Home
last modified time | relevance | path

Searched refs:hough (Results 1 – 11 of 11) sorted by relevance

/external/opencv3/samples/gpu/
Dhoughlines.cpp62 …Ptr<cuda::HoughSegmentDetector> hough = cuda::createHoughSegmentDetector(1.0f, (float) (CV_PI / 18… in main() local
64 hough->detect(d_src, d_lines); in main()
/external/opencv3/modules/cudaimgproc/perf/
Dperf_hough.cpp107 …cv::Ptr<cv::cuda::HoughLinesDetector> hough = cv::cuda::createHoughLinesDetector(rho, theta, thres… in PERF_TEST_P() local
109 TEST_CYCLE() hough->detect(d_src, d_lines); in PERF_TEST_P()
156 …cv::Ptr<cv::cuda::HoughSegmentDetector> hough = cv::cuda::createHoughSegmentDetector(rho, theta, m… variable
158 TEST_CYCLE() hough->detect(d_mask, d_lines);
/external/opencv3/modules/cudaimgproc/src/
Dhough_segments.cpp56 namespace hough namespace
136 using namespace cv::cuda::device::hough; in detect()
Dhough_lines.cpp56 namespace hough namespace
133 using namespace cv::cuda::device::hough; in detect()
Dhough_circles.cpp56 namespace hough namespace
162 using namespace cv::cuda::device::hough; in detect()
/external/opencv3/doc/py_tutorials/py_imgproc/py_houghlines/
Dpy_houghlines.markdown52 Courtesy: [Amos Storkey](http://homepages.inf.ed.ac.uk/amos/hough.html) )
56 This is how hough transform for lines works. It is simple, and may be you can implement it using
68 applying hough transform. Second and third parameters are \f$\rho\f$ and \f$\theta\f$ accuracies
103 In the hough transform, you can see that even for a line with two arguments, it takes a lot of
107 Hough Transform and Probabilistic Hough Transform in hough space. (Image Courtesy : [Franck
/external/opencv3/modules/cudaimgproc/test/
Dtest_hough.cpp97 …cv::Ptr<cv::cuda::HoughLinesDetector> hough = cv::cuda::createHoughLinesDetector(rho, theta, thres… in CUDA_TEST_P() local
100 hough->detect(loadMat(src, useRoi), d_lines); in CUDA_TEST_P()
103 hough->downloadResults(d_lines, lines); in CUDA_TEST_P()
/external/opencv3/modules/cudaimgproc/src/cuda/
Dbuild_point_list.cu50 namespace hough namespace
/external/opencv3/doc/py_tutorials/py_imgproc/py_houghcircles/
Dpy_houghcircles.markdown16 equation, we can see we have 3 parameters, so we need a 3D accumulator for hough transform, which
/external/opencv3/doc/
Dopencv.bib489 title = {Robust detection of lines using the progressive probabilistic hough transform},
/external/opencv3/
DAndroid.mk724 modules/imgproc/src/hough.cpp \