1 /*
2 * Copyright 2013 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 #include "PathOpsTestCommon.h"
8 #include "SkIntersections.h"
9 #include "SkOpContour.h"
10 #include "SkOpSegment.h"
11 #include "SkRandom.h"
12 #include "SkTSort.h"
13 #include "Test.h"
14
15 static bool gDisableAngleTests = true;
16
next(float f)17 static float next(float f)
18 {
19 int fBits = SkFloatAs2sCompliment(f);
20 ++fBits;
21 float fNext = Sk2sComplimentAsFloat(fBits);
22 return fNext;
23 }
24
prev(float f)25 static float prev(float f)
26 {
27 int fBits = SkFloatAs2sCompliment(f);
28 --fBits;
29 float fNext = Sk2sComplimentAsFloat(fBits);
30 return fNext;
31 }
32
DEF_TEST(PathOpsAngleFindCrossEpsilon,reporter)33 DEF_TEST(PathOpsAngleFindCrossEpsilon, reporter) {
34 if (gDisableAngleTests) {
35 return;
36 }
37 SkRandom ran;
38 int maxEpsilon = 0;
39 for (int index = 0; index < 10000000; ++index) {
40 SkDLine line = {{{0, 0}, {ran.nextRangeF(0.0001f, 1000), ran.nextRangeF(0.0001f, 1000)}}};
41 for (int inner = 0; inner < 10; ++inner) {
42 float t = ran.nextRangeF(0.0001f, 1);
43 SkDPoint dPt = line.ptAtT(t);
44 SkPoint pt = dPt.asSkPoint();
45 float xs[3] = { prev(pt.fX), pt.fX, next(pt.fX) };
46 float ys[3] = { prev(pt.fY), pt.fY, next(pt.fY) };
47 for (int xIdx = 0; xIdx < 3; ++xIdx) {
48 for (int yIdx = 0; yIdx < 3; ++yIdx) {
49 SkPoint test = { xs[xIdx], ys[yIdx] };
50 float p1 = SkDoubleToScalar(line[1].fX * test.fY);
51 float p2 = SkDoubleToScalar(line[1].fY * test.fX);
52 int p1Bits = SkFloatAs2sCompliment(p1);
53 int p2Bits = SkFloatAs2sCompliment(p2);
54 int epsilon = SkTAbs(p1Bits - p2Bits);
55 if (maxEpsilon < epsilon) {
56 SkDebugf("line={{0, 0}, {%1.7g, %1.7g}} t=%1.7g pt={%1.7g, %1.7g}"
57 " epsilon=%d\n",
58 line[1].fX, line[1].fY, t, test.fX, test.fY, epsilon);
59 maxEpsilon = epsilon;
60 }
61 }
62 }
63 }
64 }
65 }
66
DEF_TEST(PathOpsAngleFindQuadEpsilon,reporter)67 DEF_TEST(PathOpsAngleFindQuadEpsilon, reporter) {
68 if (gDisableAngleTests) {
69 return;
70 }
71 SkRandom ran;
72 int maxEpsilon = 0;
73 double maxAngle = 0;
74 for (int index = 0; index < 100000; ++index) {
75 SkDLine line = {{{0, 0}, {ran.nextRangeF(0.0001f, 1000), ran.nextRangeF(0.0001f, 1000)}}};
76 float t = ran.nextRangeF(0.0001f, 1);
77 SkDPoint dPt = line.ptAtT(t);
78 float t2 = ran.nextRangeF(0.0001f, 1);
79 SkDPoint qPt = line.ptAtT(t2);
80 float t3 = ran.nextRangeF(0.0001f, 1);
81 SkDPoint qPt2 = line.ptAtT(t3);
82 qPt.fX += qPt2.fY;
83 qPt.fY -= qPt2.fX;
84 SkDQuad quad = {{line[0], dPt, qPt}};
85 // binary search for maximum movement of quad[1] towards test that still has 1 intersection
86 double moveT = 0.5f;
87 double deltaT = moveT / 2;
88 SkDPoint last;
89 do {
90 last = quad[1];
91 quad[1].fX = dPt.fX - line[1].fY * moveT;
92 quad[1].fY = dPt.fY + line[1].fX * moveT;
93 SkIntersections i;
94 i.intersect(quad, line);
95 REPORTER_ASSERT(reporter, i.used() > 0);
96 if (i.used() == 1) {
97 moveT += deltaT;
98 } else {
