1 /*
2 * The copyright in this software is being made available under the 2-clauses
3 * BSD License, included below. This software may be subject to other third
4 * party and contributor rights, including patent rights, and no such rights
5 * are granted under this license.
6 *
7 * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
8 * Copyright (c) 2002-2014, Professor Benoit Macq
9 * Copyright (c) 2001-2003, David Janssens
10 * Copyright (c) 2002-2003, Yannick Verschueren
11 * Copyright (c) 2003-2007, Francois-Olivier Devaux
12 * Copyright (c) 2003-2014, Antonin Descampe
13 * Copyright (c) 2005, Herve Drolon, FreeImage Team
14 * Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net>
15 * Copyright (c) 2007, Callum Lerwick <seg@haxxed.com>
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions
20 * are met:
21 * 1. Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * 2. Redistributions in binary form must reproduce the above copyright
24 * notice, this list of conditions and the following disclaimer in the
25 * documentation and/or other materials provided with the distribution.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
28 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
31 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #ifdef __SSE__
41 #include <xmmintrin.h>
42 #endif
43
44 #include "opj_includes.h"
45
46 /** @defgroup DWT DWT - Implementation of a discrete wavelet transform */
47 /*@{*/
48
49 /** @name Local data structures */
50 /*@{*/
51
52 typedef struct dwt_local {
53 OPJ_INT32* mem;
54 OPJ_SIZE_T mem_count;
55 OPJ_INT32 dn;
56 OPJ_INT32 sn;
57 OPJ_INT32 cas;
58 } opj_dwt_t;
59
60 typedef union {
61 OPJ_FLOAT32 f[4];
62 } opj_v4_t;
63
64 typedef struct v4dwt_local {
65 opj_v4_t* wavelet ;
66 OPJ_INT32 dn ;
67 OPJ_INT32 sn ;
68 OPJ_INT32 cas ;
69 } opj_v4dwt_t ;
70
71 static const OPJ_FLOAT32 opj_dwt_alpha = 1.586134342f; /* 12994 */
72 static const OPJ_FLOAT32 opj_dwt_beta = 0.052980118f; /* 434 */
73 static const OPJ_FLOAT32 opj_dwt_gamma = -0.882911075f; /* -7233 */
74 static const OPJ_FLOAT32 opj_dwt_delta = -0.443506852f; /* -3633 */
75
76 static const OPJ_FLOAT32 opj_K = 1.230174105f; /* 10078 */
77 static const OPJ_FLOAT32 opj_c13318 = 1.625732422f;
78
79 /*@}*/
80
81 /**
82 Virtual function type for wavelet transform in 1-D
83 */
84 typedef void (*DWT1DFN)(opj_dwt_t* v);
85
86 /** @name Local static functions */
87 /*@{*/
88
89 /**
90 Forward lazy transform (horizontal)
91 */
92 static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
93 /**
94 Forward lazy transform (vertical)
95 */
96 static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas);
97 /**
98 Inverse lazy transform (horizontal)
99 */
100 static void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a);
101 /**
102 Inverse lazy transform (vertical)
103 */
104 static void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x);
105 /**
106 Forward 5-3 wavelet transform in 1-D
107 */
108 static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
109 /**
110 Inverse 5-3 wavelet transform in 1-D
111 */
112 static void opj_dwt_decode_1(opj_dwt_t *v);
113 static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
114 /**
115 Forward 9-7 wavelet transform in 1-D
116 */
117 static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
118 /**
119 Explicit calculation of the Quantization Stepsizes
120 */
121 static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize);
