1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library implements the functionality defined in llvm/IR/Writer.h
11 //
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/IR/AssemblyAnnotationWriter.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfo.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/IRPrintingPasses.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/ModuleSlotTracker.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Statepoint.h"
36 #include "llvm/IR/TypeFinder.h"
37 #include "llvm/IR/UseListOrder.h"
38 #include "llvm/IR/ValueSymbolTable.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/Dwarf.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/Format.h"
43 #include "llvm/Support/FormattedStream.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cctype>
48 using namespace llvm;
49
50 // Make virtual table appear in this compilation unit.
~AssemblyAnnotationWriter()51 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
52
53 //===----------------------------------------------------------------------===//
54 // Helper Functions
55 //===----------------------------------------------------------------------===//
56
57 namespace {
58 struct OrderMap {
59 DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
60
size__anond169a03a0111::OrderMap61 unsigned size() const { return IDs.size(); }
operator []__anond169a03a0111::OrderMap62 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
lookup__anond169a03a0111::OrderMap63 std::pair<unsigned, bool> lookup(const Value *V) const {
64 return IDs.lookup(V);
65 }
index__anond169a03a0111::OrderMap66 void index(const Value *V) {
67 // Explicitly sequence get-size and insert-value operations to avoid UB.
68 unsigned ID = IDs.size() + 1;
69 IDs[V].first = ID;
70 }
71 };
72 }
73
orderValue(const Value * V,OrderMap & OM)74 static void orderValue(const Value *V, OrderMap &OM) {
75 if (OM.lookup(V).first)
76 return;
77
78 if (const Constant *C = dyn_cast<Constant>(V))
79 if (C->getNumOperands() && !isa<GlobalValue>(C))
80 for (const Value *Op : C->operands())
81 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
82 orderValue(Op, OM);
83
84 // Note: we cannot cache this lookup above, since inserting into the map
85 // changes the map's size, and thus affects the other IDs.
86 OM.index(V);
87 }
88
orderModule(const Module * M)89 static OrderMap orderModule(const Module *M) {
90 // This needs to match the order used by ValueEnumerator::ValueEnumerator()
91 // and ValueEnumerator::incorporateFunction().
92 OrderMap OM;
93
94 for (const GlobalVariable &G : M->globals()) {
95 if (G.hasInitializer())
96 if (!isa<GlobalValue>(G.getInitializer()))
97 orderValue(G.getInitializer(), OM);
98 orderValue(&G, OM);
99 }
100 for (const GlobalAlias &A : M->aliases()) {
101 if (!isa<GlobalValue>(A.getAliasee()))
102 orderValue(A.getAliasee(), OM);
103 orderValue(&A, OM);
104 }
105 for (const Function &F : *M) {
106 for (const Use &U : F.operands())
107 if (!isa<GlobalValue>(U.get()))
108 orderValue(U.get(), OM);
109
110 orderValue(&F, OM);
111
112 if (F.isDeclaration())
113 continue;
114
115 for (const Argument &A : F.args())
116 orderValue(&A, OM);
117 for (const BasicBlock &BB : F) {
118 orderValue(&BB, OM);
119 for (const Instruction &I : BB) {
120 for (const Value *Op : I.operands())
121 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
122 isa<InlineAsm>(*Op))
123 orderValue(Op, OM);
124 orderValue(&I, OM);
125 }
126 }
127 }
128 return OM;
129 }
130
predictValueUseListOrderImpl(const Value * V,const Function * F,unsigned ID,const OrderMap & OM,UseListOrderStack & Stack)131 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
132 unsigned ID, const OrderMap &OM,
133 UseListOrderStack &Stack) {
134 // Predict use-list order for this one.
135 typedef std::pair<const Use *, unsigned> Entry;
136 SmallVector<Entry, 64> List;
137 for (const Use &U : V->uses())
138 // Check if this user will be serialized.
139 if (OM.lookup(U.getUser()).first)
140 List.push_back(std::make_pair(&U, List.size()));
141
142 if (List.size() < 2)
143 // We may have lost some users.
144 return;
145
146 bool GetsReversed =
147 !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
148 if (auto *BA = dyn_cast<BlockAddress>(V))
149 ID = OM.lookup(BA->getBasicBlock()).first;
150 std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
151 const Use *LU = L.first;
152 const Use *RU = R.first;
153 if (LU == RU)
154 return false;
155
156 auto LID = OM.lookup(LU->getUser()).first;
157 auto RID = OM.lookup(RU->getUser()).first;
158
159 // If ID is 4, then expect: 7 6 5 1 2 3.
160 if (LID < RID) {
161 if (GetsReversed)
162 if (RID <= ID)
163 return true;
164 return false;
165 }
166 if (RID < LID) {
167 if (GetsReversed)
168 if (LID <= ID)
169 return false;
170 return true;
171 }
172
173 // LID and RID are equal, so we have different operands of the same user.
174 // Assume operands are added in order for all instructions.
175 if (GetsReversed)
176 if (LID <= ID)
177 return LU->getOperandNo() < RU->getOperandNo();
178 return LU->getOperandNo() > RU->getOperandNo();
179 });
180
181 if (std::is_sorted(
182 List.begin(), List.end(),
183 [](const Entry &L, const Entry &R) { return L.second < R.second; }))
184 // Order is already correct.
185 return;
186
187 // Store the shuffle.
188 Stack.emplace_back(V, F, List.size());
189 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
190 for (size_t I = 0, E = List.size(); I != E; ++I)
191 Stack.back().Shuffle[I] = List[I].second;
192 }
193
predictValueUseListOrder(const Value * V,const Function * F,OrderMap & OM,UseListOrderStack & Stack)194 static void predictValueUseListOrder(const Value *V, const Function *F,
195 OrderMap &OM, UseListOrderStack &Stack) {
196 auto &IDPair = OM[V];
197 assert(IDPair.first && "Unmapped value");
198 if (IDPair.second)
199 // Already predicted.
200 return;
201
202 // Do the actual prediction.
203 IDPair.second = true;
204 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
205 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
206
207 // Recursive descent into constants.
208 if (const Constant *C = dyn_cast<Constant>(V))
209 if (C->getNumOperands()) // Visit GlobalValues.
210 for (const Value *Op : C->operands())
211 if (isa<Constant>(Op)) // Visit GlobalValues.
212 predictValueUseListOrder(Op, F, OM, Stack);
213 }
214
predictUseListOrder(const Module * M)215 static UseListOrderStack predictUseListOrder(const Module *M) {
216 OrderMap OM = orderModule(M);
217
218 // Use-list orders need to be serialized after all the users have been added
219 // to a value, or else the shuffles will be incomplete. Store them per
220 // function in a stack.
221 //
222 // Aside from function order, the order of values doesn't matter much here.
223 UseListOrderStack Stack;
224
225 // We want to visit the functions backward now so we can list function-local
226 // constants in the last Function they're used in. Module-level constants
227 // have already been visited above.
228 for (const Function &F : make_range(M->rbegin(), M->rend())) {
229 if (F.isDeclaration())
230 continue;
231 for (const BasicBlock &BB : F)
232 predictValueUseListOrder(&BB, &F, OM, Stack);
233 for (const Argument &A : F.args())
234 predictValueUseListOrder(&A, &F, OM, Stack);
235 for (const BasicBlock &BB : F)
236 for (const Instruction &I : BB)
237 for (const Value *Op : I.operands())
238 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
239 predictValueUseListOrder(Op, &F, OM, Stack);
240 for (const BasicBlock &BB : F)
241 for (const Instruction &I : BB)
242 predictValueUseListOrder(&I, &F, OM, Stack);
243 }
244
245 // Visit globals last.
246 for (const GlobalVariable &G : M->globals())
247 predictValueUseListOrder(&G, nullptr, OM, Stack);
248 for (const Function &F : *M)
249 predictValueUseListOrder(&F, nullptr, OM, Stack);
250 for (const GlobalAlias &A : M->aliases())
251 predictValueUseListOrder(&A, nullptr, OM, Stack);
252 for (const GlobalVariable &G : M->globals())
253 if (G.hasInitializer())
254 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
255 for (const GlobalAlias &A : M->aliases())
256 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
257 for (const Function &F : *M)
258 for (const Use &U : F.operands())
259 predictValueUseListOrder(U.get(), nullptr, OM, Stack);
260
261 return Stack;
262 }
263
getModuleFromVal(const Value * V)264 static const Module *getModuleFromVal(const Value *V) {
265 if (const Argument *MA = dyn_cast<Argument>(V))
266 return MA->getParent() ? MA->getParent()->getParent() : nullptr;
267
268 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
269 return BB->getParent() ? BB->getParent()->getParent() : nullptr;
270
271 if (const Instruction *I = dyn_cast<Instruction>(V)) {
272 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
273 return M ? M->getParent() : nullptr;
274 }
275
276 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
277 return GV->getParent();
278
279 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
280 for (const User *U : MAV->users())
281 if (isa<Instruction>(U))
282 if (const Module *M = getModuleFromVal(U))
283 return M;
284 return nullptr;
285 }
286
287 return nullptr;
288 }
289
PrintCallingConv(unsigned cc,raw_ostream & Out)290 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
291 switch (cc) {
292 default: Out << "cc" << cc; break;
293 case CallingConv::Fast: Out << "fastcc"; break;
294 case CallingConv::Cold: Out << "coldcc"; break;
295 case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
296 case CallingConv::AnyReg: Out << "anyregcc"; break;
297 case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
298 case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
299 case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break;
300 case CallingConv::GHC: Out << "ghccc"; break;
301 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
302 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
303 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
304 case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
305 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
306 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
307 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
308 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
309 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
310 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
311 case CallingConv::PTX_Device: Out << "ptx_device"; break;
312 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
313 case CallingConv::X86_64_Win64: Out << "x86_64_win64cc"; break;
314 case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
315 case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
316 case CallingConv::X86_INTR: Out << "x86_intrcc"; break;
317 case CallingConv::HHVM: Out << "hhvmcc"; break;
318 case CallingConv::HHVM_C: Out << "hhvm_ccc"; break;
319 }
320 }
321
322 // PrintEscapedString - Print each character of the specified string, escaping
323 // it if it is not printable or if it is an escape char.
PrintEscapedString(StringRef Name,raw_ostream & Out)324 static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
325 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
326 unsigned char C = Name[i];
327 if (isprint(C) && C != '\\' && C != '"')
328 Out << C;
329 else
330 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
331 }
332 }
333
334 enum PrefixType {
335 GlobalPrefix,
336 ComdatPrefix,
337 LabelPrefix,
338 LocalPrefix,
339 NoPrefix
340 };
341
printLLVMNameWithoutPrefix(raw_ostream & OS,StringRef Name)342 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
343 assert(!Name.empty() && "Cannot get empty name!");
344
345 // Scan the name to see if it needs quotes first.
346 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
347 if (!NeedsQuotes) {
348 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
349 // By making this unsigned, the value passed in to isalnum will always be
350 // in the range 0-255. This is important when building with MSVC because
351 // its implementation will assert. This situation can arise when dealing
352 // with UTF-8 multibyte characters.
353 unsigned char C = Name[i];
354 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
355 C != '_') {
356 NeedsQuotes = true;
357 break;
358 }
359 }
360 }
361
362 // If we didn't need any quotes, just write out the name in one blast.
363 if (!NeedsQuotes) {
364 OS << Name;
365 return;
366 }
367
368 // Okay, we need quotes. Output the quotes and escape any scary characters as
369 // needed.
370 OS << '"';
371 PrintEscapedString(Name, OS);
372 OS << '"';
373 }
374
375 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
376 /// (if the string only contains simple characters) or is surrounded with ""'s
377 /// (if it has special chars in it). Print it out.
PrintLLVMName(raw_ostream & OS,StringRef Name,PrefixType Prefix)378 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
379 switch (Prefix) {
380 case NoPrefix:
381 break;
382 case GlobalPrefix:
383 OS << '@';
384 break;
385 case ComdatPrefix:
386 OS << '$';
387 break;
388 case LabelPrefix:
389 break;
390 case LocalPrefix:
391 OS << '%';
392 break;
393 }
394 printLLVMNameWithoutPrefix(OS, Name);
395 }
396
397 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
398 /// (if the string only contains simple characters) or is surrounded with ""'s
399 /// (if it has special chars in it). Print it out.
PrintLLVMName(raw_ostream & OS,const Value * V)400 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
401 PrintLLVMName(OS, V->getName(),
402 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
403 }
404
405
406 namespace {
407 class TypePrinting {
408 TypePrinting(const TypePrinting &) = delete;
409 void operator=(const TypePrinting&) = delete;
410 public:
411
412 /// NamedTypes - The named types that are used by the current module.
413 TypeFinder NamedTypes;
414
415 /// NumberedTypes - The numbered types, along with their value.
416 DenseMap<StructType*, unsigned> NumberedTypes;
417
418 TypePrinting() = default;
419
420 void incorporateTypes(const Module &M);
421
422 void print(Type *Ty, raw_ostream &OS);
423
424 void printStructBody(StructType *Ty, raw_ostream &OS);
425 };
426 } // namespace
427
incorporateTypes(const Module & M)428 void TypePrinting::incorporateTypes(const Module &M) {
429 NamedTypes.run(M, false);
430
431 // The list of struct types we got back includes all the struct types, split
432 // the unnamed ones out to a numbering and remove the anonymous structs.
433 unsigned NextNumber = 0;
434
435 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
436 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
437 StructType *STy = *I;
438
439 // Ignore anonymous types.
440 if (STy->isLiteral())
441 continue;
442
443 if (STy->getName().empty())
444 NumberedTypes[STy] = NextNumber++;
445 else
446 *NextToUse++ = STy;
447 }
448
449 NamedTypes.erase(NextToUse, NamedTypes.end());
450 }
451
452
453 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
454 /// use of type names or up references to shorten the type name where possible.
print(Type * Ty,raw_ostream & OS)455 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
456 switch (Ty->getTypeID()) {
457 case Type::VoidTyID: OS << "void"; return;
458 case Type::HalfTyID: OS << "half"; return;
459 case Type::FloatTyID: OS << "float"; return;
460 case Type::DoubleTyID: OS << "double"; return;
461 case Type::X86_FP80TyID: OS << "x86_fp80"; return;
462 case Type::FP128TyID: OS << "fp128"; return;
463 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
464 case Type::LabelTyID: OS << "label"; return;
465 case Type::MetadataTyID: OS << "metadata"; return;
466 case Type::X86_MMXTyID: OS << "x86_mmx"; return;
467 case Type::TokenTyID: OS << "token"; return;
468 case Type::IntegerTyID:
469 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
470 return;
471
472 case Type::FunctionTyID: {
473 FunctionType *FTy = cast<FunctionType>(Ty);
474 print(FTy->getReturnType(), OS);
475 OS << " (";
476 for (FunctionType::param_iterator I = FTy->param_begin(),
477 E = FTy->param_end(); I != E; ++I) {
478 if (I != FTy->param_begin())
479 OS << ", ";
480 print(*I, OS);
481 }
482 if (FTy->isVarArg()) {
483 if (FTy->getNumParams()) OS << ", ";
484 OS << "...";
485 }
486 OS << ')';
487 return;
488 }
489 case Type::StructTyID: {
490 StructType *STy = cast<StructType>(Ty);
491
492 if (STy->isLiteral())
493 return printStructBody(STy, OS);
494
495 if (!STy->getName().empty())
496 return PrintLLVMName(OS, STy->getName(), LocalPrefix);
497
498 DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
499 if (I != NumberedTypes.end())
500 OS << '%' << I->second;
501 else // Not enumerated, print the hex address.
