1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "util/u_rect.h"
35 #include "util/u_sse.h"
36 #include "lp_perf.h"
37 #include "lp_setup_context.h"
38 #include "lp_rast.h"
39 #include "lp_state_fs.h"
40 #include "lp_state_setup.h"
41
42 #define NUM_CHANNELS 4
43
44 #if defined(PIPE_ARCH_SSE)
45 #include <emmintrin.h>
46 #endif
47
48 static INLINE int
subpixel_snap(float a)49 subpixel_snap(float a)
50 {
51 return util_iround(FIXED_ONE * a);
52 }
53
54 static INLINE float
fixed_to_float(int a)55 fixed_to_float(int a)
56 {
57 return a * (1.0 / FIXED_ONE);
58 }
59
60
61 /* Position and area in fixed point coordinates */
62 struct fixed_position {
63 int x[4];
64 int y[4];
65 int area;
66 int dx01;
67 int dy01;
68 int dx20;
69 int dy20;
70 };
71
72
73 /**
74 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
75 * immediately after it.
76 * The memory is allocated from the per-scene pool, not per-tile.
77 * \param tri_size returns number of bytes allocated
78 * \param num_inputs number of fragment shader inputs
79 * \return pointer to triangle space
80 */
81 struct lp_rast_triangle *
lp_setup_alloc_triangle(struct lp_scene * scene,unsigned nr_inputs,unsigned nr_planes,unsigned * tri_size)82 lp_setup_alloc_triangle(struct lp_scene *scene,
83 unsigned nr_inputs,
84 unsigned nr_planes,
85 unsigned *tri_size)
86 {
87 unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
88 unsigned plane_sz = nr_planes * sizeof(struct lp_rast_plane);
89 struct lp_rast_triangle *tri;
90
91 *tri_size = (sizeof(struct lp_rast_triangle) +
92 3 * input_array_sz +
93 plane_sz);
94
95 tri = lp_scene_alloc_aligned( scene, *tri_size, 16 );
96 if (tri == NULL)
97 return NULL;
98
99 tri->inputs.stride = input_array_sz;
100
101 {
102 char *a = (char *)tri;
103 char *b = (char *)&GET_PLANES(tri)[nr_planes];
104 assert(b - a == *tri_size);
105 }
106
107 return tri;
108 }
109
110 void
lp_setup_print_vertex(struct lp_setup_context * setup,const char * name,const float (* v)[4])111 lp_setup_print_vertex(struct lp_setup_context *setup,
112 const char *name,
113 const float (*v)[4])
114 {
115 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
116 int i, j;
117
118 debug_printf(" wpos (%s[0]) xyzw %f %f %f %f\n",
119 name,
120 v[0][0], v[0][1], v[0][2], v[0][3]);
121
122 for (i = 0; i < key->num_inputs; i++) {
123 const float *in = v[key->inputs[i].src_index];
124
125 debug_printf(" in[%d] (%s[%d]) %s%s%s%s ",
126 i,
127 name, key->inputs[i].src_index,
128 (key->inputs[i].usage_mask & 0x1) ? "x" : " ",
129 (key->inputs[i].usage_mask & 0x2) ? "y" : " ",
130 (key->inputs[i].usage_mask & 0x4) ? "z" : " ",
131 (key->inputs[i].usage_mask & 0x8) ? "w" : " ");
132
133 for (j = 0; j < 4; j++)
134 if (key->inputs[i].usage_mask & (1<<j))
135 debug_printf("%.5f ", in[j]);
136
137 debug_printf("\n");
138 }
139 }
140
141
142 /**
143 * Print triangle vertex attribs (for debug).