122 /**
123 Inverse wavelet transform in 2-D.
124 */
125 static OPJ_BOOL opj_dwt_decode_tile(const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i, DWT1DFN fn);
126
127 static OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec,
128 void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32));
129
130 static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i);
131
132 /* <summary> */
133 /* Inverse 9-7 wavelet transform in 1-D. */
134 /* </summary> */
135 static void opj_v4dwt_decode(opj_v4dwt_t* restrict dwt);
136
137 static void opj_v4dwt_interleave_h(opj_v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size);
138
139 static void opj_v4dwt_interleave_v(opj_v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x, OPJ_INT32 nb_elts_read);
140
141 #ifdef __SSE__
142 static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c);
143
144 static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c);
145
146 #else
147 static void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c);
148
149 static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c);
150
151 #endif
152
153 /*@}*/
154
155 /*@}*/
156
157 #define IDX_S(i) (i)*2
158 #define IDX_D(i) 1 + (i)* 2
159 #define UNDERFLOW_SN(i) ((i) >= sn&&sn>0)
160 #define UNDERFLOW_DN(i) ((i) >= dn&&dn>0)
161 #define OVERFLOW_S(i) (IDX_S(i) >= a_count)
162 #define OVERFLOW_D(i) (IDX_D(i) >= a_count)
163
164 #define OPJ_S(i) a[IDX_S(i)]
165 #define OPJ_D(i) a[IDX_D(i)]
166 #define OPJ_S_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_SN(i) ? OPJ_S(sn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i)))
167 #define OPJ_D_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_DN(i) ? OPJ_D(dn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i)))
168 /* new */
169 #define OPJ_SS_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_DN(i) ? OPJ_S(dn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i)))
170 #define OPJ_DD_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_SN(i) ? OPJ_D(sn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i)))
171
172 /* <summary> */
173 /* This table contains the norms of the 5-3 wavelets for different bands. */
174 /* </summary> */
175 static const OPJ_FLOAT64 opj_dwt_norms[4][10] = {
176 {1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
177 {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
178 {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
179 {.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}
180 };
181
182 /* <summary> */
183 /* This table contains the norms of the 9-7 wavelets for different bands. */
184 /* </summary> */
185 static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = {
186 {1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9},
187 {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
188 {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
189 {2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2}
190 };
191
192 /*
193 ==========================================================
194 local functions
195 ==========================================================
196 */
197
198 /* <summary> */
199 /* Forward lazy transform (horizontal). */
200 /* </summary> */
opj_dwt_deinterleave_h(OPJ_INT32 * a,OPJ_INT32 * b,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)201 static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
202 OPJ_INT32 i;
203 OPJ_INT32 * l_dest = b;
204 OPJ_INT32 * l_src = a+cas;
205
206 for (i=0; i<sn; ++i) {
207 *l_dest++ = *l_src;
208 l_src += 2;
209 }
210
211 l_dest = b + sn;
212 l_src = a + 1 - cas;
213
214 for (i=0; i<dn; ++i) {
215 *l_dest++=*l_src;
216 l_src += 2;
217 }
218 }
219
220 /* <summary> */
221 /* Forward lazy transform (vertical). */
222 /* </summary> */