502 OS << "%\"type " << STy << '\"';
503 return;
504 }
505 case Type::PointerTyID: {
506 PointerType *PTy = cast<PointerType>(Ty);
507 print(PTy->getElementType(), OS);
508 if (unsigned AddressSpace = PTy->getAddressSpace())
509 OS << " addrspace(" << AddressSpace << ')';
510 OS << '*';
511 return;
512 }
513 case Type::ArrayTyID: {
514 ArrayType *ATy = cast<ArrayType>(Ty);
515 OS << '[' << ATy->getNumElements() << " x ";
516 print(ATy->getElementType(), OS);
517 OS << ']';
518 return;
519 }
520 case Type::VectorTyID: {
521 VectorType *PTy = cast<VectorType>(Ty);
522 OS << "<" << PTy->getNumElements() << " x ";
523 print(PTy->getElementType(), OS);
524 OS << '>';
525 return;
526 }
527 }
528 llvm_unreachable("Invalid TypeID");
529 }
530
printStructBody(StructType * STy,raw_ostream & OS)531 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
532 if (STy->isOpaque()) {
533 OS << "opaque";
534 return;
535 }
536
537 if (STy->isPacked())
538 OS << '<';
539
540 if (STy->getNumElements() == 0) {
541 OS << "{}";
542 } else {
543 StructType::element_iterator I = STy->element_begin();
544 OS << "{ ";
545 print(*I++, OS);
546 for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
547 OS << ", ";
548 print(*I, OS);
549 }
550
551 OS << " }";
552 }
553 if (STy->isPacked())
554 OS << '>';
555 }
556
557 namespace llvm {
558 //===----------------------------------------------------------------------===//
559 // SlotTracker Class: Enumerate slot numbers for unnamed values
560 //===----------------------------------------------------------------------===//
561 /// This class provides computation of slot numbers for LLVM Assembly writing.
562 ///
563 class SlotTracker {
564 public:
565 /// ValueMap - A mapping of Values to slot numbers.
566 typedef DenseMap<const Value*, unsigned> ValueMap;
567
568 private:
569 /// TheModule - The module for which we are holding slot numbers.
570 const Module* TheModule;
571
572 /// TheFunction - The function for which we are holding slot numbers.
573 const Function* TheFunction;
574 bool FunctionProcessed;
575 bool ShouldInitializeAllMetadata;
576
577 /// mMap - The slot map for the module level data.
578 ValueMap mMap;
579 unsigned mNext;
580
581 /// fMap - The slot map for the function level data.
582 ValueMap fMap;
583 unsigned fNext;
584
585 /// mdnMap - Map for MDNodes.
586 DenseMap<const MDNode*, unsigned> mdnMap;
587 unsigned mdnNext;
588
589 /// asMap - The slot map for attribute sets.
590 DenseMap<AttributeSet, unsigned> asMap;
591 unsigned asNext;
592 public:
593 /// Construct from a module.
594 ///
595 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
596 /// functions, giving correct numbering for metadata referenced only from
597 /// within a function (even if no functions have been initialized).
598 explicit SlotTracker(const Module *M,
599 bool ShouldInitializeAllMetadata = false);
600 /// Construct from a function, starting out in incorp state.
601 ///
602 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
603 /// functions, giving correct numbering for metadata referenced only from
604 /// within a function (even if no functions have been initialized).
605 explicit SlotTracker(const Function *F,
606 bool ShouldInitializeAllMetadata = false);
607
608 /// Return the slot number of the specified value in it's type
609 /// plane. If something is not in the SlotTracker, return -1.
610 int getLocalSlot(const Value *V);
611 int getGlobalSlot(const GlobalValue *V);
612 int getMetadataSlot(const MDNode *N);
613 int getAttributeGroupSlot(AttributeSet AS);
614
615 /// If you'd like to deal with a function instead of just a module, use
616 /// this method to get its data into the SlotTracker.
incorporateFunction(const Function * F)617 void incorporateFunction(const Function *F) {
618 TheFunction = F;
619 FunctionProcessed = false;
620 }
621
getFunction() const622 const Function *getFunction() const { return TheFunction; }
623
624 /// After calling incorporateFunction, use this method to remove the
625 /// most recently incorporated function from the SlotTracker. This
626 /// will reset the state of the machine back to just the module contents.
627 void purgeFunction();
628
629 /// MDNode map iterators.
630 typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
mdn_begin()631 mdn_iterator mdn_begin() { return mdnMap.begin(); }
mdn_end()632 mdn_iterator mdn_end() { return mdnMap.end(); }
mdn_size() const633 unsigned mdn_size() const { return mdnMap.size(); }
mdn_empty() const634 bool mdn_empty() const { return mdnMap.empty(); }
635
636 /// AttributeSet map iterators.
637 typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
as_begin()638 as_iterator as_begin() { return asMap.begin(); }
as_end()639 as_iterator as_end() { return asMap.end(); }
as_size() const640 unsigned as_size() const { return asMap.size(); }
as_empty() const641 bool as_empty() const { return asMap.empty(); }
642
643 /// This function does the actual initialization.
644 inline void initialize();
645
646 // Implementation Details
647 private:
648 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
649 void CreateModuleSlot(const GlobalValue *V);
650
651 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
652 void CreateMetadataSlot(const MDNode *N);
653
654 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
655 void CreateFunctionSlot(const Value *V);
656
657 /// \brief Insert the specified AttributeSet into the slot table.
658 void CreateAttributeSetSlot(AttributeSet AS);
659
660 /// Add all of the module level global variables (and their initializers)
661 /// and function declarations, but not the contents of those functions.
662 void processModule();
663
664 /// Add all of the functions arguments, basic blocks, and instructions.
665 void processFunction();
666
667 /// Add all of the metadata from a function.
668 void processFunctionMetadata(const Function &F);
669
670 /// Add all of the metadata from an instruction.
671 void processInstructionMetadata(const Instruction &I);
672
673 SlotTracker(const SlotTracker &) = delete;
674 void operator=(const SlotTracker &) = delete;
675 };
676 } // namespace llvm
677
ModuleSlotTracker(SlotTracker & Machine,const Module * M,const Function * F)678 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
679 const Function *F)
680 : M(M), F(F), Machine(&Machine) {}
681
ModuleSlotTracker(const Module * M,bool ShouldInitializeAllMetadata)682 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
683 bool ShouldInitializeAllMetadata)
684 : MachineStorage(M ? new SlotTracker(M, ShouldInitializeAllMetadata)
685 : nullptr),
686 M(M), Machine(MachineStorage.get()) {}
687
~ModuleSlotTracker()688 ModuleSlotTracker::~ModuleSlotTracker() {}
689
incorporateFunction(const Function & F)690 void ModuleSlotTracker::incorporateFunction(const Function &F) {
691 if (!Machine)
692 return;
693
694 // Nothing to do if this is the right function already.
695 if (this->F == &F)
696 return;
697 if (this->F)
698 Machine->purgeFunction();
699 Machine->incorporateFunction(&F);
700 this->F = &F;
701 }
702
getLocalSlot(const Value * V)703 int ModuleSlotTracker::getLocalSlot(const Value *V) {
704 assert(F && "No function incorporated");
705 return Machine->getLocalSlot(V);
706 }
707
createSlotTracker(const Value * V)708 static SlotTracker *createSlotTracker(const Value *V) {
709 if (const Argument *FA = dyn_cast<Argument>(V))
710 return new SlotTracker(FA->getParent());
711
712 if (const Instruction *I = dyn_cast<Instruction>(V))
713 if (I->getParent())
714 return new SlotTracker(I->getParent()->getParent());
715
716 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
717 return new SlotTracker(BB->getParent());
718
719 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
720 return new SlotTracker(GV->getParent());
721
722 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
723 return new SlotTracker(GA->getParent());
724
725 if (const Function *Func = dyn_cast<Function>(V))
726 return new SlotTracker(Func);
727
728 return nullptr;
729 }
730
731 #if 0
732 #define ST_DEBUG(X) dbgs() << X
733 #else
734 #define ST_DEBUG(X)
735 #endif
736
737 // Module level constructor. Causes the contents of the Module (sans functions)
738 // to be added to the slot table.
SlotTracker(const Module * M,bool ShouldInitializeAllMetadata)739 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
740 : TheModule(M), TheFunction(nullptr), FunctionProcessed(false),
741 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
742 fNext(0), mdnNext(0), asNext(0) {}
743
744 // Function level constructor. Causes the contents of the Module and the one
745 // function provided to be added to the slot table.
SlotTracker(const Function * F,bool ShouldInitializeAllMetadata)746 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
747 : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
748 FunctionProcessed(false),
749 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
750 fNext(0), mdnNext(0), asNext(0) {}
751
initialize()752 inline void SlotTracker::initialize() {
753 if (TheModule) {
754 processModule();
755 TheModule = nullptr; ///< Prevent re-processing next time we're called.
756 }
757
758 if (TheFunction && !FunctionProcessed)
759 processFunction();
760 }
761
762 // Iterate through all the global variables, functions, and global
763 // variable initializers and create slots for them.
processModule()764 void SlotTracker::processModule() {
765 ST_DEBUG("begin processModule!\n");
766
767 // Add all of the unnamed global variables to the value table.
768 for (const GlobalVariable &Var : TheModule->globals()) {
769 if (!Var.hasName())
770 CreateModuleSlot(&Var);
771 }
772
773 for (const GlobalAlias &A : TheModule->aliases()) {
774 if (!A.hasName())
775 CreateModuleSlot(&A);
776 }
777
778 // Add metadata used by named metadata.
779 for (const NamedMDNode &NMD : TheModule->named_metadata()) {
780 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
781 CreateMetadataSlot(NMD.getOperand(i));
782 }
783
784 for (const Function &F : *TheModule) {
785 if (!F.hasName())
786 // Add all the unnamed functions to the table.
787 CreateModuleSlot(&F);
788
789 if (ShouldInitializeAllMetadata)
790 processFunctionMetadata(F);
791
792 // Add all the function attributes to the table.
793 // FIXME: Add attributes of other objects?
794 AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
795 if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
796 CreateAttributeSetSlot(FnAttrs);
797 }
798
799 ST_DEBUG("end processModule!\n");
800 }
801
802 // Process the arguments, basic blocks, and instructions of a function.
processFunction()803 void SlotTracker::processFunction() {
804 ST_DEBUG("begin processFunction!\n");
805 fNext = 0;
806
807 // Process function metadata if it wasn't hit at the module-level.
808 if (!ShouldInitializeAllMetadata)
809 processFunctionMetadata(*TheFunction);
810
811 // Add all the function arguments with no names.
812 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
813 AE = TheFunction->arg_end(); AI != AE; ++AI)
814 if (!AI->hasName())
815 CreateFunctionSlot(&*AI);
816
817 ST_DEBUG("Inserting Instructions:\n");
818
819 // Add all of the basic blocks and instructions with no names.
820 for (auto &BB : *TheFunction) {
821 if (!BB.hasName())
822 CreateFunctionSlot(&BB);
823
824 for (auto &I : BB) {
825 if (!I.getType()->isVoidTy() && !I.hasName())
826 CreateFunctionSlot(&I);
827
828 // We allow direct calls to any llvm.foo function here, because the
829 // target may not be linked into the optimizer.
830 if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
831 // Add all the call attributes to the table.
832 AttributeSet Attrs = CI->getAttributes().getFnAttributes();
833 if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
834 CreateAttributeSetSlot(Attrs);
835 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
836 // Add all the call attributes to the table.
837 AttributeSet Attrs = II->getAttributes().getFnAttributes();
838 if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
839 CreateAttributeSetSlot(Attrs);
840 }
841 }
842 }
843
844 FunctionProcessed = true;
845
846 ST_DEBUG("end processFunction!\n");
847 }
848
processFunctionMetadata(const Function & F)849 void SlotTracker::processFunctionMetadata(const Function &F) {
850 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
851 F.getAllMetadata(MDs);
852 for (auto &MD : MDs)
853 CreateMetadataSlot(MD.second);
854
855 for (auto &BB : F) {
856 for (auto &I : BB)
857 processInstructionMetadata(I);
858 }
859 }
860
processInstructionMetadata(const Instruction & I)861 void SlotTracker::processInstructionMetadata(const Instruction &I) {
862 // Process metadata used directly by intrinsics.
863 if (const CallInst *CI = dyn_cast<CallInst>(&I))
864 if (Function *F = CI->getCalledFunction())
865 if (F->isIntrinsic())
866 for (auto &Op : I.operands())
867 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
868 if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
869 CreateMetadataSlot(N);
870
871 // Process metadata attached to this instruction.
872 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
873 I.getAllMetadata(MDs);
874 for (auto &MD : MDs)
875 CreateMetadataSlot(MD.second);
876 }
877
878 /// Clean up after incorporating a function. This is the only way to get out of
879 /// the function incorporation state that affects get*Slot/Create*Slot. Function
880 /// incorporation state is indicated by TheFunction != 0.
purgeFunction()881 void SlotTracker::purgeFunction() {
882 ST_DEBUG("begin purgeFunction!\n");
883 fMap.clear(); // Simply discard the function level map
884 TheFunction = nullptr;
885 FunctionProcessed = false;
886 ST_DEBUG("end purgeFunction!\n");
887 }
888
889 /// getGlobalSlot - Get the slot number of a global value.
getGlobalSlot(const GlobalValue * V)890 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
891 // Check for uninitialized state and do lazy initialization.
892 initialize();
893
894 // Find the value in the module map
895 ValueMap::iterator MI = mMap.find(V);
896 return MI == mMap.end() ? -1 : (int)MI->second;
897 }
898
899 /// getMetadataSlot - Get the slot number of a MDNode.
getMetadataSlot(const MDNode * N)900 int SlotTracker::getMetadataSlot(const MDNode *N) {
901 // Check for uninitialized state and do lazy initialization.
902 initialize();
903
904 // Find the MDNode in the module map
905 mdn_iterator MI = mdnMap.find(N);
906 return MI == mdnMap.end() ? -1 : (int)MI->second;
907 }
908
909
910 /// getLocalSlot - Get the slot number for a value that is local to a function.
getLocalSlot(const Value * V)911 int SlotTracker::getLocalSlot(const Value *V) {
912 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
913
914 // Check for uninitialized state and do lazy initialization.
