1 // aarch64.cc -- aarch64 target support for gold.
2
3 // Copyright (C) 2014-2015 Free Software Foundation, Inc.
4 // Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <map>
27 #include <set>
28
29 #include "elfcpp.h"
30 #include "dwarf.h"
31 #include "parameters.h"
32 #include "reloc.h"
33 #include "aarch64.h"
34 #include "object.h"
35 #include "symtab.h"
36 #include "layout.h"
37 #include "output.h"
38 #include "copy-relocs.h"
39 #include "target.h"
40 #include "target-reloc.h"
41 #include "target-select.h"
42 #include "tls.h"
43 #include "freebsd.h"
44 #include "nacl.h"
45 #include "gc.h"
46 #include "icf.h"
47 #include "aarch64-reloc-property.h"
48
49 // The first three .got.plt entries are reserved.
50 const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
51
52
53 namespace
54 {
55
56 using namespace gold;
57
58 template<int size, bool big_endian>
59 class Output_data_plt_aarch64;
60
61 template<int size, bool big_endian>
62 class Output_data_plt_aarch64_standard;
63
64 template<int size, bool big_endian>
65 class Target_aarch64;
66
67 template<int size, bool big_endian>
68 class AArch64_relocate_functions;
69
70 // Utility class dealing with insns. This is ported from macros in
71 // bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
72 // class is used in erratum sequence scanning.
73
74 template<bool big_endian>
75 class AArch64_insn_utilities
76 {
77 public:
78 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
79
80 static const int BYTES_PER_INSN;
81
82 // Zero register encoding - 31.
83 static const unsigned int AARCH64_ZR;
84
85 static unsigned int
aarch64_bit(Insntype insn,int pos)86 aarch64_bit(Insntype insn, int pos)
87 { return ((1 << pos) & insn) >> pos; }
88
89 static unsigned int
aarch64_bits(Insntype insn,int pos,int l)90 aarch64_bits(Insntype insn, int pos, int l)
91 { return (insn >> pos) & ((1 << l) - 1); }
92
93 // Get the encoding field "op31" of 3-source data processing insns. "op31" is
94 // the name defined in armv8 insn manual C3.5.9.
95 static unsigned int
aarch64_op31(Insntype insn)96 aarch64_op31(Insntype insn)
97 { return aarch64_bits(insn, 21, 3); }
98
99 // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
100 // third source register. See armv8 insn manual C3.5.9.
101 static unsigned int
aarch64_ra(Insntype insn)102 aarch64_ra(Insntype insn)
103 { return aarch64_bits(insn, 10, 5); }
104
105 static bool
is_adr(const Insntype insn)106 is_adr(const Insntype insn)
107 { return (insn & 0x9F000000) == 0x10000000; }
108
109 static bool
is_adrp(const Insntype insn)110 is_adrp(const Insntype insn)
111 { return (insn & 0x9F000000) == 0x90000000; }
112
113 static unsigned int
aarch64_rm(const Insntype insn)114 aarch64_rm(const Insntype insn)
115 { return aarch64_bits(insn, 16, 5); }
116
117 static unsigned int
aarch64_rn(const Insntype insn)118 aarch64_rn(const Insntype insn)
119 { return aarch64_bits(insn, 5, 5); }
120
121 static unsigned int
aarch64_rd(const Insntype insn)122 aarch64_rd(const Insntype insn)
123 { return aarch64_bits(insn, 0, 5); }
124
125 static unsigned int
aarch64_rt(const Insntype insn)126 aarch64_rt(const Insntype insn)
127 { return aarch64_bits(insn, 0, 5); }
128
129 static unsigned int
aarch64_rt2(const Insntype insn)130 aarch64_rt2(const Insntype insn)
131 { return aarch64_bits(insn, 10, 5); }
132
133 // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M).
134 static Insntype
aarch64_adr_encode_imm(Insntype adr,int imm21)135 aarch64_adr_encode_imm(Insntype adr, int imm21)
136 {
137 gold_assert(is_adr(adr));
138 gold_assert(-(1 << 20) <= imm21 && imm21 < (1 << 20));
139 const int mask19 = (1 << 19) - 1;
140 const int mask2 = 3;
141 adr &= ~((mask19 << 5) | (mask2 << 29));
142 adr |= ((imm21 & mask2) << 29) | (((imm21 >> 2) & mask19) << 5);
143 return adr;
144 }
145
146 // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by
147 // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and
148 // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0.
