1 /* rx-parse.y  Renesas RX parser
2    Copyright (C) 2008-2014 Free Software Foundation, Inc.
3 
4    This file is part of GAS, the GNU Assembler.
5 
6    GAS is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GAS is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GAS; see the file COPYING.  If not, write to the Free
18    Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19    02110-1301, USA.  */
20 %{
21 
22 #include "as.h"
23 #include "safe-ctype.h"
24 #include "rx-defs.h"
25 
26 static int rx_lex (void);
27 
28 #define COND_EQ	0
29 #define COND_NE	1
30 
31 #define MEMEX 0x06
32 
33 #define BSIZE 0
34 #define WSIZE 1
35 #define LSIZE 2
36 
37 /*                       .sb    .sw    .l     .uw   */
38 static int sizemap[] = { BSIZE, WSIZE, LSIZE, WSIZE };
39 
40 /* Ok, here are the rules for using these macros...
41 
42    B*() is used to specify the base opcode bytes.  Fields to be filled
43         in later, leave zero.  Call this first.
44 
45    F() and FE() are used to fill in fields within the base opcode bytes.  You MUST
46         call B*() before any F() or FE().
47 
48    [UN]*O*(), PC*() appends operands to the end of the opcode.  You
49         must call P() and B*() before any of these, so that the fixups
50         have the right byte location.
51         O = signed, UO = unsigned, NO = negated, PC = pcrel
52 
53    IMM() adds an immediate and fills in the field for it.
54    NIMM() same, but negates the immediate.
55    NBIMM() same, but negates the immediate, for sbb.
56    DSP() adds a displacement, and fills in the field for it.
57 
58    Note that order is significant for the O, IMM, and DSP macros, as
59    they append their data to the operand buffer in the order that you
60    call them.
61 
62    Use "disp" for displacements whenever possible; this handles the
63    "0" case properly.  */
64 
65 #define B1(b1)             rx_base1 (b1)
66 #define B2(b1, b2)         rx_base2 (b1, b2)
67 #define B3(b1, b2, b3)     rx_base3 (b1, b2, b3)
68 #define B4(b1, b2, b3, b4) rx_base4 (b1, b2, b3, b4)
69 
70 /* POS is bits from the MSB of the first byte to the LSB of the last byte.  */
71 #define F(val,pos,sz)      rx_field (val, pos, sz)
72 #define FE(exp,pos,sz)	   rx_field (exp_val (exp), pos, sz);
73 
74 #define O1(v)              rx_op (v, 1, RXREL_SIGNED); rx_range (v, -128, 255)
75 #define O2(v)              rx_op (v, 2, RXREL_SIGNED); rx_range (v, -32768, 65536)
76 #define O3(v)              rx_op (v, 3, RXREL_SIGNED); rx_range (v, -8388608, 16777216)
77 #define O4(v)              rx_op (v, 4, RXREL_SIGNED)
78 
79 #define UO1(v)             rx_op (v, 1, RXREL_UNSIGNED); rx_range (v, 0, 255)
80 #define UO2(v)             rx_op (v, 2, RXREL_UNSIGNED); rx_range (v, 0, 65536)
81 #define UO3(v)             rx_op (v, 3, RXREL_UNSIGNED); rx_range (v, 0, 16777216)
82 #define UO4(v)             rx_op (v, 4, RXREL_UNSIGNED)
83 
84 #define NO1(v)             rx_op (v, 1, RXREL_NEGATIVE)
85 #define NO2(v)             rx_op (v, 2, RXREL_NEGATIVE)
86 #define NO3(v)             rx_op (v, 3, RXREL_NEGATIVE)
87 #define NO4(v)             rx_op (v, 4, RXREL_NEGATIVE)
88 
89 #define PC1(v)             rx_op (v, 1, RXREL_PCREL)
90 #define PC2(v)             rx_op (v, 2, RXREL_PCREL)
91 #define PC3(v)             rx_op (v, 3, RXREL_PCREL)
92 
93 #define IMM_(v,pos,size)   F (immediate (v, RXREL_SIGNED, pos, size), pos, 2); \
94 			   if (v.X_op != O_constant && v.X_op != O_big) rx_linkrelax_imm (pos)
95 #define IMM(v,pos)	   IMM_ (v, pos, 32)
96 #define IMMW(v,pos)	   IMM_ (v, pos, 16); rx_range (v, -32768, 65536)
97 #define IMMB(v,pos)	   IMM_ (v, pos, 8); rx_range (v, -128, 255)
98 #define NIMM(v,pos)	   F (immediate (v, RXREL_NEGATIVE, pos, 32), pos, 2)
99 #define NBIMM(v,pos)	   F (immediate (v, RXREL_NEGATIVE_BORROW, pos, 32), pos, 2)
100 #define DSP(v,pos,msz)	   if (!v.X_md) rx_relax (RX_RELAX_DISP, pos); \
101 			   else rx_linkrelax_dsp (pos); \
102 			   F (displacement (v, msz), pos, 2)
103 
104 #define id24(a,b2,b3)	   B3 (0xfb+a, b2, b3)
105 
106 static void	   rx_check_float_support (void);
107 static int         rx_intop (expressionS, int, int);
108 static int         rx_uintop (expressionS, int);
109 static int         rx_disp3op (expressionS);
110 static int         rx_disp5op (expressionS *, int);
111 static int         rx_disp5op0 (expressionS *, int);
112 static int         exp_val (expressionS exp);
113 static expressionS zero_expr (void);
114 static int         immediate (expressionS, int, int, int);
115 static int         displacement (expressionS, int);
116 static void        rtsd_immediate (expressionS);
117 static void	   rx_range (expressionS, int, int);
118 
119 static int    need_flag = 0;
120 static int    rx_in_brackets = 0;
121 static int    rx_last_token = 0;
122 static char * rx_init_start;
123 static char * rx_last_exp_start = 0;
124 static int    sub_op;
125 static int    sub_op2;
126 
127 #define YYDEBUG 1
128 #define YYERROR_VERBOSE 1
129 
130 %}
131 
132 %name-prefix="rx_"
133 
134 %union {
135   int regno;
136   expressionS exp;
137 }
138 
139 %type <regno> REG FLAG CREG BCND BMCND SCCND
140 %type <regno> flag bwl bw memex
141 %type <exp> EXPR disp
142 
143 %token REG FLAG CREG
144 
145 %token EXPR UNKNOWN_OPCODE IS_OPCODE
146 
147 %token DOT_S DOT_B DOT_W DOT_L DOT_A DOT_UB DOT_UW
148 
149 %token ABS ADC ADD AND_
150 %token BCLR BCND BMCND BNOT BRA BRK BSET BSR BTST
151 %token CLRPSW CMP
152 %token DBT DIV DIVU
153 %token EDIV EDIVU EMUL EMULU
154 %token FADD FCMP FDIV FMUL FREIT FSUB FTOI
155 %token INT ITOF
156 %token JMP JSR
157 %token MACHI MACLO MAX MIN MOV MOVU MUL MULHI MULLO MULU MVFACHI MVFACMI MVFACLO
158 %token   MVFC MVTACHI MVTACLO MVTC MVTIPL
159 %token NEG NOP NOT
160 %token OR
161 %token POP POPC POPM PUSH PUSHA PUSHC PUSHM
162 %token RACW REIT REVL REVW RMPA ROLC RORC ROTL ROTR ROUND RTE RTFI RTS RTSD
163 %token SAT SATR SBB SCCND SCMPU SETPSW SHAR SHLL SHLR SMOVB SMOVF
164 %token   SMOVU SSTR STNZ STOP STZ SUB SUNTIL SWHILE
165 %token TST
166 %token WAIT
167 %token XCHG XOR
168 
169 %%
170 /* ====================================================================== */
171 
172 statement :
173 
174 	  UNKNOWN_OPCODE
175 	  { as_bad (_("Unknown opcode: %s"), rx_init_start); }
176 