99 moveT -= deltaT;
100 }
101 deltaT /= 2;
102 } while (last.asSkPoint() != quad[1].asSkPoint());
103 float p1 = SkDoubleToScalar(line[1].fX * last.fY);
104 float p2 = SkDoubleToScalar(line[1].fY * last.fX);
105 int p1Bits = SkFloatAs2sCompliment(p1);
106 int p2Bits = SkFloatAs2sCompliment(p2);
107 int epsilon = SkTAbs(p1Bits - p2Bits);
108 if (maxEpsilon < epsilon) {
109 SkDebugf("line={{0, 0}, {%1.7g, %1.7g}} t=%1.7g/%1.7g/%1.7g moveT=%1.7g"
110 " pt={%1.7g, %1.7g} epsilon=%d\n",
111 line[1].fX, line[1].fY, t, t2, t3, moveT, last.fX, last.fY, epsilon);
112 maxEpsilon = epsilon;
113 }
114 double a1 = atan2(line[1].fY, line[1].fX);
115 double a2 = atan2(last.fY, last.fX);
116 double angle = fabs(a1 - a2);
117 if (maxAngle < angle) {
118 SkDebugf("line={{0, 0}, {%1.7g, %1.7g}} t=%1.7g/%1.7g/%1.7g moveT=%1.7g"
119 " pt={%1.7g, %1.7g} angle=%1.7g\n",
120 line[1].fX, line[1].fY, t, t2, t3, moveT, last.fX, last.fY, angle);
121 maxAngle = angle;
122 }
123 }
124 }
125
find_slop(double x,double y,double rx,double ry)126 static int find_slop(double x, double y, double rx, double ry) {
127 int slopBits = 0;
128 bool less1, less2;
129 double absX = fabs(x);
130 double absY = fabs(y);
131 double length = absX < absY ? absX / 2 + absY : absX + absY / 2;
132 int exponent;
133 (void) frexp(length, &exponent);
134 double epsilon = ldexp(FLT_EPSILON, exponent);
135 do {
136 // get the length as the larger plus half the smaller (both same signs)
137 // find the ulps of the length
138 // compute the offsets from there
139 double xSlop = epsilon * slopBits;
140 double ySlop = x * y < 0 ? -xSlop : xSlop; // OPTIMIZATION: use copysign / _copysign ?
141 double x1 = x - xSlop;
142 double y1 = y + ySlop;
143 double x_ry1 = x1 * ry;
144 double rx_y1 = rx * y1;
145 less1 = x_ry1 < rx_y1;
146 double x2 = x + xSlop;
147 double y2 = y - ySlop;
148 double x_ry2 = x2 * ry;
149 double rx_y2 = rx * y2;
150 less2 = x_ry2 < rx_y2;
151 } while (less1 == less2 && ++slopBits);
152 return slopBits;
153 }
154
155 // from http://stackoverflow.com/questions/1427422/cheap-algorithm-to-find-measure-of-angle-between-vectors
diamond_angle(double y,double x)156 static double diamond_angle(double y, double x)
157 {
158 if (y >= 0)
159 return (x >= 0 ? y/(x+y) : 1-x/(-x+y));
160 else
161 return (x < 0 ? 2-y/(-x-y) : 3+x/(x-y));
162 }
163
164 static const double slopTests[][4] = {
165 // x y rx ry
166 {-0.058554756452593892, -0.18804585843827226, -0.018568569646021160, -0.059615294434479438},
167 {-0.0013717412948608398, 0.0041152238845825195, -0.00045837944195925573, 0.0013753175735478074},
168 {-2.1033774145221198, -1.4046019261273715e-008, -0.70062688352066704, -1.2706324683777995e-008},
169 };
170
DEF_TEST(PathOpsAngleFindSlop,reporter)171 DEF_TEST(PathOpsAngleFindSlop, reporter) {
172 if (gDisableAngleTests) {
173 return;
174 }
175 for (int index = 0; index < (int) SK_ARRAY_COUNT(slopTests); ++index) {
176 const double* slopTest = slopTests[index];
