1 /*
2  * Written by Doug Lea with assistance from members of JCP JSR-166
3  * Expert Group and released to the public domain, as explained at
4  * http://creativecommons.org/publicdomain/zero/1.0/
5  */
6 
7 package java.util.concurrent;
8 
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.security.AccessControlContext;
11 import java.security.Permissions;
12 import java.security.ProtectionDomain;
13 import java.util.ArrayList;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Collections;
17 import java.util.List;
18 import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.locks.LockSupport;
20 
21 /**
22  * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23  * A {@code ForkJoinPool} provides the entry point for submissions
24  * from non-{@code ForkJoinTask} clients, as well as management and
25  * monitoring operations.
26  *
27  * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28  * ExecutorService} mainly by virtue of employing
29  * <em>work-stealing</em>: all threads in the pool attempt to find and
30  * execute tasks submitted to the pool and/or created by other active
31  * tasks (eventually blocking waiting for work if none exist). This
32  * enables efficient processing when most tasks spawn other subtasks
33  * (as do most {@code ForkJoinTask}s), as well as when many small
34  * tasks are submitted to the pool from external clients.  Especially
35  * when setting <em>asyncMode</em> to true in constructors, {@code
36  * ForkJoinPool}s may also be appropriate for use with event-style
37  * tasks that are never joined.
38  *
39  * <p>A static {@link #commonPool()} is available and appropriate for
40  * most applications. The common pool is used by any ForkJoinTask that
41  * is not explicitly submitted to a specified pool. Using the common
42  * pool normally reduces resource usage (its threads are slowly
43  * reclaimed during periods of non-use, and reinstated upon subsequent
44  * use).
45  *
46  * <p>For applications that require separate or custom pools, a {@code
47  * ForkJoinPool} may be constructed with a given target parallelism
48  * level; by default, equal to the number of available processors.
49  * The pool attempts to maintain enough active (or available) threads
50  * by dynamically adding, suspending, or resuming internal worker
51  * threads, even if some tasks are stalled waiting to join others.
52  * However, no such adjustments are guaranteed in the face of blocked
53  * I/O or other unmanaged synchronization. The nested {@link
54  * ManagedBlocker} interface enables extension of the kinds of
55  * synchronization accommodated.
56  *
57  * <p>In addition to execution and lifecycle control methods, this
58  * class provides status check methods (for example
59  * {@link #getStealCount}) that are intended to aid in developing,
60  * tuning, and monitoring fork/join applications. Also, method
61  * {@link #toString} returns indications of pool state in a
62  * convenient form for informal monitoring.
63  *
64  * <p>As is the case with other ExecutorServices, there are three
65  * main task execution methods summarized in the following table.
66  * These are designed to be used primarily by clients not already
67  * engaged in fork/join computations in the current pool.  The main
68  * forms of these methods accept instances of {@code ForkJoinTask},
69  * but overloaded forms also allow mixed execution of plain {@code
70  * Runnable}- or {@code Callable}- based activities as well.  However,
71  * tasks that are already executing in a pool should normally instead
72  * use the within-computation forms listed in the table unless using
73  * async event-style tasks that are not usually joined, in which case
74  * there is little difference among choice of methods.
75  *
76  * <table BORDER CELLPADDING=3 CELLSPACING=1>
77  * <caption>Summary of task execution methods</caption>
78  *  <tr>
79  *    <td></td>
80  *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81  *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82  *  </tr>
83  *  <tr>
84  *    <td> <b>Arrange async execution</b></td>
85  *    <td> {@link #execute(ForkJoinTask)}</td>
86  *    <td> {@link ForkJoinTask#fork}</td>
87  *  </tr>
88  *  <tr>
89  *    <td> <b>Await and obtain result</b></td>
90  *    <td> {@link #invoke(ForkJoinTask)}</td>
91  *    <td> {@link ForkJoinTask#invoke}</td>
92  *  </tr>
93  *  <tr>
94  *    <td> <b>Arrange exec and obtain Future</b></td>
95  *    <td> {@link #submit(ForkJoinTask)}</td>
96  *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97  *  </tr>
98  * </table>
99  *
100  * <p>The common pool is by default constructed with default
101  * parameters, but these may be controlled by setting three
102  * {@linkplain System#getProperty system properties}:
103  * <ul>
104  * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
105  * - the parallelism level, a non-negative integer
106  * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
107  * - the class name of a {@link ForkJoinWorkerThreadFactory}
108  * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
109  * - the class name of a {@link UncaughtExceptionHandler}
110  * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
111  * - the maximum number of allowed extra threads to maintain target
112  * parallelism (default 256).
113  * </ul>
114  * If a {@link SecurityManager} is present and no factory is
115  * specified, then the default pool uses a factory supplying
116  * threads that have no {@link Permissions} enabled.
117  * The system class loader is used to load these classes.
118  * Upon any error in establishing these settings, default parameters
119  * are used. It is possible to disable or limit the use of threads in
120  * the common pool by setting the parallelism property to zero, and/or
121  * using a factory that may return {@code null}. However doing so may
122  * cause unjoined tasks to never be executed.
123  *
124  * <p><b>Implementation notes</b>: This implementation restricts the
125  * maximum number of running threads to 32767. Attempts to create
126  * pools with greater than the maximum number result in
127  * {@code IllegalArgumentException}.
128  *
129  * <p>This implementation rejects submitted tasks (that is, by throwing
130  * {@link RejectedExecutionException}) only when the pool is shut down
131  * or internal resources have been exhausted.
132  *
133  * @since 1.7
134  * @author Doug Lea
135  */
136 //@jdk.internal.vm.annotation.Contended   // android-removed
137 public class ForkJoinPool extends AbstractExecutorService {
138 
139     /*
140      * Implementation Overview
141      *
142      * This class and its nested classes provide the main
143      * functionality and control for a set of worker threads:
144      * Submissions from non-FJ threads enter into submission queues.
145      * Workers take these tasks and typically split them into subtasks
146      * that may be stolen by other workers.  Preference rules give
147      * first priority to processing tasks from their own queues (LIFO
148      * or FIFO, depending on mode), then to randomized FIFO steals of
149      * tasks in other queues.  This framework began as vehicle for
150      * supporting tree-structured parallelism using work-stealing.
151      * Over time, its scalability advantages led to extensions and
152      * changes to better support more diverse usage contexts.  Because
153      * most internal methods and nested classes are interrelated,
154      * their main rationale and descriptions are presented here;
155      * individual methods and nested classes contain only brief
156      * comments about details.
157      *
158      * WorkQueues
159      * ==========
160      *
161      * Most operations occur within work-stealing queues (in nested
162      * class WorkQueue).  These are special forms of Deques that
163      * support only three of the four possible end-operations -- push,
164      * pop, and poll (aka steal), under the further constraints that
165      * push and pop are called only from the owning thread (or, as
166      * extended here, under a lock), while poll may be called from
167      * other threads.  (If you are unfamiliar with them, you probably
168      * want to read Herlihy and Shavit's book "The Art of
169      * Multiprocessor programming", chapter 16 describing these in
170      * more detail before proceeding.)  The main work-stealing queue
171      * design is roughly similar to those in the papers "Dynamic
172      * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
173      * (http://research.sun.com/scalable/pubs/index.html) and
174      * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
175      * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
176      * The main differences ultimately stem from GC requirements that
177      * we null out taken slots as soon as we can, to maintain as small
178      * a footprint as possible even in programs generating huge
179      * numbers of tasks. To accomplish this, we shift the CAS
180      * arbitrating pop vs poll (steal) from being on the indices
181      * ("base" and "top") to the slots themselves.
182      *
183      * Adding tasks then takes the form of a classic array push(task)
184      * in a circular buffer:
185      *    q.array[q.top++ % length] = task;
186      *
187      * (The actual code needs to null-check and size-check the array,
188      * uses masking, not mod, for indexing a power-of-two-sized array,
189      * properly fences accesses, and possibly signals waiting workers
190      * to start scanning -- see below.)  Both a successful pop and
191      * poll mainly entail a CAS of a slot from non-null to null.
192      *
193      * The pop operation (always performed by owner) is:
194      *   if ((the task at top slot is not null) and
195      *        (CAS slot to null))
196      *           decrement top and return task;
197      *
198      * And the poll operation (usually by a stealer) is
199      *    if ((the task at base slot is not null) and
200      *        (CAS slot to null))
201      *           increment base and return task;
202      *
203      * There are several variants of each of these; for example most
204      * versions of poll pre-screen the CAS by rechecking that the base
205      * has not changed since reading the slot, and most methods only
206      * attempt the CAS if base appears not to be equal to top.
207      *
208      * Memory ordering.  See "Correct and Efficient Work-Stealing for
209      * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
210      * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
211      * analysis of memory ordering requirements in work-stealing
212      * algorithms similar to (but different than) the one used here.
213      * Extracting tasks in array slots via (fully fenced) CAS provides
214      * primary synchronization. The base and top indices imprecisely
215      * guide where to extract from. We do not always require strict
216      * orderings of array and index updates, so sometimes let them be
217      * subject to compiler and processor reorderings. However, the
218      * volatile "base" index also serves as a basis for memory
219      * ordering: Slot accesses are preceded by a read of base,
220      * ensuring happens-before ordering with respect to stealers (so
221      * the slots themselves can be read via plain array reads.)  The
222      * only other memory orderings relied on are maintained in the
223      * course of signalling and activation (see below).  A check that
224      * base == top indicates (momentary) emptiness, but otherwise may
225      * err on the side of possibly making the queue appear nonempty
226      * when a push, pop, or poll have not fully committed, or making
227      * it appear empty when an update of top has not yet been visibly
228      * written.  (Method isEmpty() checks the case of a partially
229      * completed removal of the last element.)  Because of this, the
230      * poll operation, considered individually, is not wait-free. One
231      * thief cannot successfully continue until another in-progress
232      * one (or, if previously empty, a push) visibly completes.
233      * However, in the aggregate, we ensure at least probabilistic
234      * non-blockingness.  If an attempted steal fails, a scanning
235      * thief chooses a different random victim target to try next. So,
236      * in order for one thief to progress, it suffices for any
237      * in-progress poll or new push on any empty queue to
238      * complete. (This is why we normally use method pollAt and its
239      * variants that try once at the apparent base index, else
240      * consider alternative actions, rather than method poll, which
241      * retries.)
242      *
243      * This approach also enables support of a user mode in which
244      * local task processing is in FIFO, not LIFO order, simply by
245      * using poll rather than pop.  This can be useful in
246      * message-passing frameworks in which tasks are never joined.
247      *
248      * WorkQueues are also used in a similar way for tasks submitted
249      * to the pool. We cannot mix these tasks in the same queues used
250      * by workers. Instead, we randomly associate submission queues
251      * with submitting threads, using a form of hashing.  The
252      * ThreadLocalRandom probe value serves as a hash code for
253      * choosing existing queues, and may be randomly repositioned upon
254      * contention with other submitters.  In essence, submitters act
255      * like workers except that they are restricted to executing local
256      * tasks that they submitted (or in the case of CountedCompleters,
257      * others with the same root task).  Insertion of tasks in shared
258      * mode requires a lock but we use only a simple spinlock (using
259      * field qlock), because submitters encountering a busy queue move
260      * on to try or create other queues -- they block only when
261      * creating and registering new queues. Because it is used only as
262      * a spinlock, unlocking requires only a "releasing" store (using
263      * putOrderedInt).  The qlock is also used during termination
264      * detection, in which case it is forced to a negative
265      * non-lockable value.
266      *
267      * Management
268      * ==========
269      *
270      * The main throughput advantages of work-stealing stem from
271      * decentralized control -- workers mostly take tasks from
272      * themselves or each other, at rates that can exceed a billion
273      * per second.  The pool itself creates, activates (enables
274      * scanning for and running tasks), deactivates, blocks, and
275      * terminates threads, all with minimal central information.
276      * There are only a few properties that we can globally track or
277      * maintain, so we pack them into a small number of variables,
278      * often maintaining atomicity without blocking or locking.
279      * Nearly all essentially atomic control state is held in two
280      * volatile variables that are by far most often read (not
281      * written) as status and consistency checks. (Also, field
282      * "config" holds unchanging configuration state.)
283      *
284      * Field "ctl" contains 64 bits holding information needed to
285      * atomically decide to add, inactivate, enqueue (on an event
286      * queue), dequeue, and/or re-activate workers.  To enable this
287      * packing, we restrict maximum parallelism to (1<<15)-1 (which is
288      * far in excess of normal operating range) to allow ids, counts,
289      * and their negations (used for thresholding) to fit into 16bit
290      * subfields.
291      *
292      * Field "runState" holds lifetime status, atomically and
293      * monotonically setting STARTED, SHUTDOWN, STOP, and finally
294      * TERMINATED bits.
295      *
296      * Field "auxState" is a ReentrantLock subclass that also
297      * opportunistically holds some other bookkeeping fields accessed
298      * only when locked.  It is mainly used to lock (infrequent)
299      * updates to workQueues.  The auxState instance is itself lazily
300      * constructed (see tryInitialize), requiring a double-check-style
301      * bootstrapping use of field runState, and locking a private
302      * static.
303      *
304      * Field "workQueues" holds references to WorkQueues.  It is
305      * updated (only during worker creation and termination) under the
306      * lock, but is otherwise concurrently readable, and accessed
307      * directly. We also ensure that reads of the array reference
308      * itself never become too stale (for example, re-reading before
309      * each scan). To simplify index-based operations, the array size
310      * is always a power of two, and all readers must tolerate null
311      * slots. Worker queues are at odd indices. Shared (submission)
312      * queues are at even indices, up to a maximum of 64 slots, to
313      * limit growth even if array needs to expand to add more
314      * workers. Grouping them together in this way simplifies and
315      * speeds up task scanning.
316      *
317      * All worker thread creation is on-demand, triggered by task
318      * submissions, replacement of terminated workers, and/or
319      * compensation for blocked workers. However, all other support
320      * code is set up to work with other policies.  To ensure that we
321      * do not hold on to worker references that would prevent GC, all
322      * accesses to workQueues are via indices into the workQueues
323      * array (which is one source of some of the messy code
324      * constructions here). In essence, the workQueues array serves as
325      * a weak reference mechanism. Thus for example the stack top
326      * subfield of ctl stores indices, not references.
327      *
328      * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
329      * cannot let workers spin indefinitely scanning for tasks when
330      * none can be found immediately, and we cannot start/resume
331      * workers unless there appear to be tasks available.  On the
332      * other hand, we must quickly prod them into action when new
333      * tasks are submitted or generated. In many usages, ramp-up time
334      * to activate workers is the main limiting factor in overall
335      * performance, which is compounded at program start-up by JIT
336      * compilation and allocation. So we streamline this as much as
337      * possible.
338      *
339      * The "ctl" field atomically maintains active and total worker
340      * counts as well as a queue to place waiting threads so they can
341      * be located for signalling. Active counts also play the role of
342      * quiescence indicators, so are decremented when workers believe
343      * that there are no more tasks to execute. The "queue" is
344      * actually a form of Treiber stack.  A stack is ideal for
345      * activating threads in most-recently used order. This improves
346      * performance and locality, outweighing the disadvantages of
347      * being prone to contention and inability to release a worker
348      * unless it is topmost on stack.  We block/unblock workers after
349      * pushing on the idle worker stack (represented by the lower
350      * 32bit subfield of ctl) when they cannot find work.  The top
351      * stack state holds the value of the "scanState" field of the
352      * worker: its index and status, plus a version counter that, in
353      * addition to the count subfields (also serving as version
354      * stamps) provide protection against Treiber stack ABA effects.
355      *
356      * Creating workers. To create a worker, we pre-increment total
357      * count (serving as a reservation), and attempt to construct a
358      * ForkJoinWorkerThread via its factory. Upon construction, the
359      * new thread invokes registerWorker, where it constructs a
360      * WorkQueue and is assigned an index in the workQueues array
361      * (expanding the array if necessary). The thread is then started.
362      * Upon any exception across these steps, or null return from
363      * factory, deregisterWorker adjusts counts and records
364      * accordingly.  If a null return, the pool continues running with
365      * fewer than the target number workers. If exceptional, the
366      * exception is propagated, generally to some external caller.
367      * Worker index assignment avoids the bias in scanning that would
368      * occur if entries were sequentially packed starting at the front
369      * of the workQueues array. We treat the array as a simple
370      * power-of-two hash table, expanding as needed. The seedIndex
371      * increment ensures no collisions until a resize is needed or a
372      * worker is deregistered and replaced, and thereafter keeps
373      * probability of collision low. We cannot use
374      * ThreadLocalRandom.getProbe() for similar purposes here because
375      * the thread has not started yet, but do so for creating
376      * submission queues for existing external threads (see
377      * externalPush).
378      *
379      * WorkQueue field scanState is used by both workers and the pool
380      * to manage and track whether a worker is UNSIGNALLED (possibly
381      * blocked waiting for a signal).  When a worker is inactivated,
382      * its scanState field is set, and is prevented from executing
383      * tasks, even though it must scan once for them to avoid queuing
384      * races. Note that scanState updates lag queue CAS releases so
385      * usage requires care. When queued, the lower 16 bits of
386      * scanState must hold its pool index. So we place the index there
387      * upon initialization (see registerWorker) and otherwise keep it
388      * there or restore it when necessary.