144 */
145 void
lp_setup_print_triangle(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])146 lp_setup_print_triangle(struct lp_setup_context *setup,
147 const float (*v0)[4],
148 const float (*v1)[4],
149 const float (*v2)[4])
150 {
151 debug_printf("triangle\n");
152
153 {
154 const float ex = v0[0][0] - v2[0][0];
155 const float ey = v0[0][1] - v2[0][1];
156 const float fx = v1[0][0] - v2[0][0];
157 const float fy = v1[0][1] - v2[0][1];
158
159 /* det = cross(e,f).z */
160 const float det = ex * fy - ey * fx;
161 if (det < 0.0f)
162 debug_printf(" - ccw\n");
163 else if (det > 0.0f)
164 debug_printf(" - cw\n");
165 else
166 debug_printf(" - zero area\n");
167 }
168
169 lp_setup_print_vertex(setup, "v0", v0);
170 lp_setup_print_vertex(setup, "v1", v1);
171 lp_setup_print_vertex(setup, "v2", v2);
172 }
173
174
175 #define MAX_PLANES 8
176 static unsigned
177 lp_rast_tri_tab[MAX_PLANES+1] = {
178 0, /* should be impossible */
179 LP_RAST_OP_TRIANGLE_1,
180 LP_RAST_OP_TRIANGLE_2,
181 LP_RAST_OP_TRIANGLE_3,
182 LP_RAST_OP_TRIANGLE_4,
183 LP_RAST_OP_TRIANGLE_5,
184 LP_RAST_OP_TRIANGLE_6,
185 LP_RAST_OP_TRIANGLE_7,
186 LP_RAST_OP_TRIANGLE_8
187 };
188
189
190
191 /**
192 * The primitive covers the whole tile- shade whole tile.
193 *
194 * \param tx, ty the tile position in tiles, not pixels
195 */
196 static boolean
lp_setup_whole_tile(struct lp_setup_context * setup,const struct lp_rast_shader_inputs * inputs,int tx,int ty)197 lp_setup_whole_tile(struct lp_setup_context *setup,
198 const struct lp_rast_shader_inputs *inputs,
199 int tx, int ty)
200 {
201 struct lp_scene *scene = setup->scene;
202
203 LP_COUNT(nr_fully_covered_64);
204
205 /* if variant is opaque and scissor doesn't effect the tile */
206 if (inputs->opaque) {
207 if (!scene->fb.zsbuf) {
208 /*
209 * All previous rendering will be overwritten so reset the bin.
210 */
211 lp_scene_bin_reset( scene, tx, ty );
212 }
213
214 LP_COUNT(nr_shade_opaque_64);
215 return lp_scene_bin_cmd_with_state( scene, tx, ty,
216 setup->fs.stored,
217 LP_RAST_OP_SHADE_TILE_OPAQUE,
218 lp_rast_arg_inputs(inputs) );
219 } else {
220 LP_COUNT(nr_shade_64);
221 return lp_scene_bin_cmd_with_state( scene, tx, ty,
222 setup->fs.stored,
223 LP_RAST_OP_SHADE_TILE,
224 lp_rast_arg_inputs(inputs) );
225 }
226 }
227
228
229 /**
230 * Do basic setup for triangle rasterization and determine which
231 * framebuffer tiles are touched. Put the triangle in the scene's
232 * bins for the tiles which we overlap.
233 */
234 static boolean
do_triangle_ccw(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4],boolean frontfacing)235 do_triangle_ccw(struct lp_setup_context *setup,
236 struct fixed_position* position,
237 const float (*v0)[4],
238 const float (*v1)[4],
239 const float (*v2)[4],
240 boolean frontfacing )
241 {
242 struct lp_scene *scene = setup->scene;
243 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
244 struct lp_rast_triangle *tri;
245 struct lp_rast_plane *plane;
246 struct u_rect bbox;
247 unsigned tri_bytes;
248 int nr_planes = 3;
249
250 /* Area should always be positive here */
251 assert(position->area > 0);
252
253 if (0)
254 lp_setup_print_triangle(setup, v0, v1, v2);
255
256 if (setup->scissor_test) {
257 nr_planes = 7;
258 }
259 else {
260 nr_planes = 3;
261 }
262
263 /* Bounding rectangle (in pixels) */
264 {
265 /* Yes this is necessary to accurately calculate bounding boxes
266 * with the two fill-conventions we support. GL (normally) ends
267 * up needing a bottom-left fill convention, which requires
268 * slightly different rounding.