177 double x = slopTest[0];
178 double y = slopTest[1];
179 double rx = slopTest[2];
180 double ry = slopTest[3];
181 SkDebugf("%s xy %d=%d\n", __FUNCTION__, index, find_slop(x, y, rx, ry));
182 SkDebugf("%s rxy %d=%d\n", __FUNCTION__, index, find_slop(rx, ry, x, y));
183 double angle = diamond_angle(y, x);
184 double rAngle = diamond_angle(ry, rx);
185 double diff = fabs(angle - rAngle);
186 SkDebugf("%s diamond xy=%1.9g rxy=%1.9g diff=%1.9g factor=%d\n", __FUNCTION__,
187 angle, rAngle, diff, (int) (diff / FLT_EPSILON));
188 }
189 }
190
191 class PathOpsAngleTester {
192 public:
After(SkOpAngle & lh,SkOpAngle & rh)193 static int After(SkOpAngle& lh, SkOpAngle& rh) {
194 return lh.after(&rh);
195 }
196
ConvexHullOverlaps(SkOpAngle & lh,SkOpAngle & rh)197 static int ConvexHullOverlaps(SkOpAngle& lh, SkOpAngle& rh) {
198 return lh.convexHullOverlaps(&rh);
199 }
200
Orderable(SkOpAngle & lh,SkOpAngle & rh)201 static int Orderable(SkOpAngle& lh, SkOpAngle& rh) {
202 return lh.orderable(&rh);
203 }
204
EndsIntersect(SkOpAngle & lh,SkOpAngle & rh)205 static int EndsIntersect(SkOpAngle& lh, SkOpAngle& rh) {
206 return lh.endsIntersect(&rh);
207 }
208
SetNext(SkOpAngle & lh,SkOpAngle & rh)209 static void SetNext(SkOpAngle& lh, SkOpAngle& rh) {
210 lh.fNext = &rh;
211 }
212 };
213
214 class PathOpsSegmentTester {
215 public:
DebugReset(SkOpSegment * segment)216 static void DebugReset(SkOpSegment* segment) {
217 segment->debugReset();
218 }
219 };
220
221 struct CircleData {
222 const SkDCubic fPts;
223 const int fPtCount;
224 SkPoint fShortPts[4];
225 };
226
227 static CircleData circleDataSet[] = {
228 { {{{313.0155029296875, 207.90290832519531}, {320.05078125, 227.58743286132812}}}, 2, {} },
229 { {{{313.0155029296875, 207.90290832519531}, {313.98246891063195, 219.33615203830394},
230 {320.05078125, 227.58743286132812}}}, 3, {} },
231 };
232
233 static const int circleDataSetSize = (int) SK_ARRAY_COUNT(circleDataSet);
234
DEF_TEST(PathOpsAngleCircle,reporter)235 DEF_TEST(PathOpsAngleCircle, reporter) {
236 SkChunkAlloc allocator(4096);
237 SkOpContourHead contour;
238 SkOpGlobalState state(nullptr, &contour SkDEBUGPARAMS(nullptr));
239 contour.init(&state, false, false);
240 for (int index = 0; index < circleDataSetSize; ++index) {
241 CircleData& data = circleDataSet[index];
242 for (int idx2 = 0; idx2 < data.fPtCount; ++idx2) {
243 data.fShortPts[idx2] = data.fPts.fPts[idx2].asSkPoint();
244 }
245 switch (data.fPtCount) {
246 case 2:
247 contour.addLine(data.fShortPts, &allocator);
248 break;
249 case 3:
250 contour.addQuad(data.fShortPts, &allocator);
251 break;
252 case 4:
253 contour.addCubic(data.fShortPts, &allocator);
254 break;
255 }
256 }
257 SkOpSegment* first = contour.first();
258 first->debugAddAngle(0, 1, &allocator);
259 SkOpSegment* next = first->next();
260 next->debugAddAngle(0, 1, &allocator);
261 PathOpsAngleTester::Orderable(*first->debugLastAngle(), *next->debugLastAngle());