opj_dwt_deinterleave_v(OPJ_INT32 * a,OPJ_INT32 * b,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 x,OPJ_INT32 cas)223 static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas) {
224 OPJ_INT32 i = sn;
225 OPJ_INT32 * l_dest = b;
226 OPJ_INT32 * l_src = a+cas;
227
228 while (i--) {
229 *l_dest = *l_src;
230 l_dest += x;
231 l_src += 2;
232 } /* b[i*x]=a[2*i+cas]; */
233
234 l_dest = b + sn * x;
235 l_src = a + 1 - cas;
236
237 i = dn;
238 while (i--) {
239 *l_dest = *l_src;
240 l_dest += x;
241 l_src += 2;
242 } /*b[(sn+i)*x]=a[(2*i+1-cas)];*/
243 }
244
245 /* <summary> */
246 /* Inverse lazy transform (horizontal). */
247 /* </summary> */
opj_dwt_interleave_h(opj_dwt_t * h,OPJ_INT32 * a)248 static void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a) {
249 OPJ_INT32 *ai = a;
250 OPJ_INT32 *bi = h->mem + h->cas;
251 OPJ_INT32 i = h->sn;
252 while( i-- ) {
253 *bi = *(ai++);
254 bi += 2;
255 }
256 ai = a + h->sn;
257 bi = h->mem + 1 - h->cas;
258 i = h->dn ;
259 while( i-- ) {
260 *bi = *(ai++);
261 bi += 2;
262 }
263 }
264
265 /* <summary> */
266 /* Inverse lazy transform (vertical). */
267 /* </summary> */
opj_dwt_interleave_v(opj_dwt_t * v,OPJ_INT32 * a,OPJ_INT32 x)268 static void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x) {
269 OPJ_INT32 *ai = a;
270 OPJ_INT32 *bi = v->mem + v->cas;
271 OPJ_INT32 i = v->sn;
272 while( i-- ) {
273 *bi = *ai;
274 bi += 2;
275 ai += x;
276 }
277 ai = a + (v->sn * x);
278 bi = v->mem + 1 - v->cas;
279 i = v->dn ;
280 while( i-- ) {
281 *bi = *ai;
282 bi += 2;
283 ai += x;
284 }
285 }
286
287
288 /* <summary> */
289 /* Forward 5-3 wavelet transform in 1-D. */
290 /* </summary> */
opj_dwt_encode_1(OPJ_INT32 * a,OPJ_SIZE_T a_count,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)291 static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
292 OPJ_INT32 i;
293
294 if (!cas) {
295 if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
296 for (i = 0; i < dn; i++) OPJ_D(i) -= (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
297 for (i = 0; i < sn; i++) OPJ_S(i) += (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
298 }
299 } else {
300 if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */
301 OPJ_S(0) *= 2;
302 else {
303 for (i = 0; i < dn; i++) OPJ_S(i) -= (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
304 for (i = 0; i < sn; i++) OPJ_D(i) += (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
305 }
306 }
307 }
308
309 /* <summary> */
310 /* Inverse 5-3 wavelet transform in 1-D. */
311 /* </summary> */
opj_dwt_decode_1_(OPJ_INT32 * a,OPJ_SIZE_T a_count,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)312 static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
313 OPJ_INT32 i;
314
315 if (!cas) {
316 if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
317 for (i = 0; i < sn; i++) OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
318 for (i = 0; i < dn; i++) OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
319 }
320 } else {
321 if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */
322 OPJ_S(0) /= 2;
323 else {
324 for (i = 0; i < sn; i++) OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
325 for (i = 0; i < dn; i++) OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
326 }
327 }
328 }
329
330 /* <summary> */
331 /* Inverse 5-3 wavelet transform in 1-D. */
332 /* </summary> */
opj_dwt_decode_1(opj_dwt_t * v)333 static void opj_dwt_decode_1(opj_dwt_t *v) {
334 opj_dwt_decode_1_(v->mem, v->mem_count, v->dn, v->sn, v->cas);
335 }
336
337 /* <summary> */
338 /* Forward 9-7 wavelet transform in 1-D. */
339 /* </summary> */
opj_dwt_encode_1_real(OPJ_INT32 * a,OPJ_SIZE_T a_count,OPJ_INT32 dn,OPJ_INT32 sn,OPJ_INT32 cas)340 static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
341 OPJ_INT32 i;
342 if (!cas) {
343 if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */
344 for (i = 0; i < dn; i++)
345 OPJ_D(i) -= opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 12993);
346 for (i = 0; i < sn; i++)
347 OPJ_S(i) -= opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 434);
348 for (i = 0; i < dn; i++)
349 OPJ_D(i) += opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 7233);
350 for (i = 0; i < sn; i++)
351 OPJ_S(i) += opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 3633);
352 for (i = 0; i < dn; i++)
353 OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 5038); /*5038 */
354 for (i = 0; i < sn; i++)
355 OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 6659); /*6660 */
356 }
357 } else {
358 if ((sn > 0) || (dn > 1)) { /* NEW : CASE ONE ELEMENT */
359 for (i = 0; i < dn; i++)
360 OPJ_S(i) -= opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 12993);
361 for (i = 0; i < sn; i++)
362 OPJ_D(i) -= opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 434);
363 for (i = 0; i < dn; i++)
364 OPJ_S(i) += opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 7233);
365 for (i = 0; i < sn; i++)
366 OPJ_D(i) += opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 3633);
367 for (i = 0; i < dn; i++)
368 OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 5038); /*5038 */
369 for (i = 0; i < sn; i++)
370 OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 6659); /*6660 */
371 }
372 }
373 }
374
opj_dwt_encode_stepsize(OPJ_INT32 stepsize,OPJ_INT32 numbps,opj_stepsize_t * bandno_stepsize)375 static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize) {
376 OPJ_INT32 p, n;
377 p = opj_int_floorlog2(stepsize) - 13;
378 n = 11 - opj_int_floorlog2(stepsize);
379 bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff;
380 bandno_stepsize->expn = numbps - p;
381 }
382
383 /*
384 ==========================================================
385 DWT interface
386 ==========================================================
387 */
388
389
390 /* <summary> */
391 /* Forward 5-3 wavelet transform in 2-D. */
392 /* </summary> */
opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec,void (* p_function)(OPJ_INT32 *,OPJ_SIZE_T,OPJ_INT32,OPJ_INT32,OPJ_INT32))393 static INLINE OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec, void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32))
394 {
395 OPJ_INT32 i, j, k;
396 OPJ_INT32 *a = 00;
397 OPJ_INT32 *aj = 00;
398 OPJ_INT32 *bj = 00;
399 OPJ_INT32 w, l;
400
401 OPJ_INT32 rw; /* width of the resolution level computed */
402 OPJ_INT32 rh; /* height of the resolution level computed */
403 OPJ_SIZE_T l_data_count;
404 OPJ_SIZE_T l_data_size;
405
406 opj_tcd_resolution_t * l_cur_res = 0;
407 opj_tcd_resolution_t * l_last_res = 0;
408
409 w = tilec->x1-tilec->x0;
410 l = (OPJ_INT32)tilec->numresolutions-1;
411 a = tilec->data;
412
413 l_cur_res = tilec->resolutions + l;
414 l_last_res = l_cur_res - 1;
415
416 l_data_count = opj_dwt_max_resolution(tilec->resolutions, tilec->numresolutions) * (OPJ_UINT32)sizeof(OPJ_INT32);
417 l_data_size = l_data_count * (OPJ_UINT32)sizeof(OPJ_INT32);
418 bj = (OPJ_INT32*)opj_malloc(l_data_size);
419 if (! bj) {
420 return OPJ_FALSE;
421 }
422 i = l;
423
424 while (i--) {
425 OPJ_INT32 rw1; /* width of the resolution level once lower than computed one */
426 OPJ_INT32 rh1; /* height of the resolution level once lower than computed one */
427 OPJ_INT32 cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
428 OPJ_INT32 cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */
429 OPJ_INT32 dn, sn;
430
431 rw = l_cur_res->x1 - l_cur_res->x0;
432 rh = l_cur_res->y1 - l_cur_res->y0;
433 rw1 = l_last_res->x1 - l_last_res->x0;
434 rh1 = l_last_res->y1 - l_last_res->y0;
435
436 cas_row = l_cur_res->x0 & 1;
437 cas_col = l_cur_res->y0 & 1;
438