389      *
390      * The ctl field also serves as the basis for memory
391      * synchronization surrounding activation. This uses a more
392      * efficient version of a Dekker-like rule that task producers and
393      * consumers sync with each other by both writing/CASing ctl (even
394      * if to its current value).  This would be extremely costly. So
395      * we relax it in several ways: (1) Producers only signal when
396      * their queue is empty. Other workers propagate this signal (in
397      * method scan) when they find tasks. (2) Workers only enqueue
398      * after scanning (see below) and not finding any tasks.  (3)
399      * Rather than CASing ctl to its current value in the common case
400      * where no action is required, we reduce write contention by
401      * equivalently prefacing signalWork when called by an external
402      * task producer using a memory access with full-volatile
403      * semantics or a "fullFence". (4) For internal task producers we
404      * rely on the fact that even if no other workers awaken, the
405      * producer itself will eventually see the task and execute it.
406      *
407      * Almost always, too many signals are issued. A task producer
408      * cannot in general tell if some existing worker is in the midst
409      * of finishing one task (or already scanning) and ready to take
410      * another without being signalled. So the producer might instead
411      * activate a different worker that does not find any work, and
412      * then inactivates. This scarcely matters in steady-state
413      * computations involving all workers, but can create contention
414      * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
415      * computations involving only a few workers.
416      *
417      * Scanning. Method scan() performs top-level scanning for tasks.
418      * Each scan traverses (and tries to poll from) each queue in
419      * pseudorandom permutation order by randomly selecting an origin
420      * index and a step value.  (The pseudorandom generator need not
421      * have high-quality statistical properties in the long term, but
422      * just within computations; We use 64bit and 32bit Marsaglia
423      * XorShifts, which are cheap and suffice here.)  Scanning also
424      * employs contention reduction: When scanning workers fail a CAS
425      * polling for work, they soon restart with a different
426      * pseudorandom scan order (thus likely retrying at different
427      * intervals). This improves throughput when many threads are
428      * trying to take tasks from few queues.  Scans do not otherwise
429      * explicitly take into account core affinities, loads, cache
430      * localities, etc, However, they do exploit temporal locality
431      * (which usually approximates these) by preferring to re-poll (up
432      * to POLL_LIMIT times) from the same queue after a successful
433      * poll before trying others.  Restricted forms of scanning occur
434      * in methods helpComplete and findNonEmptyStealQueue, and take
435      * similar but simpler forms.
436      *
437      * Deactivation and waiting. Queuing encounters several intrinsic
438      * races; most notably that an inactivating scanning worker can
439      * miss seeing a task produced during a scan.  So when a worker
440      * cannot find a task to steal, it inactivates and enqueues, and
441      * then rescans to ensure that it didn't miss one, reactivating
442      * upon seeing one with probability approximately proportional to
443      * probability of a miss.  (In most cases, the worker will be
444      * signalled before self-signalling, avoiding cascades of multiple
445      * signals for the same task).
446      *
447      * Workers block (in method awaitWork) using park/unpark;
448      * advertising the need for signallers to unpark by setting their
449      * "parker" fields.
450      *
451      * Trimming workers. To release resources after periods of lack of
452      * use, a worker starting to wait when the pool is quiescent will
453      * time out and terminate (see awaitWork) if the pool has remained
454      * quiescent for period given by IDLE_TIMEOUT_MS, increasing the
455      * period as the number of threads decreases, eventually removing
456      * all workers.
457      *
458      * Shutdown and Termination. A call to shutdownNow invokes
459      * tryTerminate to atomically set a runState bit. The calling
460      * thread, as well as every other worker thereafter terminating,
461      * helps terminate others by setting their (qlock) status,
462      * cancelling their unprocessed tasks, and waking them up, doing
463      * so repeatedly until stable. Calls to non-abrupt shutdown()
464      * preface this by checking whether termination should commence.
465      * This relies primarily on the active count bits of "ctl"
466      * maintaining consensus -- tryTerminate is called from awaitWork
467      * whenever quiescent. However, external submitters do not take
468      * part in this consensus.  So, tryTerminate sweeps through queues
469      * (until stable) to ensure lack of in-flight submissions and
470      * workers about to process them before triggering the "STOP"
471      * phase of termination. (Note: there is an intrinsic conflict if
472      * helpQuiescePool is called when shutdown is enabled. Both wait
473      * for quiescence, but tryTerminate is biased to not trigger until
474      * helpQuiescePool completes.)
475      *
476      * Joining Tasks
477      * =============
478      *
479      * Any of several actions may be taken when one worker is waiting
480      * to join a task stolen (or always held) by another.  Because we
481      * are multiplexing many tasks on to a pool of workers, we can't
482      * just let them block (as in Thread.join).  We also cannot just
483      * reassign the joiner's run-time stack with another and replace
484      * it later, which would be a form of "continuation", that even if
485      * possible is not necessarily a good idea since we may need both
486      * an unblocked task and its continuation to progress.  Instead we
487      * combine two tactics:
488      *
489      *   Helping: Arranging for the joiner to execute some task that it
490      *      would be running if the steal had not occurred.
491      *
492      *   Compensating: Unless there are already enough live threads,
493      *      method tryCompensate() may create or re-activate a spare
494      *      thread to compensate for blocked joiners until they unblock.
495      *
496      * A third form (implemented in tryRemoveAndExec) amounts to
497      * helping a hypothetical compensator: If we can readily tell that
498      * a possible action of a compensator is to steal and execute the
499      * task being joined, the joining thread can do so directly,
500      * without the need for a compensation thread (although at the
501      * expense of larger run-time stacks, but the tradeoff is
502      * typically worthwhile).
503      *
504      * The ManagedBlocker extension API can't use helping so relies
505      * only on compensation in method awaitBlocker.
506      *
507      * The algorithm in helpStealer entails a form of "linear
508      * helping".  Each worker records (in field currentSteal) the most
509      * recent task it stole from some other worker (or a submission).
510      * It also records (in field currentJoin) the task it is currently
511      * actively joining. Method helpStealer uses these markers to try
512      * to find a worker to help (i.e., steal back a task from and
513      * execute it) that could hasten completion of the actively joined
514      * task.  Thus, the joiner executes a task that would be on its
515      * own local deque had the to-be-joined task not been stolen. This
516      * is a conservative variant of the approach described in Wagner &
517      * Calder "Leapfrogging: a portable technique for implementing
518      * efficient futures" SIGPLAN Notices, 1993
519      * (http://portal.acm.org/citation.cfm?id=155354). It differs in
520      * that: (1) We only maintain dependency links across workers upon
521      * steals, rather than use per-task bookkeeping.  This sometimes
522      * requires a linear scan of workQueues array to locate stealers,
523      * but often doesn't because stealers leave hints (that may become
524      * stale/wrong) of where to locate them.  It is only a hint
525      * because a worker might have had multiple steals and the hint
526      * records only one of them (usually the most current).  Hinting
527      * isolates cost to when it is needed, rather than adding to
528      * per-task overhead.  (2) It is "shallow", ignoring nesting and
529      * potentially cyclic mutual steals.  (3) It is intentionally
530      * racy: field currentJoin is updated only while actively joining,
531      * which means that we miss links in the chain during long-lived
532      * tasks, GC stalls etc (which is OK since blocking in such cases
533      * is usually a good idea).  (4) We bound the number of attempts
534      * to find work using checksums and fall back to suspending the
535      * worker and if necessary replacing it with another.
536      *
537      * Helping actions for CountedCompleters do not require tracking
538      * currentJoins: Method helpComplete takes and executes any task
539      * with the same root as the task being waited on (preferring
540      * local pops to non-local polls). However, this still entails
541      * some traversal of completer chains, so is less efficient than
542      * using CountedCompleters without explicit joins.
543      *
544      * Compensation does not aim to keep exactly the target
545      * parallelism number of unblocked threads running at any given
546      * time. Some previous versions of this class employed immediate
547      * compensations for any blocked join. However, in practice, the
548      * vast majority of blockages are transient byproducts of GC and
549      * other JVM or OS activities that are made worse by replacement.
550      * Currently, compensation is attempted only after validating that
551      * all purportedly active threads are processing tasks by checking
552      * field WorkQueue.scanState, which eliminates most false
553      * positives.  Also, compensation is bypassed (tolerating fewer
554      * threads) in the most common case in which it is rarely
555      * beneficial: when a worker with an empty queue (thus no
556      * continuation tasks) blocks on a join and there still remain
557      * enough threads to ensure liveness.
558      *
559      * Spare threads are removed as soon as they notice that the
560      * target parallelism level has been exceeded, in method
561      * tryDropSpare. (Method scan arranges returns for rechecks upon
562      * each probe via the "bound" parameter.)
563      *
564      * The compensation mechanism may be bounded.  Bounds for the
565      * commonPool (see COMMON_MAX_SPARES) better enable JVMs to cope
566      * with programming errors and abuse before running out of
567      * resources to do so. In other cases, users may supply factories
568      * that limit thread construction. The effects of bounding in this
569      * pool (like all others) is imprecise.  Total worker counts are
570      * decremented when threads deregister, not when they exit and
571      * resources are reclaimed by the JVM and OS. So the number of
572      * simultaneously live threads may transiently exceed bounds.
573      *
574      * Common Pool
575      * ===========
576      *
577      * The static common pool always exists after static
578      * initialization.  Since it (or any other created pool) need
579      * never be used, we minimize initial construction overhead and
580      * footprint to the setup of about a dozen fields, with no nested
581      * allocation. Most bootstrapping occurs within method
582      * externalSubmit during the first submission to the pool.
583      *
584      * When external threads submit to the common pool, they can
585      * perform subtask processing (see externalHelpComplete and
586      * related methods) upon joins.  This caller-helps policy makes it
587      * sensible to set common pool parallelism level to one (or more)
588      * less than the total number of available cores, or even zero for
589      * pure caller-runs.  We do not need to record whether external
590      * submissions are to the common pool -- if not, external help
591      * methods return quickly. These submitters would otherwise be
592      * blocked waiting for completion, so the extra effort (with
593      * liberally sprinkled task status checks) in inapplicable cases
594      * amounts to an odd form of limited spin-wait before blocking in
595      * ForkJoinTask.join.
596      *
597      * As a more appropriate default in managed environments, unless
598      * overridden by system properties, we use workers of subclass
599      * InnocuousForkJoinWorkerThread when there is a SecurityManager
600      * present. These workers have no permissions set, do not belong
601      * to any user-defined ThreadGroup, and erase all ThreadLocals
602      * after executing any top-level task (see WorkQueue.runTask).
603      * The associated mechanics (mainly in ForkJoinWorkerThread) may
604      * be JVM-dependent and must access particular Thread class fields
605      * to achieve this effect.
606      *
607      * Style notes
608      * ===========
609      *
610      * Memory ordering relies mainly on Unsafe intrinsics that carry
611      * the further responsibility of explicitly performing null- and
612      * bounds- checks otherwise carried out implicitly by JVMs.  This
613      * can be awkward and ugly, but also reflects the need to control
614      * outcomes across the unusual cases that arise in very racy code
615      * with very few invariants. So these explicit checks would exist
616      * in some form anyway.  All fields are read into locals before
617      * use, and null-checked if they are references.  This is usually
618      * done in a "C"-like style of listing declarations at the heads
619      * of methods or blocks, and using inline assignments on first
620      * encounter.  Array bounds-checks are usually performed by
621      * masking with array.length-1, which relies on the invariant that
622      * these arrays are created with positive lengths, which is itself
623      * paranoically checked. Nearly all explicit checks lead to
624      * bypass/return, not exception throws, because they may
625      * legitimately arise due to cancellation/revocation during
626      * shutdown.
627      *
628      * There is a lot of representation-level coupling among classes
629      * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
630      * fields of WorkQueue maintain data structures managed by
631      * ForkJoinPool, so are directly accessed.  There is little point
632      * trying to reduce this, since any associated future changes in
633      * representations will need to be accompanied by algorithmic
634      * changes anyway. Several methods intrinsically sprawl because
635      * they must accumulate sets of consistent reads of fields held in
636      * local variables.  There are also other coding oddities
637      * (including several unnecessary-looking hoisted null checks)
638      * that help some methods perform reasonably even when interpreted
639      * (not compiled).
640      *
641      * The order of declarations in this file is (with a few exceptions):
642      * (1) Static utility functions
643      * (2) Nested (static) classes
644      * (3) Static fields
645      * (4) Fields, along with constants used when unpacking some of them
646      * (5) Internal control methods
647      * (6) Callbacks and other support for ForkJoinTask methods
648      * (7) Exported methods
649      * (8) Static block initializing statics in minimally dependent order
650      */
651 
652     // Static utilities
653 
654     /**
655      * If there is a security manager, makes sure caller has
656      * permission to modify threads.
657      */
checkPermission()658     private static void checkPermission() {
659         SecurityManager security = System.getSecurityManager();
660         if (security != null)
661             security.checkPermission(modifyThreadPermission);
662     }
663 
664     // Nested classes
665 
666     /**
667      * Factory for creating new {@link ForkJoinWorkerThread}s.
668      * A {@code ForkJoinWorkerThreadFactory} must be defined and used
669      * for {@code ForkJoinWorkerThread} subclasses that extend base
670      * functionality or initialize threads with different contexts.
671      */
672     public static interface ForkJoinWorkerThreadFactory {
673         /**
674          * Returns a new worker thread operating in the given pool.
675          *
676          * @param pool the pool this thread works in
677          * @return the new worker thread, or {@code null} if the request
678          *         to create a thread is rejected
679          * @throws NullPointerException if the pool is null
680          */
newThread(ForkJoinPool pool)681         public ForkJoinWorkerThread newThread(ForkJoinPool pool);
682     }
683 
684     /**
685      * Default ForkJoinWorkerThreadFactory implementation; creates a
686      * new ForkJoinWorkerThread.
687      */
688     private static final class DefaultForkJoinWorkerThreadFactory
689         implements ForkJoinWorkerThreadFactory {
newThread(ForkJoinPool pool)690         public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
691             return new ForkJoinWorkerThread(pool);
692         }
693     }
694 
695     /**
696      * Class for artificial tasks that are used to replace the target
697      * of local joins if they are removed from an interior queue slot
698      * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
699      * actually do anything beyond having a unique identity.
700      */
701     private static final class EmptyTask extends ForkJoinTask<Void> {
702         private static final long serialVersionUID = -7721805057305804111L;
EmptyTask()703         EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
getRawResult()704         public final Void getRawResult() { return null; }
setRawResult(Void x)705         public final void setRawResult(Void x) {}
exec()706         public final boolean exec() { return true; }
707     }
708 
709     /**
710      * Additional fields and lock created upon initialization.
711      */
712     private static final class AuxState extends ReentrantLock {
713         private static final long serialVersionUID = -6001602636862214147L;
714         volatile long stealCount;     // cumulative steal count
715         long indexSeed;               // index bits for registerWorker
AuxState()716         AuxState() {}
717     }
718 
719     // Constants shared across ForkJoinPool and WorkQueue
720 
721     // Bounds
722     static final int SMASK        = 0xffff;        // short bits == max index
723     static final int MAX_CAP      = 0x7fff;        // max #workers - 1
724     static final int EVENMASK     = 0xfffe;        // even short bits
725     static final int SQMASK       = 0x007e;        // max 64 (even) slots
726 
727     // Masks and units for WorkQueue.scanState and ctl sp subfield
728     static final int UNSIGNALLED  = 1 << 31;       // must be negative
729     static final int SS_SEQ       = 1 << 16;       // version count
730 
731     // Mode bits for ForkJoinPool.config and WorkQueue.config
732     static final int MODE_MASK    = 0xffff << 16;  // top half of int
733     static final int SPARE_WORKER = 1 << 17;       // set if tc > 0 on creation
734     static final int UNREGISTERED = 1 << 18;       // to skip some of deregister
735     static final int FIFO_QUEUE   = 1 << 31;       // must be negative
736     static final int LIFO_QUEUE   = 0;             // for clarity
737     static final int IS_OWNED     = 1;             // low bit 0 if shared
738 
739     /**
740      * The maximum number of task executions from the same queue
741      * before checking other queues, bounding unfairness and impact of
742      * infinite user task recursion.  Must be a power of two minus 1.
743      */
744     static final int POLL_LIMIT = (1 << 10) - 1;
745 
746     /**
747      * Queues supporting work-stealing as well as external task
748      * submission. See above for descriptions and algorithms.
749      * Performance on most platforms is very sensitive to placement of
750      * instances of both WorkQueues and their arrays -- we absolutely
751      * do not want multiple WorkQueue instances or multiple queue
752      * arrays sharing cache lines. The @Contended annotation alerts
753      * JVMs to try to keep instances apart.
754      */
755     //@jdk.internal.vm.annotation.Contended   // android-removed
756     static final class WorkQueue {
757 
758         /**
759          * Capacity of work-stealing queue array upon initialization.
760          * Must be a power of two; at least 4, but should be larger to
761          * reduce or eliminate cacheline sharing among queues.
762          * Currently, it is much larger, as a partial workaround for
763          * the fact that JVMs often place arrays in locations that
764          * share GC bookkeeping (especially cardmarks) such that
765          * per-write accesses encounter serious memory contention.
766          */
767         static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
768 
769         /**
770          * Maximum size for queue arrays. Must be a power of two less
771          * than or equal to 1 << (31 - width of array entry) to ensure
772          * lack of wraparound of index calculations, but defined to a
773          * value a bit less than this to help users trap runaway
774          * programs before saturating systems.