269 */
270 int adj = (setup->pixel_offset != 0) ? 1 : 0;
271
272 /* Inclusive x0, exclusive x1 */
273 bbox.x0 = MIN3(position->x[0], position->x[1], position->x[2]) >> FIXED_ORDER;
274 bbox.x1 = (MAX3(position->x[0], position->x[1], position->x[2]) - 1) >> FIXED_ORDER;
275
276 /* Inclusive / exclusive depending upon adj (bottom-left or top-right) */
277 bbox.y0 = (MIN3(position->y[0], position->y[1], position->y[2]) + adj) >> FIXED_ORDER;
278 bbox.y1 = (MAX3(position->y[0], position->y[1], position->y[2]) - 1 + adj) >> FIXED_ORDER;
279 }
280
281 if (bbox.x1 < bbox.x0 ||
282 bbox.y1 < bbox.y0) {
283 if (0) debug_printf("empty bounding box\n");
284 LP_COUNT(nr_culled_tris);
285 return TRUE;
286 }
287
288 if (!u_rect_test_intersection(&setup->draw_region, &bbox)) {
289 if (0) debug_printf("offscreen\n");
290 LP_COUNT(nr_culled_tris);
291 return TRUE;
292 }
293
294 /* Can safely discard negative regions, but need to keep hold of
295 * information about when the triangle extends past screen
296 * boundaries. See trimmed_box in lp_setup_bin_triangle().
297 */
298 bbox.x0 = MAX2(bbox.x0, 0);
299 bbox.y0 = MAX2(bbox.y0, 0);
300
301 tri = lp_setup_alloc_triangle(scene,
302 key->num_inputs,
303 nr_planes,
304 &tri_bytes);
305 if (!tri)
306 return FALSE;
307
308 #if 0
309 tri->v[0][0] = v0[0][0];
310 tri->v[1][0] = v1[0][0];
311 tri->v[2][0] = v2[0][0];
312 tri->v[0][1] = v0[0][1];
313 tri->v[1][1] = v1[0][1];
314 tri->v[2][1] = v2[0][1];
315 #endif
316
317 LP_COUNT(nr_tris);
318
319 /* Setup parameter interpolants:
320 */
321 setup->setup.variant->jit_function( v0,
322 v1,
323 v2,
324 frontfacing,
325 GET_A0(&tri->inputs),
326 GET_DADX(&tri->inputs),
327 GET_DADY(&tri->inputs) );
328
329 tri->inputs.frontfacing = frontfacing;
330 tri->inputs.disable = FALSE;
331 tri->inputs.opaque = setup->fs.current.variant->opaque;
332
333 if (0)
334 lp_dump_setup_coef(&setup->setup.variant->key,
335 (const float (*)[4])GET_A0(&tri->inputs),
336 (const float (*)[4])GET_DADX(&tri->inputs),
337 (const float (*)[4])GET_DADY(&tri->inputs));
338
339 plane = GET_PLANES(tri);
340
341 #if defined(PIPE_ARCH_SSE)
342 {
343 __m128i vertx, verty;
344 __m128i shufx, shufy;
345 __m128i dcdx, dcdy, c;
346 __m128i unused;
347 __m128i dcdx_neg_mask;
348 __m128i dcdy_neg_mask;
349 __m128i dcdx_zero_mask;
350 __m128i top_left_flag;
351 __m128i c_inc_mask, c_inc;
352 __m128i eo, p0, p1, p2;
353 __m128i zero = _mm_setzero_si128();
354
355 vertx = _mm_loadu_si128((__m128i *)position->x); /* vertex x coords */
356 verty = _mm_loadu_si128((__m128i *)position->y); /* vertex y coords */
357
358 shufx = _mm_shuffle_epi32(vertx, _MM_SHUFFLE(3,0,2,1));
359 shufy = _mm_shuffle_epi32(verty, _MM_SHUFFLE(3,0,2,1));
360
361 dcdx = _mm_sub_epi32(verty, shufy);
362 dcdy = _mm_sub_epi32(vertx, shufx);
363
364 dcdx_neg_mask = _mm_srai_epi32(dcdx, 31);
365 dcdx_zero_mask = _mm_cmpeq_epi32(dcdx, zero);
366 dcdy_neg_mask = _mm_srai_epi32(dcdy, 31);
367
368 top_left_flag = _mm_set1_epi32((setup->pixel_offset == 0) ? ~0 : 0);
369
370 c_inc_mask = _mm_or_si128(dcdx_neg_mask,
371 _mm_and_si128(dcdx_zero_mask,
372 _mm_xor_si128(dcdy_neg_mask,
373 top_left_flag)));
374
375 c_inc = _mm_srli_epi32(c_inc_mask, 31);
376