915 initialize();
916
917 ValueMap::iterator FI = fMap.find(V);
918 return FI == fMap.end() ? -1 : (int)FI->second;
919 }
920
getAttributeGroupSlot(AttributeSet AS)921 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
922 // Check for uninitialized state and do lazy initialization.
923 initialize();
924
925 // Find the AttributeSet in the module map.
926 as_iterator AI = asMap.find(AS);
927 return AI == asMap.end() ? -1 : (int)AI->second;
928 }
929
930 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
CreateModuleSlot(const GlobalValue * V)931 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
932 assert(V && "Can't insert a null Value into SlotTracker!");
933 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
934 assert(!V->hasName() && "Doesn't need a slot!");
935
936 unsigned DestSlot = mNext++;
937 mMap[V] = DestSlot;
938
939 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
940 DestSlot << " [");
941 // G = Global, F = Function, A = Alias, o = other
942 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
943 (isa<Function>(V) ? 'F' :
944 (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
945 }
946
947 /// CreateSlot - Create a new slot for the specified value if it has no name.
CreateFunctionSlot(const Value * V)948 void SlotTracker::CreateFunctionSlot(const Value *V) {
949 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
950
951 unsigned DestSlot = fNext++;
952 fMap[V] = DestSlot;
953
954 // G = Global, F = Function, o = other
955 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
956 DestSlot << " [o]\n");
957 }
958
959 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
CreateMetadataSlot(const MDNode * N)960 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
961 assert(N && "Can't insert a null Value into SlotTracker!");
962
963 unsigned DestSlot = mdnNext;
964 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
965 return;
966 ++mdnNext;
967
968 // Recursively add any MDNodes referenced by operands.
969 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
970 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
971 CreateMetadataSlot(Op);
972 }
973
CreateAttributeSetSlot(AttributeSet AS)974 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
975 assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
976 "Doesn't need a slot!");
977
978 as_iterator I = asMap.find(AS);
979 if (I != asMap.end())
980 return;
981
982 unsigned DestSlot = asNext++;
983 asMap[AS] = DestSlot;
984 }
985
986 //===----------------------------------------------------------------------===//
987 // AsmWriter Implementation
988 //===----------------------------------------------------------------------===//
989
990 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
991 TypePrinting *TypePrinter,
992 SlotTracker *Machine,
993 const Module *Context);
994
995 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
996 TypePrinting *TypePrinter,
997 SlotTracker *Machine, const Module *Context,
998 bool FromValue = false);
999
getPredicateText(unsigned predicate)1000 static const char *getPredicateText(unsigned predicate) {
1001 const char * pred = "unknown";
1002 switch (predicate) {
1003 case FCmpInst::FCMP_FALSE: pred = "false"; break;
1004 case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
1005 case FCmpInst::FCMP_OGT: pred = "ogt"; break;
1006 case FCmpInst::FCMP_OGE: pred = "oge"; break;
1007 case FCmpInst::FCMP_OLT: pred = "olt"; break;
1008 case FCmpInst::FCMP_OLE: pred = "ole"; break;
1009 case FCmpInst::FCMP_ONE: pred = "one"; break;
1010 case FCmpInst::FCMP_ORD: pred = "ord"; break;
1011 case FCmpInst::FCMP_UNO: pred = "uno"; break;
1012 case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
1013 case FCmpInst::FCMP_UGT: pred = "ugt"; break;
1014 case FCmpInst::FCMP_UGE: pred = "uge"; break;
1015 case FCmpInst::FCMP_ULT: pred = "ult"; break;
1016 case FCmpInst::FCMP_ULE: pred = "ule"; break;
1017 case FCmpInst::FCMP_UNE: pred = "une"; break;
1018 case FCmpInst::FCMP_TRUE: pred = "true"; break;
1019 case ICmpInst::ICMP_EQ: pred = "eq"; break;
1020 case ICmpInst::ICMP_NE: pred = "ne"; break;
1021 case ICmpInst::ICMP_SGT: pred = "sgt"; break;
1022 case ICmpInst::ICMP_SGE: pred = "sge"; break;
1023 case ICmpInst::ICMP_SLT: pred = "slt"; break;
1024 case ICmpInst::ICMP_SLE: pred = "sle"; break;
1025 case ICmpInst::ICMP_UGT: pred = "ugt"; break;
1026 case ICmpInst::ICMP_UGE: pred = "uge"; break;
1027 case ICmpInst::ICMP_ULT: pred = "ult"; break;
1028 case ICmpInst::ICMP_ULE: pred = "ule"; break;
1029 }
1030 return pred;
1031 }
1032
writeAtomicRMWOperation(raw_ostream & Out,AtomicRMWInst::BinOp Op)1033 static void writeAtomicRMWOperation(raw_ostream &Out,
1034 AtomicRMWInst::BinOp Op) {
1035 switch (Op) {
1036 default: Out << " <unknown operation " << Op << ">"; break;
1037 case AtomicRMWInst::Xchg: Out << " xchg"; break;
1038 case AtomicRMWInst::Add: Out << " add"; break;
1039 case AtomicRMWInst::Sub: Out << " sub"; break;
1040 case AtomicRMWInst::And: Out << " and"; break;
1041 case AtomicRMWInst::Nand: Out << " nand"; break;
1042 case AtomicRMWInst::Or: Out << " or"; break;
1043 case AtomicRMWInst::Xor: Out << " xor"; break;
1044 case AtomicRMWInst::Max: Out << " max"; break;
1045 case AtomicRMWInst::Min: Out << " min"; break;
1046 case AtomicRMWInst::UMax: Out << " umax"; break;
1047 case AtomicRMWInst::UMin: Out << " umin"; break;
1048 }
1049 }
1050
WriteOptimizationInfo(raw_ostream & Out,const User * U)1051 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1052 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1053 // Unsafe algebra implies all the others, no need to write them all out
1054 if (FPO->hasUnsafeAlgebra())
1055 Out << " fast";
1056 else {
1057 if (FPO->hasNoNaNs())
1058 Out << " nnan";
1059 if (FPO->hasNoInfs())
1060 Out << " ninf";
1061 if (FPO->hasNoSignedZeros())
1062 Out << " nsz";
1063 if (FPO->hasAllowReciprocal())
1064 Out << " arcp";
1065 }
1066 }
1067
1068 if (const OverflowingBinaryOperator *OBO =
1069 dyn_cast<OverflowingBinaryOperator>(U)) {
1070 if (OBO->hasNoUnsignedWrap())
1071 Out << " nuw";
1072 if (OBO->hasNoSignedWrap())
1073 Out << " nsw";
1074 } else if (const PossiblyExactOperator *Div =
1075 dyn_cast<PossiblyExactOperator>(U)) {
1076 if (Div->isExact())
1077 Out << " exact";
1078 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1079 if (GEP->isInBounds())
1080 Out << " inbounds";
1081 }
1082 }
1083
WriteConstantInternal(raw_ostream & Out,const Constant * CV,TypePrinting & TypePrinter,SlotTracker * Machine,const Module * Context)1084 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1085 TypePrinting &TypePrinter,
1086 SlotTracker *Machine,
1087 const Module *Context) {
1088 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1089 if (CI->getType()->isIntegerTy(1)) {
1090 Out << (CI->getZExtValue() ? "true" : "false");
1091 return;
1092 }
1093 Out << CI->getValue();
1094 return;
1095 }
1096
1097 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1098 if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
1099 &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
1100 // We would like to output the FP constant value in exponential notation,
1101 // but we cannot do this if doing so will lose precision. Check here to
1102 // make sure that we only output it in exponential format if we can parse
1103 // the value back and get the same value.
1104 //
1105 bool ignored;
1106 bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
1107 bool isInf = CFP->getValueAPF().isInfinity();
1108 bool isNaN = CFP->getValueAPF().isNaN();
1109 if (!isInf && !isNaN) {
1110 double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
1111 CFP->getValueAPF().convertToFloat();
1112 SmallString<128> StrVal;
1113 raw_svector_ostream(StrVal) << Val;
1114
1115 // Check to make sure that the stringized number is not some string like
1116 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
1117 // that the string matches the "[-+]?[0-9]" regex.
1118 //
1119 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1120 ((StrVal[0] == '-' || StrVal[0] == '+') &&
1121 (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
1122 // Reparse stringized version!
1123 if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
1124 Out << StrVal;
1125 return;
1126 }
1127 }
1128 }
1129 // Otherwise we could not reparse it to exactly the same value, so we must
1130 // output the string in hexadecimal format! Note that loading and storing
1131 // floating point types changes the bits of NaNs on some hosts, notably
1132 // x86, so we must not use these types.
1133 static_assert(sizeof(double) == sizeof(uint64_t),
1134 "assuming that double is 64 bits!");
1135 APFloat apf = CFP->getValueAPF();
1136 // Floats are represented in ASCII IR as double, convert.
1137 if (!isDouble)
1138 apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1139 &ignored);
1140 Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1141 return;
1142 }
1143
1144 // Either half, or some form of long double.
1145 // These appear as a magic letter identifying the type, then a
1146 // fixed number of hex digits.
1147 Out << "0x";
1148 APInt API = CFP->getValueAPF().bitcastToAPInt();
1149 if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
1150 Out << 'K';
1151 Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1152 /*Upper=*/true);
1153 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1154 /*Upper=*/true);
1155 return;
1156 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
1157 Out << 'L';
1158 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1159 /*Upper=*/true);
1160 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1161 /*Upper=*/true);
1162 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
1163 Out << 'M';
1164 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1165 /*Upper=*/true);
1166 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1167 /*Upper=*/true);
1168 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
1169 Out << 'H';
1170 Out << format_hex_no_prefix(API.getZExtValue(), 4,
1171 /*Upper=*/true);
1172 } else
1173 llvm_unreachable("Unsupported floating point type");
1174 return;
1175 }
1176
1177 if (isa<ConstantAggregateZero>(CV)) {
1178 Out << "zeroinitializer";
1179 return;
1180 }
1181
1182 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1183 Out << "blockaddress(";
1184 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1185 Context);
1186 Out << ", ";
1187 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1188 Context);
1189 Out << ")";
1190 return;
1191 }
1192
1193 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1194 Type *ETy = CA->getType()->getElementType();
1195 Out << '[';
1196 TypePrinter.print(ETy, Out);
1197 Out << ' ';
1198 WriteAsOperandInternal(Out, CA->getOperand(0),
1199 &TypePrinter, Machine,
1200 Context);
1201 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1202 Out << ", ";
1203 TypePrinter.print(ETy, Out);
1204 Out << ' ';
1205 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1206 Context);
1207 }
1208 Out << ']';
1209 return;
1210 }
1211
1212 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1213 // As a special case, print the array as a string if it is an array of
1214 // i8 with ConstantInt values.