775          */
776         static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
777 
778         // Instance fields
779 
780         volatile int scanState;    // versioned, negative if inactive
781         int stackPred;             // pool stack (ctl) predecessor
782         int nsteals;               // number of steals
783         int hint;                  // randomization and stealer index hint
784         int config;                // pool index and mode
785         volatile int qlock;        // 1: locked, < 0: terminate; else 0
786         volatile int base;         // index of next slot for poll
787         int top;                   // index of next slot for push
788         ForkJoinTask<?>[] array;   // the elements (initially unallocated)
789         final ForkJoinPool pool;   // the containing pool (may be null)
790         final ForkJoinWorkerThread owner; // owning thread or null if shared
791         volatile Thread parker;    // == owner during call to park; else null
792         volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
793 
794       // @jdk.internal.vm.annotation.Contended("group2") // segregate // android-removed
795         volatile ForkJoinTask<?> currentSteal; // nonnull when running some task
796 
WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner)797         WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
798             this.pool = pool;
799             this.owner = owner;
800             // Place indices in the center of array (that is not yet allocated)
801             base = top = INITIAL_QUEUE_CAPACITY >>> 1;
802         }
803 
804         /**
805          * Returns an exportable index (used by ForkJoinWorkerThread).
806          */
getPoolIndex()807         final int getPoolIndex() {
808             return (config & 0xffff) >>> 1; // ignore odd/even tag bit
809         }
810 
811         /**
812          * Returns the approximate number of tasks in the queue.
813          */
queueSize()814         final int queueSize() {
815             int n = base - top;       // read base first
816             return (n >= 0) ? 0 : -n; // ignore transient negative
817         }
818 
819         /**
820          * Provides a more accurate estimate of whether this queue has
821          * any tasks than does queueSize, by checking whether a
822          * near-empty queue has at least one unclaimed task.
823          */
isEmpty()824         final boolean isEmpty() {
825             ForkJoinTask<?>[] a; int n, al, s;
826             return ((n = base - (s = top)) >= 0 || // possibly one task
827                     (n == -1 && ((a = array) == null ||
828                                  (al = a.length) == 0 ||
829                                  a[(al - 1) & (s - 1)] == null)));
830         }
831 
832         /**
833          * Pushes a task. Call only by owner in unshared queues.
834          *
835          * @param task the task. Caller must ensure non-null.
836          * @throws RejectedExecutionException if array cannot be resized
837          */
push(ForkJoinTask<?> task)838         final void push(ForkJoinTask<?> task) {
839             U.storeFence();              // ensure safe publication
840             int s = top, al, d; ForkJoinTask<?>[] a;
841             if ((a = array) != null && (al = a.length) > 0) {
842                 a[(al - 1) & s] = task;  // relaxed writes OK
843                 top = s + 1;
844                 ForkJoinPool p = pool;
845                 if ((d = base - s) == 0 && p != null) {
846                     U.fullFence();
847                     p.signalWork();
848                 }
849                 else if (al + d == 1)
850                     growArray();
851             }
852         }
853 
854         /**
855          * Initializes or doubles the capacity of array. Call either
856          * by owner or with lock held -- it is OK for base, but not
857          * top, to move while resizings are in progress.
858          */
growArray()859         final ForkJoinTask<?>[] growArray() {
860             ForkJoinTask<?>[] oldA = array;
861             int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
862             if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
863                 throw new RejectedExecutionException("Queue capacity exceeded");
864             int oldMask, t, b;
865             ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
866             if (oldA != null && (oldMask = oldA.length - 1) > 0 &&
867                 (t = top) - (b = base) > 0) {
868                 int mask = size - 1;
869                 do { // emulate poll from old array, push to new array
870                     int index = b & oldMask;
871                     long offset = ((long)index << ASHIFT) + ABASE;
872                     ForkJoinTask<?> x = (ForkJoinTask<?>)
873                         U.getObjectVolatile(oldA, offset);
874                     if (x != null &&
875                         U.compareAndSwapObject(oldA, offset, x, null))
876                         a[b & mask] = x;
877                 } while (++b != t);
878                 U.storeFence();
879             }
880             return a;
881         }
882 
883         /**
884          * Takes next task, if one exists, in LIFO order.  Call only
885          * by owner in unshared queues.
886          */
pop()887         final ForkJoinTask<?> pop() {
888             int b = base, s = top, al, i; ForkJoinTask<?>[] a;
889             if ((a = array) != null && b != s && (al = a.length) > 0) {
890                 int index = (al - 1) & --s;
891                 long offset = ((long)index << ASHIFT) + ABASE;
892                 ForkJoinTask<?> t = (ForkJoinTask<?>)
893                     U.getObject(a, offset);
894                 if (t != null &&
895                     U.compareAndSwapObject(a, offset, t, null)) {
896                     top = s;
897                     return t;
898                 }
899             }
900             return null;
901         }
902 
903         /**
904          * Takes a task in FIFO order if b is base of queue and a task
905          * can be claimed without contention. Specialized versions
906          * appear in ForkJoinPool methods scan and helpStealer.
907          */
pollAt(int b)908         final ForkJoinTask<?> pollAt(int b) {
909             ForkJoinTask<?>[] a; int al;
910             if ((a = array) != null && (al = a.length) > 0) {
911                 int index = (al - 1) & b;
912                 long offset = ((long)index << ASHIFT) + ABASE;
913                 ForkJoinTask<?> t = (ForkJoinTask<?>)
914                     U.getObjectVolatile(a, offset);
915                 if (t != null && b++ == base &&
916                     U.compareAndSwapObject(a, offset, t, null)) {
917                     base = b;
918                     return t;
919                 }
920             }
921             return null;
922         }
923 
924         /**
925          * Takes next task, if one exists, in FIFO order.
926          */
poll()927         final ForkJoinTask<?> poll() {
928             for (;;) {
929                 int b = base, s = top, d, al; ForkJoinTask<?>[] a;
930                 if ((a = array) != null && (d = b - s) < 0 &&
931                     (al = a.length) > 0) {
932                     int index = (al - 1) & b;
933                     long offset = ((long)index << ASHIFT) + ABASE;
934                     ForkJoinTask<?> t = (ForkJoinTask<?>)
935                         U.getObjectVolatile(a, offset);
936                     if (b++ == base) {
937                         if (t != null) {
938                             if (U.compareAndSwapObject(a, offset, t, null)) {
939                                 base = b;
940                                 return t;
941                             }
942                         }
943                         else if (d == -1)
944                             break; // now empty
945                     }
946                 }
947                 else
948                     break;
949             }
950             return null;
951         }
952 
953         /**
954          * Takes next task, if one exists, in order specified by mode.
955          */
nextLocalTask()956         final ForkJoinTask<?> nextLocalTask() {
957             return (config < 0) ? poll() : pop();
958         }
959 
960         /**
961          * Returns next task, if one exists, in order specified by mode.
962          */
peek()963         final ForkJoinTask<?> peek() {
964             int al; ForkJoinTask<?>[] a;
965             return ((a = array) != null && (al = a.length) > 0) ?
966                 a[(al - 1) & (config < 0 ? base : top - 1)] : null;
967         }
968 
969         /**
970          * Pops the given task only if it is at the current top.
971          */
tryUnpush(ForkJoinTask<?> task)972         final boolean tryUnpush(ForkJoinTask<?> task) {
973             int b = base, s = top, al; ForkJoinTask<?>[] a;
974             if ((a = array) != null && b != s && (al = a.length) > 0) {
975                 int index = (al - 1) & --s;
976                 long offset = ((long)index << ASHIFT) + ABASE;
977                 if (U.compareAndSwapObject(a, offset, task, null)) {
978                     top = s;
979                     return true;
980                 }
981             }
982             return false;
983         }
984 
985         /**
986          * Shared version of push. Fails if already locked.
987          *
988          * @return status: > 0 locked, 0 possibly was empty, < 0 was nonempty
989          */
sharedPush(ForkJoinTask<?> task)990         final int sharedPush(ForkJoinTask<?> task) {
991             int stat;
992             if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
993                 int b = base, s = top, al, d; ForkJoinTask<?>[] a;
994                 if ((a = array) != null && (al = a.length) > 0 &&
995                     al - 1 + (d = b - s) > 0) {
996                     a[(al - 1) & s] = task;
997                     top = s + 1;                 // relaxed writes OK here
998                     qlock = 0;
999                     stat = (d < 0 && b == base) ? d : 0;
1000                 }
1001                 else {
1002                     growAndSharedPush(task);
1003                     stat = 0;
1004                 }
1005             }
1006             else
1007                 stat = 1;
1008             return stat;
1009         }
1010 
1011         /**
1012          * Helper for sharedPush; called only when locked and resize
1013          * needed.
1014          */
growAndSharedPush(ForkJoinTask<?> task)1015         private void growAndSharedPush(ForkJoinTask<?> task) {
1016             try {
1017                 growArray();
1018                 int s = top, al; ForkJoinTask<?>[] a;
1019                 if ((a = array) != null && (al = a.length) > 0) {
1020                     a[(al - 1) & s] = task;
1021                     top = s + 1;
1022                 }
1023             } finally {
1024                 qlock = 0;
1025             }
1026         }
1027 
1028         /**
1029          * Shared version of tryUnpush.
1030          */
trySharedUnpush(ForkJoinTask<?> task)1031         final boolean trySharedUnpush(ForkJoinTask<?> task) {
1032             boolean popped = false;
1033             int s = top - 1, al; ForkJoinTask<?>[] a;
1034             if ((a = array) != null && (al = a.length) > 0) {
1035                 int index = (al - 1) & s;
1036                 long offset = ((long)index << ASHIFT) + ABASE;
1037                 ForkJoinTask<?> t = (ForkJoinTask<?>) U.getObject(a, offset);
1038                 if (t == task &&
1039                     U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1040                     if (top == s + 1 && array == a &&
1041                         U.compareAndSwapObject(a, offset, task, null)) {
1042                         popped = true;
1043                         top = s;
1044                     }
1045                     U.putOrderedInt(this, QLOCK, 0);
1046                 }
1047             }
1048             return popped;
1049         }
1050 
1051         /**
1052          * Removes and cancels all known tasks, ignoring any exceptions.
1053          */
cancelAll()1054         final void cancelAll() {
1055             ForkJoinTask<?> t;
1056             if ((t = currentJoin) != null) {
1057                 currentJoin = null;
1058                 ForkJoinTask.cancelIgnoringExceptions(t);
1059             }
1060             if ((t = currentSteal) != null) {
1061                 currentSteal = null;
1062                 ForkJoinTask.cancelIgnoringExceptions(t);
1063             }
1064             while ((t = poll()) != null)
1065                 ForkJoinTask.cancelIgnoringExceptions(t);
1066         }
1067 
1068         // Specialized execution methods
1069 
1070         /**
1071          * Pops and executes up to POLL_LIMIT tasks or until empty.
1072          */
localPopAndExec()1073         final void localPopAndExec() {
1074             for (int nexec = 0;;) {
1075                 int b = base, s = top, al; ForkJoinTask<?>[] a;
1076                 if ((a = array) != null && b != s && (al = a.length) > 0) {
1077                     int index = (al - 1) & --s;
1078                     long offset = ((long)index << ASHIFT) + ABASE;
1079                     ForkJoinTask<?> t = (ForkJoinTask<?>)
1080                         U.getAndSetObject(a, offset, null);
1081                     if (t != null) {
1082                         top = s;
1083                         (currentSteal = t).doExec();
1084                         if (++nexec > POLL_LIMIT)
1085                             break;
1086                     }
1087                     else
1088                         break;
1089                 }
1090                 else
1091                     break;
1092             }
1093         }
1094 
1095         /**
1096          * Polls and executes up to POLL_LIMIT tasks or until empty.
1097          */
localPollAndExec()1098         final void localPollAndExec() {
1099             for (int nexec = 0;;) {
1100                 int b = base, s = top, al; ForkJoinTask<?>[] a;
1101                 if ((a = array) != null && b != s && (al = a.length) > 0) {
1102                     int index = (al - 1) & b++;
1103                     long offset = ((long)index << ASHIFT) + ABASE;
1104                     ForkJoinTask<?> t = (ForkJoinTask<?>)
1105                         U.getAndSetObject(a, offset, null);
1106                     if (t != null) {
1107                         base = b;
1108                         t.doExec();
1109                         if (++nexec > POLL_LIMIT)
1110                             break;
1111                     }
1112                 }
1113                 else
1114                     break;
1115             }
1116         }
1117 
1118         /**
1119          * Executes the given task and (some) remaining local tasks.
1120          */
runTask(ForkJoinTask<?> task)1121         final void runTask(ForkJoinTask<?> task) {
1122             if (task != null) {
1123                 task.doExec();
1124                 if (config < 0)
1125                     localPollAndExec();
1126                 else
1127                     localPopAndExec();
1128                 int ns = ++nsteals;
1129                 ForkJoinWorkerThread thread = owner;
1130                 currentSteal = null;
1131                 if (ns < 0)           // collect on overflow
1132                     transferStealCount(pool);
1133                 if (thread != null)
1134                     thread.afterTopLevelExec();
1135             }
1136         }
1137 
1138         /**
1139          * Adds steal count to pool steal count if it exists, and resets.
1140          */
transferStealCount(ForkJoinPool p)1141         final void transferStealCount(ForkJoinPool p) {
1142             AuxState aux;
1143             if (p != null && (aux = p.auxState) != null) {
1144                 long s = nsteals;
1145                 nsteals = 0;            // if negative, correct for overflow
1146                 if (s < 0) s = Integer.MAX_VALUE;
1147                 aux.lock();
1148                 try {
1149                     aux.stealCount += s;
1150                 } finally {
1151                     aux.unlock();
1152                 }
1153             }
1154         }
1155 
1156         /**
1157          * If present, removes from queue and executes the given task,
1158          * or any other cancelled task. Used only by awaitJoin.
1159          *
1160          * @return true if queue empty and task not known to be done
1161          */
tryRemoveAndExec(ForkJoinTask<?> task)1162         final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1163             if (task != null && task.status >= 0) {
1164                 int b, s, d, al; ForkJoinTask<?>[] a;
1165                 while ((d = (b = base) - (s = top)) < 0 &&
1166                        (a = array) != null && (al = a.length) > 0) {
1167                     for (;;) {      // traverse from s to b
1168                         int index = --s & (al - 1);
1169                         long offset = (index << ASHIFT) + ABASE;
1170                         ForkJoinTask<?> t = (ForkJoinTask<?>)
1171                             U.getObjectVolatile(a, offset);
1172                         if (t == null)
1173                             break;                   // restart
1174                         else if (t == task) {
1175                             boolean removed = false;
1176                             if (s + 1 == top) {      // pop
1177                                 if (U.compareAndSwapObject(a, offset, t, null)) {
1178                                     top = s;
1179                                     removed = true;
1180                                 }
1181                             }
1182                             else if (base == b)      // replace with proxy
1183                                 removed = U.compareAndSwapObject(a, offset, t,
1184                                                                  new EmptyTask());
1185                             if (removed) {
1186                                 ForkJoinTask<?> ps = currentSteal;
1187                                 (currentSteal = task).doExec();
1188                                 currentSteal = ps;
1189                             }
1190                             break;
1191                         }
1192                         else if (t.status < 0 && s + 1 == top) {
1193                             if (U.compareAndSwapObject(a, offset, t, null)) {
1194                                 top = s;
1195                             }
1196                             break;                  // was cancelled
1197                         }
1198                         else if (++d == 0) {
1199                             if (base != b)          // rescan
1200                                 break;
1201                             return false;
1202                         }
1203                     }
1204                     if (task.status < 0)
1205                         return false;
1206                 }
1207             }
1208             return true;
1209         }
1210 
1211         /**
1212          * Pops task if in the same CC computation as the given task,
1213          * in either shared or owned mode. Used only by helpComplete.
1214          */
popCC(CountedCompleter<?> task, int mode)1215         final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1216             int b = base, s = top, al; ForkJoinTask<?>[] a;
1217             if ((a = array) != null && b != s && (al = a.length) > 0) {
1218                 int index = (al - 1) & (s - 1);
1219                 long offset = ((long)index << ASHIFT) + ABASE;
1220                 ForkJoinTask<?> o = (ForkJoinTask<?>)
1221                     U.getObjectVolatile(a, offset);
1222                 if (o instanceof CountedCompleter) {
1223                     CountedCompleter<?> t = (CountedCompleter<?>)o;
1224                     for (CountedCompleter<?> r = t;;) {
1225                         if (r == task) {
1226                             if ((mode & IS_OWNED) == 0) {
1227                                 boolean popped = false;
1228                                 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1229                                     if (top == s && array == a &&
1230                                         U.compareAndSwapObject(a, offset,
1231                                                                t, null)) {
1232                                         popped = true;
1233                                         top = s - 1;
1234                                     }
1235                                     U.putOrderedInt(this, QLOCK, 0);
1236                                     if (popped)
1237                                         return t;
1238                                 }
1239                             }
1240                             else if (U.compareAndSwapObject(a, offset,
1241                                                             t, null)) {
1242                                 top = s - 1;
1243                                 return t;
1244                             }
1245                             break;
1246                         }
1247                         else if ((r = r.completer) == null) // try parent
1248                             break;
1249                     }
1250                 }
1251             }
1252             return null;
1253         }
1254 
1255         /**
1256          * Steals and runs a task in the same CC computation as the
1257          * given task if one exists and can be taken without
1258          * contention. Otherwise returns a checksum/control value for
1259          * use by method helpComplete.