377 c = _mm_sub_epi32(mm_mullo_epi32(dcdx, vertx),
378 mm_mullo_epi32(dcdy, verty));
379
380 c = _mm_add_epi32(c, c_inc);
381
382 /* Scale up to match c:
383 */
384 dcdx = _mm_slli_epi32(dcdx, FIXED_ORDER);
385 dcdy = _mm_slli_epi32(dcdy, FIXED_ORDER);
386
387 /* Calculate trivial reject values:
388 */
389 eo = _mm_sub_epi32(_mm_andnot_si128(dcdy_neg_mask, dcdy),
390 _mm_and_si128(dcdx_neg_mask, dcdx));
391
392 /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
393
394 /* Pointless transpose which gets undone immediately in
395 * rasterization:
396 */
397 transpose4_epi32(&c, &dcdx, &dcdy, &eo,
398 &p0, &p1, &p2, &unused);
399
400 _mm_store_si128((__m128i *)&plane[0], p0);
401 _mm_store_si128((__m128i *)&plane[1], p1);
402 _mm_store_si128((__m128i *)&plane[2], p2);
403 }
404 #else
405 {
406 int i;
407 plane[0].dcdy = position->dx01;
408 plane[1].dcdy = position->x[1] - position->x[2];
409 plane[2].dcdy = position->dx20;
410 plane[0].dcdx = position->dy01;
411 plane[1].dcdx = position->y[1] - position->y[2];
412 plane[2].dcdx = position->dy20;
413
414 for (i = 0; i < 3; i++) {
415 /* half-edge constants, will be interated over the whole render
416 * target.
417 */
418 plane[i].c = plane[i].dcdx * position->x[i] - plane[i].dcdy * position->y[i];
419
420 /* correct for top-left vs. bottom-left fill convention.
421 *
422 * note that we're overloading gl_rasterization_rules to mean
423 * both (0.5,0.5) pixel centers *and* bottom-left filling
424 * convention.
425 *
426 * GL actually has a top-left filling convention, but GL's
427 * notion of "top" differs from gallium's...
428 *
429 * Also, sometimes (in FBO cases) GL will render upside down
430 * to its usual method, in which case it will probably want
431 * to use the opposite, top-left convention.
432 */
433 if (plane[i].dcdx < 0) {
434 /* both fill conventions want this - adjust for left edges */
435 plane[i].c++;
436 }
437 else if (plane[i].dcdx == 0) {
438 if (setup->pixel_offset == 0) {
439 /* correct for top-left fill convention:
440 */
441 if (plane[i].dcdy > 0) plane[i].c++;
442 }
443 else {
444 /* correct for bottom-left fill convention:
445 */
446 if (plane[i].dcdy < 0) plane[i].c++;
447 }
448 }
449
450 plane[i].dcdx *= FIXED_ONE;
451 plane[i].dcdy *= FIXED_ONE;
452
453 /* find trivial reject offsets for each edge for a single-pixel
454 * sized block. These will be scaled up at each recursive level to
455 * match the active blocksize. Scaling in this way works best if
456 * the blocks are square.
457 */
458 plane[i].eo = 0;
459 if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx;
460 if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy;
461 }
462 }
463 #endif
464
465 if (0) {
466 debug_printf("p0: %08x/%08x/%08x/%08x\n",
467 plane[0].c,
468 plane[0].dcdx,
469 plane[0].dcdy,
470 plane[0].eo);
471
472 debug_printf("p1: %08x/%08x/%08x/%08x\n",
473 plane[1].c,
474 plane[1].dcdx,
475 plane[1].dcdy,
476 plane[1].eo);
477
478 debug_printf("p0: %08x/%08x/%08x/%08x\n",
479 plane[2].c,
480 plane[2].dcdx,
481 plane[2].dcdy,
482 plane[2].eo);
483 }
484
485
486 /*
487 * When rasterizing scissored tris, use the intersection of the
488 * triangle bounding box and the scissor rect to generate the
489 * scissor planes.