177 /* ---------------------------------------------------------------------- */
178 
179 	| BRK
180 	  { B1 (0x00); }
181 
182 	| DBT
183 	  { B1 (0x01); }
184 
185 	| RTS
186 	  { B1 (0x02); }
187 
188 	| NOP
189 	  { B1 (0x03); }
190 
191 /* ---------------------------------------------------------------------- */
192 
193 	| BRA EXPR
194 	  { if (rx_disp3op ($2))
195 	      { B1 (0x08); rx_disp3 ($2, 5); }
196 	    else if (rx_intop ($2, 8, 8))
197 	      { B1 (0x2e); PC1 ($2); }
198 	    else if (rx_intop ($2, 16, 16))
199 	      { B1 (0x38); PC2 ($2); }
200 	    else if (rx_intop ($2, 24, 24))
201 	      { B1 (0x04); PC3 ($2); }
202 	    else
203 	      { rx_relax (RX_RELAX_BRANCH, 0);
204 		rx_linkrelax_branch ();
205 		/* We'll convert this to a longer one later if needed.  */
206 		B1 (0x08); rx_disp3 ($2, 5); } }
207 
208 	| BRA DOT_A EXPR
209 	  { B1 (0x04); PC3 ($3); }
210 
211 	| BRA DOT_S EXPR
212 	  { B1 (0x08); rx_disp3 ($3, 5); }
213 
214 /* ---------------------------------------------------------------------- */
215 
216 	| BSR EXPR
217 	  { if (rx_intop ($2, 16, 16))
218 	      { B1 (0x39); PC2 ($2); }
219 	    else if (rx_intop ($2, 24, 24))
220 	      { B1 (0x05); PC3 ($2); }
221 	    else
222 	      { rx_relax (RX_RELAX_BRANCH, 0);
223 		rx_linkrelax_branch ();
224 		B1 (0x39); PC2 ($2); } }
225 	| BSR DOT_A EXPR
226 	  { B1 (0x05), PC3 ($3); }
227 
228 /* ---------------------------------------------------------------------- */
229 
230 	| BCND DOT_S EXPR
231 	  { if ($1 == COND_EQ || $1 == COND_NE)
232 	      { B1 ($1 == COND_EQ ? 0x10 : 0x18); rx_disp3 ($3, 5); }
233 	    else
234 	      as_bad (_("Only BEQ and BNE may have .S")); }
235 
236 /* ---------------------------------------------------------------------- */
237 
238 	| BCND DOT_B EXPR
239 	  { B1 (0x20); F ($1, 4, 4); PC1 ($3); }
240 
241 	| BRA DOT_B EXPR
242 	  { B1 (0x2e), PC1 ($3); }
243 
244 /* ---------------------------------------------------------------------- */
245 
246 	| BRA DOT_W EXPR
247 	  { B1 (0x38), PC2 ($3); }
248 	| BSR DOT_W EXPR
249 	  { B1 (0x39), PC2 ($3); }
250 	| BCND DOT_W EXPR
251 	  { if ($1 == COND_EQ || $1 == COND_NE)
252 	      { B1 ($1 == COND_EQ ? 0x3a : 0x3b); PC2 ($3); }
253 	    else
254 	      as_bad (_("Only BEQ and BNE may have .W")); }
255 	| BCND EXPR
256 	  { if ($1 == COND_EQ || $1 == COND_NE)
257 	      {
258 		rx_relax (RX_RELAX_BRANCH, 0);
259 		rx_linkrelax_branch ();
260 		B1 ($1 == COND_EQ ? 0x10 : 0x18); rx_disp3 ($2, 5);
261 	      }
262 	    else
263 	      {
264 		rx_relax (RX_RELAX_BRANCH, 0);
265 		/* This is because we might turn it into a
266 		   jump-over-jump long branch.  */
267 		rx_linkrelax_branch ();
268 	        B1 (0x20); F ($1, 4, 4); PC1 ($2);
269 	      } }
270 
271 /* ---------------------------------------------------------------------- */
272 
273 	| MOV DOT_B '#' EXPR ',' disp '[' REG ']'
274 	  /* rx_disp5op changes the value if it succeeds, so keep it last.  */
275 	  { if ($8 <= 7 && rx_uintop ($4, 8) && rx_disp5op0 (&$6, BSIZE))
276 	      { B2 (0x3c, 0); rx_field5s2 ($6); F ($8, 9, 3); O1 ($4); }
277 	    else
278 	      { B2 (0xf8, 0x04); F ($8, 8, 4); DSP ($6, 6, BSIZE); O1 ($4);
279 	      if ($4.X_op != O_constant && $4.X_op != O_big) rx_linkrelax_imm (12); } }
280 
281 	| MOV DOT_W '#' EXPR ',' disp '[' REG ']'
282 	  { if ($8 <= 7 && rx_uintop ($4, 8) && rx_disp5op0 (&$6, WSIZE))
283 	      { B2 (0x3d, 0); rx_field5s2 ($6); F ($8, 9, 3); O1 ($4); }
284 	    else
285 	      { B2 (0xf8, 0x01); F ($8, 8, 4); DSP ($6, 6, WSIZE); IMMW ($4, 12); } }
286 
287 	| MOV DOT_L '#' EXPR ',' disp '[' REG ']'
288 	  { if ($8 <= 7 && rx_uintop ($4, 8) && rx_disp5op0 (&$6, LSIZE))
289 	      { B2 (0x3e, 0); rx_field5s2 ($6); F ($8, 9, 3); O1 ($4); }
290 	    else
291 	      { B2 (0xf8, 0x02); F ($8, 8, 4); DSP ($6, 6, LSIZE); IMM ($4, 12); } }
292 
293 /* ---------------------------------------------------------------------- */
294 
295 	| RTSD '#' EXPR ',' REG '-' REG
296 	  { B2 (0x3f, 0); F ($5, 8, 4); F ($7, 12, 4); rtsd_immediate ($3);
297 	    if ($5 == 0)
298 	      rx_error (_("RTSD cannot pop R0"));
299 	    if ($5 > $7)
300 	      rx_error (_("RTSD first reg must be <= second reg")); }
301 
302 /* ---------------------------------------------------------------------- */
303 
304 	| CMP REG ',' REG
305 	  { B2 (0x47, 0); F ($2, 8, 4); F ($4, 12, 4); }
306 
307 /* ---------------------------------------------------------------------- */
308 
309 	| CMP disp '[' REG ']' DOT_UB ',' REG
310 	  { B2 (0x44, 0); F ($4, 8, 4); F ($8, 12, 4); DSP ($2, 6, BSIZE); }
311 
312 	| CMP disp '[' REG ']' memex ',' REG
313 	  { B3 (MEMEX, 0x04, 0); F ($6, 8, 2);  F ($4, 16, 4); F ($8, 20, 4); DSP ($2, 14, sizemap[$6]); }
314 
315 /* ---------------------------------------------------------------------- */
316 
317 	| MOVU bw REG ',' REG
318 	  { B2 (0x5b, 0x00); F ($2, 5, 1); F ($3, 8, 4); F ($5, 12, 4); }
319 
320 /* ---------------------------------------------------------------------- */
321 
322 	| MOVU bw '[' REG ']' ',' REG
323 	  { B2 (0x58, 0x00); F ($2, 5, 1); F ($4, 8, 4); F ($7, 12, 4); }
324 
325 	| MOVU bw EXPR '[' REG ']' ',' REG
326 	  { if ($5 <= 7 && $8 <= 7 && rx_disp5op (&$3, $2))
327 	      { B2 (0xb0, 0); F ($2, 4, 1); F ($5, 9, 3); F ($8, 13, 3); rx_field5s ($3); }
328 	    else
329 	      { B2 (0x58, 0x00); F ($2, 5, 1); F ($5, 8, 4); F ($8, 12, 4); DSP ($3, 6, $2); } }
330 
331 /* ---------------------------------------------------------------------- */
332 
333 	| SUB '#' EXPR ',' REG
334 	  { if (rx_uintop ($3, 4))
335 	      { B2 (0x60, 0); FE ($3, 8, 4); F ($5, 12, 4); }
336 	    else
337 	      /* This is really an add, but we negate the immediate.  */
338 	      { B2 (0x70, 0); F ($5, 8, 4); F ($5, 12, 4); NIMM ($3, 6); } }
339 
340 	| CMP '#' EXPR ',' REG
341 	  { if (rx_uintop ($3, 4))
342 	      { B2 (0x61, 0); FE ($3, 8, 4); F ($5, 12, 4); }
343 	    else if (rx_uintop ($3, 8))
344 	      { B2 (0x75, 0x50); F ($5, 12, 4); UO1 ($3); }
345 	    else
346 	      { B2 (0x74, 0x00); F ($5, 12, 4); IMM ($3, 6); } }
347 
348 	| ADD '#' EXPR ',' REG
349 	  { if (rx_uintop ($3, 4))
350 	      { B2 (0x62, 0); FE ($3, 8, 4); F ($5, 12, 4); }
351 	    else
