/external/opencv3/modules/features2d/src/ |
D | keypoint.cpp | 69 void KeyPointsFilter::retainBest(std::vector<KeyPoint>& keypoints, int n_points) in retainBest() argument 72 if( n_points >= 0 && keypoints.size() > (size_t)n_points ) in retainBest() 76 keypoints.clear(); in retainBest() 80 …std::nth_element(keypoints.begin(), keypoints.begin() + n_points, keypoints.end(), KeypointRespons… in retainBest() 82 float ambiguous_response = keypoints[n_points - 1].response; in retainBest() 85 std::partition(keypoints.begin() + n_points, keypoints.end(), in retainBest() 88 keypoints.resize(new_end - keypoints.begin()); in retainBest() 105 void KeyPointsFilter::runByImageBorder( std::vector<KeyPoint>& keypoints, Size imageSize, int borde… in runByImageBorder() argument 110 keypoints.clear(); in runByImageBorder() 112 keypoints.erase( std::remove_if(keypoints.begin(), keypoints.end(), in runByImageBorder() [all …]
|
D | feature2d.cpp | 60 std::vector<KeyPoint>& keypoints, in detect() argument 65 keypoints.clear(); in detect() 68 detectAndCompute(image, mask, keypoints, noArray(), false); in detect() 73 std::vector<std::vector<KeyPoint> >& keypoints, in detect() 87 keypoints.resize(nimages); in detect() 91 detect(images[i], keypoints[i], masks.empty() ? Mat() : masks[i] ); in detect() 102 std::vector<KeyPoint>& keypoints, in compute() argument 110 detectAndCompute(image, noArray(), keypoints, descriptors, true); in compute() 114 std::vector<std::vector<KeyPoint> >& keypoints, in compute() 125 CV_Assert( keypoints.size() == nimages ); in compute() [all …]
|
D | orb.cpp | 63 const UMat& keypoints, in ocl_HarrisResponses() argument 79 ocl::KernelArg::PtrReadOnly(keypoints), in ocl_HarrisResponses() 86 const UMat& keypoints, UMat& responses, in ocl_ICAngles() argument 97 ocl::KernelArg::PtrReadOnly(keypoints), in ocl_ICAngles() 106 const UMat& keypoints, UMat& desc, const UMat& pattern, in ocl_computeOrbDescriptors() argument 118 ocl::KernelArg::PtrReadOnly(keypoints), in ocl_computeOrbDescriptors() 215 const std::vector<float>& layerScale, std::vector<KeyPoint>& keypoints, in computeOrbDescriptors() argument 219 int j, i, nkeypoints = (int)keypoints.size(); in computeOrbDescriptors() 223 const KeyPoint& kpt = keypoints[j]; in computeOrbDescriptors() 698 void detectAndCompute( InputArray image, InputArray mask, std::vector<KeyPoint>& keypoints, [all …]
|
D | fast.cpp | 56 void FAST_t(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool nonmax_suppressi… in FAST_t() argument 67 keypoints.clear(); in FAST_t() 247 keypoints.push_back(KeyPoint((float)j, (float)(i-1), 7.f, -1, (float)score)); in FAST_t() 259 static bool ocl_FAST( InputArray _img, std::vector<KeyPoint>& keypoints, in ocl_FAST() argument 286 keypoints.clear(); in ocl_FAST() 297 keypoints.push_back(KeyPoint((float)pt[i].x, (float)pt[i].y, 7.f, -1, 1.f)); in ocl_FAST() 324 … keypoints.push_back(KeyPoint((float)pt2[i].x, (float)pt2[i].y, 7.f, -1, (float)pt2[i].z)); in ocl_FAST() 331 void FAST(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bool nonmax_suppression… in FAST() argument 334 ocl_FAST(_img, keypoints, threshold, nonmax_suppression, 10000)) in FAST() 342 FAST_t<8>(_img, keypoints, threshold, nonmax_suppression); in FAST() [all …]
|
/external/opencv3/modules/features2d/test/ |
D | test_descriptors_regression.cpp | 151 vector<KeyPoint> keypoints; in emptyDataTest() local 156 dextractor->compute( image, keypoints, descriptors ); in emptyDataTest() 167 dextractor->compute( image, keypoints, descriptors ); in emptyDataTest() 203 vector<KeyPoint> keypoints; in regressionTest() local 206 detector->detect(img, keypoints); in regressionTest() 208 read( fs.getFirstTopLevelNode(), keypoints ); in regressionTest() 210 if(!keypoints.empty()) in regressionTest() 214 dextractor->compute( img, keypoints, calcDescriptors ); in regressionTest() 218 if( calcDescriptors.rows != (int)keypoints.size() ) in regressionTest() 221 … ts->printf( cvtest::TS::LOG, "Count of keypoints is %d.\n", (int)keypoints.size() ); in regressionTest() [all …]
|