1215 if (CA->isString()) {
1216 Out << "c\"";
1217 PrintEscapedString(CA->getAsString(), Out);
1218 Out << '"';
1219 return;
1220 }
1221
1222 Type *ETy = CA->getType()->getElementType();
1223 Out << '[';
1224 TypePrinter.print(ETy, Out);
1225 Out << ' ';
1226 WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1227 &TypePrinter, Machine,
1228 Context);
1229 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1230 Out << ", ";
1231 TypePrinter.print(ETy, Out);
1232 Out << ' ';
1233 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1234 Machine, Context);
1235 }
1236 Out << ']';
1237 return;
1238 }
1239
1240
1241 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1242 if (CS->getType()->isPacked())
1243 Out << '<';
1244 Out << '{';
1245 unsigned N = CS->getNumOperands();
1246 if (N) {
1247 Out << ' ';
1248 TypePrinter.print(CS->getOperand(0)->getType(), Out);
1249 Out << ' ';
1250
1251 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1252 Context);
1253
1254 for (unsigned i = 1; i < N; i++) {
1255 Out << ", ";
1256 TypePrinter.print(CS->getOperand(i)->getType(), Out);
1257 Out << ' ';
1258
1259 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1260 Context);
1261 }
1262 Out << ' ';
1263 }
1264
1265 Out << '}';
1266 if (CS->getType()->isPacked())
1267 Out << '>';
1268 return;
1269 }
1270
1271 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1272 Type *ETy = CV->getType()->getVectorElementType();
1273 Out << '<';
1274 TypePrinter.print(ETy, Out);
1275 Out << ' ';
1276 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1277 Machine, Context);
1278 for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1279 Out << ", ";
1280 TypePrinter.print(ETy, Out);
1281 Out << ' ';
1282 WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1283 Machine, Context);
1284 }
1285 Out << '>';
1286 return;
1287 }
1288
1289 if (isa<ConstantPointerNull>(CV)) {
1290 Out << "null";
1291 return;
1292 }
1293
1294 if (isa<ConstantTokenNone>(CV)) {
1295 Out << "none";
1296 return;
1297 }
1298
1299 if (isa<UndefValue>(CV)) {
1300 Out << "undef";
1301 return;
1302 }
1303
1304 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1305 Out << CE->getOpcodeName();
1306 WriteOptimizationInfo(Out, CE);
1307 if (CE->isCompare())
1308 Out << ' ' << getPredicateText(CE->getPredicate());
1309 Out << " (";
1310
1311 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1312 TypePrinter.print(GEP->getSourceElementType(), Out);
1313 Out << ", ";
1314 }
1315
1316 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1317 TypePrinter.print((*OI)->getType(), Out);
1318 Out << ' ';
1319 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1320 if (OI+1 != CE->op_end())
1321 Out << ", ";
1322 }
1323
1324 if (CE->hasIndices()) {
1325 ArrayRef<unsigned> Indices = CE->getIndices();
1326 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1327 Out << ", " << Indices[i];
1328 }
1329
1330 if (CE->isCast()) {
1331 Out << " to ";
1332 TypePrinter.print(CE->getType(), Out);
1333 }
1334
1335 Out << ')';
1336 return;
1337 }
1338
1339 Out << "<placeholder or erroneous Constant>";
1340 }
1341
writeMDTuple(raw_ostream & Out,const MDTuple * Node,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1342 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1343 TypePrinting *TypePrinter, SlotTracker *Machine,
1344 const Module *Context) {
1345 Out << "!{";
1346 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1347 const Metadata *MD = Node->getOperand(mi);
1348 if (!MD)
1349 Out << "null";
1350 else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1351 Value *V = MDV->getValue();
1352 TypePrinter->print(V->getType(), Out);
1353 Out << ' ';
1354 WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1355 } else {
1356 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1357 }
1358 if (mi + 1 != me)
1359 Out << ", ";
1360 }
1361
1362 Out << "}";
1363 }
1364
1365 namespace {
1366 struct FieldSeparator {
1367 bool Skip;
1368 const char *Sep;
FieldSeparator__anond169a03a0511::FieldSeparator1369 FieldSeparator(const char *Sep = ", ") : Skip(true), Sep(Sep) {}
1370 };
operator <<(raw_ostream & OS,FieldSeparator & FS)1371 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1372 if (FS.Skip) {
1373 FS.Skip = false;
1374 return OS;
1375 }
1376 return OS << FS.Sep;
1377 }
1378 struct MDFieldPrinter {
1379 raw_ostream &Out;
1380 FieldSeparator FS;
1381 TypePrinting *TypePrinter;
1382 SlotTracker *Machine;
1383 const Module *Context;
1384
MDFieldPrinter__anond169a03a0511::MDFieldPrinter1385 explicit MDFieldPrinter(raw_ostream &Out)
1386 : Out(Out), TypePrinter(nullptr), Machine(nullptr), Context(nullptr) {}
MDFieldPrinter__anond169a03a0511::MDFieldPrinter1387 MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1388 SlotTracker *Machine, const Module *Context)
1389 : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1390 }
1391 void printTag(const DINode *N);
1392 void printMacinfoType(const DIMacroNode *N);
1393 void printString(StringRef Name, StringRef Value,
1394 bool ShouldSkipEmpty = true);
1395 void printMetadata(StringRef Name, const Metadata *MD,
1396 bool ShouldSkipNull = true);
1397 template <class IntTy>
1398 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1399 void printBool(StringRef Name, bool Value);
1400 void printDIFlags(StringRef Name, unsigned Flags);
1401 template <class IntTy, class Stringifier>
1402 void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1403 bool ShouldSkipZero = true);
1404 };
1405 } // end namespace
1406
printTag(const DINode * N)1407 void MDFieldPrinter::printTag(const DINode *N) {
1408 Out << FS << "tag: ";
1409 if (const char *Tag = dwarf::TagString(N->getTag()))
1410 Out << Tag;
1411 else
1412 Out << N->getTag();
1413 }
1414
printMacinfoType(const DIMacroNode * N)1415 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1416 Out << FS << "type: ";
1417 if (const char *Type = dwarf::MacinfoString(N->getMacinfoType()))
1418 Out << Type;
1419 else
1420 Out << N->getMacinfoType();
1421 }
1422
printString(StringRef Name,StringRef Value,bool ShouldSkipEmpty)1423 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1424 bool ShouldSkipEmpty) {
1425 if (ShouldSkipEmpty && Value.empty())
1426 return;
1427
1428 Out << FS << Name << ": \"";
1429 PrintEscapedString(Value, Out);
1430 Out << "\"";
1431 }
1432
writeMetadataAsOperand(raw_ostream & Out,const Metadata * MD,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1433 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1434 TypePrinting *TypePrinter,
1435 SlotTracker *Machine,
1436 const Module *Context) {
1437 if (!MD) {
1438 Out << "null";
1439 return;
1440 }
1441 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1442 }
1443
printMetadata(StringRef Name,const Metadata * MD,bool ShouldSkipNull)1444 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1445 bool ShouldSkipNull) {
1446 if (ShouldSkipNull && !MD)
1447 return;
1448
1449 Out << FS << Name << ": ";
1450 writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1451 }
1452
1453 template <class IntTy>
printInt(StringRef Name,IntTy Int,bool ShouldSkipZero)1454 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1455 if (ShouldSkipZero && !Int)
1456 return;
1457
1458 Out << FS << Name << ": " << Int;
1459 }
1460
printBool(StringRef Name,bool Value)1461 void MDFieldPrinter::printBool(StringRef Name, bool Value) {
1462 Out << FS << Name << ": " << (Value ? "true" : "false");
1463 }
1464
printDIFlags(StringRef Name,unsigned Flags)1465 void MDFieldPrinter::printDIFlags(StringRef Name, unsigned Flags) {
1466 if (!Flags)
1467 return;
1468
1469 Out << FS << Name << ": ";
1470
1471 SmallVector<unsigned, 8> SplitFlags;
1472 unsigned Extra = DINode::splitFlags(Flags, SplitFlags);
1473
1474 FieldSeparator FlagsFS(" | ");
1475 for (unsigned F : SplitFlags) {
1476 const char *StringF = DINode::getFlagString(F);
1477 assert(StringF && "Expected valid flag");
1478 Out << FlagsFS << StringF;
1479 }
1480 if (Extra || SplitFlags.empty())
1481 Out << FlagsFS << Extra;
1482 }
1483
1484 template <class IntTy, class Stringifier>
printDwarfEnum(StringRef Name,IntTy Value,Stringifier toString,bool ShouldSkipZero)1485 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1486 Stringifier toString, bool ShouldSkipZero) {
1487 if (!Value)
1488 return;
1489
1490 Out << FS << Name << ": ";
1491 if (const char *S = toString(Value))
1492 Out << S;
1493 else
1494 Out << Value;
1495 }
1496
writeGenericDINode(raw_ostream & Out,const GenericDINode * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1497 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1498 TypePrinting *TypePrinter, SlotTracker *Machine,
1499 const Module *Context) {
1500 Out << "!GenericDINode(";
1501 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1502 Printer.printTag(N);
1503 Printer.printString("header", N->getHeader());
1504 if (N->getNumDwarfOperands()) {
1505 Out << Printer.FS << "operands: {";
1506 FieldSeparator IFS;
1507 for (auto &I : N->dwarf_operands()) {
1508 Out << IFS;
1509 writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1510 }
1511 Out << "}";
1512 }
1513 Out << ")";
1514 }
1515
writeDILocation(raw_ostream & Out,const DILocation * DL,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1516 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1517 TypePrinting *TypePrinter, SlotTracker *Machine,
1518 const Module *Context) {
1519 Out << "!DILocation(";
1520 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1521 // Always output the line, since 0 is a relevant and important value for it.
1522 Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1523 Printer.printInt("column", DL->getColumn());
1524 Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1525 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1526 Out << ")";
1527 }
1528
writeDISubrange(raw_ostream & Out,const DISubrange * N,TypePrinting *,SlotTracker *,const Module *)1529 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1530 TypePrinting *, SlotTracker *, const Module *) {
1531 Out << "!DISubrange(";
1532 MDFieldPrinter Printer(Out);
1533 Printer.printInt("count", N->getCount(), /* ShouldSkipZero */ false);
1534 Printer.printInt("lowerBound", N->getLowerBound());
1535 Out << ")";
1536 }
1537
writeDIEnumerator(raw_ostream & Out,const DIEnumerator * N,TypePrinting *,SlotTracker *,const Module *)1538 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1539 TypePrinting *, SlotTracker *, const Module *) {
1540 Out << "!DIEnumerator(";
1541 MDFieldPrinter Printer(Out);
1542 Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1543 Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
1544 Out << ")";
1545 }
1546
writeDIBasicType(raw_ostream & Out,const DIBasicType * N,TypePrinting *,SlotTracker *,const Module *)1547 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1548 TypePrinting *, SlotTracker *, const Module *) {
1549 Out << "!DIBasicType(";
1550 MDFieldPrinter Printer(Out);
1551 if (N->getTag() != dwarf::DW_TAG_base_type)
1552 Printer.printTag(N);
1553 Printer.printString("name", N->getName());
1554 Printer.printInt("size", N->getSizeInBits());
1555 Printer.printInt("align", N->getAlignInBits());
1556 Printer.printDwarfEnum("encoding", N->getEncoding(),
1557 dwarf::AttributeEncodingString);
1558 Out << ")";
1559 }
1560
writeDIDerivedType(raw_ostream & Out,const DIDerivedType * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1561 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1562 TypePrinting *TypePrinter, SlotTracker *Machine,
1563 const Module *Context) {
1564 Out << "!DIDerivedType(";
1565 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1566 Printer.printTag(N);
1567 Printer.printString("name", N->getName());
1568 Printer.printMetadata("scope", N->getRawScope());
1569 Printer.printMetadata("file", N->getRawFile());
1570 Printer.printInt("line", N->getLine());
1571 Printer.printMetadata("baseType", N->getRawBaseType(),
1572 /* ShouldSkipNull */ false);
1573 Printer.printInt("size", N->getSizeInBits());
1574 Printer.printInt("align", N->getAlignInBits());
1575 Printer.printInt("offset", N->getOffsetInBits());
1576 Printer.printDIFlags("flags", N->getFlags());
1577 Printer.printMetadata("extraData", N->getRawExtraData());
1578 Out << ")";
1579 }
1580
writeDICompositeType(raw_ostream & Out,const DICompositeType * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1581 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
1582 TypePrinting *TypePrinter,
1583 SlotTracker *Machine, const Module *Context) {
1584 Out << "!DICompositeType(";
1585 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1586 Printer.printTag(N);
1587 Printer.printString("name", N->getName());
1588 Printer.printMetadata("scope", N->getRawScope());
1589 Printer.printMetadata("file", N->getRawFile());
1590 Printer.printInt("line", N->getLine());
1591 Printer.printMetadata("baseType", N->getRawBaseType());
1592 Printer.printInt("size", N->getSizeInBits());
1593 Printer.printInt("align", N->getAlignInBits());
1594 Printer.printInt("offset", N->getOffsetInBits());
1595 Printer.printDIFlags("flags", N->getFlags());
1596 Printer.printMetadata("elements", N->getRawElements());
1597 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
1598 dwarf::LanguageString);
1599 Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
1600 Printer.printMetadata("templateParams", N->getRawTemplateParams());
1601 Printer.printString("identifier", N->getIdentifier());
1602 Out << ")";
1603 }
1604
writeDISubroutineType(raw_ostream & Out,const DISubroutineType * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1605 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
1606 TypePrinting *TypePrinter,
1607 SlotTracker *Machine, const Module *Context) {
1608 Out << "!DISubroutineType(";
1609 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1610 Printer.printDIFlags("flags", N->getFlags());
1611 Printer.printMetadata("types", N->getRawTypeArray(),
1612 /* ShouldSkipNull */ false);
1613 Out << ")";
1614 }
1615
writeDIFile(raw_ostream & Out,const DIFile * N,TypePrinting *,SlotTracker *,const Module *)1616 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
1617 SlotTracker *, const Module *) {
1618 Out << "!DIFile(";
1619 MDFieldPrinter Printer(Out);
1620 Printer.printString("filename", N->getFilename(),
1621 /* ShouldSkipEmpty */ false);
1622 Printer.printString("directory", N->getDirectory(),
1623 /* ShouldSkipEmpty */ false);
1624 Out << ")";
1625 }
1626
writeDICompileUnit(raw_ostream & Out,const DICompileUnit * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1627 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
1628 TypePrinting *TypePrinter, SlotTracker *Machine,
1629 const Module *Context) {
1630 Out << "!DICompileUnit(";
1631 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1632 Printer.printDwarfEnum("language", N->getSourceLanguage(),
1633 dwarf::LanguageString, /* ShouldSkipZero */ false);
1634 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1635 Printer.printString("producer", N->getProducer());
1636 Printer.printBool("isOptimized", N->isOptimized());
1637 Printer.printString("flags", N->getFlags());
1638 Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
1639 /* ShouldSkipZero */ false);
1640 Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
1641 Printer.printInt("emissionKind", N->getEmissionKind(),
1642 /* ShouldSkipZero */ false);
1643 Printer.printMetadata("enums", N->getRawEnumTypes());
1644 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
1645 Printer.printMetadata("subprograms", N->getRawSubprograms());
1646 Printer.printMetadata("globals", N->getRawGlobalVariables());
1647 Printer.printMetadata("imports", N->getRawImportedEntities());
1648 Printer.printMetadata("macros", N->getRawMacros());
1649 Printer.printInt("dwoId", N->getDWOId());
1650 Out << ")";
1651 }
1652
writeDISubprogram(raw_ostream & Out,const DISubprogram * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1653 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
1654 TypePrinting *TypePrinter, SlotTracker *Machine,
1655 const Module *Context) {
1656 Out << "!DISubprogram(";
1657 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1658 Printer.printString("name", N->getName());
1659 Printer.printString("linkageName", N->getLinkageName());
1660 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1661 Printer.printMetadata("file", N->getRawFile());