352 	      { B2 (0x70, 0); F ($5, 8, 4); F ($5, 12, 4); IMM ($3, 6); } }
353 
354 	| MUL '#' EXPR ',' REG
355 	  { if (rx_uintop ($3, 4))
356 	      { B2 (0x63, 0); FE ($3, 8, 4); F ($5, 12, 4); }
357 	    else
358 	      { B2 (0x74, 0x10); F ($5, 12, 4); IMM ($3, 6); } }
359 
360 	| AND_ '#' EXPR ',' REG
361 	  { if (rx_uintop ($3, 4))
362 	      { B2 (0x64, 0); FE ($3, 8, 4); F ($5, 12, 4); }
363 	    else
364 	      { B2 (0x74, 0x20); F ($5, 12, 4); IMM ($3, 6); } }
365 
366 	| OR '#' EXPR ',' REG
367 	  { if (rx_uintop ($3, 4))
368 	      { B2 (0x65, 0); FE ($3, 8, 4); F ($5, 12, 4); }
369 	    else
370 	      { B2 (0x74, 0x30); F ($5, 12, 4); IMM ($3, 6); } }
371 
372 	| MOV DOT_L '#' EXPR ',' REG
373 	  { if (rx_uintop ($4, 4))
374 	      { B2 (0x66, 0); FE ($4, 8, 4); F ($6, 12, 4); }
375 	    else if (rx_uintop ($4, 8))
376 	      { B2 (0x75, 0x40); F ($6, 12, 4); UO1 ($4); }
377 	    else
378 	      { B2 (0xfb, 0x02); F ($6, 8, 4); IMM ($4, 12); } }
379 
380 	| MOV '#' EXPR ',' REG
381 	  { if (rx_uintop ($3, 4))
382 	      { B2 (0x66, 0); FE ($3, 8, 4); F ($5, 12, 4); }
383 	    else if (rx_uintop ($3, 8))
384 	      { B2 (0x75, 0x40); F ($5, 12, 4); UO1 ($3); }
385 	    else
386 	      { B2 (0xfb, 0x02); F ($5, 8, 4); IMM ($3, 12); } }
387 
388 /* ---------------------------------------------------------------------- */
389 
390 	| RTSD '#' EXPR
391 	  { B1 (0x67); rtsd_immediate ($3); }
392 
393 /* ---------------------------------------------------------------------- */
394 
395 	| SHLR { sub_op = 0; } op_shift
396 	| SHAR { sub_op = 1; } op_shift
397 	| SHLL { sub_op = 2; } op_shift
398 
399 /* ---------------------------------------------------------------------- */
400 
401 	| PUSHM REG '-' REG
402 	  {
403 	    if ($2 == $4)
404 	      { B2 (0x7e, 0x80); F (LSIZE, 10, 2); F ($2, 12, 4); }
405 	    else
406 	     { B2 (0x6e, 0); F ($2, 8, 4); F ($4, 12, 4); }
407 	    if ($2 == 0)
408 	      rx_error (_("PUSHM cannot push R0"));
409 	    if ($2 > $4)
410 	      rx_error (_("PUSHM first reg must be <= second reg")); }
411 
412 /* ---------------------------------------------------------------------- */
413 
414 	| POPM REG '-' REG
415 	  {
416 	    if ($2 == $4)
417 	      { B2 (0x7e, 0xb0); F ($2, 12, 4); }
418 	    else
419 	      { B2 (0x6f, 0); F ($2, 8, 4); F ($4, 12, 4); }
420 	    if ($2 == 0)
421 	      rx_error (_("POPM cannot pop R0"));
422 	    if ($2 > $4)
423 	      rx_error (_("POPM first reg must be <= second reg")); }
424 
425 /* ---------------------------------------------------------------------- */
426 
427 	| ADD '#' EXPR ',' REG ',' REG
428 	  { B2 (0x70, 0x00); F ($5, 8, 4); F ($7, 12, 4); IMM ($3, 6); }
429 
430 /* ---------------------------------------------------------------------- */
431 
432 	| INT '#' EXPR
433 	  { B2(0x75, 0x60), UO1 ($3); }
434 
435 /* ---------------------------------------------------------------------- */
436 
437 	| BSET '#' EXPR ',' REG
438 	  { B2 (0x78, 0); FE ($3, 7, 5); F ($5, 12, 4); }
439 	| BCLR '#' EXPR ',' REG
440 	  { B2 (0x7a, 0); FE ($3, 7, 5); F ($5, 12, 4); }
441 
442 /* ---------------------------------------------------------------------- */
443 
444 	| BTST '#' EXPR ',' REG
445 	  { B2 (0x7c, 0x00); FE ($3, 7, 5); F ($5, 12, 4); }
446 
447 /* ---------------------------------------------------------------------- */
448 
449 	| SAT REG
450 	  { B2 (0x7e, 0x30); F ($2, 12, 4); }
451 	| RORC REG
452 	  { B2 (0x7e, 0x40); F ($2, 12, 4); }
453 	| ROLC REG
454 	  { B2 (0x7e, 0x50); F ($2, 12, 4); }
455 
456 /* ---------------------------------------------------------------------- */
457 
458 	| PUSH bwl REG
459 	  { B2 (0x7e, 0x80); F ($2, 10, 2); F ($3, 12, 4); }
460 
461 /* ---------------------------------------------------------------------- */
462 
463 	| POP REG
464 	  { B2 (0x7e, 0xb0); F ($2, 12, 4); }
465 
466 /* ---------------------------------------------------------------------- */
467 
468 	| PUSHC CREG
469 	  { if ($2 < 16)
470 	      { B2 (0x7e, 0xc0); F ($2, 12, 4); }
471 	    else
472 	      as_bad (_("PUSHC can only push the first 16 control registers")); }
473 
474 /* ---------------------------------------------------------------------- */
475 
476 	| POPC CREG
477 	  { if ($2 < 16)
478 	      { B2 (0x7e, 0xe0); F ($2, 12, 4); }
479 	    else
480 	      as_bad (_("POPC can only pop the first 16 control registers")); }
481 
482 /* ---------------------------------------------------------------------- */
483 
484 	| SETPSW flag
485 	  { B2 (0x7f, 0xa0); F ($2, 12, 4); }
486 	| CLRPSW flag
487 	  { B2 (0x7f, 0xb0); F ($2, 12, 4); }
488 
489 /* ---------------------------------------------------------------------- */
490 
491 	| JMP REG
492 	  { B2 (0x7f, 0x00); F ($2, 12, 4); }
493 	| JSR REG
494 	  { B2 (0x7f, 0x10); F ($2, 12, 4); }
495 	| BRA opt_l REG
496 	  { B2 (0x7f, 0x40); F ($3, 12, 4); }
497 	| BSR opt_l REG
498 	  { B2 (0x7f, 0x50); F ($3, 12, 4); }
499 
500 /* ---------------------------------------------------------------------- */
501 
502 	| SCMPU
503 	  { B2 (0x7f, 0x83); }
504 	| SMOVU
505 	  { B2 (0x7f, 0x87); }
506 	| SMOVB
507 	  { B2 (0x7f, 0x8b); }
508 	| SMOVF
509 	  { B2 (0x7f, 0x8f); }
510 
511 /* ---------------------------------------------------------------------- */
512 
513 	| SUNTIL bwl
514 	  { B2 (0x7f, 0x80); F ($2, 14, 2); }
515 	| SWHILE bwl
516 	  { B2 (0x7f, 0x84); F ($2, 14, 2); }
517 	| SSTR bwl
518 	  { B2 (0x7f, 0x88); F ($2, 14, 2); }
519 
520 /* ---------------------------------------------------------------------- */
521 
522 	| RMPA bwl
523 	  { B2 (0x7f, 0x8c); F ($2, 14, 2); }
524 
525 /* ---------------------------------------------------------------------- */
526 
527 	| RTFI
528 	  { B2 (0x7f, 0x94); }
529 	| RTE
530 	  { B2 (0x7f, 0x95); }
531 	| WAIT
532 	  { B2 (0x7f, 0x96); }
533 	| SATR
534 	  { B2 (0x7f, 0x93); }
535 
536 /* ---------------------------------------------------------------------- */
537 
538 	| MVTIPL '#' EXPR
539 	  { B3 (0x75, 0x70, 0x00); FE ($3, 20, 4); }
540 
541 /* ---------------------------------------------------------------------- */
542 
543 	/* rx_disp5op changes the value if it succeeds, so keep it last.  */
544 	| MOV bwl REG ',' EXPR '[' REG ']'
545 	  { if ($3 <= 7 && $7 <= 7 && rx_disp5op (&$5, $2))
