvarOffsetGV->setSection("__DATA, __objc_ivar");
6283   return IvarOffsetGV;
6284 }
6285 
6286 /// EmitIvarList - Emit the ivar list for the given
6287 /// implementation. The return value has type
6288 /// IvarListnfABIPtrTy.
6289 ///  struct _ivar_t {
6290 ///   unsigned [long] int *offset;  // pointer to ivar offset location
6291 ///   char *name;
6292 ///   char *type;
6293 ///   uint32_t alignment;
6294 ///   uint32_t size;
6295 /// }
6296 /// struct _ivar_list_t {
6297 ///   uint32 entsize;  // sizeof(struct _ivar_t)
6298 ///   uint32 count;
6299 ///   struct _iver_t list[count];
6300 /// }
6301 ///
6302 
EmitIvarList(const ObjCImplementationDecl * ID)6303 llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList(
6304   const ObjCImplementationDecl *ID) {
6305 
6306   std::vector<llvm::Constant*> Ivars;
6307 
6308   const ObjCInterfaceDecl *OID = ID->getClassInterface();
6309   assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface");
6310 
6311   // FIXME. Consolidate this with similar code in GenerateClass.
6312 
6313   for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin();
6314        IVD; IVD = IVD->getNextIvar()) {
6315     // Ignore unnamed bit-fields.
6316     if (!IVD->getDeclName())
6317       continue;
6318     llvm::Constant *Ivar[5];
6319     Ivar[0] = EmitIvarOffsetVar(ID->getClassInterface(), IVD,
6320                                 ComputeIvarBaseOffset(CGM, ID, IVD));
6321     Ivar[1] = GetMethodVarName(IVD->getIdentifier());
6322     Ivar[2] = GetMethodVarType(IVD);
6323     llvm::Type *FieldTy =
6324       CGM.getTypes().ConvertTypeForMem(IVD->getType());
6325     unsigned Size = CGM.getDataLayout().getTypeAllocSize(FieldTy);
6326     unsigned Align = CGM.getContext().getPreferredTypeAlign(
6327       IVD->getType().getTypePtr()) >> 3;
6328     Align = llvm::Log2_32(Align);
6329     Ivar[3] = llvm::ConstantInt::get(ObjCTypes.IntTy, Align);
6330     // NOTE. Size of a bitfield does not match gcc's, because of the
6331     // way bitfields are treated special in each. But I am told that
6332     // 'size' for bitfield ivars is ignored by the runtime so it does
6333     // not matter.  If it matters, there is enough info to get the
6334     // bitfield right!
6335     Ivar[4] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
6336     Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarnfABITy, Ivar));
6337   }
6338   // Return null for empty list.
6339   if (Ivars.empty())
6340     return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy);
6341 
6342   llvm::Constant *Values[3];
6343   unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy);
6344   Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
6345   Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size());
6346   llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarnfABITy,
6347                                              Ivars.size());
6348   Values[2] = llvm::ConstantArray::get(AT, Ivars);
6349   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
6350   const char *Prefix = "\01l_OBJC_$_INSTANCE_VARIABLES_";
6351   llvm::GlobalVariable *GV =
6352     new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
6353                              llvm::GlobalValue::PrivateLinkage,
6354                              Init,
6355                              Prefix + OID->getObjCRuntimeNameAsString());
6356   GV->setAlignment(
6357     CGM.getDataLayout().getABITypeAlignment(Init->getType()));
6358   GV->setSection("__DATA, __objc_const");
6359 
6360   CGM.addCompilerUsedGlobal(GV);
6361   return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy);
6362 }
6363 
GetOrEmitProtocolRef(const ObjCProtocolDecl * PD)6364 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef(
6365   const ObjCProtocolDecl *PD) {
6366   llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
6367 
6368   if (!Entry) {
6369     // We use the initializer as a marker of whether this is a forward
6370     // reference or not. At module finalization we add the empty
6371     // contents for protocols which were referenced but never defined.
6372     Entry =
6373         new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy,
6374                                  false, llvm::GlobalValue::ExternalLinkage,
6375                                  nullptr,
6376                                  "\01l_OBJC_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString());
6377     Entry->setSection("__DATA,__datacoal_nt,coalesced");
6378   }
6379 
6380   return Entry;
6381 }
6382 
6383 /// GetOrEmitProtocol - Generate the protocol meta-data:
6384 /// @code
6385 /// struct _protocol_t {
6386 ///   id isa;  // NULL
6387 ///   const char * const protocol_name;
6388 ///   const struct _protocol_list_t * protocol_list; // super protocols
6389 ///   const struct method_list_t * const instance_methods;
6390 ///   const struct method_list_t * const class_methods;
6391 ///   const struct method_list_t *optionalInstanceMethods;
6392 ///   const struct method_list_t *optionalClassMethods;
6393 ///   const struct _prop_list_t * properties;
6394 ///   const uint32_t size;  // sizeof(struct _protocol_t)
6395 ///   const uint32_t flags;  // = 0
6396 ///   const char ** extendedMethodTypes;
6397 ///   const char *demangledName;
6398 /// }
6399 /// @endcode
6400 ///
6401 
GetOrEmitProtocol(const ObjCProtocolDecl * PD)6402 llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol(
6403   const ObjCProtocolDecl *PD) {
6404   llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()];
6405 
6406   // Early exit if a defining object has already been generated.