1662 Printer.printInt("line", N->getLine());
1663 Printer.printMetadata("type", N->getRawType());
1664 Printer.printBool("isLocal", N->isLocalToUnit());
1665 Printer.printBool("isDefinition", N->isDefinition());
1666 Printer.printInt("scopeLine", N->getScopeLine());
1667 Printer.printMetadata("containingType", N->getRawContainingType());
1668 Printer.printDwarfEnum("virtuality", N->getVirtuality(),
1669 dwarf::VirtualityString);
1670 Printer.printInt("virtualIndex", N->getVirtualIndex());
1671 Printer.printDIFlags("flags", N->getFlags());
1672 Printer.printBool("isOptimized", N->isOptimized());
1673 Printer.printMetadata("templateParams", N->getRawTemplateParams());
1674 Printer.printMetadata("declaration", N->getRawDeclaration());
1675 Printer.printMetadata("variables", N->getRawVariables());
1676 Out << ")";
1677 }
1678
writeDILexicalBlock(raw_ostream & Out,const DILexicalBlock * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1679 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
1680 TypePrinting *TypePrinter, SlotTracker *Machine,
1681 const Module *Context) {
1682 Out << "!DILexicalBlock(";
1683 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1684 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1685 Printer.printMetadata("file", N->getRawFile());
1686 Printer.printInt("line", N->getLine());
1687 Printer.printInt("column", N->getColumn());
1688 Out << ")";
1689 }
1690
writeDILexicalBlockFile(raw_ostream & Out,const DILexicalBlockFile * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1691 static void writeDILexicalBlockFile(raw_ostream &Out,
1692 const DILexicalBlockFile *N,
1693 TypePrinting *TypePrinter,
1694 SlotTracker *Machine,
1695 const Module *Context) {
1696 Out << "!DILexicalBlockFile(";
1697 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1698 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1699 Printer.printMetadata("file", N->getRawFile());
1700 Printer.printInt("discriminator", N->getDiscriminator(),
1701 /* ShouldSkipZero */ false);
1702 Out << ")";
1703 }
1704
writeDINamespace(raw_ostream & Out,const DINamespace * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1705 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
1706 TypePrinting *TypePrinter, SlotTracker *Machine,
1707 const Module *Context) {
1708 Out << "!DINamespace(";
1709 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1710 Printer.printString("name", N->getName());
1711 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1712 Printer.printMetadata("file", N->getRawFile());
1713 Printer.printInt("line", N->getLine());
1714 Out << ")";
1715 }
1716
writeDIMacro(raw_ostream & Out,const DIMacro * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1717 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
1718 TypePrinting *TypePrinter, SlotTracker *Machine,
1719 const Module *Context) {
1720 Out << "!DIMacro(";
1721 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1722 Printer.printMacinfoType(N);
1723 Printer.printInt("line", N->getLine());
1724 Printer.printString("name", N->getName());
1725 Printer.printString("value", N->getValue());
1726 Out << ")";
1727 }
1728
writeDIMacroFile(raw_ostream & Out,const DIMacroFile * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1729 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
1730 TypePrinting *TypePrinter, SlotTracker *Machine,
1731 const Module *Context) {
1732 Out << "!DIMacroFile(";
1733 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1734 Printer.printInt("line", N->getLine());
1735 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1736 Printer.printMetadata("nodes", N->getRawElements());
1737 Out << ")";
1738 }
1739
writeDIModule(raw_ostream & Out,const DIModule * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1740 static void writeDIModule(raw_ostream &Out, const DIModule *N,
1741 TypePrinting *TypePrinter, SlotTracker *Machine,
1742 const Module *Context) {
1743 Out << "!DIModule(";
1744 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1745 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1746 Printer.printString("name", N->getName());
1747 Printer.printString("configMacros", N->getConfigurationMacros());
1748 Printer.printString("includePath", N->getIncludePath());
1749 Printer.printString("isysroot", N->getISysRoot());
1750 Out << ")";
1751 }
1752
1753
writeDITemplateTypeParameter(raw_ostream & Out,const DITemplateTypeParameter * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1754 static void writeDITemplateTypeParameter(raw_ostream &Out,
1755 const DITemplateTypeParameter *N,
1756 TypePrinting *TypePrinter,
1757 SlotTracker *Machine,
1758 const Module *Context) {
1759 Out << "!DITemplateTypeParameter(";
1760 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1761 Printer.printString("name", N->getName());
1762 Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
1763 Out << ")";
1764 }
1765
writeDITemplateValueParameter(raw_ostream & Out,const DITemplateValueParameter * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1766 static void writeDITemplateValueParameter(raw_ostream &Out,
1767 const DITemplateValueParameter *N,
1768 TypePrinting *TypePrinter,
1769 SlotTracker *Machine,
1770 const Module *Context) {
1771 Out << "!DITemplateValueParameter(";
1772 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1773 if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
1774 Printer.printTag(N);
1775 Printer.printString("name", N->getName());
1776 Printer.printMetadata("type", N->getRawType());
1777 Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
1778 Out << ")";
1779 }
1780
writeDIGlobalVariable(raw_ostream & Out,const DIGlobalVariable * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1781 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
1782 TypePrinting *TypePrinter,
1783 SlotTracker *Machine, const Module *Context) {
1784 Out << "!DIGlobalVariable(";
1785 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1786 Printer.printString("name", N->getName());
1787 Printer.printString("linkageName", N->getLinkageName());
1788 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1789 Printer.printMetadata("file", N->getRawFile());
1790 Printer.printInt("line", N->getLine());
1791 Printer.printMetadata("type", N->getRawType());
1792 Printer.printBool("isLocal", N->isLocalToUnit());
1793 Printer.printBool("isDefinition", N->isDefinition());
1794 Printer.printMetadata("variable", N->getRawVariable());
1795 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
1796 Out << ")";
1797 }
1798
writeDILocalVariable(raw_ostream & Out,const DILocalVariable * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1799 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
1800 TypePrinting *TypePrinter,
1801 SlotTracker *Machine, const Module *Context) {
1802 Out << "!DILocalVariable(";
1803 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1804 Printer.printString("name", N->getName());
1805 Printer.printInt("arg", N->getArg());
1806 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1807 Printer.printMetadata("file", N->getRawFile());
1808 Printer.printInt("line", N->getLine());
1809 Printer.printMetadata("type", N->getRawType());
1810 Printer.printDIFlags("flags", N->getFlags());
1811 Out << ")";
1812 }
1813
writeDIExpression(raw_ostream & Out,const DIExpression * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1814 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
1815 TypePrinting *TypePrinter, SlotTracker *Machine,
1816 const Module *Context) {
1817 Out << "!DIExpression(";
1818 FieldSeparator FS;
1819 if (N->isValid()) {
1820 for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
1821 const char *OpStr = dwarf::OperationEncodingString(I->getOp());
1822 assert(OpStr && "Expected valid opcode");
1823
1824 Out << FS << OpStr;
1825 for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
1826 Out << FS << I->getArg(A);
1827 }
1828 } else {
1829 for (const auto &I : N->getElements())
1830 Out << FS << I;
1831 }
1832 Out << ")";
1833 }
1834
writeDIObjCProperty(raw_ostream & Out,const DIObjCProperty * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1835 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
1836 TypePrinting *TypePrinter, SlotTracker *Machine,
1837 const Module *Context) {
1838 Out << "!DIObjCProperty(";
1839 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1840 Printer.printString("name", N->getName());
1841 Printer.printMetadata("file", N->getRawFile());
1842 Printer.printInt("line", N->getLine());
1843 Printer.printString("setter", N->getSetterName());
1844 Printer.printString("getter", N->getGetterName());
1845 Printer.printInt("attributes", N->getAttributes());
1846 Printer.printMetadata("type", N->getRawType());
1847 Out << ")";
1848 }
1849
writeDIImportedEntity(raw_ostream & Out,const DIImportedEntity * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1850 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
1851 TypePrinting *TypePrinter,
1852 SlotTracker *Machine, const Module *Context) {
1853 Out << "!DIImportedEntity(";
1854 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1855 Printer.printTag(N);
1856 Printer.printString("name", N->getName());
1857 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1858 Printer.printMetadata("entity", N->getRawEntity());
1859 Printer.printInt("line", N->getLine());
1860 Out << ")";
1861 }
1862
1863
WriteMDNodeBodyInternal(raw_ostream & Out,const MDNode * Node,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1864 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1865 TypePrinting *TypePrinter,
1866 SlotTracker *Machine,
1867 const Module *Context) {
1868 if (Node->isDistinct())
1869 Out << "distinct ";
1870 else if (Node->isTemporary())
1871 Out << "<temporary!> "; // Handle broken code.
1872
1873 switch (Node->getMetadataID()) {
1874 default:
1875 llvm_unreachable("Expected uniquable MDNode");
1876 #define HANDLE_MDNODE_LEAF(CLASS) \
1877 case Metadata::CLASS##Kind: \
1878 write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
1879 break;
1880 #include "llvm/IR/Metadata.def"
1881 }
1882 }
1883
1884 // Full implementation of printing a Value as an operand with support for
1885 // TypePrinting, etc.
WriteAsOperandInternal(raw_ostream & Out,const Value * V,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1886 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1887 TypePrinting *TypePrinter,
1888 SlotTracker *Machine,
1889 const Module *Context) {
1890 if (V->hasName()) {
1891 PrintLLVMName(Out, V);
1892 return;
1893 }
1894
1895 const Constant *CV = dyn_cast<Constant>(V);
1896 if (CV && !isa<GlobalValue>(CV)) {
1897 assert(TypePrinter && "Constants require TypePrinting!");
1898 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1899 return;
1900 }
1901
1902 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1903 Out << "asm ";
1904 if (IA->hasSideEffects())
1905 Out << "sideeffect ";
1906 if (IA->isAlignStack())
1907 Out << "alignstack ";
1908 // We don't emit the AD_ATT dialect as it's the assumed default.
1909 if (IA->getDialect() == InlineAsm::AD_Intel)
1910 Out << "inteldialect ";
1911 Out << '"';
1912 PrintEscapedString(IA->getAsmString(), Out);
1913 Out << "\", \"";
1914 PrintEscapedString(IA->getConstraintString(), Out);
1915 Out << '"';
1916 return;
1917 }
1918
1919 if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
1920 WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
1921 Context, /* FromValue */ true);
1922 return;
1923 }
1924
1925 char Prefix = '%';
1926 int Slot;
1927 // If we have a SlotTracker, use it.
1928 if (Machine) {
1929 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1930 Slot = Machine->getGlobalSlot(GV);
1931 Prefix = '@';
1932 } else {
1933 Slot = Machine->getLocalSlot(V);
1934
1935 // If the local value didn't succeed, then we may be referring to a value
1936 // from a different function. Translate it, as this can happen when using
1937 // address of blocks.
1938 if (Slot == -1)
1939 if ((Machine = createSlotTracker(V))) {
1940 Slot = Machine->getLocalSlot(V);
1941 delete Machine;
1942 }
1943 }
1944 } else if ((Machine = createSlotTracker(V))) {
1945 // Otherwise, create one to get the # and then destroy it.
1946 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1947 Slot = Machine->getGlobalSlot(GV);
1948 Prefix = '@';
1949 } else {
1950 Slot = Machine->getLocalSlot(V);
1951 }
1952 delete Machine;
1953 Machine = nullptr;
1954 } else {
1955 Slot = -1;
1956 }
1957
1958 if (Slot != -1)
1959 Out << Prefix << Slot;
1960 else
1961 Out << "<badref>";
1962 }
1963
WriteAsOperandInternal(raw_ostream & Out,const Metadata * MD,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context,bool FromValue)1964 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1965 TypePrinting *TypePrinter,
1966 SlotTracker *Machine, const Module *Context,
1967 bool FromValue) {
1968 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1969 std::unique_ptr<SlotTracker> MachineStorage;
1970 if (!Machine) {
1971 MachineStorage = make_unique<SlotTracker>(Context);
1972 Machine = MachineStorage.get();
1973 }
1974 int Slot = Machine->getMetadataSlot(N);
1975 if (Slot == -1)
1976 // Give the pointer value instead of "badref", since this comes up all
1977 // the time when debugging.
1978 Out << "<" << N << ">";
1979 else
1980 Out << '!' << Slot;
1981 return;
1982 }
1983
1984 if (const MDString *MDS = dyn_cast<MDString>(MD)) {
1985 Out << "!\"";
1986 PrintEscapedString(MDS->getString(), Out);
1987 Out << '"';
1988 return;
1989 }
1990
1991 auto *V = cast<ValueAsMetadata>(MD);
1992 assert(TypePrinter && "TypePrinter required for metadata values");
1993 assert((FromValue || !isa<LocalAsMetadata>(V)) &&
1994 "Unexpected function-local metadata outside of value argument");
1995
1996 TypePrinter->print(V->getValue()->getType(), Out);
1997 Out << ' ';
1998 WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
1999 }
2000
2001 namespace {
2002 class AssemblyWriter {
2003 formatted_raw_ostream &Out;
2004 const Module *TheModule;
2005 std::unique_ptr<SlotTracker> SlotTrackerStorage;
2006 SlotTracker &Machine;
2007 TypePrinting TypePrinter;
2008 AssemblyAnnotationWriter *AnnotationWriter;
2009 SetVector<const Comdat *> Comdats;
2010 bool IsForDebug;
2011 bool ShouldPreserveUseListOrder;
2012 UseListOrderStack UseListOrders;
2013 SmallVector<StringRef, 8> MDNames;
2014
2015 public:
2016 /// Construct an AssemblyWriter with an external SlotTracker
2017 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2018 AssemblyAnnotationWriter *AAW, bool IsForDebug,
2019 bool ShouldPreserveUseListOrder = false);
2020
2021 void printMDNodeBody(const MDNode *MD);
2022 void printNamedMDNode(const NamedMDNode *NMD);
2023
2024 void printModule(const Module *M);
2025
2026 void writeOperand(const Value *Op, bool PrintType);
2027 void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx);
2028 void writeOperandBundles(ImmutableCallSite CS);
2029 void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
2030 void writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
2031 AtomicOrdering FailureOrdering,
2032 SynchronizationScope SynchScope);
2033
2034 void writeAllMDNodes();
2035 void writeMDNode(unsigned Slot, const MDNode *Node);
2036 void writeAllAttributeGroups();
2037
2038 void printTypeIdentities();
2039 void printGlobal(const GlobalVariable *GV);
2040 void printAlias(const GlobalAlias *GV);
2041 void printComdat(const Comdat *C);
2042 void printFunction(const Function *F);
2043 void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx);
2044 void printBasicBlock(const BasicBlock *BB);
2045 void printInstructionLine(const Instruction &I);
2046 void printInstruction(const Instruction &I);
2047
2048 void printUseListOrder(const UseListOrder &Order);
2049 void printUseLists(const Function *F);
2050
2051 private:
2052 /// \brief Print out metadata attachments.
2053 void printMetadataAttachments(
2054 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2055 StringRef Separator);
2056
2057 // printInfoComment - Print a little comment after the instruction indicating
2058 // which slot it occupies.
2059 void printInfoComment(const Value &V);
2060
2061 // printGCRelocateComment - print comment after call to the gc.relocate
2062 // intrinsic indicating base and derived pointer names.