149 static int64_t
aarch64_adrp_decode_imm(const Insntype adrp)150 aarch64_adrp_decode_imm(const Insntype adrp)
151 {
152 const int mask19 = (1 << 19) - 1;
153 const int mask2 = 3;
154 gold_assert(is_adrp(adrp));
155 // 21-bit imm encoded in adrp.
156 uint64_t imm = ((adrp >> 29) & mask2) | (((adrp >> 5) & mask19) << 2);
157 // Retrieve msb of 21-bit-signed imm for sign extension.
158 uint64_t msbt = (imm >> 20) & 1;
159 // Real value is imm multipled by 4k. Value now has 33-bit information.
160 int64_t value = imm << 12;
161 // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it
162 // with value.
163 return ((((uint64_t)(1) << 32) - msbt) << 33) | value;
164 }
165
166 static bool
aarch64_b(const Insntype insn)167 aarch64_b(const Insntype insn)
168 { return (insn & 0xFC000000) == 0x14000000; }
169
170 static bool
aarch64_bl(const Insntype insn)171 aarch64_bl(const Insntype insn)
172 { return (insn & 0xFC000000) == 0x94000000; }
173
174 static bool
aarch64_blr(const Insntype insn)175 aarch64_blr(const Insntype insn)
176 { return (insn & 0xFFFFFC1F) == 0xD63F0000; }
177
178 static bool
aarch64_br(const Insntype insn)179 aarch64_br(const Insntype insn)
180 { return (insn & 0xFFFFFC1F) == 0xD61F0000; }
181
182 // All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
183 // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
184 static bool
aarch64_ld(Insntype insn)185 aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; }
186
187 static bool
aarch64_ldst(Insntype insn)188 aarch64_ldst(Insntype insn)
189 { return (insn & 0x0a000000) == 0x08000000; }
190
191 static bool
aarch64_ldst_ex(Insntype insn)192 aarch64_ldst_ex(Insntype insn)
193 { return (insn & 0x3f000000) == 0x08000000; }
194
195 static bool
aarch64_ldst_pcrel(Insntype insn)196 aarch64_ldst_pcrel(Insntype insn)
197 { return (insn & 0x3b000000) == 0x18000000; }
198
199 static bool
aarch64_ldst_nap(Insntype insn)200 aarch64_ldst_nap(Insntype insn)
201 { return (insn & 0x3b800000) == 0x28000000; }
202
203 static bool
aarch64_ldstp_pi(Insntype insn)204 aarch64_ldstp_pi(Insntype insn)
205 { return (insn & 0x3b800000) == 0x28800000; }
206
207 static bool
aarch64_ldstp_o(Insntype insn)208 aarch64_ldstp_o(Insntype insn)
209 { return (insn & 0x3b800000) == 0x29000000; }
210
211 static bool
aarch64_ldstp_pre(Insntype insn)212 aarch64_ldstp_pre(Insntype insn)
213 { return (insn & 0x3b800000) == 0x29800000; }
214
215 static bool
aarch64_ldst_ui(Insntype insn)216 aarch64_ldst_ui(Insntype insn)
217 { return (insn & 0x3b200c00) == 0x38000000; }
218
219 static bool
aarch64_ldst_piimm(Insntype insn)220 aarch64_ldst_piimm(Insntype insn)
221 { return (insn & 0x3b200c00) == 0x38000400; }
222
223 static bool
aarch64_ldst_u(Insntype insn)224 aarch64_ldst_u(Insntype insn)
225 { return (insn & 0x3b200c00) == 0x38000800; }
226
227 static bool
aarch64_ldst_preimm(Insntype insn)228 aarch64_ldst_preimm(Insntype insn)
229 { return (insn & 0x3b200c00) == 0x38000c00; }
230
231 static bool
aarch64_ldst_ro(Insntype insn)232 aarch64_ldst_ro(Insntype insn)
233 { return (insn & 0x3b200c00) == 0x38200800; }
234
235 static bool
aarch64_ldst_uimm(Insntype insn)236 aarch64_ldst_uimm(Insntype insn)
237 { return (insn & 0x3b000000) == 0x39000000; }
238
239 static bool
aarch64_ldst_simd_m(Insntype insn)240 aarch64_ldst_simd_m(Insntype insn)
241 { return (insn & 0xbfbf0000) == 0x0c000000; }
242
243 static bool
aarch64_ldst_simd_m_pi(Insntype insn)244 aarch64_ldst_simd_m_pi(Insntype insn)
245 { return (insn & 0xbfa00000) == 0x0c800000; }
246
247 static bool
aarch64_ldst_simd_s(Insntype insn)248 aarch64_ldst_simd_s(Insntype insn)
249 { return (insn & 0xbf9f0000) == 0x0d000000; }
250
251 static bool
aarch64_ldst_simd_s_pi(Insntype insn)252 aarch64_ldst_simd_s_pi(Insntype insn)
253 { return (insn & 0xbf800000) == 0x0d800000; }
254
255 // Classify an INSN if it is indeed a load/store. Return true if INSN is a
256 // LD/ST instruction otherwise return false. For scalar LD/ST instructions
257 // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
258 // instructions PAIR is TRUE, RT and RT2 are returned.