490 *
491 * This permits us to cut off the triangle "tails" that are present
492 * in the intermediate recursive levels caused when two of the
493 * triangles edges don't diverge quickly enough to trivially reject
494 * exterior blocks from the triangle.
495 *
496 * It's not really clear if it's worth worrying about these tails,
497 * but since we generate the planes for each scissored tri, it's
498 * free to trim them in this case.
499 *
500 * Note that otherwise, the scissor planes only vary in 'C' value,
501 * and even then only on state-changes. Could alternatively store
502 * these planes elsewhere.
503 */
504 if (nr_planes == 7) {
505 const struct u_rect *scissor = &setup->scissor;
506
507 plane[3].dcdx = -1;
508 plane[3].dcdy = 0;
509 plane[3].c = 1-scissor->x0;
510 plane[3].eo = 1;
511
512 plane[4].dcdx = 1;
513 plane[4].dcdy = 0;
514 plane[4].c = scissor->x1+1;
515 plane[4].eo = 0;
516
517 plane[5].dcdx = 0;
518 plane[5].dcdy = 1;
519 plane[5].c = 1-scissor->y0;
520 plane[5].eo = 1;
521
522 plane[6].dcdx = 0;
523 plane[6].dcdy = -1;
524 plane[6].c = scissor->y1+1;
525 plane[6].eo = 0;
526 }
527
528 return lp_setup_bin_triangle( setup, tri, &bbox, nr_planes );
529 }
530
531 /*
532 * Round to nearest less or equal power of two of the input.
533 *
534 * Undefined if no bit set exists, so code should check against 0 first.
535 */
536 static INLINE uint32_t
floor_pot(uint32_t n)537 floor_pot(uint32_t n)
538 {
539 #if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
540 if (n == 0)
541 return 0;
542
543 __asm__("bsr %1,%0"
544 : "=r" (n)
545 : "rm" (n));
546 return 1 << n;
547 #else
548 n |= (n >> 1);
549 n |= (n >> 2);
550 n |= (n >> 4);
551 n |= (n >> 8);
552 n |= (n >> 16);
553 return n - (n >> 1);
554 #endif
555 }
556
557
558 boolean
lp_setup_bin_triangle(struct lp_setup_context * setup,struct lp_rast_triangle * tri,const struct u_rect * bbox,int nr_planes)559 lp_setup_bin_triangle( struct lp_setup_context *setup,
560 struct lp_rast_triangle *tri,
561 const struct u_rect *bbox,
562 int nr_planes )
563 {
564 struct lp_scene *scene = setup->scene;
565 struct u_rect trimmed_box = *bbox;
566 int i;
567
568 /* What is the largest power-of-two boundary this triangle crosses:
569 */
570 int dx = floor_pot((bbox->x0 ^ bbox->x1) |
571 (bbox->y0 ^ bbox->y1));
572
573 /* The largest dimension of the rasterized area of the triangle
574 * (aligned to a 4x4 grid), rounded down to the nearest power of two:
575 */
576 int sz = floor_pot((bbox->x1 - (bbox->x0 & ~3)) |
577 (bbox->y1 - (bbox->y0 & ~3)));
578
579 /* Now apply scissor, etc to the bounding box. Could do this
580 * earlier, but it confuses the logic for tri-16 and would force
581 * the rasterizer to also respect scissor, etc, just for the rare
582 * cases where a small triangle extends beyond the scissor.