2063 void printGCRelocateComment(const Value &V);
2064 };
2065 } // namespace
2066
AssemblyWriter(formatted_raw_ostream & o,SlotTracker & Mac,const Module * M,AssemblyAnnotationWriter * AAW,bool IsForDebug,bool ShouldPreserveUseListOrder)2067 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2068 const Module *M, AssemblyAnnotationWriter *AAW,
2069 bool IsForDebug, bool ShouldPreserveUseListOrder)
2070 : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW),
2071 IsForDebug(IsForDebug),
2072 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2073 if (!TheModule)
2074 return;
2075 TypePrinter.incorporateTypes(*TheModule);
2076 for (const Function &F : *TheModule)
2077 if (const Comdat *C = F.getComdat())
2078 Comdats.insert(C);
2079 for (const GlobalVariable &GV : TheModule->globals())
2080 if (const Comdat *C = GV.getComdat())
2081 Comdats.insert(C);
2082 }
2083
writeOperand(const Value * Operand,bool PrintType)2084 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2085 if (!Operand) {
2086 Out << "<null operand!>";
2087 return;
2088 }
2089 if (PrintType) {
2090 TypePrinter.print(Operand->getType(), Out);
2091 Out << ' ';
2092 }
2093 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2094 }
2095
writeAtomic(AtomicOrdering Ordering,SynchronizationScope SynchScope)2096 void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
2097 SynchronizationScope SynchScope) {
2098 if (Ordering == NotAtomic)
2099 return;
2100
2101 switch (SynchScope) {
2102 case SingleThread: Out << " singlethread"; break;
2103 case CrossThread: break;
2104 }
2105
2106 switch (Ordering) {
2107 default: Out << " <bad ordering " << int(Ordering) << ">"; break;
2108 case Unordered: Out << " unordered"; break;
2109 case Monotonic: Out << " monotonic"; break;
2110 case Acquire: Out << " acquire"; break;
2111 case Release: Out << " release"; break;
2112 case AcquireRelease: Out << " acq_rel"; break;
2113 case SequentiallyConsistent: Out << " seq_cst"; break;
2114 }
2115 }
2116
writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SynchronizationScope SynchScope)2117 void AssemblyWriter::writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
2118 AtomicOrdering FailureOrdering,
2119 SynchronizationScope SynchScope) {
2120 assert(SuccessOrdering != NotAtomic && FailureOrdering != NotAtomic);
2121
2122 switch (SynchScope) {
2123 case SingleThread: Out << " singlethread"; break;
2124 case CrossThread: break;
2125 }
2126
2127 switch (SuccessOrdering) {
2128 default: Out << " <bad ordering " << int(SuccessOrdering) << ">"; break;
2129 case Unordered: Out << " unordered"; break;
2130 case Monotonic: Out << " monotonic"; break;
2131 case Acquire: Out << " acquire"; break;
2132 case Release: Out << " release"; break;
2133 case AcquireRelease: Out << " acq_rel"; break;
2134 case SequentiallyConsistent: Out << " seq_cst"; break;
2135 }
2136
2137 switch (FailureOrdering) {
2138 default: Out << " <bad ordering " << int(FailureOrdering) << ">"; break;
2139 case Unordered: Out << " unordered"; break;
2140 case Monotonic: Out << " monotonic"; break;
2141 case Acquire: Out << " acquire"; break;
2142 case Release: Out << " release"; break;
2143 case AcquireRelease: Out << " acq_rel"; break;
2144 case SequentiallyConsistent: Out << " seq_cst"; break;
2145 }
2146 }
2147
writeParamOperand(const Value * Operand,AttributeSet Attrs,unsigned Idx)2148 void AssemblyWriter::writeParamOperand(const Value *Operand,
2149 AttributeSet Attrs, unsigned Idx) {
2150 if (!Operand) {
2151 Out << "<null operand!>";
2152 return;
2153 }
2154
2155 // Print the type
2156 TypePrinter.print(Operand->getType(), Out);
2157 // Print parameter attributes list
2158 if (Attrs.hasAttributes(Idx))
2159 Out << ' ' << Attrs.getAsString(Idx);
2160 Out << ' ';
2161 // Print the operand
2162 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2163 }
2164
writeOperandBundles(ImmutableCallSite CS)2165 void AssemblyWriter::writeOperandBundles(ImmutableCallSite CS) {
2166 if (!CS.hasOperandBundles())
2167 return;
2168
2169 Out << " [ ";
2170
2171 bool FirstBundle = true;
2172 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2173 OperandBundleUse BU = CS.getOperandBundleAt(i);
2174
2175 if (!FirstBundle)
2176 Out << ", ";
2177 FirstBundle = false;
2178
2179 Out << '"';
2180 PrintEscapedString(BU.getTagName(), Out);
2181 Out << '"';
2182
2183 Out << '(';
2184
2185 bool FirstInput = true;
2186 for (const auto &Input : BU.Inputs) {
2187 if (!FirstInput)
2188 Out << ", ";
2189 FirstInput = false;
2190
2191 TypePrinter.print(Input->getType(), Out);
2192 Out << " ";
2193 WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2194 }
2195
2196 Out << ')';
2197 }
2198
2199 Out << " ]";
2200 }
2201
printModule(const Module * M)2202 void AssemblyWriter::printModule(const Module *M) {
2203 Machine.initialize();
2204
2205 if (ShouldPreserveUseListOrder)
2206 UseListOrders = predictUseListOrder(M);
2207
2208 if (!M->getModuleIdentifier().empty() &&
2209 // Don't print the ID if it will start a new line (which would
2210 // require a comment char before it).
2211 M->getModuleIdentifier().find('\n') == std::string::npos)
2212 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2213
2214 const std::string &DL = M->getDataLayoutStr();
2215 if (!DL.empty())
2216 Out << "target datalayout = \"" << DL << "\"\n";
2217 if (!M->getTargetTriple().empty())
2218 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2219
2220 if (!M->getModuleInlineAsm().empty()) {
2221 Out << '\n';
2222
2223 // Split the string into lines, to make it easier to read the .ll file.
2224 StringRef Asm = M->getModuleInlineAsm();
2225 do {
2226 StringRef Front;
2227 std::tie(Front, Asm) = Asm.split('\n');
2228
2229 // We found a newline, print the portion of the asm string from the
2230 // last newline up to this newline.
2231 Out << "module asm \"";
2232 PrintEscapedString(Front, Out);
2233 Out << "\"\n";
2234 } while (!Asm.empty());
2235 }
2236
2237 printTypeIdentities();
2238
2239 // Output all comdats.
2240 if (!Comdats.empty())
2241 Out << '\n';
2242 for (const Comdat *C : Comdats) {
2243 printComdat(C);
2244 if (C != Comdats.back())
2245 Out << '\n';
2246 }
2247
2248 // Output all globals.
2249 if (!M->global_empty()) Out << '\n';
2250 for (const GlobalVariable &GV : M->globals()) {
2251 printGlobal(&GV); Out << '\n';
2252 }
2253
2254 // Output all aliases.
2255 if (!M->alias_empty()) Out << "\n";
2256 for (const GlobalAlias &GA : M->aliases())
2257 printAlias(&GA);
2258
2259 // Output global use-lists.
2260 printUseLists(nullptr);
2261
2262 // Output all of the functions.
2263 for (const Function &F : *M)
2264 printFunction(&F);
2265 assert(UseListOrders.empty() && "All use-lists should have been consumed");
2266
2267 // Output all attribute groups.
2268 if (!Machine.as_empty()) {
2269 Out << '\n';
2270 writeAllAttributeGroups();
2271 }
2272
2273 // Output named metadata.
2274 if (!M->named_metadata_empty()) Out << '\n';
2275
2276 for (const NamedMDNode &Node : M->named_metadata())
2277 printNamedMDNode(&Node);
2278
2279 // Output metadata.
2280 if (!Machine.mdn_empty()) {
2281 Out << '\n';
2282 writeAllMDNodes();
2283 }
2284 }
2285
printMetadataIdentifier(StringRef Name,formatted_raw_ostream & Out)2286 static void printMetadataIdentifier(StringRef Name,
2287 formatted_raw_ostream &Out) {
2288 if (Name.empty()) {
2289 Out << "<empty name> ";
2290 } else {
2291 if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
2292 Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
2293 Out << Name[0];
2294 else
2295 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
2296 for (unsigned i = 1, e = Name.size(); i != e; ++i) {
2297 unsigned char C = Name[i];
2298 if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
2299 C == '.' || C == '_')
2300 Out << C;
2301 else
2302 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
2303 }
2304 }
2305 }
2306
printNamedMDNode(const NamedMDNode * NMD)2307 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
2308 Out << '!';
2309 printMetadataIdentifier(NMD->getName(), Out);
2310 Out << " = !{";
2311 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2312 if (i)
2313 Out << ", ";
2314 int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
2315 if (Slot == -1)
2316 Out << "<badref>";
2317 else
2318 Out << '!' << Slot;
2319 }
2320 Out << "}\n";
2321 }
2322
PrintLinkage(GlobalValue::LinkageTypes LT,formatted_raw_ostream & Out)2323 static void PrintLinkage(GlobalValue::LinkageTypes LT,
2324 formatted_raw_ostream &Out) {
2325 switch (LT) {
2326 case GlobalValue::ExternalLinkage: break;
2327 case GlobalValue::PrivateLinkage: Out << "private "; break;
2328 case GlobalValue::InternalLinkage: Out << "internal "; break;
2329 case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
2330 case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
2331 case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
2332 case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
2333 case GlobalValue::CommonLinkage: Out << "common "; break;
2334 case GlobalValue::AppendingLinkage: Out << "appending "; break;
2335 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
2336 case GlobalValue::AvailableExternallyLinkage:
2337 Out << "available_externally ";
2338 break;
2339 }
2340 }
2341
PrintVisibility(GlobalValue::VisibilityTypes Vis,formatted_raw_ostream & Out)2342 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
2343 formatted_raw_ostream &Out) {
2344 switch (Vis) {
2345 case GlobalValue::DefaultVisibility: break;
2346 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
2347 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
2348 }
2349 }
2350
PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,formatted_raw_ostream & Out)2351 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
2352 formatted_raw_ostream &Out) {
2353 switch (SCT) {
2354 case GlobalValue::DefaultStorageClass: break;
2355 case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
2356 case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
2357 }
2358 }
2359
PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,formatted_raw_ostream & Out)2360 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
2361 formatted_raw_ostream &Out) {
2362 switch (TLM) {
2363 case GlobalVariable::NotThreadLocal:
2364 break;
2365 case GlobalVariable::GeneralDynamicTLSModel:
2366 Out << "thread_local ";
2367 break;
2368 case GlobalVariable::LocalDynamicTLSModel:
2369 Out << "thread_local(localdynamic) ";
2370 break;
2371 case GlobalVariable::InitialExecTLSModel:
2372 Out << "thread_local(initialexec) ";
2373 break;
2374 case GlobalVariable::LocalExecTLSModel:
2375 Out << "thread_local(localexec) ";
2376 break;
2377 }
2378 }
2379
maybePrintComdat(formatted_raw_ostream & Out,const GlobalObject & GO)2380 static void maybePrintComdat(formatted_raw_ostream &Out,
2381 const GlobalObject &GO) {
2382 const Comdat *C = GO.getComdat();
2383 if (!C)
2384 return;
2385
2386 if (isa<GlobalVariable>(GO))
2387 Out << ',';
2388 Out << " comdat";
2389
2390 if (GO.getName() == C->getName())
2391 return;
2392
2393 Out << '(';
2394 PrintLLVMName(Out, C->getName(), ComdatPrefix);
2395 Out << ')';
2396 }
2397
printGlobal(const GlobalVariable * GV)2398 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
2399 if (GV->isMaterializable())
2400 Out << "; Materializable\n";
2401
2402 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
2403 Out << " = ";
2404
2405 if (!GV->hasInitializer() && GV->hasExternalLinkage())
2406 Out << "external ";
2407
2408 PrintLinkage(GV->getLinkage(), Out);
2409 PrintVisibility(GV->getVisibility(), Out);
2410 PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
2411 PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
2412 if (GV->hasUnnamedAddr())
2413 Out << "unnamed_addr ";
2414
2415 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
2416 Out << "addrspace(" << AddressSpace << ") ";
2417 if (GV->isExternallyInitialized()) Out << "externally_initialized ";
2418 Out << (GV->isConstant() ? "constant " : "global ");
2419 TypePrinter.print(GV->getType()->getElementType(), Out);
2420
2421 if (GV->hasInitializer()) {
2422 Out << ' ';
2423 writeOperand(GV->getInitializer(), false);
2424 }
2425
2426 if (GV->hasSection()) {
2427 Out << ", section \"";
2428 PrintEscapedString(GV->getSection(), Out);
2429 Out << '"';
2430 }
2431 maybePrintComdat(Out, *GV);
2432 if (GV->getAlignment())
2433 Out << ", align " << GV->getAlignment();
2434
2435 printInfoComment(*GV);
2436 }
2437
printAlias(const GlobalAlias * GA)2438 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
2439 if (GA->isMaterializable())
2440 Out << "; Materializable\n";
2441
2442 WriteAsOperandInternal(Out, GA, &TypePrinter, &Machine, GA->getParent());
2443 Out << " = ";
2444
2445 PrintLinkage(GA->getLinkage(), Out);
2446 PrintVisibility(GA->getVisibility(), Out);
2447 PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
2448 PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
2449 if (GA->hasUnnamedAddr())
2450 Out << "unnamed_addr ";
2451
2452 Out << "alias ";
2453
2454 TypePrinter.print(GA->getValueType(), Out);
2455
2456 Out << ", ";
2457
2458 const Constant *Aliasee = GA->getAliasee();
2459
2460 if (!Aliasee) {
2461 TypePrinter.print(GA->getType(), Out);
2462 Out << " <<NULL ALIASEE>>";
2463 } else {
2464 writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
2465 }
2466
2467 printInfoComment(*GA);
2468 Out << '\n';
2469 }
2470
printComdat(const Comdat * C)2471 void AssemblyWriter::printComdat(const Comdat *C) {
2472 C->print(Out);
2473 }
2474
printTypeIdentities()2475 void AssemblyWriter::printTypeIdentities() {
2476 if (TypePrinter.NumberedTypes.empty() &&
2477 TypePrinter.NamedTypes.empty())
2478 return;
2479
2480 Out << '\n';
2481
2482 // We know all the numbers that each type is used and we know that it is a
2483 // dense assignment. Convert the map to an index table.
2484 std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
2485 for (DenseMap<StructType*, unsigned>::iterator I =
2486 TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
2487 I != E; ++I) {
2488 assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
2489 NumberedTypes[I->second] = I->first;
2490 }
2491
2492 // Emit all numbered types.
2493 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
2494 Out << '%' << i << " = type ";
2495
2496 // Make sure we print out at least one level of the type structure, so
2497 // that we do not get %2 = type %2
2498 TypePrinter.printStructBody(NumberedTypes[i], Out);
2499 Out << '\n';
2500 }
2501
2502 for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
2503 PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
2504 Out << " = type ";
2505
2506 // Make sure we print out at least one level of the type structure, so
2507 // that we do not get %FILE = type %FILE
2508 TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
2509 Out << '\n';
2510 }
2511 }
2512
2513 /// printFunction - Print all aspects of a function.
2514 ///
printFunction(const Function * F)2515 void AssemblyWriter::printFunction(const Function *F) {
2516 // Print out the return type and name.
2517 Out << '\n';
2518
2519 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
2520
2521 if (F->isMaterializable())
2522 Out << "; Materializable\n";
2523
2524 const AttributeSet &Attrs = F->getAttributes();
2525 if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
2526 AttributeSet AS = Attrs.getFnAttributes();
2527 std::string AttrStr;
2528
2529 unsigned Idx = 0;
2530 for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
2531 if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
2532 break;
2533
2534 for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
2535 I != E; ++I) {
2536 Attribute Attr = *I;
2537 if (!Attr.isStringAttribute()) {
2538 if (!AttrStr.empty()) AttrStr += ' ';
2539 AttrStr += Attr.getAsString();
2540 }
2541 }
2542
2543 if (!AttrStr.empty())
2544 Out << "; Function Attrs: " << AttrStr << '\n';
2545 }
2546
2547 if (F->isDeclaration())
2548 Out << "declare ";
2549 else
2550 Out << "define ";
2551
2552 PrintLinkage(F->getLinkage(), Out);
2553 PrintVisibility(F->getVisibility(), Out);
2554 PrintDLLStorageClass(F->getDLLStorageClass(), Out);
2555
2556 // Print the calling convention.
2557 if (F->getCallingConv() != CallingConv::C) {
2558 PrintCallingConv(F->getCallingConv(), Out);
2559 Out << " ";
2560 }
2561
2562 FunctionType *FT = F->getFunctionType();
2563 if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
2564 Out << Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
2565 TypePrinter.print(F->getReturnType(), Out);
2566 Out << ' ';
2567 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
2568 Out << '(';
2569 Machine.incorporateFunction(F);
2570
2571 // Loop over the arguments, printing them...
2572 if (F->isDeclaration() && !IsForDebug) {
2573 // We're only interested in the type here - don't print argument names.
2574 for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
2575 // Insert commas as we go... the first arg doesn't get a comma
2576 if (I)
2577 Out << ", ";
2578 // Output type...