439 sn = rh1;
440 dn = rh - rh1;
441 for (j = 0; j < rw; ++j) {
442 aj = a + j;
443 for (k = 0; k < rh; ++k) {
444 bj[k] = aj[k*w];
445 }
446
447 (*p_function) (bj, l_data_count, dn, sn, cas_col);
448
449 opj_dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col);
450 }
451
452 sn = rw1;
453 dn = rw - rw1;
454
455 for (j = 0; j < rh; j++) {
456 aj = a + j * w;
457 for (k = 0; k < rw; k++) bj[k] = aj[k];
458 (*p_function) (bj, l_data_count, dn, sn, cas_row);
459 opj_dwt_deinterleave_h(bj, aj, dn, sn, cas_row);
460 }
461
462 l_cur_res = l_last_res;
463
464 --l_last_res;
465 }
466
467 opj_free(bj);
468 return OPJ_TRUE;
469 }
470
471 /* Forward 5-3 wavelet transform in 2-D. */
472 /* </summary> */
opj_dwt_encode(opj_tcd_tilecomp_t * tilec)473 OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec)
474 {
475 return opj_dwt_encode_procedure(tilec,opj_dwt_encode_1);
476 }
477
478 /* <summary> */
479 /* Inverse 5-3 wavelet transform in 2-D. */
480 /* </summary> */
opj_dwt_decode(opj_tcd_tilecomp_t * tilec,OPJ_UINT32 numres)481 OPJ_BOOL opj_dwt_decode(opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres) {
482 return opj_dwt_decode_tile(tilec, numres, &opj_dwt_decode_1);
483 }
484
485
486 /* <summary> */
487 /* Get gain of 5-3 wavelet transform. */
488 /* </summary> */
opj_dwt_getgain(OPJ_UINT32 orient)489 OPJ_UINT32 opj_dwt_getgain(OPJ_UINT32 orient) {
490 if (orient == 0)
491 return 0;
492 if (orient == 1 || orient == 2)
493 return 1;
494 return 2;
495 }
496
497 /* <summary> */
498 /* Get norm of 5-3 wavelet. */
499 /* </summary> */
opj_dwt_getnorm(OPJ_UINT32 level,OPJ_UINT32 orient)500 OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient) {
501 return opj_dwt_norms[orient][level];
502 }
503
504 /* <summary> */
505 /* Forward 9-7 wavelet transform in 2-D. */
506 /* </summary> */
opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec)507 OPJ_BOOL opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec)
508 {
509 return opj_dwt_encode_procedure(tilec,opj_dwt_encode_1_real);
510 }
511
512 /* <summary> */
513 /* Get gain of 9-7 wavelet transform. */
514 /* </summary> */
opj_dwt_getgain_real(OPJ_UINT32 orient)515 OPJ_UINT32 opj_dwt_getgain_real(OPJ_UINT32 orient) {
516 (void)orient;
517 return 0;
518 }
519
520 /* <summary> */
521 /* Get norm of 9-7 wavelet. */
522 /* </summary> */
opj_dwt_getnorm_real(OPJ_UINT32 level,OPJ_UINT32 orient)523 OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient) {
524 return opj_dwt_norms_real[orient][level];
525 }
526
opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp,OPJ_UINT32 prec)527 void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec) {
528 OPJ_UINT32 numbands, bandno;
529 numbands = 3 * tccp->numresolutions - 2;
530 for (bandno = 0; bandno < numbands; bandno++) {
531 OPJ_FLOAT64 stepsize;
532 OPJ_UINT32 resno, level, orient, gain;
533
534 resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1);
535 orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1);
536 level = tccp->numresolutions - 1 - resno;
537 gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || (orient == 2)) ? 1 : 2));
538 if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) {
539 stepsize = 1.0;
540 } else {
541 OPJ_FLOAT64 norm = opj_dwt_norms_real[orient][level];
542 stepsize = (1 << (gain)) / norm;
543 }
544 opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0), (OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]);
545 }
546 }
547
548 /* <summary> */
549 /* Determine maximum computed resolution level for inverse wavelet transform */
550 /* </summary> */
opj_dwt_max_resolution(opj_tcd_resolution_t * restrict r,OPJ_UINT32 i)551 static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i) {
552 OPJ_UINT32 mr = 0;
553 OPJ_UINT32 w;
554 while( --i ) {
555 ++r;