1260          *
1261          * @return 1 if successful, 2 if retryable (lost to another
1262          * stealer), -1 if non-empty but no matching task found, else
1263          * the base index, forced negative.
1264          */
pollAndExecCC(CountedCompleter<?> task)1265         final int pollAndExecCC(CountedCompleter<?> task) {
1266             ForkJoinTask<?>[] a;
1267             int b = base, s = top, al, h;
1268             if ((a = array) != null && b != s && (al = a.length) > 0) {
1269                 int index = (al - 1) & b;
1270                 long offset = ((long)index << ASHIFT) + ABASE;
1271                 ForkJoinTask<?> o = (ForkJoinTask<?>)
1272                     U.getObjectVolatile(a, offset);
1273                 if (o == null)
1274                     h = 2;                      // retryable
1275                 else if (!(o instanceof CountedCompleter))
1276                     h = -1;                     // unmatchable
1277                 else {
1278                     CountedCompleter<?> t = (CountedCompleter<?>)o;
1279                     for (CountedCompleter<?> r = t;;) {
1280                         if (r == task) {
1281                             if (b++ == base &&
1282                                 U.compareAndSwapObject(a, offset, t, null)) {
1283                                 base = b;
1284                                 t.doExec();
1285                                 h = 1;          // success
1286                             }
1287                             else
1288                                 h = 2;          // lost CAS
1289                             break;
1290                         }
1291                         else if ((r = r.completer) == null) {
1292                             h = -1;             // unmatched
1293                             break;
1294                         }
1295                     }
1296                 }
1297             }
1298             else
1299                 h = b | Integer.MIN_VALUE;      // to sense movement on re-poll
1300             return h;
1301         }
1302 
1303         /**
1304          * Returns true if owned and not known to be blocked.
1305          */
isApparentlyUnblocked()1306         final boolean isApparentlyUnblocked() {
1307             Thread wt; Thread.State s;
1308             return (scanState >= 0 &&
1309                     (wt = owner) != null &&
1310                     (s = wt.getState()) != Thread.State.BLOCKED &&
1311                     s != Thread.State.WAITING &&
1312                     s != Thread.State.TIMED_WAITING);
1313         }
1314 
1315         // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1316         private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1317         private static final long QLOCK;
1318         private static final int ABASE;
1319         private static final int ASHIFT;
1320         static {
1321             try {
1322                 QLOCK = U.objectFieldOffset
1323                     (WorkQueue.class.getDeclaredField("qlock"));
1324                 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1325                 int scale = U.arrayIndexScale(ForkJoinTask[].class);
1326                 if ((scale & (scale - 1)) != 0)
1327                     throw new Error("array index scale not a power of two");
1328                 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1329             } catch (ReflectiveOperationException e) {
1330                 throw new Error(e);
1331             }
1332         }
1333     }
1334 
1335     // static fields (initialized in static initializer below)
1336 
1337     /**
1338      * Creates a new ForkJoinWorkerThread. This factory is used unless
1339      * overridden in ForkJoinPool constructors.
1340      */
1341     public static final ForkJoinWorkerThreadFactory
1342         defaultForkJoinWorkerThreadFactory;
1343 
1344     /**
1345      * Permission required for callers of methods that may start or
1346      * kill threads.  Also used as a static lock in tryInitialize.
1347      */
1348     static final RuntimePermission modifyThreadPermission;
1349 
1350     /**
1351      * Common (static) pool. Non-null for public use unless a static
1352      * construction exception, but internal usages null-check on use
1353      * to paranoically avoid potential initialization circularities
1354      * as well as to simplify generated code.
1355      */
1356     static final ForkJoinPool common;
1357 
1358     /**
1359      * Common pool parallelism. To allow simpler use and management
1360      * when common pool threads are disabled, we allow the underlying
1361      * common.parallelism field to be zero, but in that case still report
1362      * parallelism as 1 to reflect resulting caller-runs mechanics.
1363      */
1364     static final int COMMON_PARALLELISM;
1365 
1366     /**
1367      * Limit on spare thread construction in tryCompensate.
1368      */
1369     private static final int COMMON_MAX_SPARES;
1370 
1371     /**
1372      * Sequence number for creating workerNamePrefix.
1373      */
1374     private static int poolNumberSequence;
1375 
1376     /**
1377      * Returns the next sequence number. We don't expect this to
1378      * ever contend, so use simple builtin sync.
1379      */
nextPoolId()1380     private static final synchronized int nextPoolId() {
1381         return ++poolNumberSequence;
1382     }
1383 
1384     // static configuration constants
1385 
1386     /**
1387      * Initial timeout value (in milliseconds) for the thread
1388      * triggering quiescence to park waiting for new work. On timeout,
1389      * the thread will instead try to shrink the number of workers.
1390      * The value should be large enough to avoid overly aggressive
1391      * shrinkage during most transient stalls (long GCs etc).
1392      */
1393     private static final long IDLE_TIMEOUT_MS = 2000L; // 2sec
1394 
1395     /**
1396      * Tolerance for idle timeouts, to cope with timer undershoots.
1397      */
1398     private static final long TIMEOUT_SLOP_MS =   20L; // 20ms
1399 
1400     /**
1401      * The default value for COMMON_MAX_SPARES.  Overridable using the
1402      * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1403      * property.  The default value is far in excess of normal
1404      * requirements, but also far short of MAX_CAP and typical OS
1405      * thread limits, so allows JVMs to catch misuse/abuse before
1406      * running out of resources needed to do so.
1407      */
1408     private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1409 
1410     /**
1411      * Increment for seed generators. See class ThreadLocal for
1412      * explanation.
1413      */
1414     private static final int SEED_INCREMENT = 0x9e3779b9;
1415 
1416     /*
1417      * Bits and masks for field ctl, packed with 4 16 bit subfields:
1418      * AC: Number of active running workers minus target parallelism
1419      * TC: Number of total workers minus target parallelism
1420      * SS: version count and status of top waiting thread
1421      * ID: poolIndex of top of Treiber stack of waiters
1422      *
1423      * When convenient, we can extract the lower 32 stack top bits
1424      * (including version bits) as sp=(int)ctl.  The offsets of counts
1425      * by the target parallelism and the positionings of fields makes
1426      * it possible to perform the most common checks via sign tests of
1427      * fields: When ac is negative, there are not enough active
1428      * workers, when tc is negative, there are not enough total
1429      * workers.  When sp is non-zero, there are waiting workers.  To
1430      * deal with possibly negative fields, we use casts in and out of
1431      * "short" and/or signed shifts to maintain signedness.
1432      *
1433      * Because it occupies uppermost bits, we can add one active count
1434      * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1435      * from a blocked join.  Other updates entail multiple subfields
1436      * and masking, requiring CAS.
1437      */
1438 
1439     // Lower and upper word masks
1440     private static final long SP_MASK    = 0xffffffffL;
1441     private static final long UC_MASK    = ~SP_MASK;
1442 
1443     // Active counts
1444     private static final int  AC_SHIFT   = 48;
1445     private static final long AC_UNIT    = 0x0001L << AC_SHIFT;
1446     private static final long AC_MASK    = 0xffffL << AC_SHIFT;
1447 
1448     // Total counts
1449     private static final int  TC_SHIFT   = 32;
1450     private static final long TC_UNIT    = 0x0001L << TC_SHIFT;
1451     private static final long TC_MASK    = 0xffffL << TC_SHIFT;
1452     private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1453 
1454     // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1455     private static final int  STARTED    = 1;
1456     private static final int  STOP       = 1 << 1;
1457     private static final int  TERMINATED = 1 << 2;
1458     private static final int  SHUTDOWN   = 1 << 31;
1459 
1460     // Instance fields
1461     volatile long ctl;                   // main pool control
1462     volatile int runState;
1463     final int config;                    // parallelism, mode
1464     AuxState auxState;                   // lock, steal counts
1465     volatile WorkQueue[] workQueues;     // main registry
1466     final String workerNamePrefix;       // to create worker name string
1467     final ForkJoinWorkerThreadFactory factory;
1468     final UncaughtExceptionHandler ueh;  // per-worker UEH
1469 
1470     /**
1471      * Instantiates fields upon first submission, or upon shutdown if
1472      * no submissions. If checkTermination true, also responds to
1473      * termination by external calls submitting tasks.
1474      */
tryInitialize(boolean checkTermination)1475     private void tryInitialize(boolean checkTermination) {
1476         if (runState == 0) { // bootstrap by locking static field
1477             int p = config & SMASK;
1478             int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1479             n |= n >>> 1;    // create workQueues array with size a power of two
1480             n |= n >>> 2;
1481             n |= n >>> 4;
1482             n |= n >>> 8;
1483             n |= n >>> 16;
1484             n = ((n + 1) << 1) & SMASK;
1485             AuxState aux = new AuxState();
1486             WorkQueue[] ws = new WorkQueue[n];
1487             synchronized (modifyThreadPermission) { // double-check
1488                 if (runState == 0) {
1489                     workQueues = ws;
1490                     auxState = aux;
1491                     runState = STARTED;
1492                 }
1493             }
1494         }
1495         if (checkTermination && runState < 0) {
1496             tryTerminate(false, false); // help terminate
1497             throw new RejectedExecutionException();
1498         }
1499     }
1500 
1501     // Creating, registering and deregistering workers
1502 
1503     /**
1504      * Tries to construct and start one worker. Assumes that total
1505      * count has already been incremented as a reservation.  Invokes
1506      * deregisterWorker on any failure.
1507      *
1508      * @param isSpare true if this is a spare thread
1509      * @return true if successful
1510      */
createWorker(boolean isSpare)1511     private boolean createWorker(boolean isSpare) {
1512         ForkJoinWorkerThreadFactory fac = factory;
1513         Throwable ex = null;
1514         ForkJoinWorkerThread wt = null;
1515         WorkQueue q;
1516         try {
1517             if (fac != null && (wt = fac.newThread(this)) != null) {
1518                 if (isSpare && (q = wt.workQueue) != null)
1519                     q.config |= SPARE_WORKER;
1520                 wt.start();
1521                 return true;
1522             }
1523         } catch (Throwable rex) {
1524             ex = rex;
1525         }
1526         deregisterWorker(wt, ex);
1527         return false;
1528     }
1529 
1530     /**
1531      * Tries to add one worker, incrementing ctl counts before doing
1532      * so, relying on createWorker to back out on failure.
1533      *
1534      * @param c incoming ctl value, with total count negative and no
1535      * idle workers.  On CAS failure, c is refreshed and retried if
1536      * this holds (otherwise, a new worker is not needed).
1537      */
tryAddWorker(long c)1538     private void tryAddWorker(long c) {
1539         do {
1540             long nc = ((AC_MASK & (c + AC_UNIT)) |
1541                        (TC_MASK & (c + TC_UNIT)));
1542             if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1543                 createWorker(false);
1544                 break;
1545             }
1546         } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1547     }
1548 
1549     /**
1550      * Callback from ForkJoinWorkerThread constructor to establish and
1551      * record its WorkQueue.
1552      *
1553      * @param wt the worker thread
1554      * @return the worker's queue
1555      */
registerWorker(ForkJoinWorkerThread wt)1556     final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1557         UncaughtExceptionHandler handler;
1558         AuxState aux;
1559         wt.setDaemon(true);                           // configure thread
1560         if ((handler = ueh) != null)
1561             wt.setUncaughtExceptionHandler(handler);
1562         WorkQueue w = new WorkQueue(this, wt);
1563         int i = 0;                                    // assign a pool index
1564         int mode = config & MODE_MASK;
1565         if ((aux = auxState) != null) {
1566             aux.lock();
1567             try {
1568                 int s = (int)(aux.indexSeed += SEED_INCREMENT), n, m;
1569                 WorkQueue[] ws = workQueues;
1570                 if (ws != null && (n = ws.length) > 0) {
1571                     i = (m = n - 1) & ((s << 1) | 1); // odd-numbered indices
1572                     if (ws[i] != null) {              // collision
1573                         int probes = 0;               // step by approx half n
1574                         int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1575                         while (ws[i = (i + step) & m] != null) {
1576                             if (++probes >= n) {
1577                                 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1578                                 m = n - 1;
1579                                 probes = 0;
1580                             }
1581                         }
1582                     }
1583                     w.hint = s;                       // use as random seed
1584                     w.config = i | mode;
1585                     w.scanState = i | (s & 0x7fff0000); // random seq bits
1586                     ws[i] = w;
1587                 }
1588             } finally {
1589                 aux.unlock();
1590             }
1591         }
1592         wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1593         return w;
1594     }
1595 
1596     /**
1597      * Final callback from terminating worker, as well as upon failure
1598      * to construct or start a worker.  Removes record of worker from
1599      * array, and adjusts counts. If pool is shutting down, tries to
1600      * complete termination.
1601      *
1602      * @param wt the worker thread, or null if construction failed
1603      * @param ex the exception causing failure, or null if none
1604      */
deregisterWorker(ForkJoinWorkerThread wt, Throwable ex)1605     final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1606         WorkQueue w = null;
1607         if (wt != null && (w = wt.workQueue) != null) {
1608             AuxState aux; WorkQueue[] ws;          // remove index from array
1609             int idx = w.config & SMASK;
1610             int ns = w.nsteals;
1611             if ((aux = auxState) != null) {
1612                 aux.lock();
1613                 try {
1614                     if ((ws = workQueues) != null && ws.length > idx &&
1615                         ws[idx] == w)
1616                         ws[idx] = null;
1617                     aux.stealCount += ns;
1618                 } finally {
1619                     aux.unlock();
1620                 }
1621             }
1622         }
1623         if (w == null || (w.config & UNREGISTERED) == 0) { // else pre-adjusted
1624             long c;                                   // decrement counts
1625             do {} while (!U.compareAndSwapLong
1626                          (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1627                                                (TC_MASK & (c - TC_UNIT)) |
1628                                                (SP_MASK & c))));
1629         }
1630         if (w != null) {
1631             w.currentSteal = null;
1632             w.qlock = -1;                             // ensure set
1633             w.cancelAll();                            // cancel remaining tasks
1634         }
1635         while (tryTerminate(false, false) >= 0) {     // possibly replace
1636             WorkQueue[] ws; int wl, sp; long c;
1637             if (w == null || w.array == null ||
1638                 (ws = workQueues) == null || (wl = ws.length) <= 0)
1639                 break;
1640             else if ((sp = (int)(c = ctl)) != 0) {    // wake up replacement
1641                 if (tryRelease(c, ws[(wl - 1) & sp], AC_UNIT))
1642                     break;
1643             }
1644             else if (ex != null && (c & ADD_WORKER) != 0L) {
1645                 tryAddWorker(c);                      // create replacement
1646                 break;
1647             }
1648             else                                      // don't need replacement
1649                 break;
1650         }
1651         if (ex == null)                               // help clean on way out
1652             ForkJoinTask.helpExpungeStaleExceptions();
1653         else                                          // rethrow
1654             ForkJoinTask.rethrow(ex);
1655     }
1656 
1657     // Signalling
1658 
1659     /**
1660      * Tries to create or activate a worker if too few are active.
1661      */
signalWork()1662     final void signalWork() {
1663         for (;;) {
1664             long c; int sp, i; WorkQueue v; WorkQueue[] ws;
1665             if ((c = ctl) >= 0L)                      // enough workers
1666                 break;
1667             else if ((sp = (int)c) == 0) {            // no idle workers
1668                 if ((c & ADD_WORKER) != 0L)           // too few workers
1669                     tryAddWorker(c);
1670                 break;
1671             }
1672             else if ((ws = workQueues) == null)
1673                 break;                                // unstarted/terminated
1674             else if (ws.length <= (i = sp & SMASK))
1675                 break;                                // terminated
1676             else if ((v = ws[i]) == null)
1677                 break;                                // terminating
1678             else {
1679                 int ns = sp & ~UNSIGNALLED;
1680                 int vs = v.scanState;
1681                 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1682                 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1683                     v.scanState = ns;
1684                     LockSupport.unpark(v.parker);
1685                     break;
1686                 }
1687             }
1688         }
1689     }
1690 
1691     /**
1692      * Signals and releases worker v if it is top of idle worker
1693      * stack.  This performs a one-shot version of signalWork only if
1694      * there is (apparently) at least one idle worker.
1695      *
1696      * @param c incoming ctl value
1697      * @param v if non-null, a worker
1698      * @param inc the increment to active count (zero when compensating)
1699      * @return true if successful
1700      */
tryRelease(long c, WorkQueue v, long inc)1701     private boolean tryRelease(long c, WorkQueue v, long inc) {
1702         int sp = (int)c, ns = sp & ~UNSIGNALLED;
1703         if (v != null) {
1704             int vs = v.scanState;
1705             long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + inc));
1706             if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1707                 v.scanState = ns;
1708                 LockSupport.unpark(v.parker);
1709                 return true;
1710             }
1711         }
1712         return false;
1713     }
1714 
1715     /**
1716      * With approx probability of a missed signal, tries (once) to
1717      * reactivate worker w (or some other worker), failing if stale or
1718      * known to be already active.