2579 TypePrinter.print(FT->getParamType(I), Out);
2580
2581 if (Attrs.hasAttributes(I + 1))
2582 Out << ' ' << Attrs.getAsString(I + 1);
2583 }
2584 } else {
2585 // The arguments are meaningful here, print them in detail.
2586 unsigned Idx = 1;
2587 for (const Argument &Arg : F->args()) {
2588 // Insert commas as we go... the first arg doesn't get a comma
2589 if (Idx != 1)
2590 Out << ", ";
2591 printArgument(&Arg, Attrs, Idx++);
2592 }
2593 }
2594
2595 // Finish printing arguments...
2596 if (FT->isVarArg()) {
2597 if (FT->getNumParams()) Out << ", ";
2598 Out << "..."; // Output varargs portion of signature!
2599 }
2600 Out << ')';
2601 if (F->hasUnnamedAddr())
2602 Out << " unnamed_addr";
2603 if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
2604 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
2605 if (F->hasSection()) {
2606 Out << " section \"";
2607 PrintEscapedString(F->getSection(), Out);
2608 Out << '"';
2609 }
2610 maybePrintComdat(Out, *F);
2611 if (F->getAlignment())
2612 Out << " align " << F->getAlignment();
2613 if (F->hasGC())
2614 Out << " gc \"" << F->getGC() << '"';
2615 if (F->hasPrefixData()) {
2616 Out << " prefix ";
2617 writeOperand(F->getPrefixData(), true);
2618 }
2619 if (F->hasPrologueData()) {
2620 Out << " prologue ";
2621 writeOperand(F->getPrologueData(), true);
2622 }
2623 if (F->hasPersonalityFn()) {
2624 Out << " personality ";
2625 writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
2626 }
2627
2628 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2629 F->getAllMetadata(MDs);
2630 printMetadataAttachments(MDs, " ");
2631
2632 if (F->isDeclaration()) {
2633 Out << '\n';
2634 } else {
2635 Out << " {";
2636 // Output all of the function's basic blocks.
2637 for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
2638 printBasicBlock(&*I);
2639
2640 // Output the function's use-lists.
2641 printUseLists(F);
2642
2643 Out << "}\n";
2644 }
2645
2646 Machine.purgeFunction();
2647 }
2648
2649 /// printArgument - This member is called for every argument that is passed into
2650 /// the function. Simply print it out
2651 ///
printArgument(const Argument * Arg,AttributeSet Attrs,unsigned Idx)2652 void AssemblyWriter::printArgument(const Argument *Arg,
2653 AttributeSet Attrs, unsigned Idx) {
2654 // Output type...
2655 TypePrinter.print(Arg->getType(), Out);
2656
2657 // Output parameter attributes list
2658 if (Attrs.hasAttributes(Idx))
2659 Out << ' ' << Attrs.getAsString(Idx);
2660
2661 // Output name, if available...
2662 if (Arg->hasName()) {
2663 Out << ' ';
2664 PrintLLVMName(Out, Arg);
2665 }
2666 }
2667
2668 /// printBasicBlock - This member is called for each basic block in a method.
2669 ///
printBasicBlock(const BasicBlock * BB)2670 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
2671 if (BB->hasName()) { // Print out the label if it exists...
2672 Out << "\n";
2673 PrintLLVMName(Out, BB->getName(), LabelPrefix);
2674 Out << ':';
2675 } else if (!BB->use_empty()) { // Don't print block # of no uses...
2676 Out << "\n; <label>:";
2677 int Slot = Machine.getLocalSlot(BB);
2678 if (Slot != -1)
2679 Out << Slot;
2680 else
2681 Out << "<badref>";
2682 }
2683
2684 if (!BB->getParent()) {
2685 Out.PadToColumn(50);
2686 Out << "; Error: Block without parent!";
2687 } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
2688 // Output predecessors for the block.
2689 Out.PadToColumn(50);
2690 Out << ";";
2691 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
2692
2693 if (PI == PE) {
2694 Out << " No predecessors!";
2695 } else {
2696 Out << " preds = ";
2697 writeOperand(*PI, false);
2698 for (++PI; PI != PE; ++PI) {
2699 Out << ", ";
2700 writeOperand(*PI, false);
2701 }
2702 }
2703 }
2704
2705 Out << "\n";
2706
2707 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
2708
2709 // Output all of the instructions in the basic block...
2710 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2711 printInstructionLine(*I);
2712 }
2713
2714 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
2715 }
2716
2717 /// printInstructionLine - Print an instruction and a newline character.
printInstructionLine(const Instruction & I)2718 void AssemblyWriter::printInstructionLine(const Instruction &I) {
2719 printInstruction(I);
2720 Out << '\n';
2721 }
2722
2723 /// printGCRelocateComment - print comment after call to the gc.relocate
2724 /// intrinsic indicating base and derived pointer names.
printGCRelocateComment(const Value & V)2725 void AssemblyWriter::printGCRelocateComment(const Value &V) {
2726 assert(isGCRelocate(&V));
2727 GCRelocateOperands GCOps(cast<Instruction>(&V));
2728
2729 Out << " ; (";
2730 writeOperand(GCOps.getBasePtr(), false);
2731 Out << ", ";
2732 writeOperand(GCOps.getDerivedPtr(), false);
2733 Out << ")";
2734 }
2735
2736 /// printInfoComment - Print a little comment after the instruction indicating
2737 /// which slot it occupies.
2738 ///
printInfoComment(const Value & V)2739 void AssemblyWriter::printInfoComment(const Value &V) {
2740 if (isGCRelocate(&V))
2741 printGCRelocateComment(V);
2742
2743 if (AnnotationWriter)
2744 AnnotationWriter->printInfoComment(V, Out);
2745 }
2746
2747 // This member is called for each Instruction in a function..
printInstruction(const Instruction & I)2748 void AssemblyWriter::printInstruction(const Instruction &I) {
2749 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
2750
2751 // Print out indentation for an instruction.
2752 Out << " ";
2753
2754 // Print out name if it exists...
2755 if (I.hasName()) {
2756 PrintLLVMName(Out, &I);
2757 Out << " = ";
2758 } else if (!I.getType()->isVoidTy()) {
2759 // Print out the def slot taken.
2760 int SlotNum = Machine.getLocalSlot(&I);
2761 if (SlotNum == -1)
2762 Out << "<badref> = ";
2763 else
2764 Out << '%' << SlotNum << " = ";
2765 }
2766
2767 if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
2768 if (CI->isMustTailCall())
2769 Out << "musttail ";
2770 else if (CI->isTailCall())
2771 Out << "tail ";
2772 else if (CI->isNoTailCall())
2773 Out << "notail ";
2774 }
2775
2776 // Print out the opcode...
2777 Out << I.getOpcodeName();
2778
2779 // If this is an atomic load or store, print out the atomic marker.
2780 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
2781 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
2782 Out << " atomic";
2783
2784 if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
2785 Out << " weak";
2786
2787 // If this is a volatile operation, print out the volatile marker.
2788 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
2789 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
2790 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
2791 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
2792 Out << " volatile";
2793
2794 // Print out optimization information.
2795 WriteOptimizationInfo(Out, &I);
2796
2797 // Print out the compare instruction predicates
2798 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
2799 Out << ' ' << getPredicateText(CI->getPredicate());
2800
2801 // Print out the atomicrmw operation
2802 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
2803 writeAtomicRMWOperation(Out, RMWI->getOperation());
2804
2805 // Print out the type of the operands...
2806 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
2807
2808 // Special case conditional branches to swizzle the condition out to the front
2809 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
2810 const BranchInst &BI(cast<BranchInst>(I));
2811 Out << ' ';
2812 writeOperand(BI.getCondition(), true);
2813 Out << ", ";
2814 writeOperand(BI.getSuccessor(0), true);
2815 Out << ", ";
2816 writeOperand(BI.getSuccessor(1), true);
2817
2818 } else if (isa<SwitchInst>(I)) {
2819 const SwitchInst& SI(cast<SwitchInst>(I));
2820 // Special case switch instruction to get formatting nice and correct.
2821 Out << ' ';
2822 writeOperand(SI.getCondition(), true);
2823 Out << ", ";
2824 writeOperand(SI.getDefaultDest(), true);
2825 Out << " [";
2826 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2827 i != e; ++i) {
2828 Out << "\n ";
2829 writeOperand(i.getCaseValue(), true);
2830 Out << ", ";
2831 writeOperand(i.getCaseSuccessor(), true);
2832 }
2833 Out << "\n ]";
2834 } else if (isa<IndirectBrInst>(I)) {
2835 // Special case indirectbr instruction to get formatting nice and correct.
2836 Out << ' ';
2837 writeOperand(Operand, true);
2838 Out << ", [";
2839
2840 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2841 if (i != 1)
2842 Out << ", ";
2843 writeOperand(I.getOperand(i), true);
2844 }
2845 Out << ']';
2846 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
2847 Out << ' ';
2848 TypePrinter.print(I.getType(), Out);
2849 Out << ' ';
2850
2851 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
2852 if (op) Out << ", ";
2853 Out << "[ ";
2854 writeOperand(PN->getIncomingValue(op), false); Out << ", ";
2855 writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
2856 }
2857 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
2858 Out << ' ';
2859 writeOperand(I.getOperand(0), true);
2860 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
2861 Out << ", " << *i;
2862 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
2863 Out << ' ';
2864 writeOperand(I.getOperand(0), true); Out << ", ";
2865 writeOperand(I.getOperand(1), true);
2866 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
2867 Out << ", " << *i;
2868 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
2869 Out << ' ';
2870 TypePrinter.print(I.getType(), Out);
2871 if (LPI->isCleanup() || LPI->getNumClauses() != 0)
2872 Out << '\n';
2873
2874 if (LPI->isCleanup())
2875 Out << " cleanup";
2876
2877 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
2878 if (i != 0 || LPI->isCleanup()) Out << "\n";
2879 if (LPI->isCatch(i))
2880 Out << " catch ";
2881 else
2882 Out << " filter ";
2883
2884 writeOperand(LPI->getClause(i), true);
2885 }
2886 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
2887 Out << " within ";
2888 writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
2889 Out << " [";
2890 unsigned Op = 0;
2891 for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
2892 if (Op > 0)
2893 Out << ", ";
2894 writeOperand(PadBB, /*PrintType=*/true);
2895 ++Op;
2896 }
2897 Out << "] unwind ";
2898 if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
2899 writeOperand(UnwindDest, /*PrintType=*/true);
2900 else
2901 Out << "to caller";
2902 } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
2903 Out << " within ";
2904 writeOperand(FPI->getParentPad(), /*PrintType=*/false);
2905 Out << " [";
2906 for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
2907 ++Op) {
2908 if (Op > 0)
2909 Out << ", ";
2910 writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
2911 }
2912 Out << ']';
2913 } else if (isa<ReturnInst>(I) && !Operand) {
2914 Out << " void";
2915 } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
2916 Out << " from ";
2917 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
2918
2919 Out << " to ";
2920 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
2921 } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
2922 Out << " from ";
2923 writeOperand(CRI->getOperand(0), /*PrintType=*/false);
2924
2925 Out << " unwind ";
2926 if (CRI->hasUnwindDest())
2927 writeOperand(CRI->getOperand(1), /*PrintType=*/true);
2928 else
2929 Out << "to caller";
2930 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
2931 // Print the calling convention being used.
2932 if (CI->getCallingConv() != CallingConv::C) {
2933 Out << " ";
2934 PrintCallingConv(CI->getCallingConv(), Out);
2935 }
2936
2937 Operand = CI->getCalledValue();
2938 FunctionType *FTy = cast<FunctionType>(CI->getFunctionType());
2939 Type *RetTy = FTy->getReturnType();
2940 const AttributeSet &PAL = CI->getAttributes();
2941
2942 if (PAL.hasAttributes(AttributeSet::ReturnIndex))
2943 Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
2944
2945 // If possible, print out the short form of the call instruction. We can
2946 // only do this if the first argument is a pointer to a nonvararg function,
2947 // and if the return type is not a pointer to a function.
2948 //
2949 Out << ' ';
2950 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
2951 Out << ' ';
2952 writeOperand(Operand, false);
2953 Out << '(';
2954 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
2955 if (op > 0)
2956 Out << ", ";
2957 writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
2958 }
2959
2960 // Emit an ellipsis if this is a musttail call in a vararg function. This
2961 // is only to aid readability, musttail calls forward varargs by default.
2962 if (CI->isMustTailCall() && CI->getParent() &&
2963 CI->getParent()->getParent() &&
2964 CI->getParent()->getParent()->isVarArg())
2965 Out << ", ...";
2966
2967 Out << ')';
2968 if (PAL.hasAttributes(AttributeSet::FunctionIndex))
2969 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
2970
2971 writeOperandBundles(CI);
2972
2973 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
2974 Operand = II->getCalledValue();
2975 FunctionType *FTy = cast<FunctionType>(II->getFunctionType());
2976 Type *RetTy = FTy->getReturnType();
2977 const AttributeSet &PAL = II->getAttributes();
2978
2979 // Print the calling convention being used.
2980 if (II->getCallingConv() != CallingConv::C) {
2981 Out << " ";
2982 PrintCallingConv(II->getCallingConv(), Out);
2983 }
2984
2985 if (PAL.hasAttributes(AttributeSet::ReturnIndex))
2986 Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
2987
2988 // If possible, print out the short form of the invoke instruction. We can
2989 // only do this if the first argument is a pointer to a nonvararg function,
2990 // and if the return type is not a pointer to a function.
2991 //
2992 Out << ' ';
2993 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
2994 Out << ' ';
2995 writeOperand(Operand, false);
2996 Out << '(';
2997 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
2998 if (op)
2999 Out << ", ";
3000 writeParamOperand(II->getArgOperand(op), PAL, op + 1);
3001 }
3002
3003 Out << ')';
3004 if (PAL.hasAttributes(AttributeSet::FunctionIndex))
3005 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3006
3007 writeOperandBundles(II);
3008
3009 Out << "\n to ";
3010 writeOperand(II->getNormalDest(), true);
3011 Out << " unwind ";
3012 writeOperand(II->getUnwindDest(), true);
3013
3014 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
3015 Out << ' ';
3016 if (AI->isUsedWithInAlloca())
3017 Out << "inalloca ";
3018 TypePrinter.print(AI->getAllocatedType(), Out);
3019
3020 // Explicitly write the array size if the code is broken, if it's an array
3021 // allocation, or if the type is not canonical for scalar allocations. The
3022 // latter case prevents the type from mutating when round-tripping through
3023 // assembly.
