1 ///////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
4 // Digital Ltd. LLC
5 //
6 // All rights reserved.
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
11 // *       Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 // *       Redistributions in binary form must reproduce the above
14 // copyright notice, this list of conditions and the following disclaimer
15 // in the documentation and/or other materials provided with the
16 // distribution.
17 // *       Neither the name of Industrial Light & Magic nor the names of
18 // its contributors may be used to endorse or promote products derived
19 // from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 //
33 ///////////////////////////////////////////////////////////////////////////
34 
35 
36 
37 #ifndef INCLUDED_IMATHFUN_H
38 #define INCLUDED_IMATHFUN_H
39 
40 //-----------------------------------------------------------------------------
41 //
42 //	Miscellaneous utility functions
43 //
44 //-----------------------------------------------------------------------------
45 
46 #include "ImathLimits.h"
47 #include "ImathInt64.h"
48 
49 namespace Imath {
50 
51 template <class T>
52 inline T
abs(T a)53 abs (T a)
54 {
55     return (a > T(0)) ? a : -a;
56 }
57 
58 
59 template <class T>
60 inline int
sign(T a)61 sign (T a)
62 {
63     return (a > T(0))? 1 : ((a < T(0)) ? -1 : 0);
64 }
65 
66 
67 template <class T, class Q>
68 inline T
lerp(T a,T b,Q t)69 lerp (T a, T b, Q t)
70 {
71     return (T) (a * (1 - t) + b * t);
72 }
73 
74 
75 template <class T, class Q>
76 inline T
ulerp(T a,T b,Q t)77 ulerp (T a, T b, Q t)
78 {
79     return (T) ((a > b)? (a - (a - b) * t): (a + (b - a) * t));
80 }
81 
82 
83 template <class T>
84 inline T
lerpfactor(T m,T a,T b)85 lerpfactor(T m, T a, T b)
86 {
87     //
88     // Return how far m is between a and b, that is return t such that
89     // if:
90     //     t = lerpfactor(m, a, b);
91     // then:
92     //     m = lerp(a, b, t);
93     //
94     // If a==b, return 0.
95     //
96 
97     T d = b - a;
98     T n = m - a;
99 
100     if (abs(d) > T(1) || abs(n) < limits<T>::max() * abs(d))
101     return n / d;
102 
103     return T(0);
104 }
105 
106 
107 template <class T>
108 inline T
clamp(T a,T l,T h)109 clamp (T a, T l, T h)
110 {
111     return (a < l)? l : ((a > h)? h : a);
112 }
113 
114 
115 template <class T>
116 inline int
cmp(T a,T b)117 cmp (T a, T b)
118 {
119     return Imath::sign (a - b);
120 }
121 
122 
123 template <class T>
124 inline int
cmpt(T a,T b,T t)125 cmpt (T a, T b, T t)
126 {
127     return (Imath::abs (a - b) <= t)? 0 : cmp (a, b);
128 }
129 
130 
131 template <class T>
132 inline bool
iszero(T a,T t)133 iszero (T a, T t)
134 {
135     return (Imath::abs (a) <= t) ? 1 : 0;
136 }
137 
138 
139 template <class T1, class T2, class T3>
140 inline bool
equal(T1 a,T2 b,T3 t)141 equal (T1 a, T2 b, T3 t)
142 {
143     return Imath::abs (a - b) <= t;
144 }
145 
146 template <class T>
147 inline int
floor(T x)148 floor (T x)
149 {
150     return (x >= 0)? int (x): -(int (-x) + (-x > int (-x)));
151 }
152 
153 
154 template <class T>
155 inline int
ceil(T x)156 ceil (T x)
157 {
158     return -floor (-x);
159 }
160 
161 template <class T>
162 inline int
trunc(T x)163 trunc (T x)
164 {
165     return (x >= 0) ? int(x) : -int(-x);
166 }
167 
168 
169 //
170 // Integer division and remainder where the
171 // remainder of x/y has the same sign as x:
172 //
173 //	divs(x,y) == (abs(x) / abs(y)) * (sign(x) * sign(y))
174 //	mods(x,y) == x - y * divs(x,y)
175 //
176 
177 inline int
divs(int x,int y)178 divs (int x, int y)
179 {
180     return (x >= 0)? ((y >= 0)?  ( x / y): -( x / -y)):
181              ((y >= 0)? -(-x / y):  (-x / -y));
182 }
183 
184 
185 inline int
mods(int x,int y)186 mods (int x, int y)
187 {
188     return (x >= 0)? ((y >= 0)?  ( x % y):  ( x % -y)):
189              ((y >= 0)? -(-x % y): -(-x % -y));
190 }
191 
192 
193 //
194 // Integer division and remainder where the
195 // remainder of x/y is always positive:
196 //
197 //	divp(x,y) == floor (double(x) / double (y))
198 //	modp(x,y) == x - y * divp(x,y)
199 //
200 
201 inline int
divp(int x,int y)202 divp (int x, int y)
203 {
204     return (x >= 0)? ((y >= 0)?  (     x  / y): -(      x  / -y)):
205              ((y >= 0)? -((y-1-x) / y):  ((-y-1-x) / -y));
206 }
207 
208 
209 inline int
modp(int x,int y)210 modp (int x, int y)
211 {
212     return x - y * divp (x, y);
213 }
214 
215 //----------------------------------------------------------
216 // Successor and predecessor for floating-point numbers:
217 //
218 // succf(f)     returns float(f+e), where e is the smallest
219 //              positive number such that float(f+e) != f.
220 //
221 // predf(f)     returns float(f-e), where e is the smallest
222 //              positive number such that float(f-e) != f.
223 //
224 // succd(d)     returns double(d+e), where e is the smallest
225 //              positive number such that double(d+e) != d.
226 //
227 // predd(d)     returns double(d-e), where e is the smallest
228 //              positive number such that double(d-e) != d.
229 //
230 // Exceptions:  If the input value is an infinity or a nan,
231 //              succf(), predf(), succd(), and predd() all
232 //              return the input value without changing it.
233 //
234 //----------------------------------------------------------
235 
236 float succf (float f);
237 float predf (float f);
238 
239 double succd (double d);
240 double predd (double d);
241 
242 //
243 // Return true if the number is not a NaN or Infinity.
244 //
245 
246 inline bool
finitef(float f)247 finitef (float f)
248 {
249     union {float f; int i;} u;
250     u.f = f;
251 
252     return (u.i & 0x7f800000) != 0x7f800000;
253 }
254 
255 inline bool
finited(double d)256 finited (double d)
257 {
258     union {double d; Int64 i;} u;
259     u.d = d;
260 
261     return (u.i & 0x7ff0000000000000LL) != 0x7ff0000000000000LL;
262 }
263 
264 
265 } // namespace Imath
266 
267 #endif
268