1719      *
1720      * @param w the worker
1721      * @param ws the workQueue array to use
1722      * @param r random seed
1723      */
tryReactivate(WorkQueue w, WorkQueue[] ws, int r)1724     private void tryReactivate(WorkQueue w, WorkQueue[] ws, int r) {
1725         long c; int sp, wl; WorkQueue v;
1726         if ((sp = (int)(c = ctl)) != 0 && w != null &&
1727             ws != null && (wl = ws.length) > 0 &&
1728             ((sp ^ r) & SS_SEQ) == 0 &&
1729             (v = ws[(wl - 1) & sp]) != null) {
1730             long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1731             int ns = sp & ~UNSIGNALLED;
1732             if (w.scanState < 0 &&
1733                 v.scanState == sp &&
1734                 U.compareAndSwapLong(this, CTL, c, nc)) {
1735                 v.scanState = ns;
1736                 LockSupport.unpark(v.parker);
1737             }
1738         }
1739     }
1740 
1741     /**
1742      * If worker w exists and is active, enqueues and sets status to inactive.
1743      *
1744      * @param w the worker
1745      * @param ss current (non-negative) scanState
1746      */
inactivate(WorkQueue w, int ss)1747     private void inactivate(WorkQueue w, int ss) {
1748         int ns = (ss + SS_SEQ) | UNSIGNALLED;
1749         long lc = ns & SP_MASK, nc, c;
1750         if (w != null) {
1751             w.scanState = ns;
1752             do {
1753                 nc = lc | (UC_MASK & ((c = ctl) - AC_UNIT));
1754                 w.stackPred = (int)c;
1755             } while (!U.compareAndSwapLong(this, CTL, c, nc));
1756         }
1757     }
1758 
1759     /**
1760      * Possibly blocks worker w waiting for signal, or returns
1761      * negative status if the worker should terminate. May return
1762      * without status change if multiple stale unparks and/or
1763      * interrupts occur.
1764      *
1765      * @param w the calling worker
1766      * @return negative if w should terminate
1767      */
awaitWork(WorkQueue w)1768     private int awaitWork(WorkQueue w) {
1769         int stat = 0;
1770         if (w != null && w.scanState < 0) {
1771             long c = ctl;
1772             if ((int)(c >> AC_SHIFT) + (config & SMASK) <= 0)
1773                 stat = timedAwaitWork(w, c);     // possibly quiescent
1774             else if ((runState & STOP) != 0)
1775                 stat = w.qlock = -1;             // pool terminating
1776             else if (w.scanState < 0) {
1777                 w.parker = Thread.currentThread();
1778                 if (w.scanState < 0)             // recheck after write
1779                     LockSupport.park(this);
1780                 w.parker = null;
1781                 if ((runState & STOP) != 0)
1782                     stat = w.qlock = -1;         // recheck
1783                 else if (w.scanState < 0)
1784                     Thread.interrupted();        // clear status
1785             }
1786         }
1787         return stat;
1788     }
1789 
1790     /**
1791      * Possibly triggers shutdown and tries (once) to block worker
1792      * when pool is (or may be) quiescent. Waits up to a duration
1793      * determined by number of workers.  On timeout, if ctl has not
1794      * changed, terminates the worker, which will in turn wake up
1795      * another worker to possibly repeat this process.
1796      *
1797      * @param w the calling worker
1798      * @return negative if w should terminate
1799      */
timedAwaitWork(WorkQueue w, long c)1800     private int timedAwaitWork(WorkQueue w, long c) {
1801         int stat = 0;
1802         int scale = 1 - (short)(c >>> TC_SHIFT);
1803         long deadline = (((scale <= 0) ? 1 : scale) * IDLE_TIMEOUT_MS +
1804                          System.currentTimeMillis());
1805         if ((runState >= 0 || (stat = tryTerminate(false, false)) > 0) &&
1806             w != null && w.scanState < 0) {
1807             int ss; AuxState aux;
1808             w.parker = Thread.currentThread();
1809             if (w.scanState < 0)
1810                 LockSupport.parkUntil(this, deadline);
1811             w.parker = null;
1812             if ((runState & STOP) != 0)
1813                 stat = w.qlock = -1;         // pool terminating
1814             else if ((ss = w.scanState) < 0 && !Thread.interrupted() &&
1815                      (int)c == ss && (aux = auxState) != null && ctl == c &&
1816                      deadline - System.currentTimeMillis() <= TIMEOUT_SLOP_MS) {
1817                 aux.lock();
1818                 try {                        // pre-deregister
1819                     WorkQueue[] ws;
1820                     int cfg = w.config, idx = cfg & SMASK;
1821                     long nc = ((UC_MASK & (c - TC_UNIT)) |
1822                                (SP_MASK & w.stackPred));
1823                     if ((runState & STOP) == 0 &&
1824                         (ws = workQueues) != null &&
1825                         idx < ws.length && idx >= 0 && ws[idx] == w &&
1826                         U.compareAndSwapLong(this, CTL, c, nc)) {
1827                         ws[idx] = null;
1828                         w.config = cfg | UNREGISTERED;
1829                         stat = w.qlock = -1;
1830                     }
1831                 } finally {
1832                     aux.unlock();
1833                 }
1834             }
1835         }
1836         return stat;
1837     }
1838 
1839     /**
1840      * If the given worker is a spare with no queued tasks, and there
1841      * are enough existing workers, drops it from ctl counts and sets
1842      * its state to terminated.
1843      *
1844      * @param w the calling worker -- must be a spare
1845      * @return true if dropped (in which case it must not process more tasks)
1846      */
tryDropSpare(WorkQueue w)1847     private boolean tryDropSpare(WorkQueue w) {
1848         if (w != null && w.isEmpty()) {           // no local tasks
1849             long c; int sp, wl; WorkQueue[] ws; WorkQueue v;
1850             while ((short)((c = ctl) >> TC_SHIFT) > 0 &&
1851                    ((sp = (int)c) != 0 || (int)(c >> AC_SHIFT) > 0) &&
1852                    (ws = workQueues) != null && (wl = ws.length) > 0) {
1853                 boolean dropped, canDrop;
1854                 if (sp == 0) {                    // no queued workers
1855                     long nc = ((AC_MASK & (c - AC_UNIT)) |
1856                                (TC_MASK & (c - TC_UNIT)) | (SP_MASK & c));
1857                     dropped = U.compareAndSwapLong(this, CTL, c, nc);
1858                 }
1859                 else if (
1860                     (v = ws[(wl - 1) & sp]) == null || v.scanState != sp)
1861                     dropped = false;              // stale; retry
1862                 else {
1863                     long nc = v.stackPred & SP_MASK;
1864                     if (w == v || w.scanState >= 0) {
1865                         canDrop = true;           // w unqueued or topmost
1866                         nc |= ((AC_MASK & c) |    // ensure replacement
1867                                (TC_MASK & (c - TC_UNIT)));
1868                     }
1869                     else {                        // w may be queued
1870                         canDrop = false;          // help uncover
1871                         nc |= ((AC_MASK & (c + AC_UNIT)) |
1872                                (TC_MASK & c));
1873                     }
1874                     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1875                         v.scanState = sp & ~UNSIGNALLED;
1876                         LockSupport.unpark(v.parker);
1877                         dropped = canDrop;
1878                     }
1879                     else
1880                         dropped = false;
1881                 }
1882                 if (dropped) {                    // pre-deregister
1883                     int cfg = w.config, idx = cfg & SMASK;
1884                     if (idx >= 0 && idx < ws.length && ws[idx] == w)
1885                         ws[idx] = null;
1886                     w.config = cfg | UNREGISTERED;
1887                     w.qlock = -1;
1888                     return true;
1889                 }
1890             }
1891         }
1892         return false;
1893     }
1894 
1895     /**
1896      * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1897      */
runWorker(WorkQueue w)1898     final void runWorker(WorkQueue w) {
1899         w.growArray();                                  // allocate queue
1900         int bound = (w.config & SPARE_WORKER) != 0 ? 0 : POLL_LIMIT;
1901         long seed = w.hint * 0xdaba0b6eb09322e3L;       // initial random seed
1902         if ((runState & STOP) == 0) {
1903             for (long r = (seed == 0L) ? 1L : seed;;) { // ensure nonzero
1904                 if (bound == 0 && tryDropSpare(w))
1905                     break;
1906                 // high bits of prev seed for step; current low bits for idx
1907                 int step = (int)(r >>> 48) | 1;
1908                 r ^= r >>> 12; r ^= r << 25; r ^= r >>> 27; // xorshift
1909                 if (scan(w, bound, step, (int)r) < 0 && awaitWork(w) < 0)
1910                     break;
1911             }
1912         }
1913     }
1914 
1915     // Scanning for tasks
1916 
1917     /**
1918      * Repeatedly scans for and tries to steal and execute (via
1919      * workQueue.runTask) a queued task. Each scan traverses queues in
1920      * pseudorandom permutation. Upon finding a non-empty queue, makes
1921      * at most the given bound attempts to re-poll (fewer if
1922      * contended) on the same queue before returning (impossible
1923      * scanState value) 0 to restart scan. Else returns after at least
1924      * 1 and at most 32 full scans.
1925      *
1926      * @param w the worker (via its WorkQueue)
1927      * @param bound repoll bound as bitmask (0 if spare)
1928      * @param step (circular) index increment per iteration (must be odd)
1929      * @param r a random seed for origin index
1930      * @return negative if should await signal
1931      */
scan(WorkQueue w, int bound, int step, int r)1932     private int scan(WorkQueue w, int bound, int step, int r) {
1933         int stat = 0, wl; WorkQueue[] ws;
1934         if ((ws = workQueues) != null && w != null && (wl = ws.length) > 0) {
1935             for (int m = wl - 1,
1936                      origin = m & r, idx = origin,
1937                      npolls = 0,
1938                      ss = w.scanState;;) {         // negative if inactive
1939                 WorkQueue q; ForkJoinTask<?>[] a; int b, al;
1940                 if ((q = ws[idx]) != null && (b = q.base) - q.top < 0 &&
1941                     (a = q.array) != null && (al = a.length) > 0) {
1942                     int index = (al - 1) & b;
1943                     long offset = ((long)index << ASHIFT) + ABASE;
1944                     ForkJoinTask<?> t = (ForkJoinTask<?>)
1945                         U.getObjectVolatile(a, offset);
1946                     if (t == null)
1947                         break;                     // empty or busy
1948                     else if (b++ != q.base)
1949                         break;                     // busy
1950                     else if (ss < 0) {
1951                         tryReactivate(w, ws, r);
1952                         break;                     // retry upon rescan
1953                     }
1954                     else if (!U.compareAndSwapObject(a, offset, t, null))
1955                         break;                     // contended
1956                     else {
1957                         q.base = b;
1958                         w.currentSteal = t;
1959                         if (b != q.top)            // propagate signal
1960                             signalWork();
1961                         w.runTask(t);
1962                         if (++npolls > bound)
1963                             break;
1964                     }
1965                 }
1966                 else if (npolls != 0)              // rescan
1967                     break;
1968                 else if ((idx = (idx + step) & m) == origin) {
1969                     if (ss < 0) {                  // await signal
1970                         stat = ss;
1971                         break;
1972                     }
1973                     else if (r >= 0) {
1974                         inactivate(w, ss);
1975                         break;
1976                     }
1977                     else
1978                         r <<= 1;                   // at most 31 rescans
1979                 }
1980             }
1981         }
1982         return stat;
1983     }
1984 
1985     // Joining tasks
1986 
1987     /**
1988      * Tries to steal and run tasks within the target's computation.
1989      * Uses a variant of the top-level algorithm, restricted to tasks
1990      * with the given task as ancestor: It prefers taking and running
1991      * eligible tasks popped from the worker's own queue (via
1992      * popCC). Otherwise it scans others, randomly moving on
1993      * contention or execution, deciding to give up based on a
1994      * checksum (via return codes from pollAndExecCC). The maxTasks
1995      * argument supports external usages; internal calls use zero,
1996      * allowing unbounded steps (external calls trap non-positive
1997      * values).
1998      *
1999      * @param w caller
2000      * @param maxTasks if non-zero, the maximum number of other tasks to run
2001      * @return task status on exit
2002      */
helpComplete(WorkQueue w, CountedCompleter<?> task, int maxTasks)2003     final int helpComplete(WorkQueue w, CountedCompleter<?> task,
2004                            int maxTasks) {
2005         WorkQueue[] ws; int s = 0, wl;
2006         if ((ws = workQueues) != null && (wl = ws.length) > 1 &&
2007             task != null && w != null) {
2008             for (int m = wl - 1,
2009                      mode = w.config,
2010                      r = ~mode,                  // scanning seed
2011                      origin = r & m, k = origin, // first queue to scan
2012                      step = 3,                   // first scan step
2013                      h = 1,                      // 1:ran, >1:contended, <0:hash
2014                      oldSum = 0, checkSum = 0;;) {
2015                 CountedCompleter<?> p; WorkQueue q; int i;
2016                 if ((s = task.status) < 0)
2017                     break;
2018                 if (h == 1 && (p = w.popCC(task, mode)) != null) {
2019                     p.doExec();                  // run local task
2020                     if (maxTasks != 0 && --maxTasks == 0)
2021                         break;
2022                     origin = k;                  // reset
2023                     oldSum = checkSum = 0;
2024                 }
2025                 else {                           // poll other worker queues
2026                     if ((i = k | 1) < 0 || i > m || (q = ws[i]) == null)
2027                         h = 0;
2028                     else if ((h = q.pollAndExecCC(task)) < 0)
2029                         checkSum += h;
2030                     if (h > 0) {
2031                         if (h == 1 && maxTasks != 0 && --maxTasks == 0)
2032                             break;
2033                         step = (r >>> 16) | 3;
2034                         r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
2035                         k = origin = r & m;      // move and restart
2036                         oldSum = checkSum = 0;
2037                     }
2038                     else if ((k = (k + step) & m) == origin) {
2039                         if (oldSum == (oldSum = checkSum))
2040                             break;
2041                         checkSum = 0;
2042                     }
2043                 }
2044             }
2045         }
2046         return s;
2047     }
2048 
2049     /**
2050      * Tries to locate and execute tasks for a stealer of the given
2051      * task, or in turn one of its stealers. Traces currentSteal ->
2052      * currentJoin links looking for a thread working on a descendant
2053      * of the given task and with a non-empty queue to steal back and
2054      * execute tasks from. The first call to this method upon a
2055      * waiting join will often entail scanning/search, (which is OK
2056      * because the joiner has nothing better to do), but this method
2057      * leaves hints in workers to speed up subsequent calls.
2058      *
2059      * @param w caller
2060      * @param task the task to join
2061      */
helpStealer(WorkQueue w, ForkJoinTask<?> task)2062     private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
2063         if (task != null && w != null) {
2064             ForkJoinTask<?> ps = w.currentSteal;
2065             WorkQueue[] ws; int wl, oldSum = 0;
2066             outer: while (w.tryRemoveAndExec(task) && task.status >= 0 &&
2067                           (ws = workQueues) != null && (wl = ws.length) > 0) {
2068                 ForkJoinTask<?> subtask;
2069                 int m = wl - 1, checkSum = 0;          // for stability check
2070                 WorkQueue j = w, v;                    // v is subtask stealer
2071                 descent: for (subtask = task; subtask.status >= 0; ) {
2072                     for (int h = j.hint | 1, k = 0, i;;) {
2073                         if ((v = ws[i = (h + (k << 1)) & m]) != null) {
2074                             if (v.currentSteal == subtask) {
2075                                 j.hint = i;
2076                                 break;
2077                             }
2078                             checkSum += v.base;
2079                         }
2080                         if (++k > m)                   // can't find stealer
2081                             break outer;
2082                     }
2083 
2084                     for (;;) {                         // help v or descend
2085                         ForkJoinTask<?>[] a; int b, al;
2086                         if (subtask.status < 0)        // too late to help
2087                             break descent;
2088                         checkSum += (b = v.base);
2089                         ForkJoinTask<?> next = v.currentJoin;
2090                         ForkJoinTask<?> t = null;
2091                         if ((a = v.array) != null && (al = a.length) > 0) {
2092                             int index = (al - 1) & b;
2093                             long offset = ((long)index << ASHIFT) + ABASE;
2094                             t = (ForkJoinTask<?>)
2095                                 U.getObjectVolatile(a, offset);
2096                             if (t != null && b++ == v.base) {
2097                                 if (j.currentJoin != subtask ||
2098                                     v.currentSteal != subtask ||
2099                                     subtask.status < 0)
2100                                     break descent;     // stale
2101                                 if (U.compareAndSwapObject(a, offset, t, null)) {
2102                                     v.base = b;
2103                                     w.currentSteal = t;
2104                                     for (int top = w.top;;) {
2105                                         t.doExec();    // help
2106                                         w.currentSteal = ps;
2107                                         if (task.status < 0)
2108                                             break outer;
2109                                         if (w.top == top)
2110                                             break;     // run local tasks
2111                                         if ((t = w.pop()) == null)
2112                                             break descent;
2113                                         w.currentSteal = t;
2114                                     }
2115                                 }
2116                             }
2117                         }
2118                         if (t == null && b == v.base && b - v.top >= 0) {
2119                             if ((subtask = next) == null) {  // try to descend
2120                                 if (next == v.currentJoin &&
2121                                     oldSum == (oldSum = checkSum))
2122                                     break outer;
2123                                 break descent;
2124                             }
2125                             j = v;
2126                             break;
2127                         }
2128                     }
2129                 }
2130             }
2131         }
2132     }
2133 
2134     /**
2135      * Tries to decrement active count (sometimes implicitly) and
2136      * possibly release or create a compensating worker in preparation
2137      * for blocking. Returns false (retryable by caller), on
2138      * contention, detected staleness, instability, or termination.