3024 if (!AI->getArraySize() || AI->isArrayAllocation() ||
3025 !AI->getArraySize()->getType()->isIntegerTy(32)) {
3026 Out << ", ";
3027 writeOperand(AI->getArraySize(), true);
3028 }
3029 if (AI->getAlignment()) {
3030 Out << ", align " << AI->getAlignment();
3031 }
3032 } else if (isa<CastInst>(I)) {
3033 if (Operand) {
3034 Out << ' ';
3035 writeOperand(Operand, true); // Work with broken code
3036 }
3037 Out << " to ";
3038 TypePrinter.print(I.getType(), Out);
3039 } else if (isa<VAArgInst>(I)) {
3040 if (Operand) {
3041 Out << ' ';
3042 writeOperand(Operand, true); // Work with broken code
3043 }
3044 Out << ", ";
3045 TypePrinter.print(I.getType(), Out);
3046 } else if (Operand) { // Print the normal way.
3047 if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
3048 Out << ' ';
3049 TypePrinter.print(GEP->getSourceElementType(), Out);
3050 Out << ',';
3051 } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
3052 Out << ' ';
3053 TypePrinter.print(LI->getType(), Out);
3054 Out << ',';
3055 }
3056
3057 // PrintAllTypes - Instructions who have operands of all the same type
3058 // omit the type from all but the first operand. If the instruction has
3059 // different type operands (for example br), then they are all printed.
3060 bool PrintAllTypes = false;
3061 Type *TheType = Operand->getType();
3062
3063 // Select, Store and ShuffleVector always print all types.
3064 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
3065 || isa<ReturnInst>(I)) {
3066 PrintAllTypes = true;
3067 } else {
3068 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
3069 Operand = I.getOperand(i);
3070 // note that Operand shouldn't be null, but the test helps make dump()
3071 // more tolerant of malformed IR
3072 if (Operand && Operand->getType() != TheType) {
3073 PrintAllTypes = true; // We have differing types! Print them all!
3074 break;
3075 }
3076 }
3077 }
3078
3079 if (!PrintAllTypes) {
3080 Out << ' ';
3081 TypePrinter.print(TheType, Out);
3082 }
3083
3084 Out << ' ';
3085 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
3086 if (i) Out << ", ";
3087 writeOperand(I.getOperand(i), PrintAllTypes);
3088 }
3089 }
3090
3091 // Print atomic ordering/alignment for memory operations
3092 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
3093 if (LI->isAtomic())
3094 writeAtomic(LI->getOrdering(), LI->getSynchScope());
3095 if (LI->getAlignment())
3096 Out << ", align " << LI->getAlignment();
3097 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
3098 if (SI->isAtomic())
3099 writeAtomic(SI->getOrdering(), SI->getSynchScope());
3100 if (SI->getAlignment())
3101 Out << ", align " << SI->getAlignment();
3102 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
3103 writeAtomicCmpXchg(CXI->getSuccessOrdering(), CXI->getFailureOrdering(),
3104 CXI->getSynchScope());
3105 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
3106 writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
3107 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
3108 writeAtomic(FI->getOrdering(), FI->getSynchScope());
3109 }
3110
3111 // Print Metadata info.
3112 SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
3113 I.getAllMetadata(InstMD);
3114 printMetadataAttachments(InstMD, ", ");
3115
3116 // Print a nice comment.
3117 printInfoComment(I);
3118 }
3119
printMetadataAttachments(const SmallVectorImpl<std::pair<unsigned,MDNode * >> & MDs,StringRef Separator)3120 void AssemblyWriter::printMetadataAttachments(
3121 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
3122 StringRef Separator) {
3123 if (MDs.empty())
3124 return;
3125
3126 if (MDNames.empty())
3127 TheModule->getMDKindNames(MDNames);
3128
3129 for (const auto &I : MDs) {
3130 unsigned Kind = I.first;
3131 Out << Separator;
3132 if (Kind < MDNames.size()) {
3133 Out << "!";
3134 printMetadataIdentifier(MDNames[Kind], Out);
3135 } else
3136 Out << "!<unknown kind #" << Kind << ">";
3137 Out << ' ';
3138 WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
3139 }
3140 }
3141
writeMDNode(unsigned Slot,const MDNode * Node)3142 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
3143 Out << '!' << Slot << " = ";
3144 printMDNodeBody(Node);
3145 Out << "\n";
3146 }
3147
writeAllMDNodes()3148 void AssemblyWriter::writeAllMDNodes() {
3149 SmallVector<const MDNode *, 16> Nodes;
3150 Nodes.resize(Machine.mdn_size());
3151 for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
3152 I != E; ++I)
3153 Nodes[I->second] = cast<MDNode>(I->first);
3154
3155 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3156 writeMDNode(i, Nodes[i]);
3157 }
3158 }
3159
printMDNodeBody(const MDNode * Node)3160 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
3161 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
3162 }
3163
writeAllAttributeGroups()3164 void AssemblyWriter::writeAllAttributeGroups() {
3165 std::vector<std::pair<AttributeSet, unsigned> > asVec;
3166 asVec.resize(Machine.as_size());
3167
3168 for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
3169 I != E; ++I)
3170 asVec[I->second] = *I;
3171
3172 for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
3173 I = asVec.begin(), E = asVec.end(); I != E; ++I)
3174 Out << "attributes #" << I->second << " = { "
3175 << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
3176 }
3177
printUseListOrder(const UseListOrder & Order)3178 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
3179 bool IsInFunction = Machine.getFunction();
3180 if (IsInFunction)
3181 Out << " ";
3182
3183 Out << "uselistorder";
3184 if (const BasicBlock *BB =
3185 IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
3186 Out << "_bb ";
3187 writeOperand(BB->getParent(), false);
3188 Out << ", ";
3189 writeOperand(BB, false);
3190 } else {
3191 Out << " ";
3192 writeOperand(Order.V, true);
3193 }
3194 Out << ", { ";
3195
3196 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3197 Out << Order.Shuffle[0];
3198 for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
3199 Out << ", " << Order.Shuffle[I];
3200 Out << " }\n";
3201 }
3202
printUseLists(const Function * F)3203 void AssemblyWriter::printUseLists(const Function *F) {
3204 auto hasMore =
3205 [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
3206 if (!hasMore())
3207 // Nothing to do.
3208 return;
3209
3210 Out << "\n; uselistorder directives\n";
3211 while (hasMore()) {
3212 printUseListOrder(UseListOrders.back());
3213 UseListOrders.pop_back();
3214 }
3215 }
3216
3217 //===----------------------------------------------------------------------===//
3218 // External Interface declarations
3219 //===----------------------------------------------------------------------===//
3220
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW,bool ShouldPreserveUseListOrder,bool IsForDebug) const3221 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
3222 bool ShouldPreserveUseListOrder, bool IsForDebug) const {
3223 SlotTracker SlotTable(this);
3224 formatted_raw_ostream OS(ROS);
3225 AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
3226 ShouldPreserveUseListOrder);
3227 W.printModule(this);
3228 }
3229
print(raw_ostream & ROS,bool IsForDebug) const3230 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
3231 SlotTracker SlotTable(getParent());
3232 formatted_raw_ostream OS(ROS);
3233 AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
3234 W.printNamedMDNode(this);
3235 }
3236
print(raw_ostream & ROS,bool) const3237 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
3238 PrintLLVMName(ROS, getName(), ComdatPrefix);
3239 ROS << " = comdat ";
3240
3241 switch (getSelectionKind()) {
3242 case Comdat::Any:
3243 ROS << "any";
3244 break;
3245 case Comdat::ExactMatch:
3246 ROS << "exactmatch";
3247 break;
3248 case Comdat::Largest:
3249 ROS << "largest";
3250 break;
3251 case Comdat::NoDuplicates:
3252 ROS << "noduplicates";
3253 break;
3254 case Comdat::SameSize:
3255 ROS << "samesize";
3256 break;
3257 }
3258
3259 ROS << '\n';
3260 }
3261
print(raw_ostream & OS,bool) const3262 void Type::print(raw_ostream &OS, bool /*IsForDebug*/) const {
3263 TypePrinting TP;
3264 TP.print(const_cast<Type*>(this), OS);
3265
3266 // If the type is a named struct type, print the body as well.
3267 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
3268 if (!STy->isLiteral()) {
3269 OS << " = type ";
3270 TP.printStructBody(STy, OS);
3271 }
3272 }
3273
isReferencingMDNode(const Instruction & I)3274 static bool isReferencingMDNode(const Instruction &I) {
3275 if (const auto *CI = dyn_cast<CallInst>(&I))
3276 if (Function *F = CI->getCalledFunction())
3277 if (F->isIntrinsic())
3278 for (auto &Op : I.operands())
3279 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
3280 if (isa<MDNode>(V->getMetadata()))
3281 return true;
3282 return false;
3283 }
3284
print(raw_ostream & ROS,bool IsForDebug) const3285 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
3286 bool ShouldInitializeAllMetadata = false;
3287 if (auto *I = dyn_cast<Instruction>(this))
3288 ShouldInitializeAllMetadata = isReferencingMDNode(*I);
3289 else if (isa<Function>(this) || isa<MetadataAsValue>(this))
3290 ShouldInitializeAllMetadata = true;
3291
3292 ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
3293 print(ROS, MST, IsForDebug);
3294 }
3295
print(raw_ostream & ROS,ModuleSlotTracker & MST,bool IsForDebug) const3296 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
3297 bool IsForDebug) const {
3298 formatted_raw_ostream OS(ROS);
3299 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
3300 SlotTracker &SlotTable =
3301 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
3302 auto incorporateFunction = [&](const Function *F) {
3303 if (F)
3304 MST.incorporateFunction(*F);
3305 };
3306
3307 if (const Instruction *I = dyn_cast<Instruction>(this)) {
3308 incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
3309 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
3310 W.printInstruction(*I);
3311 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
3312 incorporateFunction(BB->getParent());
3313 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
3314 W.printBasicBlock(BB);
3315 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
3316 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
3317 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
3318 W.printGlobal(V);
3319 else if (const Function *F = dyn_cast<Function>(GV))
3320 W.printFunction(F);
3321 else
3322 W.printAlias(cast<GlobalAlias>(GV));
3323 } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
3324 V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
3325 } else if (const Constant *C = dyn_cast<Constant>(this)) {
3326 TypePrinting TypePrinter;
3327 TypePrinter.print(C->getType(), OS);
3328 OS << ' ';
3329 WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
3330 } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
3331 this->printAsOperand(OS, /* PrintType */ true, MST);
3332 } else {
3333 llvm_unreachable("Unknown value to print out!");
3334 }
3335 }
3336
3337 /// Print without a type, skipping the TypePrinting object.
3338 ///
3339 /// \return \c true iff printing was successful.
printWithoutType(const Value & V,raw_ostream & O,SlotTracker * Machine,const Module * M)3340 static bool printWithoutType(const Value &V, raw_ostream &O,
3341 SlotTracker *Machine, const Module *M) {
3342 if (V.hasName() || isa<GlobalValue>(V) ||
3343 (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
3344 WriteAsOperandInternal(O, &V, nullptr, Machine, M);
3345 return true;
3346 }
3347 return false;
3348 }
3349
printAsOperandImpl(const Value & V,raw_ostream & O,bool PrintType,ModuleSlotTracker & MST)3350 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
3351 ModuleSlotTracker &MST) {
3352 TypePrinting TypePrinter;
3353 if (const Module *M = MST.getModule())
3354 TypePrinter.incorporateTypes(*M);
3355 if (PrintType) {
3356 TypePrinter.print(V.getType(), O);
3357 O << ' ';
3358 }
3359
3360 WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
3361 MST.getModule());
3362 }
3363
printAsOperand(raw_ostream & O,bool PrintType,const Module * M) const3364 void Value::printAsOperand(raw_ostream &O, bool PrintType,
3365 const Module *M) const {
3366 if (!M)
3367 M = getModuleFromVal(this);
3368
3369 if (!PrintType)
3370 if (printWithoutType(*this, O, nullptr, M))
3371 return;
3372
3373 SlotTracker Machine(
3374 M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
3375 ModuleSlotTracker MST(Machine, M);
3376 printAsOperandImpl(*this, O, PrintType, MST);
3377 }
3378
printAsOperand(raw_ostream & O,bool PrintType,ModuleSlotTracker & MST) const3379 void Value::printAsOperand(raw_ostream &O, bool PrintType,
3380 ModuleSlotTracker &MST) const {
3381 if (!PrintType)
3382 if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
3383 return;
3384
3385 printAsOperandImpl(*this, O, PrintType, MST);
3386 }
3387
printMetadataImpl(raw_ostream & ROS,const Metadata & MD,ModuleSlotTracker & MST,const Module * M,bool OnlyAsOperand)3388 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
3389 ModuleSlotTracker &MST, const Module *M,
3390 bool OnlyAsOperand) {
3391 formatted_raw_ostream OS(ROS);
3392
3393 TypePrinting TypePrinter;
3394 if (M)
3395 TypePrinter.incorporateTypes(*M);
3396
3397 WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
3398 /* FromValue */ true);
3399
3400 auto *N = dyn_cast<MDNode>(&MD);
3401 if (OnlyAsOperand || !N)
3402 return;
3403
3404 OS << " = ";
3405 WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
3406 }
3407
printAsOperand(raw_ostream & OS,const Module * M) const3408 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
3409 ModuleSlotTracker MST(M, isa<MDNode>(this));
3410 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
3411 }
3412
printAsOperand(raw_ostream & OS,ModuleSlotTracker & MST,const Module * M) const3413 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
3414 const Module *M) const {
3415 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
3416 }
3417
print(raw_ostream & OS,const Module * M,bool) const3418 void Metadata::print(raw_ostream &OS, const Module *M,
3419 bool /*IsForDebug*/) const {
3420 ModuleSlotTracker MST(M, isa<MDNode>(this));
3421 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
3422 }
3423
print(raw_ostream & OS,ModuleSlotTracker & MST,const Module * M,bool) const3424 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
3425 const Module *M, bool /*IsForDebug*/) const {
3426 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
3427 }
3428
3429 // Value::dump - allow easy printing of Values from the debugger.
3430 LLVM_DUMP_METHOD
dump() const3431 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
3432
3433 // Type::dump - allow easy printing of Types from the debugger.
3434 LLVM_DUMP_METHOD
dump() const3435 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
3436
3437 // Module::dump() - Allow printing of Modules from the debugger.
3438 LLVM_DUMP_METHOD
dump() const3439 void Module::dump() const {
3440 print(dbgs(), nullptr,
3441 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
3442 }
3443
3444 // \brief Allow printing of Comdats from the debugger.
3445 LLVM_DUMP_METHOD
dump() const3446 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
3447
3448 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
3449 LLVM_DUMP_METHOD
dump() const3450 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
3451
3452 LLVM_DUMP_METHOD
dump() const3453 void Metadata::dump() const { dump(nullptr); }
3454
3455 LLVM_DUMP_METHOD
dump(const Module * M) const3456 void Metadata::dump(const Module *M) const {
3457 print(dbgs(), M, /*IsForDebug=*/true);
3458 dbgs() << '\n';
3459 }
3460