6407   if (Entry && Entry->hasInitializer())
6408     return Entry;
6409 
6410   // Use the protocol definition, if there is one.
6411   if (const ObjCProtocolDecl *Def = PD->getDefinition())
6412     PD = Def;
6413 
6414   // Construct method lists.
6415   std::vector<llvm::Constant*> InstanceMethods, ClassMethods;
6416   std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods;
6417   std::vector<llvm::Constant*> MethodTypesExt, OptMethodTypesExt;
6418   for (const auto *MD : PD->instance_methods()) {
6419     llvm::Constant *C = GetMethodDescriptionConstant(MD);
6420     if (!C)
6421       return GetOrEmitProtocolRef(PD);
6422 
6423     if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
6424       OptInstanceMethods.push_back(C);
6425       OptMethodTypesExt.push_back(GetMethodVarType(MD, true));
6426     } else {
6427       InstanceMethods.push_back(C);
6428       MethodTypesExt.push_back(GetMethodVarType(MD, true));
6429     }
6430   }
6431 
6432   for (const auto *MD : PD->class_methods()) {
6433     llvm::Constant *C = GetMethodDescriptionConstant(MD);
6434     if (!C)
6435       return GetOrEmitProtocolRef(PD);
6436 
6437     if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
6438       OptClassMethods.push_back(C);
6439       OptMethodTypesExt.push_back(GetMethodVarType(MD, true));
6440     } else {
6441       ClassMethods.push_back(C);
6442       MethodTypesExt.push_back(GetMethodVarType(MD, true));
6443     }
6444   }
6445 
6446   MethodTypesExt.insert(MethodTypesExt.end(),
6447                         OptMethodTypesExt.begin(), OptMethodTypesExt.end());
6448 
6449   llvm::Constant *Values[12];
6450   // isa is NULL
6451   Values[0] = llvm::Constant::getNullValue(ObjCTypes.ObjectPtrTy);
6452   Values[1] = GetClassName(PD->getObjCRuntimeNameAsString());
6453   Values[2] = EmitProtocolList("\01l_OBJC_$_PROTOCOL_REFS_" + PD->getObjCRuntimeNameAsString(),
6454                                PD->protocol_begin(),
6455                                PD->protocol_end());
6456 
6457   Values[3] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_"
6458                              + PD->getObjCRuntimeNameAsString(),
6459                              "__DATA, __objc_const",
6460                              InstanceMethods);
6461   Values[4] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_"
6462                              + PD->getObjCRuntimeNameAsString(),
6463                              "__DATA, __objc_const",
6464                              ClassMethods);
6465   Values[5] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"
6466                              + PD->getObjCRuntimeNameAsString(),
6467                              "__DATA, __objc_const",
6468                              OptInstanceMethods);
6469   Values[6] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"
6470                              + PD->getObjCRuntimeNameAsString(),
6471                              "__DATA, __objc_const",
6472                              OptClassMethods);
6473   Values[7] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(),
6474                                nullptr, PD, ObjCTypes);
6475   uint32_t Size =
6476     CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy);
6477   Values[8] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
6478   Values[9] = llvm::Constant::getNullValue(ObjCTypes.IntTy);
6479   Values[10] = EmitProtocolMethodTypes("\01l_OBJC_$_PROTOCOL_METHOD_TYPES_"
6480                                        + PD->getObjCRuntimeNameAsString(),
6481                                        MethodTypesExt, ObjCTypes);
6482   // const char *demangledName;
6483   Values[11] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
6484 
6485   llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolnfABITy,
6486                                                    Values);
6487 
6488   if (Entry) {
6489     // Already created, fix the linkage and update the initializer.
6490     Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
6491     Entry->setInitializer(Init);
6492   } else {
6493     Entry =
6494       new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy,
6495                                false, llvm::GlobalValue::WeakAnyLinkage, Init,
6496                                "\01l_OBJC_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString());
6497     Entry->setAlignment(
6498       CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABITy));
6499     Entry->setSection("__DATA,__datacoal_nt,coalesced");
6500 
6501     Protocols[PD->getIdentifier()] = Entry;
6502   }
6503   Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
6504   CGM.addCompilerUsedGlobal(Entry);
6505 
6506   // Use this protocol meta-data to build protocol list table in section
6507   // __DATA, __objc_protolist
6508   llvm::GlobalVariable *PTGV =
6509     new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy,
6510                              false, llvm::GlobalValue::WeakAnyLinkage, Entry,
6511                              "\01l_OBJC_LABEL_PROTOCOL_$_" + PD->getObjCRuntimeNameAsString());
6512   PTGV->setAlignment(
6513     CGM.getDataLayout().getABITypeAlignment(ObjCTypes.ProtocolnfABIPtrTy));
6514   PTGV->setSection("__DATA, __objc_protolist, coalesced, no_dead_strip");
6515   PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6516   CGM.addCompilerUsedGlobal(PTGV);
6517   return Entry;
6518 }
6519 
6520 /// EmitProtocolList - Generate protocol list meta-data:
6521 /// @code
6522 /// struct _protocol_list_t {
6523 ///   long protocol_count;   // Note, this is 32/64 bit
6524 ///   struct _protocol_t[protocol_count];
6525 /// }
6526 /// @endcode
6527 ///
6528 llvm::Constant *
EmitProtocolList(Twine Name,ObjCProtocolDecl::protocol_iterator begin,ObjCProtocolDecl::protocol_iterator end)6529 CGObjCNonFragileABIMac::EmitProtocolList(Twine Name,
6530                                       ObjCProtocolDecl::protocol_iterator begin,
6531                                       ObjCProtocolDecl::protocol_iterator end) {
6532   SmallVector<llvm::Constant *, 16> ProtocolRefs;
6533 
6534   // Just return null for empty protocol lists
6535   if (begin == end)
6536     return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy);
6537 
6538   // FIXME: We shouldn't need to do this lookup here, should we?