556 if( mr < ( w = (OPJ_UINT32)(r->x1 - r->x0) ) )
557 mr = w ;
558 if( mr < ( w = (OPJ_UINT32)(r->y1 - r->y0) ) )
559 mr = w ;
560 }
561 return mr ;
562 }
563
564 /* <summary> */
565 /* Inverse wavelet transform in 2-D. */
566 /* </summary> */
opj_dwt_decode_tile(const opj_tcd_tilecomp_t * tilec,OPJ_UINT32 numres,DWT1DFN dwt_1D)567 static OPJ_BOOL opj_dwt_decode_tile(const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres, DWT1DFN dwt_1D) {
568 opj_dwt_t h;
569 opj_dwt_t v;
570
571 opj_tcd_resolution_t* tr = tilec->resolutions;
572
573 OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - tr->x0); /* width of the resolution level computed */
574 OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - tr->y0); /* height of the resolution level computed */
575
576 OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
577
578 h.mem_count = opj_dwt_max_resolution(tr, numres);
579 h.mem = (OPJ_INT32*)opj_aligned_malloc(h.mem_count * sizeof(OPJ_INT32));
580 if (! h.mem){
581 /* FIXME event manager error callback */
582 return OPJ_FALSE;
583 }
584
585 v.mem_count = h.mem_count;
586 v.mem = h.mem;
587
588 while( --numres) {
589 OPJ_INT32 * restrict tiledp = tilec->data;
590 OPJ_UINT32 j;
591
592 ++tr;
593 h.sn = (OPJ_INT32)rw;
594 v.sn = (OPJ_INT32)rh;
595
596 rw = (OPJ_UINT32)(tr->x1 - tr->x0);
597 rh = (OPJ_UINT32)(tr->y1 - tr->y0);
598
599 h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
600 h.cas = tr->x0 % 2;
601
602 for(j = 0; j < rh; ++j) {
603 opj_dwt_interleave_h(&h, &tiledp[j*w]);
604 (dwt_1D)(&h);
605 memcpy(&tiledp[j*w], h.mem, rw * sizeof(OPJ_INT32));
606 }
607
608 v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
609 v.cas = tr->y0 % 2;
610
611 for(j = 0; j < rw; ++j){
612 OPJ_UINT32 k;
613 opj_dwt_interleave_v(&v, &tiledp[j], (OPJ_INT32)w);
614 (dwt_1D)(&v);
615 for(k = 0; k < rh; ++k) {
616 tiledp[k * w + j] = v.mem[k];
617 }
618 }
619 }
620 opj_aligned_free(h.mem);
621 return OPJ_TRUE;
622 }
623
opj_v4dwt_interleave_h(opj_v4dwt_t * restrict w,OPJ_FLOAT32 * restrict a,OPJ_INT32 x,OPJ_INT32 size)624 static void opj_v4dwt_interleave_h(opj_v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size){
625 OPJ_FLOAT32* restrict bi = (OPJ_FLOAT32*) (w->wavelet + w->cas);
626 OPJ_INT32 count = w->sn;
627 OPJ_INT32 i, k;
628
629 for(k = 0; k < 2; ++k){
630 if ( count + 3 * x < size && ((size_t) a & 0x0f) == 0 && ((size_t) bi & 0x0f) == 0 && (x & 0x0f) == 0 ) {
631 /* Fast code path */
632 for(i = 0; i < count; ++i){
633 OPJ_INT32 j = i;
634 bi[i*8 ] = a[j];
635 j += x;
636 bi[i*8 + 1] = a[j];
637 j += x;
638 bi[i*8 + 2] = a[j];
639 j += x;
640 bi[i*8 + 3] = a[j];
641 }
642 }
643 else {
644 /* Slow code path */
645 for(i = 0; i < count; ++i){
646 OPJ_INT32 j = i;
647 bi[i*8 ] = a[j];
648 j += x;
649 if(j >= size) continue;
650 bi[i*8 + 1] = a[j];
651 j += x;
652 if(j >= size) continue;
653 bi[i*8 + 2] = a[j];
654 j += x;
655 if(j >= size) continue;
656 bi[i*8 + 3] = a[j]; /* This one*/
657 }
658 }
659
660 bi = (OPJ_FLOAT32*) (w->wavelet + 1 - w->cas);
661 a += w->sn;
662 size -= w->sn;
663 count = w->dn;
664 }
665 }
666
opj_v4dwt_interleave_v(opj_v4dwt_t * restrict v,OPJ_FLOAT32 * restrict a,OPJ_INT32 x,OPJ_INT32 nb_elts_read)667 static void opj_v4dwt_interleave_v(opj_v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x, OPJ_INT32 nb_elts_read){
668 opj_v4_t* restrict bi = v->wavelet + v->cas;
669 OPJ_INT32 i;
670
671 for(i = 0; i < v->sn; ++i){
672 memcpy(&bi[i*2], &a[i*x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32));
673 }
674
675 a += v->sn * x;
676 bi = v->wavelet + 1 - v->cas;
677
678 for(i = 0; i < v->dn; ++i){
679 memcpy(&bi[i*2], &a[i*x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32));
680 }
681 }
682
683 #ifdef __SSE__
684