583 */
584 u_rect_find_intersection(&setup->draw_region, &trimmed_box);
585
586 /* Determine which tile(s) intersect the triangle's bounding box
587 */
588 if (dx < TILE_SIZE)
589 {
590 int ix0 = bbox->x0 / TILE_SIZE;
591 int iy0 = bbox->y0 / TILE_SIZE;
592 unsigned px = bbox->x0 & 63 & ~3;
593 unsigned py = bbox->y0 & 63 & ~3;
594
595 assert(iy0 == bbox->y1 / TILE_SIZE &&
596 ix0 == bbox->x1 / TILE_SIZE);
597
598 if (nr_planes == 3) {
599 if (sz < 4)
600 {
601 /* Triangle is contained in a single 4x4 stamp:
602 */
603 assert(px + 4 <= TILE_SIZE);
604 assert(py + 4 <= TILE_SIZE);
605 return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
606 setup->fs.stored,
607 LP_RAST_OP_TRIANGLE_3_4,
608 lp_rast_arg_triangle_contained(tri, px, py) );
609 }
610
611 if (sz < 16)
612 {
613 /* Triangle is contained in a single 16x16 block:
614 */
615
616 /*
617 * The 16x16 block is only 4x4 aligned, and can exceed the tile
618 * dimensions if the triangle is 16 pixels in one dimension but 4
619 * in the other. So budge the 16x16 back inside the tile.
620 */
621 px = MIN2(px, TILE_SIZE - 16);
622 py = MIN2(py, TILE_SIZE - 16);
623
624 assert(px + 16 <= TILE_SIZE);
625 assert(py + 16 <= TILE_SIZE);
626
627 return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
628 setup->fs.stored,
629 LP_RAST_OP_TRIANGLE_3_16,
630 lp_rast_arg_triangle_contained(tri, px, py) );
631 }
632 }
633 else if (nr_planes == 4 && sz < 16)
634 {
635 px = MIN2(px, TILE_SIZE - 16);
636 py = MIN2(py, TILE_SIZE - 16);
637
638 assert(px + 16 <= TILE_SIZE);
639 assert(py + 16 <= TILE_SIZE);
640
641 return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
642 setup->fs.stored,
643 LP_RAST_OP_TRIANGLE_4_16,
644 lp_rast_arg_triangle_contained(tri, px, py));
645 }
646
647
648 /* Triangle is contained in a single tile:
649 */
650 return lp_scene_bin_cmd_with_state( scene, ix0, iy0, setup->fs.stored,
651 lp_rast_tri_tab[nr_planes],
652 lp_rast_arg_triangle(tri, (1<<nr_planes)-1) );
653 }
654 else
655 {
656 struct lp_rast_plane *plane = GET_PLANES(tri);
657 int c[MAX_PLANES];
658 int ei[MAX_PLANES];
659
660 int eo[MAX_PLANES];
661 int xstep[MAX_PLANES];
662 int ystep[MAX_PLANES];
663 int x, y;
664
665 int ix0 = trimmed_box.x0 / TILE_SIZE;
666 int iy0 = trimmed_box.y0 / TILE_SIZE;
667 int ix1 = trimmed_box.x1 / TILE_SIZE;
668 int iy1 = trimmed_box.y1 / TILE_SIZE;
669
670 for (i = 0; i < nr_planes; i++) {
671 c[i] = (plane[i].c +
672 plane[i].dcdy * iy0 * TILE_SIZE -
673 plane[i].dcdx * ix0 * TILE_SIZE);
674
675 ei[i] = (plane[i].dcdy -
676 plane[i].dcdx -
677 plane[i].eo) << TILE_ORDER;
678
679 eo[i] = plane[i].eo << TILE_ORDER;
680 xstep[i] = -(plane[i].dcdx << TILE_ORDER);
681 ystep[i] = plane[i].dcdy << TILE_ORDER;
682 }
683
684
685
686 /* Test tile-sized blocks against the triangle.
687 * Discard blocks fully outside the tri. If the block is fully
688 * contained inside the tri, bin an lp_rast_shade_tile command.
689 * Else, bin a lp_rast_triangle command.