6539   SmallString<256> TmpName;
6540   Name.toVector(TmpName);
6541   llvm::GlobalVariable *GV =
6542     CGM.getModule().getGlobalVariable(TmpName.str(), true);
6543   if (GV)
6544     return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListnfABIPtrTy);
6545 
6546   for (; begin != end; ++begin)
6547     ProtocolRefs.push_back(GetProtocolRef(*begin));  // Implemented???
6548 
6549   // This list is null terminated.
6550   ProtocolRefs.push_back(llvm::Constant::getNullValue(
6551                            ObjCTypes.ProtocolnfABIPtrTy));
6552 
6553   llvm::Constant *Values[2];
6554   Values[0] =
6555     llvm::ConstantInt::get(ObjCTypes.LongTy, ProtocolRefs.size() - 1);
6556   Values[1] =
6557     llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolnfABIPtrTy,
6558                                                   ProtocolRefs.size()),
6559                              ProtocolRefs);
6560 
6561   llvm::Constant *Init = llvm::ConstantStruct::getAnon(Values);
6562   GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
6563                                 llvm::GlobalValue::PrivateLinkage,
6564                                 Init, Name);
6565   GV->setSection("__DATA, __objc_const");
6566   GV->setAlignment(
6567     CGM.getDataLayout().getABITypeAlignment(Init->getType()));
6568   CGM.addCompilerUsedGlobal(GV);
6569   return llvm::ConstantExpr::getBitCast(GV,
6570                                         ObjCTypes.ProtocolListnfABIPtrTy);
6571 }
6572 
6573 /// GetMethodDescriptionConstant - This routine build following meta-data:
6574 /// struct _objc_method {
6575 ///   SEL _cmd;
6576 ///   char *method_type;
6577 ///   char *_imp;
6578 /// }
6579 
6580 llvm::Constant *
GetMethodDescriptionConstant(const ObjCMethodDecl * MD)6581 CGObjCNonFragileABIMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) {
6582   llvm::Constant *Desc[3];
6583   Desc[0] =
6584     llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
6585                                    ObjCTypes.SelectorPtrTy);
6586   Desc[1] = GetMethodVarType(MD);
6587   if (!Desc[1])
6588     return nullptr;
6589 
6590   // Protocol methods have no implementation. So, this entry is always NULL.
6591   Desc[2] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
6592   return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Desc);
6593 }
6594 
6595 /// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference.
6596 /// This code gen. amounts to generating code for:
6597 /// @code
6598 /// (type *)((char *)base + _OBJC_IVAR_$_.ivar;
6599 /// @encode
6600 ///
EmitObjCValueForIvar(CodeGen::CodeGenFunction & CGF,QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)6601 LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar(
6602                                                CodeGen::CodeGenFunction &CGF,
6603                                                QualType ObjectTy,
6604                                                llvm::Value *BaseValue,
6605                                                const ObjCIvarDecl *Ivar,
6606                                                unsigned CVRQualifiers) {
6607   ObjCInterfaceDecl *ID = ObjectTy->getAs<ObjCObjectType>()->getInterface();
6608   llvm::Value *Offset = EmitIvarOffset(CGF, ID, Ivar);
6609   return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
6610                                   Offset);
6611 }
6612 
EmitIvarOffset(CodeGen::CodeGenFunction & CGF,const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)6613 llvm::Value *CGObjCNonFragileABIMac::EmitIvarOffset(
6614   CodeGen::CodeGenFunction &CGF,
6615   const ObjCInterfaceDecl *Interface,
6616   const ObjCIvarDecl *Ivar) {
6617   llvm::Value *IvarOffsetValue = ObjCIvarOffsetVariable(Interface, Ivar);
6618   IvarOffsetValue = CGF.Builder.CreateAlignedLoad(IvarOffsetValue,
6619                                                   CGF.getSizeAlign(), "ivar");
6620   if (IsIvarOffsetKnownIdempotent(CGF, Ivar))
6621     cast<llvm::LoadInst>(IvarOffsetValue)
6622         ->setMetadata(CGM.getModule().getMDKindID("invariant.load"),
6623                       llvm::MDNode::get(VMContext, None));
6624 
6625   // This could be 32bit int or 64bit integer depending on the architecture.
6626   // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value
6627   //  as this is what caller always expectes.
6628   if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy)
6629     IvarOffsetValue = CGF.Builder.CreateIntCast(
6630         IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv");
6631   return IvarOffsetValue;
6632 }
6633 
appendSelectorForMessageRefTable(std::string & buffer,Selector selector)6634 static void appendSelectorForMessageRefTable(std::string &buffer,
6635                                              Selector selector) {
6636   if (selector.isUnarySelector()) {
6637     buffer += selector.getNameForSlot(0);
6638     return;
6639   }
6640 
6641   for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) {
6642     buffer += selector.getNameForSlot(i);
6643     buffer += '_';
6644   }
6645 }
6646 
6647 /// Emit a "v-table" message send.  We emit a weak hidden-visibility
6648 /// struct, initially containing the selector pointer and a pointer to
6649 /// a "fixup" variant of the appropriate objc_msgSend.  To call, we
6650 /// load and call the function pointer, passing the address of the
6651 /// struct as the second parameter.  The runtime determines whether
6652 /// the selector is currently emitted using vtable dispatch; if so, it
6653 /// substitutes a stub function which simply tail-calls through the
6654 /// appropriate vtable slot, and if not, it substitues a stub function
6655 /// which tail-calls objc_msgSend.  Both stubs adjust the selector
6656 /// argument to correctly point to the selector.