546 	      { B2 (0x80, 0); F ($2, 2, 2); F ($7, 9, 3); F ($3, 13, 3); rx_field5s ($5); }
547 	    else
548 	      { B2 (0xc3, 0x00); F ($2, 2, 2); F ($7, 8, 4); F ($3, 12, 4); DSP ($5, 4, $2); }}
549 
550 /* ---------------------------------------------------------------------- */
551 
552 	| MOV bwl EXPR '[' REG ']' ',' REG
553 	  { if ($5 <= 7 && $8 <= 7 && rx_disp5op (&$3, $2))
554 	      { B2 (0x88, 0); F ($2, 2, 2); F ($5, 9, 3); F ($8, 13, 3); rx_field5s ($3); }
555 	    else
556 	      { B2 (0xcc, 0x00); F ($2, 2, 2); F ($5, 8, 4); F ($8, 12, 4); DSP ($3, 6, $2); } }
557 
558 /* ---------------------------------------------------------------------- */
559 
560 	/* MOV a,b - if a is a reg and b is mem, src and dest are
561 	   swapped.  */
562 
563 	/* We don't use "disp" here because it causes a shift/reduce
564 	   conflict with the other displacement-less patterns.  */
565 
566 	| MOV bwl REG ',' '[' REG ']'
567 	  { B2 (0xc3, 0x00); F ($2, 2, 2); F ($6, 8, 4); F ($3, 12, 4); }
568 
569 /* ---------------------------------------------------------------------- */
570 
571 	| MOV bwl '[' REG ']' ',' disp '[' REG ']'
572 	  { B2 (0xc0, 0); F ($2, 2, 2); F ($4, 8, 4); F ($9, 12, 4); DSP ($7, 4, $2); }
573 
574 /* ---------------------------------------------------------------------- */
575 
576 	| MOV bwl EXPR '[' REG ']' ',' disp '[' REG ']'
577 	  { B2 (0xc0, 0x00); F ($2, 2, 2); F ($5, 8, 4); F ($10, 12, 4); DSP ($3, 6, $2); DSP ($8, 4, $2); }
578 
579 /* ---------------------------------------------------------------------- */
580 
581 	| MOV bwl REG ',' REG
582 	  { B2 (0xcf, 0x00); F ($2, 2, 2); F ($3, 8, 4); F ($5, 12, 4); }
583 
584 /* ---------------------------------------------------------------------- */
585 
586 	| MOV bwl '[' REG ']' ',' REG
587 	  { B2 (0xcc, 0x00); F ($2, 2, 2); F ($4, 8, 4); F ($7, 12, 4); }
588 
589 /* ---------------------------------------------------------------------- */
590 
591 	| BSET '#' EXPR ',' disp '[' REG ']' DOT_B
592 	  { B2 (0xf0, 0x00); F ($7, 8, 4); FE ($3, 13, 3); DSP ($5, 6, BSIZE); }
593 	| BCLR '#' EXPR ',' disp '[' REG ']' DOT_B
594 	  { B2 (0xf0, 0x08); F ($7, 8, 4); FE ($3, 13, 3); DSP ($5, 6, BSIZE); }
595 	| BTST '#' EXPR ',' disp '[' REG ']' DOT_B
596 	  { B2 (0xf4, 0x00); F ($7, 8, 4); FE ($3, 13, 3); DSP ($5, 6, BSIZE); }
597 
598 /* ---------------------------------------------------------------------- */
599 
600 	| PUSH bwl disp '[' REG ']'
601 	  { B2 (0xf4, 0x08); F ($2, 14, 2); F ($5, 8, 4); DSP ($3, 6, $2); }
602 
603 /* ---------------------------------------------------------------------- */
604 
605 	| SBB   { sub_op = 0; } op_dp20_rm_l
606 	| NEG   { sub_op = 1; sub_op2 = 1; } op_dp20_rr
607 	| ADC   { sub_op = 2; } op_dp20_rim_l
608 	| ABS   { sub_op = 3; sub_op2 = 2; } op_dp20_rr
609 	| MAX   { sub_op = 4; } op_dp20_rim
610 	| MIN   { sub_op = 5; } op_dp20_rim
611 	| EMUL  { sub_op = 6; } op_dp20_i
612 	| EMULU { sub_op = 7; } op_dp20_i
613 	| DIV   { sub_op = 8; } op_dp20_rim
614 	| DIVU  { sub_op = 9; } op_dp20_rim
615 	| TST   { sub_op = 12; } op_dp20_rim
616 	| XOR   { sub_op = 13; } op_dp20_rim
617 	| NOT   { sub_op = 14; sub_op2 = 0; } op_dp20_rr
618 	| STZ   { sub_op = 14; } op_dp20_i
619 	| STNZ  { sub_op = 15; } op_dp20_i
620 
621 /* ---------------------------------------------------------------------- */
622 
623 	| EMUL  { sub_op = 6; } op_xchg
624 	| EMULU { sub_op = 7; } op_xchg
625 	| XCHG  { sub_op = 16; } op_xchg
626 	| ITOF  { sub_op = 17; } op_xchg
627 
628 /* ---------------------------------------------------------------------- */
629 
630 	| BSET REG ',' REG
631 	  { id24 (1, 0x63, 0x00); F ($4, 16, 4); F ($2, 20, 4); }
632 	| BCLR REG ',' REG
633 	  { id24 (1, 0x67, 0x00); F ($4, 16, 4); F ($2, 20, 4); }
634 	| BTST REG ',' REG
635 	  { id24 (1, 0x6b, 0x00); F ($4, 16, 4); F ($2, 20, 4); }
636 	| BNOT REG ',' REG
637 	  { id24 (1, 0x6f, 0x00); F ($4, 16, 4); F ($2, 20, 4); }
638 
639 	| BSET REG ',' disp '[' REG ']' opt_b
640 	  { id24 (1, 0x60, 0x00); F ($6, 16, 4); F ($2, 20, 4); DSP ($4, 14, BSIZE); }
641 	| BCLR REG ',' disp '[' REG ']' opt_b
642 	  { id24 (1, 0x64, 0x00); F ($6, 16, 4); F ($2, 20, 4); DSP ($4, 14, BSIZE); }
643 	| BTST REG ',' disp '[' REG ']' opt_b
644 	  { id24 (1, 0x68, 0x00); F ($6, 16, 4); F ($2, 20, 4); DSP ($4, 14, BSIZE); }
645 	| BNOT REG ',' disp '[' REG ']' opt_b
646 	  { id24 (1, 0x6c, 0x00); F ($6, 16, 4); F ($2, 20, 4); DSP ($4, 14, BSIZE); }
647 
648 /* ---------------------------------------------------------------------- */
649 
650 	| FSUB  { sub_op = 0; } float2_op
651 	| FCMP  { sub_op = 1; } float2_op
652 	| FADD  { sub_op = 2; } float2_op
653 	| FMUL  { sub_op = 3; } float2_op
654 	| FDIV  { sub_op = 4; } float2_op
655 	| FTOI  { sub_op = 5; } float2_op_ni
656 	| ROUND { sub_op = 6; } float2_op_ni
657 
658 /* ---------------------------------------------------------------------- */
659 
660 	| SCCND DOT_L REG
661 	  { id24 (1, 0xdb, 0x00); F ($1, 20, 4); F ($3, 16, 4); }
662 	| SCCND bwl disp '[' REG ']'
663 	  { id24 (1, 0xd0, 0x00); F ($1, 20, 4); F ($2, 12, 2); F ($5, 16, 4); DSP ($3, 14, $2); }
664 
665 /* ---------------------------------------------------------------------- */
666 
667 	| BMCND '#' EXPR ',' disp '[' REG ']' opt_b
668 	  { id24 (1, 0xe0, 0x00); F ($1, 20, 4); FE ($3, 11, 3);
669 	      F ($7, 16, 4); DSP ($5, 14, BSIZE); }
670 
671 /* ---------------------------------------------------------------------- */
672 
673 	| BNOT '#' EXPR ',' disp '[' REG ']' opt_b
674 	  { id24 (1, 0xe0, 0x0f); FE ($3, 11, 3); F ($7, 16, 4);
675 	      DSP ($5, 14, BSIZE); }
676 
677 /* ---------------------------------------------------------------------- */
678 
679 	| MULHI REG ',' REG
680 	  { id24 (2, 0x00, 0x00); F ($2, 16, 4); F ($4, 20, 4); }
681 	| MULLO REG ',' REG
682 	  { id24 (2, 0x01, 0x00); F ($2, 16, 4); F ($4, 20, 4); }
683 	| MACHI REG ',' REG
684 	  { id24 (2, 0x04, 0x00); F ($2, 16, 4); F ($4, 20, 4); }
685 	| MACLO REG ',' REG
686 	  { id24 (2, 0x05, 0x00); F ($2, 16, 4); F ($4, 20, 4); }
687 
688 /* ---------------------------------------------------------------------- */
689 
690 	/* We don't have syntax for these yet.  */
691 	| MVTACHI REG
692 	  { id24 (2, 0x17, 0x00); F ($2, 20, 4); }