262 }
263
264 struct IntersectData {
265 const SkDCubic fPts;
266 const int fPtCount;
267 double fTStart;
268 double fTEnd;
269 SkPoint fShortPts[4];
270 };
271
272 static IntersectData intersectDataSet1[] = {
273 { {{{322.935669,231.030273}, {312.832214,220.393295}, {312.832214,203.454178}}}, 3,
274 0.865309956, 0.154740299, {} },
275 { {{{322.12738,233.397751}, {295.718353,159.505829}}}, 2,
276 0.345028807, 0.0786326511, {} },
277 { {{{322.935669,231.030273}, {312.832214,220.393295}, {312.832214,203.454178}}}, 3,
278 0.865309956, 1, {} },
279 { {{{322.12738,233.397751}, {295.718353,159.505829}}}, 2,
280 0.345028807, 1, {} },
281 };
282
283 static IntersectData intersectDataSet2[] = {
284 { {{{364.390686,157.898193}, {375.281769,136.674606}, {396.039917,136.674606}}}, 3,
285 0.578520747, 1, {} },
286 { {{{364.390686,157.898193}, {375.281769,136.674606}, {396.039917,136.674606}}}, 3,
287 0.578520747, 0.536512973, {} },
288 { {{{366.608826,151.196014}, {378.803101,136.674606}, {398.164948,136.674606}}}, 3,
289 0.490456543, 1, {} },
290 };
291
292 static IntersectData intersectDataSet3[] = {
293 { {{{2.000000,0.000000}, {1.33333333,0.66666667}}}, 2, 1, 0, {} },
294 { {{{1.33333333,0.66666667}, {0.000000,2.000000}}}, 2, 0, 0.25, {} },
295 { {{{2.000000,2.000000}, {1.33333333,0.66666667}}}, 2, 1, 0, {} },
296 };
297
298 static IntersectData intersectDataSet4[] = {
299 { {{{1.3333333,0.6666667}, {0.000,2.000}}}, 2, 0.250000006, 0, {} },
300 { {{{1.000,0.000}, {1.000,1.000}}}, 2, 1, 0, {} },
301 { {{{1.000,1.000}, {0.000,0.000}}}, 2, 0, 1, {} },
302 };
303
304 static IntersectData intersectDataSet5[] = {
305 { {{{0.000,0.000}, {1.000,0.000}, {1.000,1.000}}}, 3, 1, 0.666666667, {} },
306 { {{{0.000,0.000}, {2.000,1.000}, {0.000,2.000}}}, 3, 0.5, 1, {} },
307 { {{{0.000,0.000}, {2.000,1.000}, {0.000,2.000}}}, 3, 0.5, 0, {} },
308 };
309
310 static IntersectData intersectDataSet6[] = { // pathops_visualizer.htm:3658
311 { {{{0.000,1.000}, {3.000,4.000}, {1.000,0.000}, {3.000,0.000}}}, 4, 0.0925339054, 0, {} }, // pathops_visualizer.htm:3616
312 { {{{0.000,1.000}, {0.000,3.000}, {1.000,0.000}, {4.000,3.000}}}, 4, 0.453872386, 0, {} }, // pathops_visualizer.htm:3616
313 { {{{0.000,1.000}, {3.000,4.000}, {1.000,0.000}, {3.000,0.000}}}, 4, 0.0925339054, 0.417096368, {} }, // pathops_visualizer.htm:3616
314 };
315
316 static IntersectData intersectDataSet7[] = { // pathops_visualizer.htm:3748
317 { {{{2.000,1.000}, {0.000,1.000}}}, 2, 0.5, 0, {} }, // pathops_visualizer.htm:3706
318 { {{{2.000,0.000}, {0.000,2.000}}}, 2, 0.5, 1, {} }, // pathops_visualizer.htm:3706
319 { {{{0.000,1.000}, {0.000,2.000}, {2.000,0.000}, {2.000,1.000}}}, 4, 0.5, 1, {} }, // pathops_visualizer.htm:3706
320 }; //
321
322 static IntersectData intersectDataSet8[] = { // pathops_visualizer.htm:4194
323 { {{{0.000,1.000}, {2.000,3.000}, {5.000,1.000}, {4.000,3.000}}}, 4, 0.311007457, 0.285714286, {} }, // pathops_visualizer.htm:4152
