1 /**
2  * f2fs.h
3  *
4  * Copyright (c) 2013 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _F2FS_H_
12 #define _F2FS_H_
13 
14 #include <stdlib.h>
15 #include <unistd.h>
16 #include <stdio.h>
17 #include <errno.h>
18 #include <fcntl.h>
19 #include <string.h>
20 #include <errno.h>
21 #include <mntent.h>
22 #include <linux/types.h>
23 #include <sys/types.h>
24 #include <sys/stat.h>
25 #include <sys/ioctl.h>
26 #include <sys/mount.h>
27 #include <assert.h>
28 
29 #include <f2fs_fs.h>
30 
31 #define EXIT_ERR_CODE		(-1)
32 #define ver_after(a, b) (typecheck(unsigned long long, a) &&            \
33 		typecheck(unsigned long long, b) &&                     \
34 		((long long)((a) - (b)) > 0))
35 
36 struct list_head {
37 	struct list_head *next, *prev;
38 };
39 
40 enum {
41 	NAT_BITMAP,
42 	SIT_BITMAP
43 };
44 
45 struct node_info {
46 	nid_t nid;
47 	nid_t ino;
48 	u32 blk_addr;
49 	unsigned char version;
50 };
51 
52 struct f2fs_nm_info {
53 	block_t nat_blkaddr;
54 	nid_t max_nid;
55 	nid_t init_scan_nid;
56 	nid_t next_scan_nid;
57 
58 	unsigned int nat_cnt;
59 	unsigned int fcnt;
60 
61 	char *nat_bitmap;
62 	int bitmap_size;
63 };
64 
65 struct seg_entry {
66 	unsigned short valid_blocks;    /* # of valid blocks */
67 	unsigned char *cur_valid_map;   /* validity bitmap of blocks */
68 	/*
69 	 * # of valid blocks and the validity bitmap stored in the the last
70 	 * checkpoint pack. This information is used by the SSR mode.
71 	 */
72 	unsigned short ckpt_valid_blocks;
73 	unsigned char *ckpt_valid_map;
74 	unsigned char type;             /* segment type like CURSEG_XXX_TYPE */
75 	unsigned char orig_type;        /* segment type like CURSEG_XXX_TYPE */
76 	unsigned long long mtime;       /* modification time of the segment */
77 };
78 
79 struct sec_entry {
80 	unsigned int valid_blocks;      /* # of valid blocks in a section */
81 };
82 
83 struct sit_info {
84 
85 	block_t sit_base_addr;          /* start block address of SIT area */
86 	block_t sit_blocks;             /* # of blocks used by SIT area */
87 	block_t written_valid_blocks;   /* # of valid blocks in main area */
88 	char *sit_bitmap;               /* SIT bitmap pointer */
89 	unsigned int bitmap_size;       /* SIT bitmap size */
90 
91 	unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
92 	unsigned int dirty_sentries;            /* # of dirty sentries */
93 	unsigned int sents_per_block;           /* # of SIT entries per block */
94 	struct seg_entry *sentries;             /* SIT segment-level cache */
95 	struct sec_entry *sec_entries;          /* SIT section-level cache */
96 
97 	unsigned long long elapsed_time;        /* elapsed time after mount */
98 	unsigned long long mounted_time;        /* mount time */
99 	unsigned long long min_mtime;           /* min. modification time */
100 	unsigned long long max_mtime;           /* max. modification time */
101 };
102 
103 struct curseg_info {
104 	struct f2fs_summary_block *sum_blk;     /* cached summary block */
105 	unsigned char alloc_type;               /* current allocation type */
106 	unsigned int segno;                     /* current segment number */
107 	unsigned short next_blkoff;             /* next block offset to write */
108 	unsigned int zone;                      /* current zone number */
109 	unsigned int next_segno;                /* preallocated segment */
110 };
111 
112 struct f2fs_sm_info {
113 	struct sit_info *sit_info;
114 	struct curseg_info *curseg_array;
115 
116 	block_t seg0_blkaddr;
117 	block_t main_blkaddr;
118 	block_t ssa_blkaddr;
119 
120 	unsigned int segment_count;
121 	unsigned int main_segments;
122 	unsigned int reserved_segments;
123 	unsigned int ovp_segments;
124 };
125 
126 struct f2fs_sb_info {
127 	struct f2fs_fsck *fsck;
128 
129 	struct f2fs_super_block *raw_super;
130 	struct f2fs_nm_info *nm_info;
131 	struct f2fs_sm_info *sm_info;
132 	struct f2fs_checkpoint *ckpt;
133 	int cur_cp;
134 
135 	struct list_head orphan_inode_list;
136 	unsigned int n_orphans;
137 
138 	/* basic file system units */
139 	unsigned int log_sectors_per_block;     /* log2 sectors per block */
140 	unsigned int log_blocksize;             /* log2 block size */
141 	unsigned int blocksize;                 /* block size */
142 	unsigned int root_ino_num;              /* root inode number*/
143 	unsigned int node_ino_num;              /* node inode number*/
144 	unsigned int meta_ino_num;              /* meta inode number*/
145 	unsigned int log_blocks_per_seg;        /* log2 blocks per segment */
146 	unsigned int blocks_per_seg;            /* blocks per segment */