693 	| MVTACLO REG
694 	  { id24 (2, 0x17, 0x10); F ($2, 20, 4); }
695 	| MVFACHI REG
696 	  { id24 (2, 0x1f, 0x00); F ($2, 20, 4); }
697 	| MVFACMI REG
698 	  { id24 (2, 0x1f, 0x20); F ($2, 20, 4); }
699 	| MVFACLO REG
700 	  { id24 (2, 0x1f, 0x10); F ($2, 20, 4); }
701 
702 	| RACW '#' EXPR
703 	  { id24 (2, 0x18, 0x00);
704 	    if (rx_uintop ($3, 4) && $3.X_add_number == 1)
705 	      ;
706 	    else if (rx_uintop ($3, 4) && $3.X_add_number == 2)
707 	      F (1, 19, 1);
708 	    else
709 	      as_bad (_("RACW expects #1 or #2"));}
710 
711 /* ---------------------------------------------------------------------- */
712 
713 	| MOV bwl REG ',' '[' REG '+' ']'
714 	  { id24 (2, 0x20, 0); F ($2, 14, 2); F ($6, 16, 4); F ($3, 20, 4); }
715 	| MOV bwl REG ',' '[' '-' REG ']'
716 	  { id24 (2, 0x24, 0); F ($2, 14, 2); F ($7, 16, 4); F ($3, 20, 4); }
717 
718 /* ---------------------------------------------------------------------- */
719 
720 	| MOV bwl '[' REG '+' ']' ',' REG
721 	  { id24 (2, 0x28, 0); F ($2, 14, 2); F ($4, 16, 4); F ($8, 20, 4); }
722 	| MOV bwl '[' '-' REG ']' ',' REG
723 	  { id24 (2, 0x2c, 0); F ($2, 14, 2); F ($5, 16, 4); F ($8, 20, 4); }
724 
725 /* ---------------------------------------------------------------------- */
726 
727 	| MOVU bw '[' REG '+' ']' ','  REG
728 	  { id24 (2, 0x38, 0); F ($2, 15, 1); F ($4, 16, 4); F ($8, 20, 4); }
729 	| MOVU bw '[' '-' REG ']' ',' REG
730 	  { id24 (2, 0x3c, 0); F ($2, 15, 1); F ($5, 16, 4); F ($8, 20, 4); }
731 
732 /* ---------------------------------------------------------------------- */
733 
734 	| ROTL { sub_op = 6; } op_shift_rot
735 	| ROTR { sub_op = 4; } op_shift_rot
736 	| REVW { sub_op = 5; } op_shift_rot
737 	| REVL { sub_op = 7; } op_shift_rot
738 
739 /* ---------------------------------------------------------------------- */
740 
741 	| MVTC REG ',' CREG
742 	  { id24 (2, 0x68, 0x00); F ($4 % 16, 20, 4); F ($4 / 16, 15, 1);
743 	    F ($2, 16, 4); }
744 
745 /* ---------------------------------------------------------------------- */
746 
747 	| MVFC CREG ',' REG
748 	  { id24 (2, 0x6a, 0); F ($2, 15, 5); F ($4, 20, 4); }
749 
750 /* ---------------------------------------------------------------------- */
751 
752 	| ROTL '#' EXPR ',' REG
753 	  { id24 (2, 0x6e, 0); FE ($3, 15, 5); F ($5, 20, 4); }
754 	| ROTR '#' EXPR ',' REG
755 	  { id24 (2, 0x6c, 0); FE ($3, 15, 5); F ($5, 20, 4); }
756 
757 /* ---------------------------------------------------------------------- */
758 
759 	| MVTC '#' EXPR ',' CREG
760 	  { id24 (2, 0x73, 0x00); F ($5, 19, 5); IMM ($3, 12); }
761 
762 /* ---------------------------------------------------------------------- */
763 
764 	| BMCND '#' EXPR ',' REG
765 	  { id24 (2, 0xe0, 0x00); F ($1, 16, 4); FE ($3, 11, 5);
766 	      F ($5, 20, 4); }
767 
768 /* ---------------------------------------------------------------------- */
769 
770 	| BNOT '#' EXPR ',' REG
771 	  { id24 (2, 0xe0, 0xf0); FE ($3, 11, 5); F ($5, 20, 4); }
772 
773 /* ---------------------------------------------------------------------- */
774 
775 	| MOV bwl REG ',' '[' REG ',' REG ']'
776 	  { id24 (3, 0x00, 0); F ($2, 10, 2); F ($6, 12, 4); F ($8, 16, 4); F ($3, 20, 4); }
777 
778 	| MOV bwl '[' REG ',' REG ']' ',' REG
779 	  { id24 (3, 0x40, 0); F ($2, 10, 2); F ($4, 12, 4); F ($6, 16, 4); F ($9, 20, 4); }
780 
781 	| MOVU bw '[' REG ',' REG ']' ',' REG
782 	  { id24 (3, 0xc0, 0); F ($2, 10, 2); F ($4, 12, 4); F ($6, 16, 4); F ($9, 20, 4); }
783 
784 /* ---------------------------------------------------------------------- */
785 
786 	| SUB { sub_op = 0; } op_subadd
787 	| ADD { sub_op = 2; } op_subadd
788 	| MUL { sub_op = 3; } op_subadd
789 	| AND_ { sub_op = 4; } op_subadd
790 	| OR  { sub_op = 5; } op_subadd
791 
792 /* ---------------------------------------------------------------------- */
793 /* There is no SBB #imm so we fake it with ADC.  */
794 
795 	| SBB '#' EXPR ',' REG
796 	  { id24 (2, 0x70, 0x20); F ($5, 20, 4); NBIMM ($3, 12); }
797 
798 /* ---------------------------------------------------------------------- */
799 
800 	;
801 
802 /* ====================================================================== */
803 
804 op_subadd
805 	: REG ',' REG
806 	  { B2 (0x43 + (sub_op<<2), 0); F ($1, 8, 4); F ($3, 12, 4); }
807 	| disp '[' REG ']' DOT_UB ',' REG
808 	  { B2 (0x40 + (sub_op<<2), 0); F ($3, 8, 4); F ($7, 12, 4); DSP ($1, 6, BSIZE); }
809 	| disp '[' REG ']' memex ',' REG
810 	  { B3 (MEMEX, sub_op<<2, 0); F ($5, 8, 2); F ($3, 16, 4); F ($7, 20, 4); DSP ($1, 14, sizemap[$5]); }
811 	| REG ',' REG ',' REG
812 	  { id24 (4, sub_op<<4, 0), F ($5, 12, 4), F ($1, 16, 4), F ($3, 20, 4); }
813 	;
814 
815 /* sbb, neg, adc, abs, max, min, div, divu, tst, not, xor, stz, stnz, emul, emulu */
816 
817 op_dp20_rm_l
818 	: REG ',' REG
819 	  { id24 (1, 0x03 + (sub_op<<2), 0x00); F ($1, 16, 4); F ($3, 20, 4); }
820 	| disp '[' REG ']' opt_l ',' REG
821 	  { B4 (MEMEX, 0xa0, 0x00 + sub_op, 0x00);
822 	  F ($3, 24, 4); F ($7, 28, 4); DSP ($1, 14, LSIZE); }
823 	;
824 
825 /* neg, adc, abs, max, min, div, divu, tst, not, xor, stz, stnz, emul, emulu */
826 
827 op_dp20_rm
828 	: REG ',' REG
829 	  { id24 (1, 0x03 + (sub_op<<2), 0x00); F ($1, 16, 4); F ($3, 20, 4); }
830 	| disp '[' REG ']' DOT_UB ',' REG
831 	  { id24 (1, 0x00 + (sub_op<<2), 0x00); F ($3, 16, 4); F ($7, 20, 4); DSP ($1, 14, BSIZE); }
832 	| disp '[' REG ']' memex ',' REG
833 	  { B4 (MEMEX, 0x20 + ($5 << 6), 0x00 + sub_op, 0x00);
834 	  F ($3, 24, 4); F ($7, 28, 4); DSP ($1, 14, sizemap[$5]); }
835 	;
836 
837 op_dp20_i
838 	: '#' EXPR ',' REG
839 	  { id24 (2, 0x70, sub_op<<4); F ($4, 20, 4); IMM ($2, 12); }
840 	;
841 
842 op_dp20_rim
843 	: op_dp20_rm
844 	| op_dp20_i
845 	;
846 
847 op_dp20_rim_l
848 	: op_dp20_rm_l
849 	| op_dp20_i
850 	;
851 
852 op_dp20_rr
853 	: REG ',' REG
854 	  { id24 (1, 0x03 + (sub_op<<2), 0x00); F ($1, 16, 4); F ($3, 20, 4); }
855 	| REG
856 	  { B2 (0x7e, sub_op2 << 4); F ($1, 12, 4); }
857 	;
858 
859 /* xchg, itof, emul, emulu */
860 op_xchg
861 	: REG ',' REG
862 	  { id24 (1, 0x03 + (sub_op<<2), 0); F ($1, 16, 4); F ($3, 20, 4); }
863 	| disp '[' REG ']' DOT_UB ',' REG
864 	  { id24 (1, 0x00 + (sub_op<<2), 0); F ($3, 16, 4); F ($7, 20, 4); DSP ($1, 14, BSIZE); }