2139      *
2140      * @param w caller
2141      */
tryCompensate(WorkQueue w)2142     private boolean tryCompensate(WorkQueue w) {
2143         boolean canBlock; int wl;
2144         long c = ctl;
2145         WorkQueue[] ws = workQueues;
2146         int pc = config & SMASK;
2147         int ac = pc + (int)(c >> AC_SHIFT);
2148         int tc = pc + (short)(c >> TC_SHIFT);
2149         if (w == null || w.qlock < 0 || pc == 0 ||  // terminating or disabled
2150             ws == null || (wl = ws.length) <= 0)
2151             canBlock = false;
2152         else {
2153             int m = wl - 1, sp;
2154             boolean busy = true;                    // validate ac
2155             for (int i = 0; i <= m; ++i) {
2156                 int k; WorkQueue v;
2157                 if ((k = (i << 1) | 1) <= m && k >= 0 && (v = ws[k]) != null &&
2158                     v.scanState >= 0 && v.currentSteal == null) {
2159                     busy = false;
2160                     break;
2161                 }
2162             }
2163             if (!busy || ctl != c)
2164                 canBlock = false;                   // unstable or stale
2165             else if ((sp = (int)c) != 0)            // release idle worker
2166                 canBlock = tryRelease(c, ws[m & sp], 0L);
2167             else if (tc >= pc && ac > 1 && w.isEmpty()) {
2168                 long nc = ((AC_MASK & (c - AC_UNIT)) |
2169                            (~AC_MASK & c));         // uncompensated
2170                 canBlock = U.compareAndSwapLong(this, CTL, c, nc);
2171             }
2172             else if (tc >= MAX_CAP ||
2173                      (this == common && tc >= pc + COMMON_MAX_SPARES))
2174                 throw new RejectedExecutionException(
2175                     "Thread limit exceeded replacing blocked worker");
2176             else {                                  // similar to tryAddWorker
2177                 boolean isSpare = (tc >= pc);
2178                 long nc = (AC_MASK & c) | (TC_MASK & (c + TC_UNIT));
2179                 canBlock = (U.compareAndSwapLong(this, CTL, c, nc) &&
2180                             createWorker(isSpare)); // throws on exception
2181             }
2182         }
2183         return canBlock;
2184     }
2185 
2186     /**
2187      * Helps and/or blocks until the given task is done or timeout.
2188      *
2189      * @param w caller
2190      * @param task the task
2191      * @param deadline for timed waits, if nonzero
2192      * @return task status on exit
2193      */
awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline)2194     final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2195         int s = 0;
2196         if (w != null) {
2197             ForkJoinTask<?> prevJoin = w.currentJoin;
2198             if (task != null && (s = task.status) >= 0) {
2199                 w.currentJoin = task;
2200                 CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2201                     (CountedCompleter<?>)task : null;
2202                 for (;;) {
2203                     if (cc != null)
2204                         helpComplete(w, cc, 0);
2205                     else
2206                         helpStealer(w, task);
2207                     if ((s = task.status) < 0)
2208                         break;
2209                     long ms, ns;
2210                     if (deadline == 0L)
2211                         ms = 0L;
2212                     else if ((ns = deadline - System.nanoTime()) <= 0L)
2213                         break;
2214                     else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2215                         ms = 1L;
2216                     if (tryCompensate(w)) {
2217                         task.internalWait(ms);
2218                         U.getAndAddLong(this, CTL, AC_UNIT);
2219                     }
2220                     if ((s = task.status) < 0)
2221                         break;
2222                 }
2223                 w.currentJoin = prevJoin;
2224             }
2225         }
2226         return s;
2227     }
2228 
2229     // Specialized scanning
2230 
2231     /**
2232      * Returns a (probably) non-empty steal queue, if one is found
2233      * during a scan, else null.  This method must be retried by
2234      * caller if, by the time it tries to use the queue, it is empty.
2235      */
findNonEmptyStealQueue()2236     private WorkQueue findNonEmptyStealQueue() {
2237         WorkQueue[] ws; int wl;  // one-shot version of scan loop
2238         int r = ThreadLocalRandom.nextSecondarySeed();
2239         if ((ws = workQueues) != null && (wl = ws.length) > 0) {
2240             int m = wl - 1, origin = r & m;
2241             for (int k = origin, oldSum = 0, checkSum = 0;;) {
2242                 WorkQueue q; int b;
2243                 if ((q = ws[k]) != null) {
2244                     if ((b = q.base) - q.top < 0)
2245                         return q;
2246                     checkSum += b;
2247                 }
2248                 if ((k = (k + 1) & m) == origin) {
2249                     if (oldSum == (oldSum = checkSum))
2250                         break;
2251                     checkSum = 0;
2252                 }
2253             }
2254         }
2255         return null;
2256     }
2257 
2258     /**
2259      * Runs tasks until {@code isQuiescent()}. We piggyback on
2260      * active count ctl maintenance, but rather than blocking
2261      * when tasks cannot be found, we rescan until all others cannot
2262      * find tasks either.
2263      */
helpQuiescePool(WorkQueue w)2264     final void helpQuiescePool(WorkQueue w) {
2265         ForkJoinTask<?> ps = w.currentSteal; // save context
2266         int wc = w.config;
2267         for (boolean active = true;;) {
2268             long c; WorkQueue q; ForkJoinTask<?> t;
2269             if (wc >= 0 && (t = w.pop()) != null) { // run locals if LIFO
2270                 (w.currentSteal = t).doExec();
2271                 w.currentSteal = ps;
2272             }
2273             else if ((q = findNonEmptyStealQueue()) != null) {
2274                 if (!active) {      // re-establish active count
2275                     active = true;
2276                     U.getAndAddLong(this, CTL, AC_UNIT);
2277                 }
2278                 if ((t = q.pollAt(q.base)) != null) {
2279                     (w.currentSteal = t).doExec();
2280                     w.currentSteal = ps;
2281                     if (++w.nsteals < 0)
2282                         w.transferStealCount(this);
2283                 }
2284             }
2285             else if (active) {      // decrement active count without queuing
2286                 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2287                 if (U.compareAndSwapLong(this, CTL, c, nc))
2288                     active = false;
2289             }
2290             else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2291                      U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2292                 break;
2293         }
2294     }
2295 
2296     /**
2297      * Gets and removes a local or stolen task for the given worker.
2298      *
2299      * @return a task, if available
2300      */
nextTaskFor(WorkQueue w)2301     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2302         for (ForkJoinTask<?> t;;) {
2303             WorkQueue q;
2304             if ((t = w.nextLocalTask()) != null)
2305                 return t;
2306             if ((q = findNonEmptyStealQueue()) == null)
2307                 return null;
2308             if ((t = q.pollAt(q.base)) != null)
2309                 return t;
2310         }
2311     }
2312 
2313     /**
2314      * Returns a cheap heuristic guide for task partitioning when
2315      * programmers, frameworks, tools, or languages have little or no
2316      * idea about task granularity.  In essence, by offering this
2317      * method, we ask users only about tradeoffs in overhead vs
2318      * expected throughput and its variance, rather than how finely to
2319      * partition tasks.
2320      *
2321      * In a steady state strict (tree-structured) computation, each
2322      * thread makes available for stealing enough tasks for other
2323      * threads to remain active. Inductively, if all threads play by
2324      * the same rules, each thread should make available only a
2325      * constant number of tasks.
2326      *
2327      * The minimum useful constant is just 1. But using a value of 1
2328      * would require immediate replenishment upon each steal to
2329      * maintain enough tasks, which is infeasible.  Further,
2330      * partitionings/granularities of offered tasks should minimize
2331      * steal rates, which in general means that threads nearer the top
2332      * of computation tree should generate more than those nearer the
2333      * bottom. In perfect steady state, each thread is at
2334      * approximately the same level of computation tree. However,
2335      * producing extra tasks amortizes the uncertainty of progress and
2336      * diffusion assumptions.
2337      *
2338      * So, users will want to use values larger (but not much larger)
2339      * than 1 to both smooth over transient shortages and hedge
2340      * against uneven progress; as traded off against the cost of
2341      * extra task overhead. We leave the user to pick a threshold
2342      * value to compare with the results of this call to guide
2343      * decisions, but recommend values such as 3.
2344      *
2345      * When all threads are active, it is on average OK to estimate
2346      * surplus strictly locally. In steady-state, if one thread is
2347      * maintaining say 2 surplus tasks, then so are others. So we can
2348      * just use estimated queue length.  However, this strategy alone
2349      * leads to serious mis-estimates in some non-steady-state
2350      * conditions (ramp-up, ramp-down, other stalls). We can detect
2351      * many of these by further considering the number of "idle"
2352      * threads, that are known to have zero queued tasks, so
2353      * compensate by a factor of (#idle/#active) threads.
2354      */
getSurplusQueuedTaskCount()2355     static int getSurplusQueuedTaskCount() {
2356         Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2357         if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2358             int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2359             int n = (q = wt.workQueue).top - q.base;
2360             int a = (int)(pool.ctl >> AC_SHIFT) + p;
2361             return n - (a > (p >>>= 1) ? 0 :
2362                         a > (p >>>= 1) ? 1 :
2363                         a > (p >>>= 1) ? 2 :
2364                         a > (p >>>= 1) ? 4 :
2365                         8);
2366         }
2367         return 0;
2368     }
2369 
2370     //  Termination
2371 
2372     /**
2373      * Possibly initiates and/or completes termination.
2374      *
2375      * @param now if true, unconditionally terminate, else only
2376      * if no work and no active workers
2377      * @param enable if true, terminate when next possible
2378      * @return -1: terminating/terminated, 0: retry if internal caller, else 1
2379      */
tryTerminate(boolean now, boolean enable)2380     private int tryTerminate(boolean now, boolean enable) {
2381         int rs; // 3 phases: try to set SHUTDOWN, then STOP, then TERMINATED
2382 
2383         while ((rs = runState) >= 0) {
2384             if (!enable || this == common)        // cannot shutdown
2385                 return 1;
2386             else if (rs == 0)
2387                 tryInitialize(false);             // ensure initialized
2388             else
2389                 U.compareAndSwapInt(this, RUNSTATE, rs, rs | SHUTDOWN);
2390         }
2391 
2392         if ((rs & STOP) == 0) {                   // try to initiate termination
2393             if (!now) {                           // check quiescence
2394                 for (long oldSum = 0L;;) {        // repeat until stable
2395                     WorkQueue[] ws; WorkQueue w; int b;
2396                     long checkSum = ctl;
2397                     if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2398                         return 0;                 // still active workers
2399                     if ((ws = workQueues) != null) {
2400                         for (int i = 0; i < ws.length; ++i) {
2401                             if ((w = ws[i]) != null) {
2402                                 checkSum += (b = w.base);
2403                                 if (w.currentSteal != null || b != w.top)
2404                                     return 0;     // retry if internal caller
2405                             }
2406                         }
2407                     }
2408                     if (oldSum == (oldSum = checkSum))
2409                         break;
2410                 }
2411             }
2412             do {} while (!U.compareAndSwapInt(this, RUNSTATE,
2413                                               rs = runState, rs | STOP));
2414         }
2415 
2416         for (long oldSum = 0L;;) {                // repeat until stable
2417             WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt;
2418             long checkSum = ctl;
2419             if ((ws = workQueues) != null) {      // help terminate others
2420                 for (int i = 0; i < ws.length; ++i) {
2421                     if ((w = ws[i]) != null) {
2422                         w.cancelAll();            // clear queues
2423                         checkSum += w.base;
2424                         if (w.qlock >= 0) {
2425                             w.qlock = -1;         // racy set OK
2426                             if ((wt = w.owner) != null) {
2427                                 try {             // unblock join or park
2428                                     wt.interrupt();
2429                                 } catch (Throwable ignore) {
2430                                 }
2431                             }
2432                         }
2433                     }
2434                 }
2435             }
2436             if (oldSum == (oldSum = checkSum))
2437                 break;
2438         }
2439 
2440         if ((short)(ctl >>> TC_SHIFT) + (config & SMASK) <= 0) {
2441             runState = (STARTED | SHUTDOWN | STOP | TERMINATED); // final write
2442             synchronized (this) {
2443                 notifyAll();                      // for awaitTermination
2444             }
2445         }
2446 
2447         return -1;
2448     }
2449 
2450     // External operations
2451 
2452     /**
2453      * Constructs and tries to install a new external queue,
2454      * failing if the workQueues array already has a queue at
2455      * the given index.
2456      *
2457      * @param index the index of the new queue
2458      */
tryCreateExternalQueue(int index)2459     private void tryCreateExternalQueue(int index) {
2460         AuxState aux;
2461         if ((aux = auxState) != null && index >= 0) {
2462             WorkQueue q = new WorkQueue(this, null);
2463             q.config = index;
2464             q.scanState = ~UNSIGNALLED;
2465             q.qlock = 1;                   // lock queue
2466             boolean installed = false;
2467             aux.lock();
2468             try {                          // lock pool to install
2469                 WorkQueue[] ws;
2470                 if ((ws = workQueues) != null && index < ws.length &&
2471                     ws[index] == null) {
2472                     ws[index] = q;         // else throw away
2473                     installed = true;
2474                 }
2475             } finally {
2476                 aux.unlock();
2477             }
2478             if (installed) {
2479                 try {
2480                     q.growArray();
2481                 } finally {
2482                     q.qlock = 0;
2483                 }
2484             }
2485         }
2486     }
2487 
2488     /**
2489      * Adds the given task to a submission queue at submitter's
2490      * current queue. Also performs secondary initialization upon the
2491      * first submission of the first task to the pool, and detects
2492      * first submission by an external thread and creates a new shared
2493      * queue if the one at index if empty or contended.
2494      *
2495      * @param task the task. Caller must ensure non-null.
2496      */
externalPush(ForkJoinTask<?> task)2497     final void externalPush(ForkJoinTask<?> task) {
2498         int r;                            // initialize caller's probe
2499         if ((r = ThreadLocalRandom.getProbe()) == 0) {
2500             ThreadLocalRandom.localInit();
2501             r = ThreadLocalRandom.getProbe();
2502         }
2503         for (;;) {
2504             WorkQueue q; int wl, k, stat;
2505             int rs = runState;
2506             WorkQueue[] ws = workQueues;
2507             if (rs <= 0 || ws == null || (wl = ws.length) <= 0)
2508                 tryInitialize(true);
2509             else if ((q = ws[k = (wl - 1) & r & SQMASK]) == null)
2510                 tryCreateExternalQueue(k);
2511             else if ((stat = q.sharedPush(task)) < 0)
2512                 break;
2513             else if (stat == 0) {
2514                 signalWork();
2515                 break;
2516             }
2517             else                          // move if busy
2518                 r = ThreadLocalRandom.advanceProbe(r);
2519         }
2520     }
2521 
2522     /**
2523      * Pushes a possibly-external submission.
2524      */
externalSubmit(ForkJoinTask<T> task)2525     private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
2526         Thread t; ForkJoinWorkerThread w; WorkQueue q;
2527         if (task == null)
2528             throw new NullPointerException();
2529         if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2530             (w = (ForkJoinWorkerThread)t).pool == this &&
2531             (q = w.workQueue) != null)
2532             q.push(task);
2533         else
2534             externalPush(task);
2535         return task;
2536     }
2537 
2538     /**
2539      * Returns common pool queue for an external thread.
2540      */
commonSubmitterQueue()2541     static WorkQueue commonSubmitterQueue() {
2542         ForkJoinPool p = common;
2543         int r = ThreadLocalRandom.getProbe();
2544         WorkQueue[] ws; int wl;
2545         return (p != null && (ws = p.workQueues) != null &&
2546                 (wl = ws.length) > 0) ?
2547             ws[(wl - 1) & r & SQMASK] : null;
2548     }
2549 
2550     /**
2551      * Performs tryUnpush for an external submitter.
2552      */
tryExternalUnpush(ForkJoinTask<?> task)2553     final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2554         int r = ThreadLocalRandom.getProbe();
2555         WorkQueue[] ws; WorkQueue w; int wl;
2556         return ((ws = workQueues) != null &&
2557                 (wl = ws.length) > 0 &&
2558                 (w = ws[(wl - 1) & r & SQMASK]) != null &&
2559                 w.trySharedUnpush(task));
2560     }
2561 
2562     /**
2563      * Performs helpComplete for an external submitter.
2564      */
externalHelpComplete(CountedCompleter<?> task, int maxTasks)2565     final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2566         WorkQueue[] ws; int wl;
2567         int r = ThreadLocalRandom.getProbe();
2568         return ((ws = workQueues) != null && (wl = ws.length) > 0) ?
2569             helpComplete(ws[(wl - 1) & r & SQMASK], task, maxTasks) : 0;
2570     }
2571 
2572     // Exported methods
2573 
2574     // Constructors
2575 
2576     /**
2577      * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2578      * java.lang.Runtime#availableProcessors}, using the {@linkplain
2579      * #defaultForkJoinWorkerThreadFactory default thread factory},
2580      * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2581      *
2582      * @throws SecurityException if a security manager exists and
2583      *         the caller is not permitted to modify threads
2584      *         because it does not hold {@link
2585      *         java.lang.RuntimePermission}{@code ("modifyThread")}
2586      */
ForkJoinPool()2587     public ForkJoinPool() {
2588         this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2589              defaultForkJoinWorkerThreadFactory, null, false);
2590     }
2591 
2592     /**
2593      * Creates a {@code ForkJoinPool} with the indicated parallelism
2594      * level, the {@linkplain
2595      * #defaultForkJoinWorkerThreadFactory default thread factory},
2596      * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2597      *
2598      * @param parallelism the parallelism level
2599      * @throws IllegalArgumentException if parallelism less than or
2600      *         equal to zero, or greater than implementation limit
2601      * @throws SecurityException if a security manager exists and
2602      *         the caller is not permitted to modify threads
2603      *         because it does not hold {@link
2604      *         java.lang.RuntimePermission}{@code ("modifyThread")}
2605      */
ForkJoinPool(int parallelism)2606     public ForkJoinPool(int parallelism) {
2607         this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2608     }
2609 
2610     /**
2611      * Creates a {@code ForkJoinPool} with the given parameters.