D | test_orb.cpp | 61 std::vector<KeyPoint> keypoints; in TEST() local 62 fd->detect(image, keypoints, roi); in TEST() 64 de->compute(image, keypoints, descriptors); in TEST() 69 for(std::vector<KeyPoint>::const_iterator kp = keypoints.begin(); kp != keypoints.end(); ++kp) in TEST()
|
D | test_keypoints.cpp | 77 vector<KeyPoint> keypoints; in run() local 78 detector->detect(image, keypoints); in run() 80 if(keypoints.empty()) in run() 88 for(size_t i = 0; i < keypoints.size(); i++) in run() 90 const KeyPoint& kp = keypoints[i]; in run()
|
/external/opencv3/modules/cudafeatures2d/src/ |
D | fast.cpp | 70 virtual void detect(InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask); 73 virtual void convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints); 98 void FAST_Impl::detect(InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask) in detect() argument 102 keypoints.clear(); in detect() 110 convert(d_keypoints, keypoints); in detect() 144 GpuMat& keypoints = _keypoints.getGpuMatRef(); in detectAsync() local 148 …axSuppression_gpu(kpLoc.ptr<short2>(), count, score, keypoints.ptr<short2>(LOCATION_ROW), keypoint… in detectAsync() 151 keypoints.release(); in detectAsync() 155 keypoints.cols = count; in detectAsync() 160 GpuMat locRow(1, count, kpLoc.type(), keypoints.ptr(0)); in detectAsync() [all …]
|
D | feature2d_async.cpp | 50 OutputArray keypoints, in detectAsync() argument 56 keypoints.clear(); in detectAsync() 60 detectAndComputeAsync(image, mask, keypoints, noArray(), false, stream); in detectAsync() 64 OutputArray keypoints, in computeAsync() argument 74 detectAndComputeAsync(image, noArray(), keypoints, descriptors, true, stream); in computeAsync()
|
D | orb.cpp | 352 …tAndCompute(InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints, OutputArray _de… 355 virtual void convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints); 573 …tAndCompute(InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints, OutputArray _de… in detectAndCompute() argument 578 convert(d_keypoints_, keypoints); in detectAndCompute() 660 static void cull(GpuMat& keypoints, int& count, int n_points) in cull() argument 669 keypoints.release(); in cull() 673 …count = cull_gpu(keypoints.ptr<int>(cuda::FastFeatureDetector::LOCATION_ROW), keypoints.ptr<float>… in cull() 779 GpuMat& keypoints = _keypoints.getGpuMatRef(); in mergeKeyPoints() local 790 GpuMat keyPointsRange = keypoints.colRange(offset, offset + keyPointsCount_[level]); in mergeKeyPoints() 806 void ORB_Impl::convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints) in convert() argument [all …]
|
/external/opencv3/modules/ts/src/ |
D | cuda_perf.cpp | 271 std::vector<cv::KeyPoint>* keypoints; member 273 … explicit KeypointIdxCompare(std::vector<cv::KeyPoint>* _keypoints) : keypoints(_keypoints) {} in KeypointIdxCompare() 277 cv::KeyPoint kp1 = (*keypoints)[i1]; in operator ()() 278 cv::KeyPoint kp2 = (*keypoints)[i2]; in operator ()() 289 void sortKeyPoints(std::vector<cv::KeyPoint>& keypoints, cv::InputOutputArray _descriptors) in sortKeyPoints() argument 291 std::vector<size_t> indexies(keypoints.size()); in sortKeyPoints() 295 std::sort(indexies.begin(), indexies.end(), KeypointIdxCompare(&keypoints)); in sortKeyPoints() 300 new_keypoints.resize(keypoints.size()); in sortKeyPoints() 312 new_keypoints[i] = keypoints[new_idx]; in sortKeyPoints() 317 keypoints.swap(new_keypoints); in sortKeyPoints()
|
/external/opencv3/modules/calib3d/src/ |
D | circlesgrid.cpp | 570 keypoints = testKeypoints; in CirclesGridFinder() 628 Point2f vec1 = keypoints[i] - keypoints[*it1]; in rng2gridGraph() 629 Point2f vec2 = keypoints[*it1] - keypoints[*it2]; in rng2gridGraph() 634 vectors.push_back(keypoints[i] - keypoints[*it2]); in rng2gridGraph() 635 vectors.push_back(keypoints[*it2] - keypoints[i]); in rng2gridGraph() 817 … const std::vector<Point2f> &keypoints, std::vector<Point2f> &warpedKeypoints) in rectifyGrid() argument 845 for (size_t i = 0; i < keypoints.size(); i++) in rectifyGrid() 847 srcKeypoints.push_back(keypoints[i]); in rectifyGrid() 869 for (size_t i = 0; i < keypoints.size(); i++) in findNearestKeypoint() 871 double dist = norm(pt - keypoints[i]); in findNearestKeypoint() [all …]