259 static bool
aarch64_mem_op_p(Insntype insn,unsigned int * rt,unsigned int * rt2,bool * pair,bool * load)260 aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2,
261 bool *pair, bool *load)
262 {
263 uint32_t opcode;
264 unsigned int r;
265 uint32_t opc = 0;
266 uint32_t v = 0;
267 uint32_t opc_v = 0;
268
269 /* Bail out quickly if INSN doesn't fall into the the load-store
270 encoding space. */
271 if (!aarch64_ldst (insn))
272 return false;
273
274 *pair = false;
275 *load = false;
276 if (aarch64_ldst_ex (insn))
277 {
278 *rt = aarch64_rt (insn);
279 *rt2 = *rt;
280 if (aarch64_bit (insn, 21) == 1)
281 {
282 *pair = true;
283 *rt2 = aarch64_rt2 (insn);
284 }
285 *load = aarch64_ld (insn);
286 return true;
287 }
288 else if (aarch64_ldst_nap (insn)
289 || aarch64_ldstp_pi (insn)
290 || aarch64_ldstp_o (insn)
291 || aarch64_ldstp_pre (insn))
292 {
293 *pair = true;
294 *rt = aarch64_rt (insn);
295 *rt2 = aarch64_rt2 (insn);
296 *load = aarch64_ld (insn);
297 return true;
298 }
299 else if (aarch64_ldst_pcrel (insn)
300 || aarch64_ldst_ui (insn)
301 || aarch64_ldst_piimm (insn)
302 || aarch64_ldst_u (insn)
303 || aarch64_ldst_preimm (insn)
304 || aarch64_ldst_ro (insn)
305 || aarch64_ldst_uimm (insn))
306 {
307 *rt = aarch64_rt (insn);
308 *rt2 = *rt;
309 if (aarch64_ldst_pcrel (insn))
310 *load = true;
311 opc = aarch64_bits (insn, 22, 2);
312 v = aarch64_bit (insn, 26);
313 opc_v = opc | (v << 2);
314 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
315 || opc_v == 5 || opc_v == 7);
316 return true;
317 }
318 else if (aarch64_ldst_simd_m (insn)
319 || aarch64_ldst_simd_m_pi (insn))
320 {
321 *rt = aarch64_rt (insn);
322 *load = aarch64_bit (insn, 22);
323 opcode = (insn >> 12) & 0xf;
324 switch (opcode)
325 {
326 case 0:
327 case 2:
328 *rt2 = *rt + 3;
329 break;
330
331 case 4:
332 case 6:
333 *rt2 = *rt + 2;
334 break;
335
336 case 7:
337 *rt2 = *rt;
338 break;
339
340 case 8:
341 case 10:
342 *rt2 = *rt + 1;
343 break;
344
345 default:
346 return false;
347 }
348 return true;
349 }
350 else if (aarch64_ldst_simd_s (insn)
351 || aarch64_ldst_simd_s_pi (insn))
352 {
353 *rt = aarch64_rt (insn);
354 r = (insn >> 21) & 1;
355 *load = aarch64_bit (insn, 22);
356 opcode = (insn >> 13) & 0x7;
357 switch (opcode)
358 {
359 case 0:
360 case 2:
361 case 4:
362 *rt2 = *rt + r;
363 break;
364
365 case 1:
366 case 3:
367 case 5:
368 *rt2 = *rt + (r == 0 ? 2 : 3);
369 break;
370
371 case 6:
372 *rt2 = *rt + r;
373 break;
374
375 case 7:
376 *rt2 = *rt + (r == 0 ? 2 : 3);
377 break;
378
379 default:
380 return false;
381 }
382 return true;
383 }
384 return false;
385 } // End of "aarch64_mem_op_p".