2612      *
2613      * @param parallelism the parallelism level. For default value,
2614      * use {@link java.lang.Runtime#availableProcessors}.
2615      * @param factory the factory for creating new threads. For default value,
2616      * use {@link #defaultForkJoinWorkerThreadFactory}.
2617      * @param handler the handler for internal worker threads that
2618      * terminate due to unrecoverable errors encountered while executing
2619      * tasks. For default value, use {@code null}.
2620      * @param asyncMode if true,
2621      * establishes local first-in-first-out scheduling mode for forked
2622      * tasks that are never joined. This mode may be more appropriate
2623      * than default locally stack-based mode in applications in which
2624      * worker threads only process event-style asynchronous tasks.
2625      * For default value, use {@code false}.
2626      * @throws IllegalArgumentException if parallelism less than or
2627      *         equal to zero, or greater than implementation limit
2628      * @throws NullPointerException if the factory is null
2629      * @throws SecurityException if a security manager exists and
2630      *         the caller is not permitted to modify threads
2631      *         because it does not hold {@link
2632      *         java.lang.RuntimePermission}{@code ("modifyThread")}
2633      */
ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory, UncaughtExceptionHandler handler, boolean asyncMode)2634     public ForkJoinPool(int parallelism,
2635                         ForkJoinWorkerThreadFactory factory,
2636                         UncaughtExceptionHandler handler,
2637                         boolean asyncMode) {
2638         this(checkParallelism(parallelism),
2639              checkFactory(factory),
2640              handler,
2641              asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2642              "ForkJoinPool-" + nextPoolId() + "-worker-");
2643         checkPermission();
2644     }
2645 
checkParallelism(int parallelism)2646     private static int checkParallelism(int parallelism) {
2647         if (parallelism <= 0 || parallelism > MAX_CAP)
2648             throw new IllegalArgumentException();
2649         return parallelism;
2650     }
2651 
checkFactory(ForkJoinWorkerThreadFactory factory)2652     private static ForkJoinWorkerThreadFactory checkFactory
2653         (ForkJoinWorkerThreadFactory factory) {
2654         if (factory == null)
2655             throw new NullPointerException();
2656         return factory;
2657     }
2658 
2659     /**
2660      * Creates a {@code ForkJoinPool} with the given parameters, without
2661      * any security checks or parameter validation.  Invoked directly by
2662      * makeCommonPool.
2663      */
ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory, UncaughtExceptionHandler handler, int mode, String workerNamePrefix)2664     private ForkJoinPool(int parallelism,
2665                          ForkJoinWorkerThreadFactory factory,
2666                          UncaughtExceptionHandler handler,
2667                          int mode,
2668                          String workerNamePrefix) {
2669         this.workerNamePrefix = workerNamePrefix;
2670         this.factory = factory;
2671         this.ueh = handler;
2672         this.config = (parallelism & SMASK) | mode;
2673         long np = (long)(-parallelism); // offset ctl counts
2674         this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2675     }
2676 
2677     /**
2678      * Returns the common pool instance. This pool is statically
2679      * constructed; its run state is unaffected by attempts to {@link
2680      * #shutdown} or {@link #shutdownNow}. However this pool and any
2681      * ongoing processing are automatically terminated upon program
2682      * {@link System#exit}.  Any program that relies on asynchronous
2683      * task processing to complete before program termination should
2684      * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2685      * before exit.
2686      *
2687      * @return the common pool instance
2688      * @since 1.8
2689      */
commonPool()2690     public static ForkJoinPool commonPool() {
2691         // assert common != null : "static init error";
2692         return common;
2693     }
2694 
2695     // Execution methods
2696 
2697     /**
2698      * Performs the given task, returning its result upon completion.
2699      * If the computation encounters an unchecked Exception or Error,
2700      * it is rethrown as the outcome of this invocation.  Rethrown
2701      * exceptions behave in the same way as regular exceptions, but,
2702      * when possible, contain stack traces (as displayed for example
2703      * using {@code ex.printStackTrace()}) of both the current thread
2704      * as well as the thread actually encountering the exception;
2705      * minimally only the latter.
2706      *
2707      * @param task the task
2708      * @param <T> the type of the task's result
2709      * @return the task's result
2710      * @throws NullPointerException if the task is null
2711      * @throws RejectedExecutionException if the task cannot be
2712      *         scheduled for execution
2713      */
invoke(ForkJoinTask<T> task)2714     public <T> T invoke(ForkJoinTask<T> task) {
2715         if (task == null)
2716             throw new NullPointerException();
2717         externalSubmit(task);
2718         return task.join();
2719     }
2720 
2721     /**
2722      * Arranges for (asynchronous) execution of the given task.
2723      *
2724      * @param task the task
2725      * @throws NullPointerException if the task is null
2726      * @throws RejectedExecutionException if the task cannot be
2727      *         scheduled for execution
2728      */
execute(ForkJoinTask<?> task)2729     public void execute(ForkJoinTask<?> task) {
2730         externalSubmit(task);
2731     }
2732 
2733     // AbstractExecutorService methods
2734 
2735     /**
2736      * @throws NullPointerException if the task is null
2737      * @throws RejectedExecutionException if the task cannot be
2738      *         scheduled for execution
2739      */
execute(Runnable task)2740     public void execute(Runnable task) {
2741         if (task == null)
2742             throw new NullPointerException();
2743         ForkJoinTask<?> job;
2744         if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2745             job = (ForkJoinTask<?>) task;
2746         else
2747             job = new ForkJoinTask.RunnableExecuteAction(task);
2748         externalSubmit(job);
2749     }
2750 
2751     /**
2752      * Submits a ForkJoinTask for execution.
2753      *
2754      * @param task the task to submit
2755      * @param <T> the type of the task's result
2756      * @return the task
2757      * @throws NullPointerException if the task is null
2758      * @throws RejectedExecutionException if the task cannot be
2759      *         scheduled for execution
2760      */
submit(ForkJoinTask<T> task)2761     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2762         return externalSubmit(task);
2763     }
2764 
2765     /**
2766      * @throws NullPointerException if the task is null
2767      * @throws RejectedExecutionException if the task cannot be
2768      *         scheduled for execution
2769      */
submit(Callable<T> task)2770     public <T> ForkJoinTask<T> submit(Callable<T> task) {
2771         return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2772     }
2773 
2774     /**
2775      * @throws NullPointerException if the task is null
2776      * @throws RejectedExecutionException if the task cannot be
2777      *         scheduled for execution
2778      */
submit(Runnable task, T result)2779     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2780         return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2781     }
2782 
2783     /**
2784      * @throws NullPointerException if the task is null
2785      * @throws RejectedExecutionException if the task cannot be
2786      *         scheduled for execution
2787      */
submit(Runnable task)2788     public ForkJoinTask<?> submit(Runnable task) {
2789         if (task == null)
2790             throw new NullPointerException();
2791         ForkJoinTask<?> job;
2792         if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2793             job = (ForkJoinTask<?>) task;
2794         else
2795             job = new ForkJoinTask.AdaptedRunnableAction(task);
2796         return externalSubmit(job);
2797     }
2798 
2799     /**
2800      * @throws NullPointerException       {@inheritDoc}
2801      * @throws RejectedExecutionException {@inheritDoc}
2802      */
invokeAll(Collection<? extends Callable<T>> tasks)2803     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2804         // In previous versions of this class, this method constructed
2805         // a task to run ForkJoinTask.invokeAll, but now external
2806         // invocation of multiple tasks is at least as efficient.
2807         ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2808 
2809         try {
2810             for (Callable<T> t : tasks) {
2811                 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2812                 futures.add(f);
2813                 externalSubmit(f);
2814             }
2815             for (int i = 0, size = futures.size(); i < size; i++)
2816                 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2817             return futures;
2818         } catch (Throwable t) {
2819             for (int i = 0, size = futures.size(); i < size; i++)
2820                 futures.get(i).cancel(false);
2821             throw t;
2822         }
2823     }
2824 
2825     /**
2826      * Returns the factory used for constructing new workers.
2827      *
2828      * @return the factory used for constructing new workers
2829      */
getFactory()2830     public ForkJoinWorkerThreadFactory getFactory() {
2831         return factory;
2832     }
2833 
2834     /**
2835      * Returns the handler for internal worker threads that terminate
2836      * due to unrecoverable errors encountered while executing tasks.
2837      *
2838      * @return the handler, or {@code null} if none
2839      */
getUncaughtExceptionHandler()2840     public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2841         return ueh;
2842     }
2843 
2844     /**
2845      * Returns the targeted parallelism level of this pool.
2846      *
2847      * @return the targeted parallelism level of this pool
2848      */
getParallelism()2849     public int getParallelism() {
2850         int par;
2851         return ((par = config & SMASK) > 0) ? par : 1;
2852     }
2853 
2854     /**
2855      * Returns the targeted parallelism level of the common pool.
2856      *
2857      * @return the targeted parallelism level of the common pool
2858      * @since 1.8
2859      */
getCommonPoolParallelism()2860     public static int getCommonPoolParallelism() {
2861         return COMMON_PARALLELISM;
2862     }
2863 
2864     /**
2865      * Returns the number of worker threads that have started but not
2866      * yet terminated.  The result returned by this method may differ
2867      * from {@link #getParallelism} when threads are created to
2868      * maintain parallelism when others are cooperatively blocked.
2869      *
2870      * @return the number of worker threads
2871      */
getPoolSize()2872     public int getPoolSize() {
2873         return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2874     }
2875 
2876     /**
2877      * Returns {@code true} if this pool uses local first-in-first-out
2878      * scheduling mode for forked tasks that are never joined.
2879      *
2880      * @return {@code true} if this pool uses async mode
2881      */
getAsyncMode()2882     public boolean getAsyncMode() {
2883         return (config & FIFO_QUEUE) != 0;
2884     }
2885 
2886     /**
2887      * Returns an estimate of the number of worker threads that are
2888      * not blocked waiting to join tasks or for other managed
2889      * synchronization. This method may overestimate the
2890      * number of running threads.
2891      *
2892      * @return the number of worker threads
2893      */
getRunningThreadCount()2894     public int getRunningThreadCount() {
2895         int rc = 0;
2896         WorkQueue[] ws; WorkQueue w;
2897         if ((ws = workQueues) != null) {
2898             for (int i = 1; i < ws.length; i += 2) {
2899                 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2900                     ++rc;
2901             }
2902         }
2903         return rc;
2904     }
2905 
2906     /**
2907      * Returns an estimate of the number of threads that are currently
2908      * stealing or executing tasks. This method may overestimate the
2909      * number of active threads.
2910      *
2911      * @return the number of active threads
2912      */
getActiveThreadCount()2913     public int getActiveThreadCount() {
2914         int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2915         return (r <= 0) ? 0 : r; // suppress momentarily negative values
2916     }
2917 
2918     /**
2919      * Returns {@code true} if all worker threads are currently idle.
2920      * An idle worker is one that cannot obtain a task to execute
2921      * because none are available to steal from other threads, and
2922      * there are no pending submissions to the pool. This method is
2923      * conservative; it might not return {@code true} immediately upon
2924      * idleness of all threads, but will eventually become true if
2925      * threads remain inactive.
2926      *
2927      * @return {@code true} if all threads are currently idle
2928      */
isQuiescent()2929     public boolean isQuiescent() {
2930         return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2931     }
2932 
2933     /**
2934      * Returns an estimate of the total number of tasks stolen from
2935      * one thread's work queue by another. The reported value
2936      * underestimates the actual total number of steals when the pool
2937      * is not quiescent. This value may be useful for monitoring and
2938      * tuning fork/join programs: in general, steal counts should be
2939      * high enough to keep threads busy, but low enough to avoid
2940      * overhead and contention across threads.
2941      *
2942      * @return the number of steals
2943      */
getStealCount()2944     public long getStealCount() {
2945         AuxState sc = auxState;
2946         long count = (sc == null) ? 0L : sc.stealCount;
2947         WorkQueue[] ws; WorkQueue w;
2948         if ((ws = workQueues) != null) {
2949             for (int i = 1; i < ws.length; i += 2) {
2950                 if ((w = ws[i]) != null)
2951                     count += w.nsteals;
2952             }
2953         }
2954         return count;
2955     }
2956 
2957     /**
2958      * Returns an estimate of the total number of tasks currently held
2959      * in queues by worker threads (but not including tasks submitted
2960      * to the pool that have not begun executing). This value is only
2961      * an approximation, obtained by iterating across all threads in
2962      * the pool. This method may be useful for tuning task
2963      * granularities.
2964      *
2965      * @return the number of queued tasks
2966      */
getQueuedTaskCount()2967     public long getQueuedTaskCount() {
2968         long count = 0;
2969         WorkQueue[] ws; WorkQueue w;
2970         if ((ws = workQueues) != null) {
2971             for (int i = 1; i < ws.length; i += 2) {
2972                 if ((w = ws[i]) != null)
2973                     count += w.queueSize();
2974             }
2975         }
2976         return count;
2977     }
2978 
2979     /**
2980      * Returns an estimate of the number of tasks submitted to this
2981      * pool that have not yet begun executing.  This method may take
2982      * time proportional to the number of submissions.
2983      *
2984      * @return the number of queued submissions
2985      */
getQueuedSubmissionCount()2986     public int getQueuedSubmissionCount() {
2987         int count = 0;
2988         WorkQueue[] ws; WorkQueue w;
2989         if ((ws = workQueues) != null) {
2990             for (int i = 0; i < ws.length; i += 2) {
2991                 if ((w = ws[i]) != null)
2992                     count += w.queueSize();
2993             }
2994         }
2995         return count;
2996     }
2997 
2998     /**
2999      * Returns {@code true} if there are any tasks submitted to this
3000      * pool that have not yet begun executing.
3001      *
3002      * @return {@code true} if there are any queued submissions
3003      */
hasQueuedSubmissions()3004     public boolean hasQueuedSubmissions() {
3005         WorkQueue[] ws; WorkQueue w;
3006         if ((ws = workQueues) != null) {
3007             for (int i = 0; i < ws.length; i += 2) {
3008                 if ((w = ws[i]) != null && !w.isEmpty())
3009                     return true;
3010             }
3011         }
3012         return false;
3013     }
3014 
3015     /**
3016      * Removes and returns the next unexecuted submission if one is
3017      * available.  This method may be useful in extensions to this
3018      * class that re-assign work in systems with multiple pools.
3019      *
3020      * @return the next submission, or {@code null} if none
3021      */
pollSubmission()3022     protected ForkJoinTask<?> pollSubmission() {
3023         WorkQueue[] ws; int wl; WorkQueue w; ForkJoinTask<?> t;
3024         int r = ThreadLocalRandom.nextSecondarySeed();
3025         if ((ws = workQueues) != null && (wl = ws.length) > 0) {
3026             for (int m = wl - 1, i = 0; i < wl; ++i) {
3027                 if ((w = ws[(i << 1) & m]) != null && (t = w.poll()) != null)
3028                     return t;
3029             }
3030         }
3031         return null;
3032     }
3033 
3034     /**
3035      * Removes all available unexecuted submitted and forked tasks
3036      * from scheduling queues and adds them to the given collection,
3037      * without altering their execution status. These may include
3038      * artificially generated or wrapped tasks. This method is
3039      * designed to be invoked only when the pool is known to be
3040      * quiescent. Invocations at other times may not remove all
3041      * tasks. A failure encountered while attempting to add elements
3042      * to collection {@code c} may result in elements being in
3043      * neither, either or both collections when the associated
3044      * exception is thrown.  The behavior of this operation is
3045      * undefined if the specified collection is modified while the
3046      * operation is in progress.
3047      *
3048      * @param c the collection to transfer elements into
3049      * @return the number of elements transferred
3050      */
drainTasksTo(Collection<? super ForkJoinTask<?>> c)3051     protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
3052         int count = 0;
3053         WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
3054         if ((ws = workQueues) != null) {
3055             for (int i = 0; i < ws.length; ++i) {
3056                 if ((w = ws[i]) != null) {
3057                     while ((t = w.poll()) != null) {
3058                         c.add(t);
3059                         ++count;
3060                     }
3061                 }
3062             }
3063         }
3064         return count;
3065     }
3066 
3067     /**
3068      * Returns a string identifying this pool, as well as its state,
3069      * including indications of run state, parallelism level, and
3070      * worker and task counts.