|
/external/opencv3/samples/cpp/tutorial_code/features2D/AKAZE_tracking/ |
D | stats.h | 9 int keypoints; member 14 keypoints(0) in Stats() 21 keypoints += op.keypoints; 29 keypoints /= num;
|
D | utils.h | 14 vector<Point2f> Points(vector<KeyPoint> keypoints); 46 cout << "Keypoints " << stats.keypoints << endl; in printStatistics() 50 vector<Point2f> Points(vector<KeyPoint> keypoints) in Points() argument 53 for(unsigned i = 0; i < keypoints.size(); i++) { in Points() 54 res.push_back(keypoints[i].pt); in Points()
|
/external/opencv3/modules/features2d/misc/java/test/ |
D | SURFFeatureDetectorTest.java | 76 List<MatOfKeyPoint> keypoints = new ArrayList<MatOfKeyPoint>(); in testDetectListOfMatListOfListOfKeyPoint() local 83 detector.detect(crosses, keypoints); in testDetectListOfMatListOfListOfKeyPoint() 85 assertEquals(3, keypoints.size()); in testDetectListOfMatListOfListOfKeyPoint() 87 for (MatOfKeyPoint mkp : keypoints) { in testDetectListOfMatListOfListOfKeyPoint() 103 MatOfKeyPoint keypoints = new MatOfKeyPoint(); in testDetectMatListOfKeyPoint() local 106 detector.detect(cross, keypoints); in testDetectMatListOfKeyPoint() 108 List<KeyPoint> lkp = keypoints.toList(); in testDetectMatListOfKeyPoint() 120 MatOfKeyPoint keypoints = new MatOfKeyPoint(); in testDetectMatListOfKeyPointMat() local 122 detector.detect(img, keypoints, mask); in testDetectMatListOfKeyPointMat() 124 List<KeyPoint> lkp = keypoints.toList(); in testDetectMatListOfKeyPointMat()
|
D | FASTFeatureDetectorTest.java | 57 MatOfKeyPoint keypoints = new MatOfKeyPoint(); in testDetectMatListOfKeyPoint() local 59 detector.detect(img, keypoints); in testDetectMatListOfKeyPoint() 61 assertListKeyPointEquals(Arrays.asList(truth), keypoints.toList(), EPS); in testDetectMatListOfKeyPoint() 71 MatOfKeyPoint keypoints = new MatOfKeyPoint(); in testDetectMatListOfKeyPointMat() local 73 detector.detect(img, keypoints, mask); in testDetectMatListOfKeyPointMat() 75 assertListKeyPointEquals(Arrays.asList(truth[0], truth[1]), keypoints.toList(), EPS); in testDetectMatListOfKeyPointMat()
|
D | STARFeatureDetectorTest.java | 76 MatOfKeyPoint keypoints = new MatOfKeyPoint(); in testDetectMatListOfKeyPoint() local 78 detector.detect(img, keypoints); in testDetectMatListOfKeyPoint() 80 assertListKeyPointEquals(Arrays.asList(truth), keypoints.toList(), EPS); in testDetectMatListOfKeyPoint() 86 MatOfKeyPoint keypoints = new MatOfKeyPoint(); in testDetectMatListOfKeyPointMat() local 88 detector.detect(img, keypoints, mask); in testDetectMatListOfKeyPointMat() 90 …assertListKeyPointEquals(Arrays.asList(truth[0], truth[2], truth[5], truth[7]), keypoints.toList()… in testDetectMatListOfKeyPointMat()
|
/external/opencv3/modules/java/src/ |
D | features2d+DescriptorExtractor.java | 48 public void compute(Mat image, MatOfKeyPoint keypoints, Mat descriptors) in compute() argument 50 Mat keypoints_mat = keypoints; in compute() 62 public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) in compute() argument 65 List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); in compute() 66 Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); in compute() 69 Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); in compute()
|
D | features2d+FeatureDetector.java | 84 public void detect(Mat image, MatOfKeyPoint keypoints, Mat mask) in detect() argument 86 Mat keypoints_mat = keypoints; in detect() 93 public void detect(Mat image, MatOfKeyPoint keypoints) in detect() argument 95 Mat keypoints_mat = keypoints; in detect() 107 public void detect(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> masks) in detect() argument 113 Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); in detect() 119 public void detect(List<Mat> images, List<MatOfKeyPoint> keypoints) in detect() argument 124 Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); in detect()
|
/external/opencv3/modules/core/src/ |