opj_v4dwt_decode_step1_sse(opj_v4_t * w,OPJ_INT32 count,const __m128 c)685 static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c){
686 __m128* restrict vw = (__m128*) w;
687 OPJ_INT32 i;
688 /* 4x unrolled loop */
689 for(i = 0; i < count >> 2; ++i){
690 *vw = _mm_mul_ps(*vw, c);
691 vw += 2;
692 *vw = _mm_mul_ps(*vw, c);
693 vw += 2;
694 *vw = _mm_mul_ps(*vw, c);
695 vw += 2;
696 *vw = _mm_mul_ps(*vw, c);
697 vw += 2;
698 }
699 count &= 3;
700 for(i = 0; i < count; ++i){
701 *vw = _mm_mul_ps(*vw, c);
702 vw += 2;
703 }
704 }
705
opj_v4dwt_decode_step2_sse(opj_v4_t * l,opj_v4_t * w,OPJ_INT32 k,OPJ_INT32 m,__m128 c)706 void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c){
707 __m128* restrict vl = (__m128*) l;
708 __m128* restrict vw = (__m128*) w;
709 OPJ_INT32 i;
710 __m128 tmp1, tmp2, tmp3;
711 tmp1 = vl[0];
712 for(i = 0; i < m; ++i){
713 tmp2 = vw[-1];
714 tmp3 = vw[ 0];
715 vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c));
716 tmp1 = tmp3;
717 vw += 2;
718 }
719 vl = vw - 2;
720 if(m >= k){
721 return;
722 }
723 c = _mm_add_ps(c, c);
724 c = _mm_mul_ps(c, vl[0]);
725 for(; m < k; ++m){
726 __m128 tmp = vw[-1];
727 vw[-1] = _mm_add_ps(tmp, c);
728 vw += 2;
729 }
730 }
731
732 #else
733
opj_v4dwt_decode_step1(opj_v4_t * w,OPJ_INT32 count,const OPJ_FLOAT32 c)734 static void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c)
735 {
736 OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w;
737 OPJ_INT32 i;
738 for(i = 0; i < count; ++i){
739 OPJ_FLOAT32 tmp1 = fw[i*8 ];
740 OPJ_FLOAT32 tmp2 = fw[i*8 + 1];
741 OPJ_FLOAT32 tmp3 = fw[i*8 + 2];
742 OPJ_FLOAT32 tmp4 = fw[i*8 + 3];
743 fw[i*8 ] = tmp1 * c;
744 fw[i*8 + 1] = tmp2 * c;
745 fw[i*8 + 2] = tmp3 * c;
746 fw[i*8 + 3] = tmp4 * c;
747 }
748 }
749
opj_v4dwt_decode_step2(opj_v4_t * l,opj_v4_t * w,OPJ_INT32 k,OPJ_INT32 m,OPJ_FLOAT32 c)750 static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c)
751 {
752 OPJ_FLOAT32* restrict fl = (OPJ_FLOAT32*) l;
753 OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w;
754 OPJ_INT32 i;
755 for(i = 0; i < m; ++i){
756 OPJ_FLOAT32 tmp1_1 = fl[0];
757 OPJ_FLOAT32 tmp1_2 = fl[1];
758 OPJ_FLOAT32 tmp1_3 = fl[2];
759 OPJ_FLOAT32 tmp1_4 = fl[3];
760 OPJ_FLOAT32 tmp2_1 = fw[-4];
761 OPJ_FLOAT32 tmp2_2 = fw[-3];
762 OPJ_FLOAT32 tmp2_3 = fw[-2];
763 OPJ_FLOAT32 tmp2_4 = fw[-1];
764 OPJ_FLOAT32 tmp3_1 = fw[0];
765 OPJ_FLOAT32 tmp3_2 = fw[1];
766 OPJ_FLOAT32 tmp3_3 = fw[2];
767 OPJ_FLOAT32 tmp3_4 = fw[3];
768 fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c);
769 fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c);
770 fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c);
771 fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c);
772 fl = fw;
773 fw += 8;
774 }
775 if(m < k){
776 OPJ_FLOAT32 c1;
777 OPJ_FLOAT32 c2;
778 OPJ_FLOAT32 c3;
779 OPJ_FLOAT32 c4;
780 c += c;
781 c1 = fl[0] * c;
782 c2 = fl[1] * c;
783 c3 = fl[2] * c;
784 c4 = fl[3] * c;
785 for(; m < k; ++m){
786 OPJ_FLOAT32 tmp1 = fw[-4];
787 OPJ_FLOAT32 tmp2 = fw[-3];
788 OPJ_FLOAT32 tmp3 = fw[-2];
789 OPJ_FLOAT32 tmp4 = fw[-1];
790 fw[-4] = tmp1 + c1;
791 fw[-3] = tmp2 + c2;
792 fw[-2] = tmp3 + c3;
793 fw[-1] = tmp4 + c4;
794 fw += 8;
795 }
796 }
797 }
798
799 #endif
800
801 /* <summary> */
802 /* Inverse 9-7 wavelet transform in 1-D. */
803 /* </summary> */
opj_v4dwt_decode(opj_v4dwt_t * restrict dwt)804 void opj_v4dwt_decode(opj_v4dwt_t* restrict dwt)
805 {
806 OPJ_INT32 a, b;
807 if(dwt->cas == 0) {
808 if(!((dwt->dn > 0) || (dwt->sn > 1))){
809 return;
810 }
811 a = 0;
812 b = 1;
813 }else{
814 if(!((dwt->sn > 0) || (dwt->dn > 1))) {
815 return;
816 }
817 a = 1;
818 b = 0;
819 }
820 #ifdef __SSE__
821 opj_v4dwt_decode_step1_sse(dwt->wavelet+a, dwt->sn, _mm_set1_ps(opj_K));
822 opj_v4dwt_decode_step1_sse(dwt->wavelet+b, dwt->dn, _mm_set1_ps(opj_c13318));