6657 RValue
EmitVTableMessageSend(CodeGenFunction & CGF,ReturnValueSlot returnSlot,QualType resultType,Selector selector,llvm::Value * arg0,QualType arg0Type,bool isSuper,const CallArgList & formalArgs,const ObjCMethodDecl * method)6658 CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF,
6659                                               ReturnValueSlot returnSlot,
6660                                               QualType resultType,
6661                                               Selector selector,
6662                                               llvm::Value *arg0,
6663                                               QualType arg0Type,
6664                                               bool isSuper,
6665                                               const CallArgList &formalArgs,
6666                                               const ObjCMethodDecl *method) {
6667   // Compute the actual arguments.
6668   CallArgList args;
6669 
6670   // First argument: the receiver / super-call structure.
6671   if (!isSuper)
6672     arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy);
6673   args.add(RValue::get(arg0), arg0Type);
6674 
6675   // Second argument: a pointer to the message ref structure.  Leave
6676   // the actual argument value blank for now.
6677   args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy);
6678 
6679   args.insert(args.end(), formalArgs.begin(), formalArgs.end());
6680 
6681   MessageSendInfo MSI = getMessageSendInfo(method, resultType, args);
6682 
6683   NullReturnState nullReturn;
6684 
6685   // Find the function to call and the mangled name for the message
6686   // ref structure.  Using a different mangled name wouldn't actually
6687   // be a problem; it would just be a waste.
6688   //
6689   // The runtime currently never uses vtable dispatch for anything
6690   // except normal, non-super message-sends.
6691   // FIXME: don't use this for that.
6692   llvm::Constant *fn = nullptr;
6693   std::string messageRefName("\01l_");
6694   if (CGM.ReturnSlotInterferesWithArgs(MSI.CallInfo)) {
6695     if (isSuper) {
6696       fn = ObjCTypes.getMessageSendSuper2StretFixupFn();
6697       messageRefName += "objc_msgSendSuper2_stret_fixup";
6698     } else {
6699       nullReturn.init(CGF, arg0);
6700       fn = ObjCTypes.getMessageSendStretFixupFn();
6701       messageRefName += "objc_msgSend_stret_fixup";
6702     }
6703   } else if (!isSuper && CGM.ReturnTypeUsesFPRet(resultType)) {
6704     fn = ObjCTypes.getMessageSendFpretFixupFn();
6705     messageRefName += "objc_msgSend_fpret_fixup";
6706   } else {
6707     if (isSuper) {
6708       fn = ObjCTypes.getMessageSendSuper2FixupFn();
6709       messageRefName += "objc_msgSendSuper2_fixup";
6710     } else {
6711       fn = ObjCTypes.getMessageSendFixupFn();
6712       messageRefName += "objc_msgSend_fixup";
6713     }
6714   }
6715   assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend");
6716   messageRefName += '_';
6717 
6718   // Append the selector name, except use underscores anywhere we
6719   // would have used colons.
6720   appendSelectorForMessageRefTable(messageRefName, selector);
6721 
6722   llvm::GlobalVariable *messageRef
6723     = CGM.getModule().getGlobalVariable(messageRefName);
6724   if (!messageRef) {
6725     // Build the message ref structure.
6726     llvm::Constant *values[] = { fn, GetMethodVarName(selector) };
6727     llvm::Constant *init = llvm::ConstantStruct::getAnon(values);
6728     messageRef = new llvm::GlobalVariable(CGM.getModule(),
6729                                           init->getType(),
6730                                           /*constant*/ false,
6731                                           llvm::GlobalValue::WeakAnyLinkage,
6732                                           init,
6733                                           messageRefName);
6734     messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility);
6735     messageRef->setAlignment(16);
6736     messageRef->setSection("__DATA, __objc_msgrefs, coalesced");
6737   }
6738 
6739   bool requiresnullCheck = false;
6740   if (CGM.getLangOpts().ObjCAutoRefCount && method)
6741     for (const auto *ParamDecl : method->params()) {
6742       if (ParamDecl->hasAttr<NSConsumedAttr>()) {
6743         if (!nullReturn.NullBB)
6744           nullReturn.init(CGF, arg0);
6745         requiresnullCheck = true;
6746         break;
6747       }
6748     }
6749 
6750   Address mref =
6751     Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy),
6752             CGF.getPointerAlign());
6753 
6754   // Update the message ref argument.
6755   args[1].RV = RValue::get(mref.getPointer());
6756 
6757   // Load the function to call from the message ref table.
6758   Address calleeAddr =
6759       CGF.Builder.CreateStructGEP(mref, 0, CharUnits::Zero());
6760   llvm::Value *callee = CGF.Builder.CreateLoad(calleeAddr, "msgSend_fn");
6761 
6762   callee = CGF.Builder.CreateBitCast(callee, MSI.MessengerType);
6763 
6764   RValue result = CGF.EmitCall(MSI.CallInfo, callee, returnSlot, args);
6765   return nullReturn.complete(CGF, result, resultType, formalArgs,
6766                              requiresnullCheck ? method : nullptr);
6767 }
6768 
6769 /// Generate code for a message send expression in the nonfragile abi.