865 	| disp '[' REG ']' memex ',' REG
866 	  { B4 (MEMEX, 0x20, 0x00 + sub_op, 0); F ($5, 8, 2); F ($3, 24, 4); F ($7, 28, 4);
867 	    DSP ($1, 14, sizemap[$5]); }
868 	;
869 
870 /* 000:SHLR, 001:SHAR, 010:SHLL, 011:-, 100:ROTR, 101:REVW, 110:ROTL, 111:REVL */
871 op_shift_rot
872 	: REG ',' REG
873 	  { id24 (2, 0x60 + sub_op, 0); F ($1, 16, 4); F ($3, 20, 4); }
874 	;
875 op_shift
876 	: '#' EXPR ',' REG
877 	  { B2 (0x68 + (sub_op<<1), 0); FE ($2, 7, 5); F ($4, 12, 4); }
878 	| '#' EXPR ',' REG ',' REG
879 	  { id24 (2, 0x80 + (sub_op << 5), 0); FE ($2, 11, 5); F ($4, 16, 4); F ($6, 20, 4); }
880 	| op_shift_rot
881 	;
882 
883 
884 float2_op
885 	: { rx_check_float_support (); }
886 	  '#' EXPR ',' REG
887 	  { id24 (2, 0x72, sub_op << 4); F ($5, 20, 4); O4 ($3); }
888 	| float2_op_ni
889 	;
890 
891 float2_op_ni
892 	: { rx_check_float_support (); }
893 	  REG ',' REG
894 	  { id24 (1, 0x83 + (sub_op << 2), 0); F ($2, 16, 4); F ($4, 20, 4); }
895 	| { rx_check_float_support (); }
896 	  disp '[' REG ']' opt_l ',' REG
897 	  { id24 (1, 0x80 + (sub_op << 2), 0); F ($4, 16, 4); F ($8, 20, 4); DSP ($2, 14, LSIZE); }
898 	;
899 
900 /* ====================================================================== */
901 
902 disp	:      { $$ = zero_expr (); }
903 	| EXPR { $$ = $1; }
904 	;
905 
906 flag	: { need_flag = 1; } FLAG { need_flag = 0; $$ = $2; }
907 	;
908 
909 /* DOT_UB is not listed here, it's handled with a separate pattern.  */
910 /* Use sizemap[$n] to get LSIZE etc.  */
911 memex	: DOT_B  { $$ = 0; }
912 	| DOT_W  { $$ = 1; }
913 	|        { $$ = 2; }
914 	| DOT_L  { $$ = 2; }
915 	| DOT_UW { $$ = 3; }
916 	;
917 
918 bwl	:       { $$ = LSIZE; }
919 	| DOT_B { $$ = BSIZE; }
920 	| DOT_W { $$ = WSIZE; }
921 	| DOT_L { $$ = LSIZE; }
922 	;
923 
924 bw	:       { $$ = 1; }
925 	| DOT_B { $$ = 0; }
926 	| DOT_W { $$ = 1; }
927 	;
928 
929 opt_l	: 	{}
930 	| DOT_L {}
931 	;
932 
933 opt_b	: 	{}
934 	| DOT_B {}
935 	;
936 
937 %%
938 /* ====================================================================== */
939 
940 static struct
941 {
942   const char * string;
943   int          token;
944   int          val;
945 }
946 token_table[] =
947 {
948   { "r0", REG, 0 },
949   { "r1", REG, 1 },
950   { "r2", REG, 2 },
951   { "r3", REG, 3 },
952   { "r4", REG, 4 },
953   { "r5", REG, 5 },
954   { "r6", REG, 6 },
955   { "r7", REG, 7 },
956   { "r8", REG, 8 },
957   { "r9", REG, 9 },
958   { "r10", REG, 10 },
959   { "r11", REG, 11 },
960   { "r12", REG, 12 },
961   { "r13", REG, 13 },
962   { "r14", REG, 14 },
963   { "r15", REG, 15 },
964 
965   { "psw", CREG, 0 },
966   { "pc", CREG, 1 },
967   { "usp", CREG, 2 },
968   { "fpsw", CREG, 3 },
969   /* reserved */
970   /* reserved */
971   /* reserved */
972   { "wr", CREG, 7 },
973 
974   { "bpsw", CREG, 8 },
975   { "bpc", CREG, 9 },
976   { "isp", CREG, 10 },
977   { "fintv", CREG, 11 },
978   { "intb", CREG, 12 },
979 
980   { "pbp", CREG, 16 },
981   { "pben", CREG, 17 },
982 
983   { "bbpsw", CREG, 24 },
984   { "bbpc", CREG, 25 },
985 
986   { ".s", DOT_S, 0 },
987   { ".b", DOT_B, 0 },
988   { ".w", DOT_W, 0 },
989   { ".l", DOT_L, 0 },
990   { ".a", DOT_A , 0},
991   { ".ub", DOT_UB, 0 },
992   { ".uw", DOT_UW , 0},
993 
994   { "c", FLAG, 0 },
995   { "z", FLAG, 1 },
996   { "s", FLAG, 2 },
997   { "o", FLAG, 3 },
998   { "i", FLAG, 8 },
999   { "u", FLAG, 9 },
1000 
1001 #define OPC(x) { #x, x, IS_OPCODE }
1002   OPC(ABS),
1003   OPC(ADC),
1004   OPC(ADD),
1005   { "and", AND_, IS_OPCODE },
1006   OPC(BCLR),
1007   OPC(BCND),
1008   OPC(BMCND),
1009   OPC(BNOT),
1010   OPC(BRA),
1011   OPC(BRK),
1012   OPC(BSET),
1013   OPC(BSR),
1014   OPC(BTST),
1015   OPC(CLRPSW),
1016   OPC(CMP),
1017   OPC(DBT),
1018   OPC(DIV),
1019   OPC(DIVU),
1020   OPC(EDIV),
1021   OPC(EDIVU),
1022   OPC(EMUL),
1023   OPC(EMULU),
1024   OPC(FADD),
1025   OPC(FCMP),
1026   OPC(FDIV),
1027   OPC(FMUL),
1028   OPC(FREIT),
1029   OPC(FSUB),
1030   OPC(FTOI),
1031   OPC(INT),
1032   OPC(ITOF),
1033   OPC(JMP),
1034   OPC(JSR),
1035   OPC(MVFACHI),
1036   OPC(MVFACMI),
1037   OPC(MVFACLO),
1038   OPC(MVFC),
1039   OPC(MVTACHI),
1040   OPC(MVTACLO),
1041   OPC(MVTC),
1042   OPC(MVTIPL),
1043   OPC(MACHI),
1044   OPC(MACLO),
1045   OPC(MAX),
1046   OPC(MIN),
1047   OPC(MOV),
1048   OPC(MOVU),
1049   OPC(MUL),
1050   OPC(MULHI),
1051   OPC(MULLO),
1052   OPC(MULU),
1053   OPC(NEG),
1054   OPC(NOP),
1055   OPC(NOT),
1056   OPC(OR),
1057   OPC(POP),
1058   OPC(POPC),
1059   OPC(POPM),
1060   OPC(PUSH),
1061   OPC(PUSHA),
1062   OPC(PUSHC),
1063   OPC(PUSHM),
1064   OPC(RACW),
1065   OPC(REIT),
1066   OPC(REVL),
1067   OPC(REVW),
1068   OPC(RMPA),
1069   OPC(ROLC),
1070   OPC(RORC),
1071   OPC(ROTL),
1072   OPC(ROTR),
1073   OPC(ROUND),
1074   OPC(RTE),
1075   OPC(RTFI),
1076   OPC(RTS),
1077   OPC(RTSD),
1078   OPC(SAT),
1079   OPC(SATR),
1080   OPC(SBB),
1081   OPC(SCCND),
1082   OPC(SCMPU),
1083   OPC(SETPSW),
1084   OPC(SHAR),
1085   OPC(SHLL),
1086   OPC(SHLR),
1087   OPC(SMOVB),
1088   OPC(SMOVF),
1089   OPC(SMOVU),
1090   OPC(SSTR),
1091   OPC(STNZ),
1092   OPC(STOP),
1093   OPC(STZ),
1094   OPC(SUB),
1095   OPC(SUNTIL),
1096   OPC(SWHILE),
1097   OPC(TST),
1098   OPC(WAIT),
1099   OPC(XCHG),
1100   OPC(XOR),
1101 };
1102 
1103 #define NUM_TOKENS (sizeof (token_table) / sizeof (token_table[0]))
1104 
1105 static struct
1106 {
1107   char * string;
1108   int    token;
1109 }
1110 condition_opcode_table[] =
1111 {
1112   { "b", BCND },
1113   { "bm", BMCND },
1114   { "sc", SCCND },
1115 };
1116 
1117 #define NUM_CONDITION_OPCODES (sizeof (condition_opcode_table) / sizeof (condition_opcode_table[0]))
1118 
1119 static struct
1120 {
1121   char * string;
1122   int    val;
1123 }
1124 condition_table[] =
1125 {
1126   { "z", 0 },
1127   { "eq", 0 },
1128   { "geu",  2 },
1129   { "c",  2 },
1130   { "gtu", 4 },
1131   { "pz", 6 },
1132   { "ge", 8 },
1133   { "gt", 10 },
1134   { "o",  12},
1135   /* always = 14 */
1136   { "nz", 1 },
1137   { "ne", 1 },
1138   { "ltu", 3 },
1139   { "nc", 3 },
1140   { "leu", 5 },
1141   { "n", 7 },
1142   { "lt", 9 },
1143   { "le", 11 },
1144   { "no", 13 }
1145   /* never = 15 */
1146 };
1147 
1148 #define NUM_CONDITIONS (sizeof (condition_table) / sizeof (condition_table[0]))