823 opj_v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(opj_dwt_delta));
824 opj_v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(opj_dwt_gamma));
825 opj_v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(opj_dwt_beta));
826 opj_v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(opj_dwt_alpha));
827 #else
828 opj_v4dwt_decode_step1(dwt->wavelet+a, dwt->sn, opj_K);
829 opj_v4dwt_decode_step1(dwt->wavelet+b, dwt->dn, opj_c13318);
830 opj_v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), opj_dwt_delta);
831 opj_v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), opj_dwt_gamma);
832 opj_v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), opj_dwt_beta);
833 opj_v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), opj_dwt_alpha);
834 #endif
835 }
836
837
838 /* <summary> */
839 /* Inverse 9-7 wavelet transform in 2-D. */
840 /* </summary> */
opj_dwt_decode_real(opj_tcd_tilecomp_t * restrict tilec,OPJ_UINT32 numres)841 OPJ_BOOL opj_dwt_decode_real(opj_tcd_tilecomp_t* restrict tilec, OPJ_UINT32 numres)
842 {
843 opj_v4dwt_t h;
844 opj_v4dwt_t v;
845
846 opj_tcd_resolution_t* res = tilec->resolutions;
847
848 OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 - res->x0); /* width of the resolution level computed */
849 OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 - res->y0); /* height of the resolution level computed */
850
851 OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0);
852
853 h.wavelet = (opj_v4_t*) opj_aligned_malloc((opj_dwt_max_resolution(res, numres)+5) * sizeof(opj_v4_t));
854 if (!h.wavelet) {
855 /* FIXME event manager error callback */
856 return OPJ_FALSE;
857 }
858 v.wavelet = h.wavelet;
859
860 while( --numres) {
861 OPJ_FLOAT32 * restrict aj = (OPJ_FLOAT32*) tilec->data;
862 OPJ_UINT32 bufsize = (OPJ_UINT32)((tilec->x1 - tilec->x0) * (tilec->y1 - tilec->y0));
863 OPJ_INT32 j;
864
865 h.sn = (OPJ_INT32)rw;
866 v.sn = (OPJ_INT32)rh;
867
868 ++res;
869
870 rw = (OPJ_UINT32)(res->x1 - res->x0); /* width of the resolution level computed */
871 rh = (OPJ_UINT32)(res->y1 - res->y0); /* height of the resolution level computed */
872
873 h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
874 h.cas = res->x0 % 2;
875
876 for(j = (OPJ_INT32)rh; j > 3; j -= 4) {
877 OPJ_INT32 k;
878 opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize);
879 opj_v4dwt_decode(&h);
880
881 for(k = (OPJ_INT32)rw; --k >= 0;){
882 aj[k ] = h.wavelet[k].f[0];
883 aj[k+(OPJ_INT32)w ] = h.wavelet[k].f[1];
884 aj[k+(OPJ_INT32)w*2] = h.wavelet[k].f[2];
885 aj[k+(OPJ_INT32)w*3] = h.wavelet[k].f[3];
886 }
887
888 aj += w*4;
889 bufsize -= w*4;
890 }
891
892 if (rh & 0x03) {
893 OPJ_INT32 k;
894 j = rh & 0x03;
895 opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize);
896 opj_v4dwt_decode(&h);
897 for(k = (OPJ_INT32)rw; --k >= 0;){
898 switch(j) {
899 case 3: aj[k+(OPJ_INT32)w*2] = h.wavelet[k].f[2];
900 case 2: aj[k+(OPJ_INT32)w ] = h.wavelet[k].f[1];
901 case 1: aj[k ] = h.wavelet[k].f[0];
902 }
903 }
904 }
905
906 v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
907 v.cas = res->y0 % 2;
908
909 aj = (OPJ_FLOAT32*) tilec->data;
910 for(j = (OPJ_INT32)rw; j > 3; j -= 4){
911 OPJ_UINT32 k;
912
913 opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, 4);
914 opj_v4dwt_decode(&v);
915
916 for(k = 0; k < rh; ++k){
917 memcpy(&aj[k*w], &v.wavelet[k], 4 * sizeof(OPJ_FLOAT32));
918 }
919 aj += 4;
920 }
921
922 if (rw & 0x03){
923 OPJ_UINT32 k;
924
925 j = rw & 0x03;
926
927 opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, j);
928 opj_v4dwt_decode(&v);
929
930 for(k = 0; k < rh; ++k){
931 memcpy(&aj[k*w], &v.wavelet[k], (size_t)j * sizeof(OPJ_FLOAT32));
932 }
933 }
934 }
935
936 opj_aligned_free(h.wavelet);
937 return OPJ_TRUE;
938 }
939