6770 CodeGen::RValue
GenerateMessageSend(CodeGen::CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,llvm::Value * Receiver,const CallArgList & CallArgs,const ObjCInterfaceDecl * Class,const ObjCMethodDecl * Method)6771 CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
6772                                             ReturnValueSlot Return,
6773                                             QualType ResultType,
6774                                             Selector Sel,
6775                                             llvm::Value *Receiver,
6776                                             const CallArgList &CallArgs,
6777                                             const ObjCInterfaceDecl *Class,
6778                                             const ObjCMethodDecl *Method) {
6779   return isVTableDispatchedSelector(Sel)
6780     ? EmitVTableMessageSend(CGF, Return, ResultType, Sel,
6781                             Receiver, CGF.getContext().getObjCIdType(),
6782                             false, CallArgs, Method)
6783     : EmitMessageSend(CGF, Return, ResultType,
6784                       EmitSelector(CGF, Sel),
6785                       Receiver, CGF.getContext().getObjCIdType(),
6786                       false, CallArgs, Method, Class, ObjCTypes);
6787 }
6788 
6789 llvm::GlobalVariable *
GetClassGlobal(const std::string & Name,bool Weak)6790 CGObjCNonFragileABIMac::GetClassGlobal(const std::string &Name, bool Weak) {
6791   llvm::GlobalValue::LinkageTypes L =
6792       Weak ? llvm::GlobalValue::ExternalWeakLinkage
6793            : llvm::GlobalValue::ExternalLinkage;
6794 
6795   llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name);
6796 
6797   if (!GV)
6798     GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABITy,
6799                                   false, L, nullptr, Name);
6800 
6801   assert(GV->getLinkage() == L);
6802   return GV;
6803 }
6804 
EmitClassRefFromId(CodeGenFunction & CGF,IdentifierInfo * II,bool Weak,const ObjCInterfaceDecl * ID)6805 llvm::Value *CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF,
6806                                                         IdentifierInfo *II,
6807                                                         bool Weak,
6808                                                         const ObjCInterfaceDecl *ID) {
6809   CharUnits Align = CGF.getPointerAlign();
6810   llvm::GlobalVariable *&Entry = ClassReferences[II];
6811 
6812   if (!Entry) {
6813     std::string ClassName(
6814       getClassSymbolPrefix() +
6815       (ID ? ID->getObjCRuntimeNameAsString() : II->getName()).str());
6816     llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName, Weak);
6817     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
6818                                      false, llvm::GlobalValue::PrivateLinkage,
6819                                      ClassGV, "OBJC_CLASSLIST_REFERENCES_$_");
6820     Entry->setAlignment(Align.getQuantity());
6821     Entry->setSection("__DATA, __objc_classrefs, regular, no_dead_strip");
6822     CGM.addCompilerUsedGlobal(Entry);
6823   }
6824   return CGF.Builder.CreateAlignedLoad(Entry, Align);
6825 }
6826 
EmitClassRef(CodeGenFunction & CGF,const ObjCInterfaceDecl * ID)6827 llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF,
6828                                                   const ObjCInterfaceDecl *ID) {
6829   return EmitClassRefFromId(CGF, ID->getIdentifier(), ID->isWeakImported(), ID);
6830 }
6831 
EmitNSAutoreleasePoolClassRef(CodeGenFunction & CGF)6832 llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef(
6833                                                     CodeGenFunction &CGF) {
6834   IdentifierInfo *II = &CGM.getContext().Idents.get("NSAutoreleasePool");
6835   return EmitClassRefFromId(CGF, II, false, nullptr);
6836 }
6837 
6838 llvm::Value *
EmitSuperClassRef(CodeGenFunction & CGF,const ObjCInterfaceDecl * ID)6839 CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF,
6840                                           const ObjCInterfaceDecl *ID) {
6841   CharUnits Align = CGF.getPointerAlign();
6842   llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()];
6843 
6844   if (!Entry) {
6845     llvm::SmallString<64> ClassName(getClassSymbolPrefix());
6846     ClassName += ID->getObjCRuntimeNameAsString();
6847     llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName.str(),
6848                                                    ID->isWeakImported());
6849     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
6850                                      false, llvm::GlobalValue::PrivateLinkage,
6851                                      ClassGV, "OBJC_CLASSLIST_SUP_REFS_$_");
6852     Entry->setAlignment(Align.getQuantity());
6853     Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip");
6854     CGM.addCompilerUsedGlobal(Entry);
6855   }
6856   return CGF.Builder.CreateAlignedLoad(Entry, Align);
6857 }
6858 
6859 /// EmitMetaClassRef - Return a Value * of the address of _class_t
6860 /// meta-data
6861 ///
EmitMetaClassRef(CodeGenFunction & CGF,const ObjCInterfaceDecl * ID,bool Weak)6862 llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF,
6863                                                       const ObjCInterfaceDecl *ID,
6864                                                       bool Weak) {
6865   CharUnits Align = CGF.getPointerAlign();
6866   llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()];
6867   if (!Entry) {
6868     llvm::SmallString<64> MetaClassName(getMetaclassSymbolPrefix());
6869     MetaClassName += ID->getObjCRuntimeNameAsString();
6870     llvm::GlobalVariable *MetaClassGV =
6871       GetClassGlobal(MetaClassName.str(), Weak);
6872 
6873     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
6874                                      false, llvm::GlobalValue::PrivateLinkage,
6875                                      MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_");
6876     Entry->setAlignment(Align.getQuantity());
6877 
6878     Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip");
6879     CGM.addCompilerUsedGlobal(Entry);
6880   }
6881 
6882   return CGF.Builder.CreateAlignedLoad(Entry, Align);
6883 }
6884 
6885 /// GetClass - Return a reference to the class for the given interface
6886 /// decl.