324 { {{{1.000,5.000}, {3.000,4.000}, {1.000,0.000}, {3.000,2.000}}}, 4, 0.589885081, 0.999982974, {} }, // pathops_visualizer.htm:4152
325 { {{{1.000,5.000}, {3.000,4.000}, {1.000,0.000}, {3.000,2.000}}}, 4, 0.589885081, 0.576935809, {} }, // pathops_visualizer.htm:4152
326 }; //
327
328 static IntersectData intersectDataSet9[] = { // pathops_visualizer.htm:4142
329 { {{{0.000,1.000}, {2.000,3.000}, {5.000,1.000}, {4.000,3.000}}}, 4, 0.476627072, 0.311007457, {} }, // pathops_visualizer.htm:4100
330 { {{{1.000,5.000}, {3.000,4.000}, {1.000,0.000}, {3.000,2.000}}}, 4, 0.999982974, 1, {} }, // pathops_visualizer.htm:4100
331 { {{{0.000,1.000}, {2.000,3.000}, {5.000,1.000}, {4.000,3.000}}}, 4, 0.476627072, 1, {} }, // pathops_visualizer.htm:4100
332 }; //
333
334 static IntersectData intersectDataSet10[] = { // pathops_visualizer.htm:4186
335 { {{{0.000,1.000}, {1.000,6.000}, {1.000,0.000}, {1.000,0.000}}}, 4, 0.788195121, 0.726275769, {} }, // pathops_visualizer.htm:4144
336 { {{{0.000,1.000}, {0.000,1.000}, {1.000,0.000}, {6.000,1.000}}}, 4, 0.473378977, 1, {} }, // pathops_visualizer.htm:4144
337 { {{{0.000,1.000}, {1.000,6.000}, {1.000,0.000}, {1.000,0.000}}}, 4, 0.788195121, 1, {} }, // pathops_visualizer.htm:4144
338 }; //
339
340 static IntersectData intersectDataSet11[] = { // pathops_visualizer.htm:4704
341 { {{{979.305,561.000}, {1036.695,291.000}}}, 2, 0.888888874, 0.11111108, {} }, // pathops_visualizer.htm:4662
342 { {{{1006.695,291.000}, {1023.264,291.000}, {1033.840,304.431}, {1030.318,321.000}}}, 4, 1, 0, {} }, // pathops_visualizer.htm:4662
343 { {{{979.305,561.000}, {1036.695,291.000}}}, 2, 0.888888874, 1, {} }, // pathops_visualizer.htm:4662
344 }; //
345
346 static IntersectData intersectDataSet12[] = { // pathops_visualizer.htm:5481
347 { {{{67.000,912.000}, {67.000,913.000}}}, 2, 1, 0, {} }, // pathops_visualizer.htm:5439
348 { {{{67.000,913.000}, {67.000,917.389}, {67.224,921.726}, {67.662,926.000}}}, 4, 0, 1, {} }, // pathops_visualizer.htm:5439
349 { {{{194.000,1041.000}, {123.860,1041.000}, {67.000,983.692}, {67.000,913.000}}}, 4, 1, 0, {} }, // pathops_visualizer.htm:5439
350 }; //
351
352 static IntersectData intersectDataSet13[] = { // pathops_visualizer.htm:5735
353 { {{{6.000,0.000}, {0.000,4.000}}}, 2, 0.625, 0.25, {} }, // pathops_visualizer.htm:5693
354 { {{{0.000,1.000}, {0.000,6.000}, {4.000,0.000}, {6.000,1.000}}}, 4, 0.5, 0.833333333, {} }, // pathops_visualizer.htm:5693
355 { {{{0.000,1.000}, {0.000,6.000}, {4.000,0.000}, {6.000,1.000}}}, 4, 0.5, 0.379043969, {} }, // pathops_visualizer.htm:5693
356 }; //
357
358 static IntersectData intersectDataSet14[] = { // pathops_visualizer.htm:5875
359 { {{{0.000,1.000}, {4.000,6.000}, {2.000,1.000}, {2.000,0.000}}}, 4, 0.0756502183, 0.0594570973, {} }, // pathops_visualizer.htm:5833
360 { {{{1.000,2.000}, {0.000,2.000}, {1.000,0.000}, {6.000,4.000}}}, 4, 0.0756502184, 0, {} }, // pathops_visualizer.htm:5833