1149 
1150 void
rx_lex_init(char * beginning,char * ending)1151 rx_lex_init (char * beginning, char * ending)
1152 {
1153   rx_init_start = beginning;
1154   rx_lex_start = beginning;
1155   rx_lex_end = ending;
1156   rx_in_brackets = 0;
1157   rx_last_token = 0;
1158 
1159   setbuf (stdout, 0);
1160 }
1161 
1162 static int
check_condition(char * base)1163 check_condition (char * base)
1164 {
1165   char * cp;
1166   unsigned int i;
1167 
1168   if ((unsigned) (rx_lex_end - rx_lex_start) < strlen (base) + 1)
1169     return 0;
1170   if (memcmp (rx_lex_start, base, strlen (base)))
1171     return 0;
1172   cp = rx_lex_start + strlen (base);
1173   for (i = 0; i < NUM_CONDITIONS; i ++)
1174     {
1175       if (strcasecmp (cp, condition_table[i].string) == 0)
1176 	{
1177 	  rx_lval.regno = condition_table[i].val;
1178 	  return 1;
1179 	}
1180     }
1181   return 0;
1182 }
1183 
1184 static int
rx_lex(void)1185 rx_lex (void)
1186 {
1187   unsigned int ci;
1188   char * save_input_pointer;
1189 
1190   while (ISSPACE (*rx_lex_start)
1191 	 && rx_lex_start != rx_lex_end)
1192     rx_lex_start ++;
1193 
1194   rx_last_exp_start = rx_lex_start;
1195 
1196   if (rx_lex_start == rx_lex_end)
1197     return 0;
1198 
1199   if (ISALPHA (*rx_lex_start)
1200       || (rx_pid_register != -1 && memcmp (rx_lex_start, "%pidreg", 7) == 0)
1201       || (rx_gp_register != -1 && memcmp (rx_lex_start, "%gpreg", 6) == 0)
1202       || (*rx_lex_start == '.' && ISALPHA (rx_lex_start[1])))
1203     {
1204       unsigned int i;
1205       char * e;
1206       char save;
1207 
1208       for (e = rx_lex_start + 1;
1209 	   e < rx_lex_end && ISALNUM (*e);
1210 	   e ++)
1211 	;
1212       save = *e;
1213       *e = 0;
1214 
1215       if (strcmp (rx_lex_start, "%pidreg") == 0)
1216 	{
1217 	  {
1218 	    rx_lval.regno = rx_pid_register;
1219 	    *e = save;
1220 	    rx_lex_start = e;
1221 	    rx_last_token = REG;
1222 	    return REG;
1223 	  }
1224 	}
1225 
1226       if (strcmp (rx_lex_start, "%gpreg") == 0)
1227 	{
1228 	  {
1229 	    rx_lval.regno = rx_gp_register;
1230 	    *e = save;
1231 	    rx_lex_start = e;
1232 	    rx_last_token = REG;
1233 	    return REG;
1234 	  }
1235 	}
1236 
1237       if (rx_last_token == 0)
1238 	for (ci = 0; ci < NUM_CONDITION_OPCODES; ci ++)
1239 	  if (check_condition (condition_opcode_table[ci].string))
1240 	    {
1241 	      *e = save;
1242 	      rx_lex_start = e;
1243 	      rx_last_token = condition_opcode_table[ci].token;
1244 	      return condition_opcode_table[ci].token;
1245 	    }
1246 
1247       for (i = 0; i < NUM_TOKENS; i++)
1248 	if (strcasecmp (rx_lex_start, token_table[i].string) == 0
1249 	    && !(token_table[i].val == IS_OPCODE && rx_last_token != 0)
1250 	    && !(token_table[i].token == FLAG && !need_flag))
1251 	  {
1252 	    rx_lval.regno = token_table[i].val;
1253 	    *e = save;
1254 	    rx_lex_start = e;
1255 	    rx_last_token = token_table[i].token;
1256 	    return token_table[i].token;
1257 	  }
1258       *e = save;
1259     }
1260 
1261   if (rx_last_token == 0)
1262     {
1263       rx_last_token = UNKNOWN_OPCODE;
1264       return UNKNOWN_OPCODE;
1265     }
1266 
1267   if (rx_last_token == UNKNOWN_OPCODE)
1268     return 0;
1269 
1270   if (*rx_lex_start == '[')
1271     rx_in_brackets = 1;
1272   if (*rx_lex_start == ']')
1273     rx_in_brackets = 0;
1274 
1275   if (rx_in_brackets
1276       || rx_last_token == REG
1277       || strchr ("[],#", *rx_lex_start))
1278     {
1279       rx_last_token = *rx_lex_start;
1280       return *rx_lex_start ++;
1281     }
1282 
1283   save_input_pointer = input_line_pointer;
1284   input_line_pointer = rx_lex_start;
1285   rx_lval.exp.X_md = 0;
1286   expression (&rx_lval.exp);
1287 
1288   /* We parse but ignore any :<size> modifier on expressions.  */
1289   if (*input_line_pointer == ':')
1290     {
1291       char *cp;
1292 
1293       for (cp  = input_line_pointer + 1; *cp && cp < rx_lex_end; cp++)
1294 	if (!ISDIGIT (*cp))
1295 	  break;
1296       if (cp > input_line_pointer+1)
1297 	input_line_pointer = cp;
1298     }
1299 
1300   rx_lex_start = input_line_pointer;
1301   input_line_pointer = save_input_pointer;
1302   rx_last_token = EXPR;
1303   return EXPR;
1304 }
1305 
1306 int
rx_error(const char * str)1307 rx_error (const char * str)
1308 {
1309   int len;
1310 
1311   len = rx_last_exp_start - rx_init_start;
1312 
1313   as_bad ("%s", rx_init_start);
1314   as_bad ("%*s^ %s", len, "", str);
1315   return 0;
1316 }
1317 
1318 static int
rx_intop(expressionS exp,int nbits,int opbits)1319 rx_intop (expressionS exp, int nbits, int opbits)
1320 {
1321   long v;
1322   long mask, msb;
1323 
1324   if (exp.X_op == O_big && nbits == 32)
1325       return 1;
1326   if (exp.X_op != O_constant)
1327     return 0;
1328   v = exp.X_add_number;
1329 
1330   msb = 1UL << (opbits - 1);
1331   mask = (1UL << opbits) - 1;
1332 
1333   if ((v & msb) && ! (v & ~mask))
1334     v -= 1UL << opbits;
1335 
1336   switch (nbits)
1337     {
1338     case 4:
1339       return -0x8 <= v && v <= 0x7;
1340     case 5:
1341       return -0x10 <= v && v <= 0x17;
1342     case 8:
1343       return -0x80 <= v && v <= 0x7f;
1344     case 16:
1345       return -0x8000 <= v && v <= 0x7fff;
1346     case 24:
1347       return -0x800000 <= v && v <= 0x7fffff;
1348     case 32:
1349       return 1;
1350     default:
1351       printf ("rx_intop passed %d\n", nbits);
1352       abort ();
1353     }
1354   return 1;
1355 }
1356 
1357 static int
rx_uintop(expressionS exp,int nbits)1358 rx_uintop (expressionS exp, int nbits)
1359 {
1360   unsigned long v;
1361 
1362   if (exp.X_op != O_constant)
1363     return 0;
1364   v = exp.X_add_number;
1365 
1366   switch (nbits)
1367     {
1368     case 4:
1369       return v <= 0xf;
1370     case 8:
1371       return v <= 0xff;
1372     case 16:
1373       return v <= 0xffff;
1374     case 24:
1375       return v <= 0xffffff;
1376     default:
1377       printf ("rx_uintop passed %d\n", nbits);
1378       abort ();
1379     }
1380   return 1;
1381 }
1382 
1383 static int
rx_disp3op(expressionS exp)1384 rx_disp3op (expressionS exp)
1385 {
1386   unsigned long v;
1387 
1388   if (exp.X_op != O_constant)
1389     return 0;