147 	unsigned int segs_per_sec;              /* segments per section */
148 	unsigned int secs_per_zone;             /* sections per zone */
149 	unsigned int total_sections;            /* total section count */
150 	unsigned int total_node_count;          /* total node block count */
151 	unsigned int total_valid_node_count;    /* valid node block count */
152 	unsigned int total_valid_inode_count;   /* valid inode count */
153 	int active_logs;                        /* # of active logs */
154 
155 	block_t user_block_count;               /* # of user blocks */
156 	block_t total_valid_block_count;        /* # of valid blocks */
157 	block_t alloc_valid_block_count;        /* # of allocated blocks */
158 	block_t last_valid_block_count;         /* for recovery */
159 	u32 s_next_generation;                  /* for NFS support */
160 
161 	unsigned int cur_victim_sec;            /* current victim section num */
162 
163 };
164 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)165 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
166 {
167 	return (struct f2fs_super_block *)(sbi->raw_super);
168 }
169 
F2FS_CKPT(struct f2fs_sb_info * sbi)170 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
171 {
172 	return (struct f2fs_checkpoint *)(sbi->ckpt);
173 }
174 
F2FS_FSCK(struct f2fs_sb_info * sbi)175 static inline struct f2fs_fsck *F2FS_FSCK(struct f2fs_sb_info *sbi)
176 {
177 	return (struct f2fs_fsck *)(sbi->fsck);
178 }
179 
NM_I(struct f2fs_sb_info * sbi)180 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
181 {
182 	return (struct f2fs_nm_info *)(sbi->nm_info);
183 }
184 
SM_I(struct f2fs_sb_info * sbi)185 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
186 {
187 	return (struct f2fs_sm_info *)(sbi->sm_info);
188 }
189 
SIT_I(struct f2fs_sb_info * sbi)190 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
191 {
192 	return (struct sit_info *)(SM_I(sbi)->sit_info);
193 }
194 
inline_data_addr(struct f2fs_node * node_blk)195 static inline void *inline_data_addr(struct f2fs_node *node_blk)
196 {
197 	return (void *)&(node_blk->i.i_addr[1]);
198 }
199 
ofs_of_node(struct f2fs_node * node_blk)200 static inline unsigned int ofs_of_node(struct f2fs_node *node_blk)
201 {
202 	unsigned flag = le32_to_cpu(node_blk->footer.flag);
203 	return flag >> OFFSET_BIT_SHIFT;
204 }
205 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)206 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
207 {
208 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
209 
210 	/* return NAT or SIT bitmap */
211 	if (flag == NAT_BITMAP)
212 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
213 	else if (flag == SIT_BITMAP)
214 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
215 
216 	return 0;
217 }
218 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)219 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
220 {
221 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
222 	int offset;
223 	if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
224 		if (flag == NAT_BITMAP)
225 			return &ckpt->sit_nat_version_bitmap;
226 		else
227 			return ((char *)ckpt + F2FS_BLKSIZE);
228 	} else {
229 		offset = (flag == NAT_BITMAP) ?
230 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
231 		return &ckpt->sit_nat_version_bitmap + offset;
232 	}
233 }
234 
is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)235 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
236 {
237 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
238 	return ckpt_flags & f;
239 }
240 
__start_cp_addr(struct f2fs_sb_info * sbi)241 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
242 {
243 	block_t start_addr;
244 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
245 	unsigned long long ckpt_version = le64_to_cpu(ckpt->checkpoint_ver);
246 
247 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
248 
249 	/*
250 	 * odd numbered checkpoint should at cp segment 0
251 	 * and even segent must be at cp segment 1
252 	 */
253 	if (!(ckpt_version & 1))
254 		start_addr += sbi->blocks_per_seg;
255 
256 	return start_addr;
257 }
258 
__start_sum_addr(struct f2fs_sb_info * sbi)259 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
260 {
261 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
262 }
263 
__end_block_addr(struct f2fs_sb_info * sbi)264 static inline block_t __end_block_addr(struct f2fs_sb_info *sbi)
265 {
266 	block_t end = SM_I(sbi)->main_blkaddr;
267 	return end + le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
268 }
269 
270 #define GET_ZONENO_FROM_SEGNO(sbi, segno)                               \