361 { {{{0.000,1.000}, {4.000,6.000}, {2.000,1.000}, {2.000,0.000}}}, 4, 0.0756502183, 0.531917258, {} }, // pathops_visualizer.htm:5833
362 }; //
363
364 static IntersectData intersectDataSet15[] = { // pathops_visualizer.htm:6580
365 { {{{490.435,879.407}, {405.593,909.436}}}, 2, 0.500554405, 1, {} }, // pathops_visualizer.htm:6538
366 { {{{447.967,894.438}, {448.007,894.424}, {448.014,894.422}}}, 3, 0, 1, {} }, // pathops_visualizer.htm:6538
367 { {{{490.435,879.407}, {405.593,909.436}}}, 2, 0.500554405, 0.500000273, {} }, // pathops_visualizer.htm:6538
368 }; //
369
370 static IntersectData intersectDataSet16[] = { // pathops_visualizer.htm:7419
371 { {{{1.000,4.000}, {4.000,5.000}, {3.000,2.000}, {6.000,3.000}}}, 4, 0.5, 0, {} }, // pathops_visualizer.htm:7377
372 { {{{2.000,3.000}, {3.000,6.000}, {4.000,1.000}, {5.000,4.000}}}, 4, 0.5, 0.112701665, {} }, // pathops_visualizer.htm:7377
373 { {{{5.000,4.000}, {2.000,3.000}}}, 2, 0.5, 0, {} }, // pathops_visualizer.htm:7377
374 }; //
375
376 // from skpi_gino_com_16
377 static IntersectData intersectDataSet17[] = {
378 { /*seg=7*/ {{{270.974121f, 770.025879f}, {234.948273f, 734}, {184, 734}}}
379 , 3, 0.74590454, 0.547660352, {} },
380 { /*seg=8*/ {{{185, 734}, {252.93103f, 734}, {308, 789.06897f}, {308, 857}}}
381 , 4, 0.12052623, 0, {} },
382 { /*seg=7*/ {{{270.974121f, 770.025879f}, {234.948273f, 734}, {184, 734}}}
383 , 3, 0.74590454, 1, {} },
384 };
385
386 static IntersectData intersectDataSet18[] = {
387 { /*seg=7*/ {{{270.974121f, 770.025879f}, {234.948273f, 734}, {184, 734}}}
388 , 3, 0.74590454, 1, {} },
389 { /*seg=8*/ {{{185, 734}, {252.93103f, 734}, {308, 789.06897f}, {308, 857}}}
390 , 4, 0.12052623, 0.217351928, {} },
391 { /*seg=7*/ {{{270.974121f, 770.025879f}, {234.948273f, 734}, {184, 734}}}
392 , 3, 0.74590454, 0.547660352, {} },
393 };
394
395 static IntersectData intersectDataSet19[] = {
396 { /*seg=1*/ {{{0, 1}, {3, 5}, {2, 1}, {3, 1}}}
397 , 4, 0.135148995, 0.134791946, {} },
398 { /*seg=3*/ {{{1, 2}, {1, 2.15061641f}, {1, 2.21049166f}, {1.01366711f, 2.21379328f}}}
399 , 4, 0.956740456, 0.894913214, {} },
400 { /*seg=1*/ {{{0, 1}, {3, 5}, {2, 1}, {3, 1}}}
401 , 4, 0.135148995, 0.551812363, {} },
402 };
403
404 #define I(x) intersectDataSet##x
405
406 static IntersectData* intersectDataSets[] = {
407 I(1), I(2), I(3), I(4), I(5), I(6), I(7), I(8), I(9), I(10),
408 I(11), I(12), I(13), I(14), I(15), I(16), I(17), I(18), I(19),
409 };
410
411 #undef I
412 #define I(x) (int) SK_ARRAY_COUNT(intersectDataSet##x)
413
414 static const int intersectDataSetSizes[] = {
415 I(1), I(2), I(3), I(4), I(5), I(6), I(7), I(8), I(9), I(10),
416 I(11), I(12), I(13), I(14), I(15), I(16), I(17), I(18), I(19),
417 };
418
419 #undef I
420
421 static const int intersectDataSetsSize = (int) SK_ARRAY_COUNT(intersectDataSetSizes);
422
423 struct FourPoints {
424 SkPoint pts[4];
425 };
426
DEF_TEST(PathOpsAngleAfter,reporter)427 DEF_TEST(PathOpsAngleAfter, reporter) {