690 */
691 for (y = iy0; y <= iy1; y++)
692 {
693 boolean in = FALSE; /* are we inside the triangle? */
694 int cx[MAX_PLANES];
695
696 for (i = 0; i < nr_planes; i++)
697 cx[i] = c[i];
698
699 for (x = ix0; x <= ix1; x++)
700 {
701 int out = 0;
702 int partial = 0;
703
704 for (i = 0; i < nr_planes; i++) {
705 int planeout = cx[i] + eo[i];
706 int planepartial = cx[i] + ei[i] - 1;
707 out |= (planeout >> 31);
708 partial |= (planepartial >> 31) & (1<<i);
709 }
710
711 if (out) {
712 /* do nothing */
713 if (in)
714 break; /* exiting triangle, all done with this row */
715 LP_COUNT(nr_empty_64);
716 }
717 else if (partial) {
718 /* Not trivially accepted by at least one plane -
719 * rasterize/shade partial tile
720 */
721 int count = util_bitcount(partial);
722 in = TRUE;
723
724 if (!lp_scene_bin_cmd_with_state( scene, x, y,
725 setup->fs.stored,
726 lp_rast_tri_tab[count],
727 lp_rast_arg_triangle(tri, partial) ))
728 goto fail;
729
730 LP_COUNT(nr_partially_covered_64);
731 }
732 else {
733 /* triangle covers the whole tile- shade whole tile */
734 LP_COUNT(nr_fully_covered_64);
735 in = TRUE;
736 if (!lp_setup_whole_tile(setup, &tri->inputs, x, y))
737 goto fail;
738 }
739
740 /* Iterate cx values across the region:
741 */
742 for (i = 0; i < nr_planes; i++)
743 cx[i] += xstep[i];
744 }
745
746 /* Iterate c values down the region:
747 */
748 for (i = 0; i < nr_planes; i++)
749 c[i] += ystep[i];
750 }
751 }
752
753 return TRUE;
754
755 fail:
756 /* Need to disable any partially binned triangle. This is easier
757 * than trying to locate all the triangle, shade-tile, etc,
758 * commands which may have been binned.
759 */
760 tri->inputs.disable = TRUE;
761 return FALSE;
762 }
763
764
765 /**
766 * Try to draw the triangle, restart the scene on failure.
767 */
retry_triangle_ccw(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4],boolean front)768 static void retry_triangle_ccw( struct lp_setup_context *setup,
769 struct fixed_position* position,
770 const float (*v0)[4],
771 const float (*v1)[4],
772 const float (*v2)[4],
773 boolean front)
774 {
775 if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
776 {
777 if (!lp_setup_flush_and_restart(setup))
778 return;
779
780 if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
781 return;
782 }
783 }
784
785
786 /**
787 * Calculate fixed position data for a triangle
788 */
789 static INLINE void
calc_fixed_position(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])790 calc_fixed_position( struct lp_setup_context *setup,
791 struct fixed_position* position,
792 const float (*v0)[4],
793 const float (*v1)[4],
794 const float (*v2)[4])
795 {
796 position->x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset);
797 position->x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset);
798 position->x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
799 position->x[3] = 0;
800
801 position->y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset);
802 position->y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset);
803 position->y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
804 position->y[3] = 0;
805
806 position->dx01 = position->x[0] - position->x[1];
807 position->dy01 = position->y[0] - position->y[1];
808
809 position->dx20 = position->x[2] - position->x[0];
810 position->dy20 = position->y[2] - position->y[0];
811
812 position->area = position->dx01 * position->dy20 - position->dx20 * position->dy01;
813 }
814
815
816 /**
817 * Rotate a triangle, flipping its clockwise direction,
818 * Swaps values for xy[0] and xy[1]
819 */
820 static INLINE void
rotate_fixed_position_01(struct fixed_position * position)821 rotate_fixed_position_01( struct fixed_position* position )
822 {
823 int x, y;
824
825 x = position->x[1];
826 y = position->y[1];
827 position->x[1] = position->x[0];
828 position->y[1] = position->y[0];
829 position->x[0] = x;
830 position->y[0] = y;
831
832 position->dx01 = -position->dx01;
833 position->dy01 = -position->dy01;
834 position->dx20 = position->x[2] - position->x[0];
835 position->dy20 = position->y[2] - position->y[0];
836
837 position->area = -position->area;
838 }
839
840
841 /**
842 * Rotate a triangle, flipping its clockwise direction,
843 * Swaps values for xy[1] and xy[2]
844 */
845 static INLINE void
rotate_fixed_position_12(struct fixed_position * position)846 rotate_fixed_position_12( struct fixed_position* position )
847 {
848 int x, y;
849
850 x = position->x[2];
851 y = position->y[2];
852 position->x[2] = position->x[1];
853 position->y[2] = position->y[1];
854 position->x[1] = x;
855 position->y[1] = y;
856
857 x = position->dx01;
858 y = position->dy01;
859 position->dx01 = -position->dx20;
860 position->dy01 = -position->dy20;
861 position->dx20 = -x;
862 position->dy20 = -y;
863
864 position->area = -position->area;
865 }
866
867
868 /**
869 * Draw triangle if it's CW, cull otherwise.