GetClass(CodeGenFunction & CGF,const ObjCInterfaceDecl * ID)6887 llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF,
6888                                               const ObjCInterfaceDecl *ID) {
6889   if (ID->isWeakImported()) {
6890     llvm::SmallString<64> ClassName(getClassSymbolPrefix());
6891     ClassName += ID->getObjCRuntimeNameAsString();
6892     llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName.str(), true);
6893     (void)ClassGV;
6894     assert(ClassGV->hasExternalWeakLinkage());
6895   }
6896 
6897   return EmitClassRef(CGF, ID);
6898 }
6899 
6900 /// Generates a message send where the super is the receiver.  This is
6901 /// a message send to self with special delivery semantics indicating
6902 /// which class's method should be called.
6903 CodeGen::RValue
GenerateMessageSendSuper(CodeGen::CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,const ObjCInterfaceDecl * Class,bool isCategoryImpl,llvm::Value * Receiver,bool IsClassMessage,const CodeGen::CallArgList & CallArgs,const ObjCMethodDecl * Method)6904 CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
6905                                                  ReturnValueSlot Return,
6906                                                  QualType ResultType,
6907                                                  Selector Sel,
6908                                                  const ObjCInterfaceDecl *Class,
6909                                                  bool isCategoryImpl,
6910                                                  llvm::Value *Receiver,
6911                                                  bool IsClassMessage,
6912                                                  const CodeGen::CallArgList &CallArgs,
6913                                                  const ObjCMethodDecl *Method) {
6914   // ...
6915   // Create and init a super structure; this is a (receiver, class)
6916   // pair we will pass to objc_msgSendSuper.
6917   Address ObjCSuper =
6918     CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(),
6919                          "objc_super");
6920 
6921   llvm::Value *ReceiverAsObject =
6922     CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
6923   CGF.Builder.CreateStore(
6924       ReceiverAsObject,
6925       CGF.Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero()));
6926 
6927   // If this is a class message the metaclass is passed as the target.
6928   llvm::Value *Target;
6929   if (IsClassMessage)
6930       Target = EmitMetaClassRef(CGF, Class, Class->isWeakImported());
6931   else
6932     Target = EmitSuperClassRef(CGF, Class);
6933 
6934   // FIXME: We shouldn't need to do this cast, rectify the ASTContext and
6935   // ObjCTypes types.
6936   llvm::Type *ClassTy =
6937     CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType());
6938   Target = CGF.Builder.CreateBitCast(Target, ClassTy);
6939   CGF.Builder.CreateStore(
6940       Target, CGF.Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize()));
6941 
6942   return (isVTableDispatchedSelector(Sel))
6943     ? EmitVTableMessageSend(CGF, Return, ResultType, Sel,
6944                             ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
6945                             true, CallArgs, Method)
6946     : EmitMessageSend(CGF, Return, ResultType,
6947                       EmitSelector(CGF, Sel),
6948                       ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
6949                       true, CallArgs, Method, Class, ObjCTypes);
6950 }
6951 
EmitSelector(CodeGenFunction & CGF,Selector Sel)6952 llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF,
6953                                                   Selector Sel) {
6954   Address Addr = EmitSelectorAddr(CGF, Sel);
6955 
6956   llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr);
6957   LI->setMetadata(CGM.getModule().getMDKindID("invariant.load"),
6958                   llvm::MDNode::get(VMContext, None));
6959   return LI;
6960 }
6961 
EmitSelectorAddr(CodeGenFunction & CGF,Selector Sel)6962 Address CGObjCNonFragileABIMac::EmitSelectorAddr(CodeGenFunction &CGF,
6963                                                  Selector Sel) {
6964   llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
6965 
6966   CharUnits Align = CGF.getPointerAlign();
6967   if (!Entry) {
6968     llvm::Constant *Casted =
6969       llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel),
6970                                      ObjCTypes.SelectorPtrTy);
6971     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.SelectorPtrTy,
6972                                      false, llvm::GlobalValue::PrivateLinkage,
6973                                      Casted, "OBJC_SELECTOR_REFERENCES_");
6974     Entry->setExternallyInitialized(true);
6975     Entry->setSection("__DATA, __objc_selrefs, literal_pointers, no_dead_strip");
6976     Entry->setAlignment(Align.getQuantity());
6977     CGM.addCompilerUsedGlobal(Entry);
6978   }
6979 
6980   return Address(Entry, Align);
6981 }
6982 
6983 /// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
6984 /// objc_assign_ivar (id src, id *dst, ptrdiff_t)
6985 ///
EmitObjCIvarAssign(CodeGen::CodeGenFunction & CGF,llvm::Value * src,Address dst,llvm::Value * ivarOffset)6986 void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
6987                                                 llvm::Value *src,
6988                                                 Address dst,
6989                                                 llvm::Value *ivarOffset) {
6990   llvm::Type * SrcTy = src->getType();
6991   if (!isa<llvm::PointerType>(SrcTy)) {
6992     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
6993     assert(Size <= 8 && "does not support size > 8");
6994     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
6995            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
6996     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
6997   }
6998   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