3071      *
3072      * @return a string identifying this pool, as well as its state
3073      */
toString()3074     public String toString() {
3075         // Use a single pass through workQueues to collect counts
3076         long qt = 0L, qs = 0L; int rc = 0;
3077         AuxState sc = auxState;
3078         long st = (sc == null) ? 0L : sc.stealCount;
3079         long c = ctl;
3080         WorkQueue[] ws; WorkQueue w;
3081         if ((ws = workQueues) != null) {
3082             for (int i = 0; i < ws.length; ++i) {
3083                 if ((w = ws[i]) != null) {
3084                     int size = w.queueSize();
3085                     if ((i & 1) == 0)
3086                         qs += size;
3087                     else {
3088                         qt += size;
3089                         st += w.nsteals;
3090                         if (w.isApparentlyUnblocked())
3091                             ++rc;
3092                     }
3093                 }
3094             }
3095         }
3096         int pc = (config & SMASK);
3097         int tc = pc + (short)(c >>> TC_SHIFT);
3098         int ac = pc + (int)(c >> AC_SHIFT);
3099         if (ac < 0) // ignore transient negative
3100             ac = 0;
3101         int rs = runState;
3102         String level = ((rs & TERMINATED) != 0 ? "Terminated" :
3103                         (rs & STOP)       != 0 ? "Terminating" :
3104                         (rs & SHUTDOWN)   != 0 ? "Shutting down" :
3105                         "Running");
3106         return super.toString() +
3107             "[" + level +
3108             ", parallelism = " + pc +
3109             ", size = " + tc +
3110             ", active = " + ac +
3111             ", running = " + rc +
3112             ", steals = " + st +
3113             ", tasks = " + qt +
3114             ", submissions = " + qs +
3115             "]";
3116     }
3117 
3118     /**
3119      * Possibly initiates an orderly shutdown in which previously
3120      * submitted tasks are executed, but no new tasks will be
3121      * accepted. Invocation has no effect on execution state if this
3122      * is the {@link #commonPool()}, and no additional effect if
3123      * already shut down.  Tasks that are in the process of being
3124      * submitted concurrently during the course of this method may or
3125      * may not be rejected.
3126      *
3127      * @throws SecurityException if a security manager exists and
3128      *         the caller is not permitted to modify threads
3129      *         because it does not hold {@link
3130      *         java.lang.RuntimePermission}{@code ("modifyThread")}
3131      */
shutdown()3132     public void shutdown() {
3133         checkPermission();
3134         tryTerminate(false, true);
3135     }
3136 
3137     /**
3138      * Possibly attempts to cancel and/or stop all tasks, and reject
3139      * all subsequently submitted tasks.  Invocation has no effect on
3140      * execution state if this is the {@link #commonPool()}, and no
3141      * additional effect if already shut down. Otherwise, tasks that
3142      * are in the process of being submitted or executed concurrently
3143      * during the course of this method may or may not be
3144      * rejected. This method cancels both existing and unexecuted
3145      * tasks, in order to permit termination in the presence of task
3146      * dependencies. So the method always returns an empty list
3147      * (unlike the case for some other Executors).
3148      *
3149      * @return an empty list
3150      * @throws SecurityException if a security manager exists and
3151      *         the caller is not permitted to modify threads
3152      *         because it does not hold {@link
3153      *         java.lang.RuntimePermission}{@code ("modifyThread")}
3154      */
shutdownNow()3155     public List<Runnable> shutdownNow() {
3156         checkPermission();
3157         tryTerminate(true, true);
3158         return Collections.emptyList();
3159     }
3160 
3161     /**
3162      * Returns {@code true} if all tasks have completed following shut down.
3163      *
3164      * @return {@code true} if all tasks have completed following shut down
3165      */
isTerminated()3166     public boolean isTerminated() {
3167         return (runState & TERMINATED) != 0;
3168     }
3169 
3170     /**
3171      * Returns {@code true} if the process of termination has
3172      * commenced but not yet completed.  This method may be useful for
3173      * debugging. A return of {@code true} reported a sufficient
3174      * period after shutdown may indicate that submitted tasks have
3175      * ignored or suppressed interruption, or are waiting for I/O,
3176      * causing this executor not to properly terminate. (See the
3177      * advisory notes for class {@link ForkJoinTask} stating that
3178      * tasks should not normally entail blocking operations.  But if
3179      * they do, they must abort them on interrupt.)
3180      *
3181      * @return {@code true} if terminating but not yet terminated
3182      */
isTerminating()3183     public boolean isTerminating() {
3184         int rs = runState;
3185         return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3186     }
3187 
3188     /**
3189      * Returns {@code true} if this pool has been shut down.
3190      *
3191      * @return {@code true} if this pool has been shut down
3192      */
isShutdown()3193     public boolean isShutdown() {
3194         return (runState & SHUTDOWN) != 0;
3195     }
3196 
3197     /**
3198      * Blocks until all tasks have completed execution after a
3199      * shutdown request, or the timeout occurs, or the current thread
3200      * is interrupted, whichever happens first. Because the {@link
3201      * #commonPool()} never terminates until program shutdown, when
3202      * applied to the common pool, this method is equivalent to {@link
3203      * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3204      *
3205      * @param timeout the maximum time to wait
3206      * @param unit the time unit of the timeout argument
3207      * @return {@code true} if this executor terminated and
3208      *         {@code false} if the timeout elapsed before termination
3209      * @throws InterruptedException if interrupted while waiting
3210      */
awaitTermination(long timeout, TimeUnit unit)3211     public boolean awaitTermination(long timeout, TimeUnit unit)
3212         throws InterruptedException {
3213         if (Thread.interrupted())
3214             throw new InterruptedException();
3215         if (this == common) {
3216             awaitQuiescence(timeout, unit);
3217             return false;
3218         }
3219         long nanos = unit.toNanos(timeout);
3220         if (isTerminated())
3221             return true;
3222         if (nanos <= 0L)
3223             return false;
3224         long deadline = System.nanoTime() + nanos;
3225         synchronized (this) {
3226             for (;;) {
3227                 if (isTerminated())
3228                     return true;
3229                 if (nanos <= 0L)
3230                     return false;
3231                 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3232                 wait(millis > 0L ? millis : 1L);
3233                 nanos = deadline - System.nanoTime();
3234             }
3235         }
3236     }
3237 
3238     /**
3239      * If called by a ForkJoinTask operating in this pool, equivalent
3240      * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3241      * waits and/or attempts to assist performing tasks until this
3242      * pool {@link #isQuiescent} or the indicated timeout elapses.
3243      *
3244      * @param timeout the maximum time to wait
3245      * @param unit the time unit of the timeout argument
3246      * @return {@code true} if quiescent; {@code false} if the
3247      * timeout elapsed.
3248      */
awaitQuiescence(long timeout, TimeUnit unit)3249     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3250         long nanos = unit.toNanos(timeout);
3251         ForkJoinWorkerThread wt;
3252         Thread thread = Thread.currentThread();
3253         if ((thread instanceof ForkJoinWorkerThread) &&
3254             (wt = (ForkJoinWorkerThread)thread).pool == this) {
3255             helpQuiescePool(wt.workQueue);
3256             return true;
3257         }
3258         long startTime = System.nanoTime();
3259         WorkQueue[] ws;
3260         int r = 0, wl;
3261         boolean found = true;
3262         while (!isQuiescent() && (ws = workQueues) != null &&
3263                (wl = ws.length) > 0) {
3264             if (!found) {
3265                 if ((System.nanoTime() - startTime) > nanos)
3266                     return false;
3267                 Thread.yield(); // cannot block
3268             }
3269             found = false;
3270             for (int m = wl - 1, j = (m + 1) << 2; j >= 0; --j) {
3271                 ForkJoinTask<?> t; WorkQueue q; int b, k;
3272                 if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3273                     (b = q.base) - q.top < 0) {
3274                     found = true;
3275                     if ((t = q.pollAt(b)) != null)
3276                         t.doExec();
3277                     break;
3278                 }
3279             }
3280         }
3281         return true;
3282     }
3283 
3284     /**
3285      * Waits and/or attempts to assist performing tasks indefinitely
3286      * until the {@link #commonPool()} {@link #isQuiescent}.
3287      */
quiesceCommonPool()3288     static void quiesceCommonPool() {
3289         common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3290     }
3291 
3292     /**
3293      * Interface for extending managed parallelism for tasks running
3294      * in {@link ForkJoinPool}s.
3295      *
3296      * <p>A {@code ManagedBlocker} provides two methods.  Method
3297      * {@link #isReleasable} must return {@code true} if blocking is
3298      * not necessary. Method {@link #block} blocks the current thread
3299      * if necessary (perhaps internally invoking {@code isReleasable}
3300      * before actually blocking). These actions are performed by any
3301      * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3302      * The unusual methods in this API accommodate synchronizers that
3303      * may, but don't usually, block for long periods. Similarly, they
3304      * allow more efficient internal handling of cases in which
3305      * additional workers may be, but usually are not, needed to
3306      * ensure sufficient parallelism.  Toward this end,
3307      * implementations of method {@code isReleasable} must be amenable
3308      * to repeated invocation.
3309      *
3310      * <p>For example, here is a ManagedBlocker based on a
3311      * ReentrantLock:
3312      * <pre> {@code
3313      * class ManagedLocker implements ManagedBlocker {
3314      *   final ReentrantLock lock;
3315      *   boolean hasLock = false;
3316      *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3317      *   public boolean block() {
3318      *     if (!hasLock)
3319      *       lock.lock();
3320      *     return true;
3321      *   }
3322      *   public boolean isReleasable() {
3323      *     return hasLock || (hasLock = lock.tryLock());
3324      *   }
3325      * }}</pre>
3326      *
3327      * <p>Here is a class that possibly blocks waiting for an
3328      * item on a given queue:
3329      * <pre> {@code
3330      * class QueueTaker<E> implements ManagedBlocker {
3331      *   final BlockingQueue<E> queue;
3332      *   volatile E item = null;
3333      *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3334      *   public boolean block() throws InterruptedException {
3335      *     if (item == null)
3336      *       item = queue.take();
3337      *     return true;
3338      *   }
3339      *   public boolean isReleasable() {
3340      *     return item != null || (item = queue.poll()) != null;
3341      *   }
3342      *   public E getItem() { // call after pool.managedBlock completes
3343      *     return item;
3344      *   }
3345      * }}</pre>
3346      */
3347     public static interface ManagedBlocker {
3348         /**
3349          * Possibly blocks the current thread, for example waiting for
3350          * a lock or condition.
3351          *
3352          * @return {@code true} if no additional blocking is necessary
3353          * (i.e., if isReleasable would return true)
3354          * @throws InterruptedException if interrupted while waiting
3355          * (the method is not required to do so, but is allowed to)
3356          */
block()3357         boolean block() throws InterruptedException;
3358 
3359         /**
3360          * Returns {@code true} if blocking is unnecessary.
3361          * @return {@code true} if blocking is unnecessary
3362          */
isReleasable()3363         boolean isReleasable();
3364     }
3365 
3366     /**
3367      * Runs the given possibly blocking task.  When {@linkplain
3368      * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3369      * method possibly arranges for a spare thread to be activated if
3370      * necessary to ensure sufficient parallelism while the current
3371      * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3372      *
3373      * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3374      * {@code blocker.block()} until either method returns {@code true}.
3375      * Every call to {@code blocker.block()} is preceded by a call to
3376      * {@code blocker.isReleasable()} that returned {@code false}.
3377      *
3378      * <p>If not running in a ForkJoinPool, this method is
3379      * behaviorally equivalent to
3380      * <pre> {@code
3381      * while (!blocker.isReleasable())
3382      *   if (blocker.block())
3383      *     break;}</pre>
3384      *
3385      * If running in a ForkJoinPool, the pool may first be expanded to
3386      * ensure sufficient parallelism available during the call to
3387      * {@code blocker.block()}.
3388      *
3389      * @param blocker the blocker task
3390      * @throws InterruptedException if {@code blocker.block()} did so
3391      */
managedBlock(ManagedBlocker blocker)3392     public static void managedBlock(ManagedBlocker blocker)
3393         throws InterruptedException {
3394         ForkJoinPool p;
3395         ForkJoinWorkerThread wt;
3396         Thread t = Thread.currentThread();
3397         if ((t instanceof ForkJoinWorkerThread) &&
3398             (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3399             WorkQueue w = wt.workQueue;
3400             while (!blocker.isReleasable()) {
3401                 if (p.tryCompensate(w)) {
3402                     try {
3403                         do {} while (!blocker.isReleasable() &&
3404                                      !blocker.block());
3405                     } finally {
3406                         U.getAndAddLong(p, CTL, AC_UNIT);
3407                     }
3408                     break;
3409                 }
3410             }
3411         }
3412         else {
3413             do {} while (!blocker.isReleasable() &&
3414                          !blocker.block());
3415         }
3416     }
3417 
3418     // AbstractExecutorService overrides.  These rely on undocumented
3419     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3420     // implement RunnableFuture.
3421 
newTaskFor(Runnable runnable, T value)3422     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3423         return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3424     }
3425 
newTaskFor(Callable<T> callable)3426     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3427         return new ForkJoinTask.AdaptedCallable<T>(callable);
3428     }
3429 
3430     // Unsafe mechanics
3431     private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3432     private static final long CTL;
3433     private static final long RUNSTATE;
3434     private static final int ABASE;
3435     private static final int ASHIFT;
3436 
3437     static {
3438         try {
3439             CTL = U.objectFieldOffset
3440                 (ForkJoinPool.class.getDeclaredField("ctl"));
3441             RUNSTATE = U.objectFieldOffset
3442                 (ForkJoinPool.class.getDeclaredField("runState"));
3443             ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3444             int scale = U.arrayIndexScale(ForkJoinTask[].class);
3445             if ((scale & (scale - 1)) != 0)
3446                 throw new Error("array index scale not a power of two");
3447             ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3448         } catch (ReflectiveOperationException e) {
3449             throw new Error(e);
3450         }
3451 
3452         // Reduce the risk of rare disastrous classloading in first call to
3453         // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3454         Class<?> ensureLoaded = LockSupport.class;
3455 
3456         int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3457         try {
3458             String p = System.getProperty
3459                 ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3460             if (p != null)
3461                 commonMaxSpares = Integer.parseInt(p);
3462         } catch (Exception ignore) {}
3463         COMMON_MAX_SPARES = commonMaxSpares;
3464 
3465         defaultForkJoinWorkerThreadFactory =
3466             new DefaultForkJoinWorkerThreadFactory();
3467         modifyThreadPermission = new RuntimePermission("modifyThread");
3468 
3469         common = java.security.AccessController.doPrivileged
3470             (new java.security.PrivilegedAction<ForkJoinPool>() {
3471                 public ForkJoinPool run() { return makeCommonPool(); }});
3472 
3473         // report 1 even if threads disabled
3474         COMMON_PARALLELISM = Math.max(common.config & SMASK, 1);
3475     }
3476 
3477     /**
3478      * Creates and returns the common pool, respecting user settings
3479      * specified via system properties.
3480      */
makeCommonPool()3481     static ForkJoinPool makeCommonPool() {
3482         int parallelism = -1;
3483         ForkJoinWorkerThreadFactory factory = null;
3484         UncaughtExceptionHandler handler = null;
3485         try {  // ignore exceptions in accessing/parsing properties
3486             String pp = System.getProperty
3487                 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3488             String fp = System.getProperty
3489                 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3490             String hp = System.getProperty
3491                 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3492             if (pp != null)
3493                 parallelism = Integer.parseInt(pp);
3494             if (fp != null)
3495                 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3496                            getSystemClassLoader().loadClass(fp).newInstance());
3497             if (hp != null)
3498                 handler = ((UncaughtExceptionHandler)ClassLoader.
3499                            getSystemClassLoader().loadClass(hp).newInstance());
3500         } catch (Exception ignore) {
3501         }
3502         if (factory == null) {
3503             if (System.getSecurityManager() == null)
3504                 factory = defaultForkJoinWorkerThreadFactory;
3505             else // use security-managed default
3506                 factory = new InnocuousForkJoinWorkerThreadFactory();
3507         }
3508         if (parallelism < 0 && // default 1 less than #cores
3509             (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3510             parallelism = 1;
3511         if (parallelism > MAX_CAP)
3512             parallelism = MAX_CAP;
3513         return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3514                                 "ForkJoinPool.commonPool-worker-");
3515     }
3516 
3517     /**
3518      * Factory for innocuous worker threads.
3519      */
3520     private static final class InnocuousForkJoinWorkerThreadFactory
3521         implements ForkJoinWorkerThreadFactory {
3522 
3523         /**
3524          * An ACC to restrict permissions for the factory itself.
3525          * The constructed workers have no permissions set.
3526          */
3527         private static final AccessControlContext innocuousAcc;
3528         static {
3529             Permissions innocuousPerms = new Permissions();
3530             innocuousPerms.add(modifyThreadPermission);
innocuousPerms.add(new RuntimePermission( "enableContextClassLoaderOverride"))3531             innocuousPerms.add(new RuntimePermission(
3532                                    "enableContextClassLoaderOverride"));
innocuousPerms.add(new RuntimePermission( "modifyThreadGroup"))3533             innocuousPerms.add(new RuntimePermission(
3534                                    "modifyThreadGroup"));
3535             innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3536                     new ProtectionDomain(null, innocuousPerms)
3537                 });
3538         }
3539 
newThread(ForkJoinPool pool)3540         public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3541             return java.security.AccessController.doPrivileged(
3542                 new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3543                     public ForkJoinWorkerThread run() {
3544                         return new ForkJoinWorkerThread.
3545                             InnocuousForkJoinWorkerThread(pool);
3546                     }}, innocuousAcc);
3547         }
3548     }
3549 
3550 }
3551