870 */
triangle_cw(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])871 static void triangle_cw( struct lp_setup_context *setup,
872 const float (*v0)[4],
873 const float (*v1)[4],
874 const float (*v2)[4] )
875 {
876 struct fixed_position position;
877 calc_fixed_position(setup, &position, v0, v1, v2);
878
879 if (position.area < 0) {
880 if (setup->flatshade_first) {
881 rotate_fixed_position_12(&position);
882 retry_triangle_ccw(setup, &position, v0, v2, v1, !setup->ccw_is_frontface);
883 } else {
884 rotate_fixed_position_01(&position);
885 retry_triangle_ccw(setup, &position, v1, v0, v2, !setup->ccw_is_frontface);
886 }
887 }
888 }
889
890
triangle_ccw(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])891 static void triangle_ccw( struct lp_setup_context *setup,
892 const float (*v0)[4],
893 const float (*v1)[4],
894 const float (*v2)[4])
895 {
896 struct fixed_position position;
897 calc_fixed_position(setup, &position, v0, v1, v2);
898
899 if (position.area > 0)
900 retry_triangle_ccw(setup, &position, v0, v1, v2, setup->ccw_is_frontface);
901 }
902
903 /**
904 * Draw triangle whether it's CW or CCW.
905 */
triangle_both(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])906 static void triangle_both( struct lp_setup_context *setup,
907 const float (*v0)[4],
908 const float (*v1)[4],
909 const float (*v2)[4] )
910 {
911 struct fixed_position position;
912 calc_fixed_position(setup, &position, v0, v1, v2);
913
914 if (0) {
915 assert(!util_is_inf_or_nan(v0[0][0]));
916 assert(!util_is_inf_or_nan(v0[0][1]));
917 assert(!util_is_inf_or_nan(v1[0][0]));
918 assert(!util_is_inf_or_nan(v1[0][1]));
919 assert(!util_is_inf_or_nan(v2[0][0]));
920 assert(!util_is_inf_or_nan(v2[0][1]));
921 }
922
923 if (position.area > 0)
924 retry_triangle_ccw( setup, &position, v0, v1, v2, setup->ccw_is_frontface );
925 else if (position.area < 0) {
926 if (setup->flatshade_first) {
927 rotate_fixed_position_12( &position );
928 retry_triangle_ccw( setup, &position, v0, v2, v1, !setup->ccw_is_frontface );
929 } else {
930 rotate_fixed_position_01( &position );
931 retry_triangle_ccw( setup, &position, v1, v0, v2, !setup->ccw_is_frontface );
932 }
933 }
934 }
935
936
triangle_nop(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])937 static void triangle_nop( struct lp_setup_context *setup,
938 const float (*v0)[4],
939 const float (*v1)[4],
940 const float (*v2)[4] )
941 {
942 }
943
944
945 void
lp_setup_choose_triangle(struct lp_setup_context * setup)946 lp_setup_choose_triangle( struct lp_setup_context *setup )
947 {
948 switch (setup->cullmode) {
949 case PIPE_FACE_NONE:
950 setup->triangle = triangle_both;
951 break;
952 case PIPE_FACE_BACK:
953 setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
954 break;
955 case PIPE_FACE_FRONT:
956 setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
957 break;
958 default:
959 setup->triangle = triangle_nop;
960 break;
961 }
962 }
963