6999   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7000   llvm::Value *args[] = { src, dst.getPointer(), ivarOffset };
7001   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args);
7002 }
7003 
7004 /// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
7005 /// objc_assign_strongCast (id src, id *dst)
7006 ///
EmitObjCStrongCastAssign(CodeGen::CodeGenFunction & CGF,llvm::Value * src,Address dst)7007 void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign(
7008   CodeGen::CodeGenFunction &CGF,
7009   llvm::Value *src, Address dst) {
7010   llvm::Type * SrcTy = src->getType();
7011   if (!isa<llvm::PointerType>(SrcTy)) {
7012     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7013     assert(Size <= 8 && "does not support size > 8");
7014     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7015            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7016     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7017   }
7018   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7019   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7020   llvm::Value *args[] = { src, dst.getPointer() };
7021   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(),
7022                               args, "weakassign");
7023 }
7024 
EmitGCMemmoveCollectable(CodeGen::CodeGenFunction & CGF,Address DestPtr,Address SrcPtr,llvm::Value * Size)7025 void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable(
7026   CodeGen::CodeGenFunction &CGF,
7027   Address DestPtr,
7028   Address SrcPtr,
7029   llvm::Value *Size) {
7030   SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy);
7031   DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy);
7032   llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size };
7033   CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args);
7034 }
7035 
7036 /// EmitObjCWeakRead - Code gen for loading value of a __weak
7037 /// object: objc_read_weak (id *src)
7038 ///
EmitObjCWeakRead(CodeGen::CodeGenFunction & CGF,Address AddrWeakObj)7039 llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead(
7040   CodeGen::CodeGenFunction &CGF,
7041   Address AddrWeakObj) {
7042   llvm::Type *DestTy = AddrWeakObj.getElementType();
7043   AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy);
7044   llvm::Value *read_weak =
7045     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(),
7046                                 AddrWeakObj.getPointer(), "weakread");
7047   read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy);
7048   return read_weak;
7049 }
7050 
7051 /// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
7052 /// objc_assign_weak (id src, id *dst)
7053 ///
EmitObjCWeakAssign(CodeGen::CodeGenFunction & CGF,llvm::Value * src,Address dst)7054 void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
7055                                                 llvm::Value *src, Address dst) {
7056   llvm::Type * SrcTy = src->getType();
7057   if (!isa<llvm::PointerType>(SrcTy)) {
7058     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7059     assert(Size <= 8 && "does not support size > 8");
7060     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7061            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7062     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7063   }
7064   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7065   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7066   llvm::Value *args[] = { src, dst.getPointer() };
7067   CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(),
7068                               args, "weakassign");
7069 }
7070 
7071 /// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
7072 /// objc_assign_global (id src, id *dst)
7073 ///
EmitObjCGlobalAssign(CodeGen::CodeGenFunction & CGF,llvm::Value * src,Address dst,bool threadlocal)7074 void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
7075                                           llvm::Value *src, Address dst,
7076                                           bool threadlocal) {
7077   llvm::Type * SrcTy = src->getType();
7078   if (!isa<llvm::PointerType>(SrcTy)) {
7079     unsigned Size = CGM.getDataLayout().getTypeAllocSize(SrcTy);
7080     assert(Size <= 8 && "does not support size > 8");
7081     src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7082            : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7083     src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7084   }
7085   src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7086   dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
7087   llvm::Value *args[] = { src, dst.getPointer() };
7088   if (!threadlocal)
7089     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(),
7090                                 args, "globalassign");
7091   else
7092     CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(),
7093                                 args, "threadlocalassign");
7094 }
7095 
7096 void
EmitSynchronizedStmt(CodeGen::CodeGenFunction & CGF,const ObjCAtSynchronizedStmt & S)7097 CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
7098                                              const ObjCAtSynchronizedStmt &S) {
7099   EmitAtSynchronizedStmt(CGF, S,
7100       cast<llvm::Function>(ObjCTypes.getSyncEnterFn()),
7101       cast<llvm::Function>(ObjCTypes.getSyncExitFn()));
7102 }
7103 
7104 llvm::Constant *
GetEHType(QualType T)7105 CGObjCNonFragileABIMac::GetEHType(QualType T) {
7106   // There's a particular fixed type info for 'id'.
7107   if (T->isObjCIdType() ||
7108       T->isObjCQualifiedIdType()) {
7109     llvm::Constant *IDEHType =
7110       CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id");
7111     if (!IDEHType)
7112       IDEHType =
7113         new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy,
7114                                  false,
7115                                  llvm::GlobalValue::ExternalLinkage,
7116                                  nullptr, "OBJC_EHTYPE_id");
7117     return IDEHType;
7118   }
7119 
7120   // All other types should be Objective-C interface pointer types.