428 SkChunkAlloc allocator(4096);
429 SkOpContourHead contour;
430 SkOpGlobalState state(nullptr, &contour SkDEBUGPARAMS(nullptr));
431 contour.init(&state, false, false);
432 for (int index = intersectDataSetsSize - 1; index >= 0; --index) {
433 IntersectData* dataArray = intersectDataSets[index];
434 const int dataSize = intersectDataSetSizes[index];
435 for (int index2 = 0; index2 < dataSize - 2; ++index2) {
436 allocator.reset();
437 contour.reset();
438 for (int index3 = 0; index3 < 3; ++index3) {
439 IntersectData& data = dataArray[index2 + index3];
440 SkPoint* temp = (SkPoint*) SkOpTAllocator<FourPoints>::Allocate(&allocator);
441 for (int idx2 = 0; idx2 < data.fPtCount; ++idx2) {
442 temp[idx2] = data.fPts.fPts[idx2].asSkPoint();
443 }
444 switch (data.fPtCount) {
445 case 2: {
446 contour.addLine(temp, &allocator);
447 } break;
448 case 3: {
449 contour.addQuad(temp, &allocator);
450 } break;
451 case 4: {
452 contour.addCubic(temp, &allocator);
453 } break;
454 }
455 }
456 SkOpSegment* seg1 = contour.first();
457 seg1->debugAddAngle(dataArray[index2 + 0].fTStart, dataArray[index2 + 0].fTEnd, &allocator);
458 SkOpSegment* seg2 = seg1->next();
459 seg2->debugAddAngle(dataArray[index2 + 1].fTStart, dataArray[index2 + 1].fTEnd, &allocator);
460 SkOpSegment* seg3 = seg2->next();
461 seg3->debugAddAngle(dataArray[index2 + 2].fTStart, dataArray[index2 + 2].fTEnd, &allocator);
462 SkOpAngle& angle1 = *seg1->debugLastAngle();
463 SkOpAngle& angle2 = *seg2->debugLastAngle();
464 SkOpAngle& angle3 = *seg3->debugLastAngle();
465 PathOpsAngleTester::SetNext(angle1, angle3);
466 // These data sets are seeded when the set itself fails, so likely the dataset does not
467 // match the expected result. The tests above return 1 when first added, but
468 // return 0 after the bug is fixed.
469 SkDEBUGCODE(int result =) PathOpsAngleTester::After(angle2, angle1);
470 SkASSERT(result == 0 || result == 1);
471 }
472 }
473 }
474
debugAddAngle(double startT,double endT,SkChunkAlloc * allocator)475 void SkOpSegment::debugAddAngle(double startT, double endT, SkChunkAlloc* allocator) {
476 SkOpPtT* startPtT = startT == 0 ? fHead.ptT() : startT == 1 ? fTail.ptT()
477 : this->addT(startT, kNoAlias, allocator);
478 SkOpPtT* endPtT = endT == 0 ? fHead.ptT() : endT == 1 ? fTail.ptT()
479 : this->addT(endT, kNoAlias, allocator);
480 SkOpAngle* angle = SkOpTAllocator<SkOpAngle>::Allocate(allocator);
481 SkOpSpanBase* startSpan = &fHead;
482 while (startSpan->ptT() != startPtT) {
483 startSpan = startSpan->upCast()->next();
484 }
485 SkOpSpanBase* endSpan = &fHead;
486 while (endSpan->ptT() != endPtT) {
487 endSpan = endSpan->upCast()->next();
488 }
489 angle->set(startSpan, endSpan);
490 if (startT < endT) {
491 startSpan->upCast()->setToAngle(angle);
492 endSpan->setFromAngle(angle);
493 } else {
494 endSpan->upCast()->setToAngle(angle);
495 startSpan->setFromAngle(angle);
496 }
497 }
498