271 	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
272 
273 #define IS_DATASEG(t)                                                   \
274 	((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) ||           \
275 	 (t == CURSEG_WARM_DATA))
276 
277 #define IS_NODESEG(t)                                                   \
278 	((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) ||           \
279 	 (t == CURSEG_WARM_NODE))
280 
281 #define GET_SUM_BLKADDR(sbi, segno)					\
282 	((sbi->sm_info->ssa_blkaddr) + segno)
283 
284 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)				\
285 	((blk_addr) - SM_I(sbi)->seg0_blkaddr)
286 
287 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
288 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
289 
290 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
291 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
292 
293 #define FREE_I_START_SEGNO(sbi)						\
294 	GET_SEGNO_FROM_SEG0(sbi, SM_I(sbi)->main_blkaddr)
295 #define GET_R2L_SEGNO(sbi, segno)	(segno + FREE_I_START_SEGNO(sbi))
296 
297 #define START_BLOCK(sbi, segno)	(SM_I(sbi)->main_blkaddr +		\
298 	(segno << sbi->log_blocks_per_seg))
299 
CURSEG_I(struct f2fs_sb_info * sbi,int type)300 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
301 {
302 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
303 }
304 
start_sum_block(struct f2fs_sb_info * sbi)305 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
306 {
307 	return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
308 }
309 
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)310 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
311 {
312 	return __start_cp_addr(sbi) + le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
313 		- (base + 1) + type;
314 }
315 
316 
317 #define nats_in_cursum(sum)             (le16_to_cpu(sum->n_nats))
318 #define sits_in_cursum(sum)             (le16_to_cpu(sum->n_sits))
319 
320 #define nat_in_journal(sum, i)          (sum->nat_j.entries[i].ne)
321 #define nid_in_journal(sum, i)          (sum->nat_j.entries[i].nid)
322 #define sit_in_journal(sum, i)          (sum->sit_j.entries[i].se)
323 #define segno_in_journal(sum, i)        (sum->sit_j.entries[i].segno)
324 
325 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
326 	(segno % sit_i->sents_per_block)
327 #define SIT_BLOCK_OFFSET(sit_i, segno)                                  \
328 	(segno / SIT_ENTRY_PER_BLOCK)
329 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
330 
IS_VALID_NID(struct f2fs_sb_info * sbi,u32 nid)331 static inline bool IS_VALID_NID(struct f2fs_sb_info *sbi, u32 nid)
332 {
333 	return (nid <= (NAT_ENTRY_PER_BLOCK *
334 			F2FS_RAW_SUPER(sbi)->segment_count_nat
335 			<< (sbi->log_blocks_per_seg - 1)));
336 }
337 
IS_VALID_BLK_ADDR(struct f2fs_sb_info * sbi,u32 addr)338 static inline bool IS_VALID_BLK_ADDR(struct f2fs_sb_info *sbi, u32 addr)
339 {
340 	int i;
341 
342 	if (addr >= F2FS_RAW_SUPER(sbi)->block_count ||
343 				addr < SM_I(sbi)->main_blkaddr) {
344 		ASSERT_MSG("block addr [0x%x]\n", addr);
345 		return 0;
346 	}
347 
348 	for (i = 0; i < NO_CHECK_TYPE; i++) {
349 		struct curseg_info *curseg = CURSEG_I(sbi, i);
350 
351 		if (START_BLOCK(sbi, curseg->segno) +
352 					curseg->next_blkoff == addr)
353 			return 0;
354 	}
355 	return 1;
356 }
357 
BLKOFF_FROM_MAIN(struct f2fs_sb_info * sbi,u64 blk_addr)358 static inline u64 BLKOFF_FROM_MAIN(struct f2fs_sb_info *sbi, u64 blk_addr)
359 {
360 	ASSERT(blk_addr >= SM_I(sbi)->main_blkaddr);
361 	return blk_addr - SM_I(sbi)->main_blkaddr;
362 }
363 
GET_SEGNO(struct f2fs_sb_info * sbi,u64 blk_addr)364 static inline u32 GET_SEGNO(struct f2fs_sb_info *sbi, u64 blk_addr)
365 {
366 	return (u32)(BLKOFF_FROM_MAIN(sbi, blk_addr)
367 			>> sbi->log_blocks_per_seg);
368 }
369 
OFFSET_IN_SEG(struct f2fs_sb_info * sbi,u64 blk_addr)370 static inline u32 OFFSET_IN_SEG(struct f2fs_sb_info *sbi, u64 blk_addr)
371 {
372 	return (u32)(BLKOFF_FROM_MAIN(sbi, blk_addr)
373 			% (1 << sbi->log_blocks_per_seg));
374 }
375 
node_info_from_raw_nat(struct node_info * ni,struct f2fs_nat_entry * raw_nat)376 static inline void node_info_from_raw_nat(struct node_info *ni,
377 		struct f2fs_nat_entry *raw_nat)
378 {
379 	ni->ino = le32_to_cpu(raw_nat->ino);
380 	ni->blk_addr = le32_to_cpu(raw_nat->block_addr);
381 	ni->version = raw_nat->version;
382 }
383 
384 extern int lookup_nat_in_journal(struct f2fs_sb_info *sbi, u32 nid, struct f2fs_nat_entry *ne);
385 #define IS_SUM_NODE_SEG(footer)		(footer.entry_type == SUM_TYPE_NODE)
386 
387 #endif /* _F2FS_H_ */
388