7121   const ObjCObjectPointerType *PT =
7122     T->getAs<ObjCObjectPointerType>();
7123   assert(PT && "Invalid @catch type.");
7124   const ObjCInterfaceType *IT = PT->getInterfaceType();
7125   assert(IT && "Invalid @catch type.");
7126   return GetInterfaceEHType(IT->getDecl(), false);
7127 }
7128 
EmitTryStmt(CodeGen::CodeGenFunction & CGF,const ObjCAtTryStmt & S)7129 void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF,
7130                                          const ObjCAtTryStmt &S) {
7131   EmitTryCatchStmt(CGF, S,
7132       cast<llvm::Function>(ObjCTypes.getObjCBeginCatchFn()),
7133       cast<llvm::Function>(ObjCTypes.getObjCEndCatchFn()),
7134       cast<llvm::Function>(ObjCTypes.getExceptionRethrowFn()));
7135 }
7136 
7137 /// EmitThrowStmt - Generate code for a throw statement.
EmitThrowStmt(CodeGen::CodeGenFunction & CGF,const ObjCAtThrowStmt & S,bool ClearInsertionPoint)7138 void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
7139                                            const ObjCAtThrowStmt &S,
7140                                            bool ClearInsertionPoint) {
7141   if (const Expr *ThrowExpr = S.getThrowExpr()) {
7142     llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
7143     Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy);
7144     CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception)
7145       .setDoesNotReturn();
7146   } else {
7147     CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn())
7148       .setDoesNotReturn();
7149   }
7150 
7151   CGF.Builder.CreateUnreachable();
7152   if (ClearInsertionPoint)
7153     CGF.Builder.ClearInsertionPoint();
7154 }
7155 
7156 llvm::Constant *
GetInterfaceEHType(const ObjCInterfaceDecl * ID,bool ForDefinition)7157 CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID,
7158                                            bool ForDefinition) {
7159   llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()];
7160 
7161   // If we don't need a definition, return the entry if found or check
7162   // if we use an external reference.
7163   if (!ForDefinition) {
7164     if (Entry)
7165       return Entry;
7166 
7167     // If this type (or a super class) has the __objc_exception__
7168     // attribute, emit an external reference.
7169     if (hasObjCExceptionAttribute(CGM.getContext(), ID))
7170       return Entry =
7171           new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false,
7172                                    llvm::GlobalValue::ExternalLinkage,
7173                                    nullptr,
7174                                    ("OBJC_EHTYPE_$_" +
7175                                     ID->getObjCRuntimeNameAsString()));
7176   }
7177 
7178   // Otherwise we need to either make a new entry or fill in the
7179   // initializer.
7180   assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition");
7181   llvm::SmallString<64> ClassName(getClassSymbolPrefix());
7182   ClassName += ID->getObjCRuntimeNameAsString();
7183   std::string VTableName = "objc_ehtype_vtable";
7184   llvm::GlobalVariable *VTableGV =
7185     CGM.getModule().getGlobalVariable(VTableName);
7186   if (!VTableGV)
7187     VTableGV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy,
7188                                         false,
7189                                         llvm::GlobalValue::ExternalLinkage,
7190                                         nullptr, VTableName);
7191 
7192   llvm::Value *VTableIdx = llvm::ConstantInt::get(CGM.Int32Ty, 2);
7193 
7194   llvm::Constant *Values[] = {
7195       llvm::ConstantExpr::getGetElementPtr(VTableGV->getValueType(), VTableGV,
7196                                            VTableIdx),
7197       GetClassName(ID->getObjCRuntimeNameAsString()),
7198       GetClassGlobal(ClassName.str())};
7199   llvm::Constant *Init =
7200     llvm::ConstantStruct::get(ObjCTypes.EHTypeTy, Values);
7201 
7202   llvm::GlobalValue::LinkageTypes L = ForDefinition
7203                                           ? llvm::GlobalValue::ExternalLinkage
7204                                           : llvm::GlobalValue::WeakAnyLinkage;
7205   if (Entry) {
7206     Entry->setInitializer(Init);
7207   } else {
7208     llvm::SmallString<64> EHTYPEName("OBJC_EHTYPE_$_");
7209     EHTYPEName += ID->getObjCRuntimeNameAsString();
7210     Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false,
7211                                      L,
7212                                      Init,
7213                                      EHTYPEName.str());
7214   }
7215   assert(Entry->getLinkage() == L);
7216 
7217   if (ID->getVisibility() == HiddenVisibility)
7218     Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
7219   Entry->setAlignment(CGM.getDataLayout().getABITypeAlignment(
7220       ObjCTypes.EHTypeTy));
7221 
7222   if (ForDefinition)
7223     Entry->setSection("__DATA,__objc_const");
7224   else
7225     Entry->setSection("__DATA,__datacoal_nt,coalesced");
7226 
7227   return Entry;
7228 }
7229 
7230 /* *** */
7231 
7232 CodeGen::CGObjCRuntime *
CreateMacObjCRuntime(CodeGen::CodeGenModule & CGM)7233 CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) {
7234   switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
7235   case ObjCRuntime::FragileMacOSX:
7236   return new CGObjCMac(CGM);
7237 
7238   case ObjCRuntime::MacOSX:
7239   case ObjCRuntime::iOS:
7240   case ObjCRuntime::WatchOS:
7241     return new CGObjCNonFragileABIMac(CGM);
7242 
7243   case ObjCRuntime::GNUstep:
7244   case ObjCRuntime::GCC:
7245   case ObjCRuntime::ObjFW:
7246     llvm_unreachable("these runtimes are not Mac runtimes");
7247   }
7248   llvm_unreachable("bad runtime");
7249 }
7250