1390   v = exp.X_add_number;
1391   if (v < 3 || v > 10)
1392     return 0;
1393   return 1;
1394 }
1395 
1396 static int
rx_disp5op(expressionS * exp,int msize)1397 rx_disp5op (expressionS * exp, int msize)
1398 {
1399   long v;
1400 
1401   if (exp->X_op != O_constant)
1402     return 0;
1403   v = exp->X_add_number;
1404 
1405   switch (msize)
1406     {
1407     case BSIZE:
1408       if (0 < v && v <= 31)
1409 	return 1;
1410       break;
1411     case WSIZE:
1412       if (v & 1)
1413 	return 0;
1414       if (0 < v && v <= 63)
1415 	{
1416 	  exp->X_add_number >>= 1;
1417 	  return 1;
1418 	}
1419       break;
1420     case LSIZE:
1421       if (v & 3)
1422 	return 0;
1423       if (0 < v && v <= 127)
1424 	{
1425 	  exp->X_add_number >>= 2;
1426 	  return 1;
1427 	}
1428       break;
1429     }
1430   return 0;
1431 }
1432 
1433 /* Just like the above, but allows a zero displacement.  */
1434 
1435 static int
rx_disp5op0(expressionS * exp,int msize)1436 rx_disp5op0 (expressionS * exp, int msize)
1437 {
1438   if (exp->X_op != O_constant)
1439     return 0;
1440   if (exp->X_add_number == 0)
1441     return 1;
1442   return rx_disp5op (exp, msize);
1443 }
1444 
1445 static int
exp_val(expressionS exp)1446 exp_val (expressionS exp)
1447 {
1448   if (exp.X_op != O_constant)
1449   {
1450     rx_error (_("constant expected"));
1451     return 0;
1452   }
1453   return exp.X_add_number;
1454 }
1455 
1456 static expressionS
zero_expr(void)1457 zero_expr (void)
1458 {
1459   /* Static, so program load sets it to all zeros, which is what we want.  */
1460   static expressionS zero;
1461   zero.X_op = O_constant;
1462   return zero;
1463 }
1464 
1465 static int
immediate(expressionS exp,int type,int pos,int bits)1466 immediate (expressionS exp, int type, int pos, int bits)
1467 {
1468   /* We will emit constants ourself here, so negate them.  */
1469   if (type == RXREL_NEGATIVE && exp.X_op == O_constant)
1470     exp.X_add_number = - exp.X_add_number;
1471   if (type == RXREL_NEGATIVE_BORROW)
1472     {
1473       if (exp.X_op == O_constant)
1474 	exp.X_add_number = - exp.X_add_number - 1;
1475       else
1476 	rx_error (_("sbb cannot use symbolic immediates"));
1477     }
1478 
1479   if (rx_intop (exp, 8, bits))
1480     {
1481       rx_op (exp, 1, type);
1482       return 1;
1483     }
1484   else if (rx_intop (exp, 16, bits))
1485     {
1486       rx_op (exp, 2, type);
1487       return 2;
1488     }
1489   else if (rx_uintop (exp, 16) && bits == 16)
1490     {
1491       rx_op (exp, 2, type);
1492       return 2;
1493     }
1494   else if (rx_intop (exp, 24, bits))
1495     {
1496       rx_op (exp, 3, type);
1497       return 3;
1498     }
1499   else if (rx_intop (exp, 32, bits))
1500     {
1501       rx_op (exp, 4, type);
1502       return 0;
1503     }
1504   else if (type == RXREL_SIGNED)
1505     {
1506       /* This is a symbolic immediate, we will relax it later.  */
1507       rx_relax (RX_RELAX_IMM, pos);
1508       rx_op (exp, linkrelax ? 4 : 1, type);
1509       return 1;
1510     }
1511   else
1512     {
1513       /* Let the linker deal with it.  */
1514       rx_op (exp, 4, type);
1515       return 0;
1516     }
1517 }
1518 
1519 static int
displacement(expressionS exp,int msize)1520 displacement (expressionS exp, int msize)
1521 {
1522   int val;
1523   int vshift = 0;
1524 
1525   if (exp.X_op == O_symbol
1526       && exp.X_md)
1527     {
1528       switch (exp.X_md)
1529 	{
1530 	case BFD_RELOC_GPREL16:
1531 	  switch (msize)
1532 	    {
1533 	    case BSIZE:
1534 	      exp.X_md = BFD_RELOC_RX_GPRELB;
1535 	      break;
1536 	    case WSIZE:
1537 	      exp.X_md = BFD_RELOC_RX_GPRELW;
1538 	      break;
1539 	    case LSIZE:
1540 	      exp.X_md = BFD_RELOC_RX_GPRELL;
1541 	      break;
1542 	    }
1543 	  O2 (exp);
1544 	  return 2;
1545 	}
1546     }
1547 
1548   if (exp.X_op == O_subtract)
1549     {
1550       exp.X_md = BFD_RELOC_RX_DIFF;
1551       O2 (exp);
1552       return 2;
1553     }
1554 
1555   if (exp.X_op != O_constant)
1556     {
1557       rx_error (_("displacements must be constants"));
1558       return -1;
1559     }
1560   val = exp.X_add_number;
1561 
1562   if (val == 0)
1563     return 0;
1564 
1565   switch (msize)
1566     {
1567     case BSIZE:
1568       break;
1569     case WSIZE:
1570       if (val & 1)
1571 	rx_error (_("word displacement not word-aligned"));
1572       vshift = 1;
1573       break;
1574     case LSIZE:
1575       if (val & 3)
1576 	rx_error (_("long displacement not long-aligned"));
1577       vshift = 2;
1578       break;
1579     default:
1580       as_bad (_("displacement with unknown size (internal bug?)\n"));
1581       break;
1582     }
1583 
1584   val >>= vshift;
1585   exp.X_add_number = val;
1586 
1587   if (0 <= val && val <= 255 )
1588     {
1589       O1 (exp);
1590       return 1;
1591     }
1592 
1593   if (0 <= val && val <= 65535)
1594     {
1595       O2 (exp);
1596       return 2;
1597     }
1598   if (val < 0)
1599     rx_error (_("negative displacements not allowed"));
1600   else
1601     rx_error (_("displacement too large"));
1602   return -1;
1603 }
1604 
1605 static void
rtsd_immediate(expressionS exp)1606 rtsd_immediate (expressionS exp)
1607 {
1608   int val;
1609 
1610   if (exp.X_op != O_constant)
1611     {
1612       rx_error (_("rtsd size must be constant"));
1613       return;
1614     }
1615   val = exp.X_add_number;
1616   if (val & 3)
1617     rx_error (_("rtsd size must be multiple of 4"));
1618 
1619   if (val < 0 || val > 1020)
1620     rx_error (_("rtsd size must be 0..1020"));
1621 
1622   val >>= 2;
1623   exp.X_add_number = val;
1624   O1 (exp);
1625 }
1626 
1627 static void
rx_range(expressionS exp,int minv,int maxv)1628 rx_range (expressionS exp, int minv, int maxv)
1629 {
1630   int val;
1631 
1632   if (exp.X_op != O_constant)
1633     return;
1634 
1635   val = exp.X_add_number;
1636   if (val < minv || val > maxv)
1637     as_warn (_("Value %d out of range %d..%d"), val, minv, maxv);
1638 }
1639 
1640 static void
rx_check_float_support(void)1641 rx_check_float_support (void)
1642 {
1643   if (rx_cpu == RX100 || rx_cpu == RX200)
1644     rx_error (_("target CPU type does not support floating point instructions"));
1645 }
1646