D | types.cpp | 63 void KeyPoint::convert(const std::vector<KeyPoint>& keypoints, std::vector<Point2f>& points2f, in convert() argument 68 points2f.resize( keypoints.size() ); in convert() 69 for( size_t i = 0; i < keypoints.size(); i++ ) in convert() 70 points2f[i] = keypoints[i].pt; in convert() 79 points2f[i] = keypoints[idx].pt; in convert() 89 void KeyPoint::convert( const std::vector<Point2f>& points2f, std::vector<KeyPoint>& keypoints, in convert() argument 92 keypoints.resize(points2f.size()); in convert() 94 keypoints[i] = KeyPoint(points2f[i], size, -1, response, octave, class_id); in convert()
|
/external/opencv3/modules/stitching/src/ |
D | matchers.cpp | 291 total_kps_count += roi_features[i].keypoints.size(); in operator ()() 296 features.keypoints.resize(total_kps_count); in operator ()() 305 for (size_t j = 0; j < roi_features[i].keypoints.size(); ++j, ++kp_idx) in operator ()() 307 features.keypoints[kp_idx] = roi_features[i].keypoints[j]; in operator ()() 308 features.keypoints[kp_idx].pt.x += (float)rois[i].x; in operator ()() 309 features.keypoints[kp_idx].pt.y += (float)rois[i].y; in operator ()() 375 detector_->detect(gray_image, features.keypoints); in find() 376 extractor_->compute(gray_image, features.keypoints, features.descriptors); in find() 381 surf->detectAndCompute(gray_image, Mat(), features.keypoints, descriptors); in find() 382 features.descriptors = descriptors.reshape(1, (int)features.keypoints.size()); in find() [all …]
|
/external/opencv3/modules/features2d/include/opencv2/ |
D | features2d.hpp | 106 … static void runByImageBorder( std::vector<KeyPoint>& keypoints, Size imageSize, int borderSize ); 110 static void runByKeypointSize( std::vector<KeyPoint>& keypoints, float minSize, 115 static void runByPixelsMask( std::vector<KeyPoint>& keypoints, const Mat& mask ); 119 static void removeDuplicated( std::vector<KeyPoint>& keypoints ); 124 static void retainBest( std::vector<KeyPoint>& keypoints, int npoints ); 146 CV_OUT std::vector<KeyPoint>& keypoints, 157 std::vector<std::vector<KeyPoint> >& keypoints, 172 CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints, 186 std::vector<std::vector<KeyPoint> >& keypoints, 191 CV_OUT std::vector<KeyPoint>& keypoints, [all …]
|
/external/opencv3/doc/tutorials/features2d/akaze_tracking/ |
D | akaze_tracking.markdown | 12 - Detect and describe keypoints on the first frame, manually set object boundaries 14 -# Detect and describe keypoints 55 stats.keypoints = (int)first_kp.size(); 61 We compute and store keypoints and descriptors from the first frame and prepare it for the 64 We need to save number of detected keypoints to make sure both detectors locate roughly the same 69 -# Locate keypoints and compute descriptors 74 To find matches between frames we have to locate the keypoints first. 76 In this tutorial detectors are set up to find about 1000 keypoints on each frame.
|
/external/opencv3/samples/python2/ |
D | asift.py | 84 keypoints, descrs = detector.detectAndCompute(timg, tmask) 85 for kp in keypoints: 90 return keypoints, descrs 92 keypoints, descrs = [], [] 100 keypoints.extend(k) 104 return keypoints, np.array(descrs)
|
/external/opencv3/doc/py_tutorials/py_feature2d/py_sift_intro/ |
D | py_sift_intro.markdown | 25 Keypoints**, which extract keypoints and compute its descriptors. *(This paper is easy to understand 33 From the image above, it is obvious that we can't use the same window to detect keypoints with 63 Once potential keypoints locations are found, they have to be refined to get more accurate results. 76 So it eliminates any low-contrast keypoints and edge keypoints and what remains is strong interest 86 and any peak above 80% of it is also considered to calculate the orientation. It creates keypoints 132 response that specifies strength of keypoints etc. 135 of keypoints. If you pass a flag, **cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS** to it, it will 147 -# Since you already found keypoints, you can call **sift.compute()** which computes the 148 descriptors from the keypoints we have found. Eg: kp,des = sift.compute(gray,kp) 149 2. If you didn't find keypoints, directly find keypoints and descriptors in a single step with the [all …]
|