386
387 // Return true if INSN is mac insn.
388 static bool
aarch64_mac(Insntype insn)389 aarch64_mac(Insntype insn)
390 { return (insn & 0xff000000) == 0x9b000000; }
391
392 // Return true if INSN is multiply-accumulate.
393 // (This is similar to implementaton in elfnn-aarch64.c.)
394 static bool
aarch64_mlxl(Insntype insn)395 aarch64_mlxl(Insntype insn)
396 {
397 uint32_t op31 = aarch64_op31(insn);
398 if (aarch64_mac(insn)
399 && (op31 == 0 || op31 == 1 || op31 == 5)
400 /* Exclude MUL instructions which are encoded as a multiple-accumulate
401 with RA = XZR. */
402 && aarch64_ra(insn) != AARCH64_ZR)
403 {
404 return true;
405 }
406 return false;
407 }
408 }; // End of "AArch64_insn_utilities".
409
410
411 // Insn length in byte.
412
413 template<bool big_endian>
414 const int AArch64_insn_utilities<big_endian>::BYTES_PER_INSN = 4;
415
416
417 // Zero register encoding - 31.
418
419 template<bool big_endian>
420 const unsigned int AArch64_insn_utilities<big_endian>::AARCH64_ZR = 0x1f;
421
422
423 // Output_data_got_aarch64 class.
424
425 template<int size, bool big_endian>
426 class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
427 {
428 public:
429 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
Output_data_got_aarch64(Symbol_table * symtab,Layout * layout)430 Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
431 : Output_data_got<size, big_endian>(),
432 symbol_table_(symtab), layout_(layout)
433 { }
434
435 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
436 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
437 // applied in a static link.
438 void
add_static_reloc(unsigned int got_offset,unsigned int r_type,Symbol * gsym)439 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
440 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
441
442
443 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
444 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
445 // relocation that needs to be applied in a static link.
446 void
add_static_reloc(unsigned int got_offset,unsigned int r_type,Sized_relobj_file<size,big_endian> * relobj,unsigned int index)447 add_static_reloc(unsigned int got_offset, unsigned int r_type,
448 Sized_relobj_file<size, big_endian>* relobj,
449 unsigned int index)
450 {
451 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
452 index));
453 }
454
455
456 protected:
457 // Write out the GOT table.
458 void
do_write(Output_file * of)459 do_write(Output_file* of) {
460 // The first entry in the GOT is the address of the .dynamic section.
461 gold_assert(this->data_size() >= size / 8);
462 Output_section* dynamic = this->layout_->dynamic_section();
463 Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
464 this->replace_constant(0, dynamic_addr);
465 Output_data_got<size, big_endian>::do_write(of);
466
467 // Handling static relocs
468 if (this->static_relocs_.empty())
469 return;
470
471 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
472
473 gold_assert(parameters->doing_static_link());
474 const off_t offset = this->offset();
475 const section_size_type oview_size =
476 convert_to_section_size_type(this->data_size());
477 unsigned char* const oview = of->get_output_view(offset, oview_size);
478
479 Output_segment* tls_segment = this->layout_->tls_segment();
480 gold_assert(tls_segment != NULL);
481
482 AArch64_address aligned_tcb_address =
483 align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
484 tls_segment->maximum_alignment());
485
486 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
487 {
488 Static_reloc& reloc(this->static_relocs_[i]);
489 AArch64_address value;
490
491 if (!reloc.symbol_is_global())
492 {
493 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
494 const Symbol_value<size>* psymval =
495 reloc.relobj()->local_symbol(reloc.index());
496
497 // We are doing static linking. Issue an error and skip this
498 // relocation if the symbol is undefined or in a discarded_section.
499 bool is_ordinary;
500 unsigned int shndx = psymval->input_shndx(&is_ordinary);
501 if ((shndx == elfcpp::SHN_UNDEF)
502 || (is_ordinary
503 && shndx != elfcpp::SHN_UNDEF
504 && !object->is_section_included(shndx)
505 && !this->symbol_table_->is_section_folded(object, shndx)))
506 {
507 gold_error(_("undefined or discarded local symbol %u from "
508 " object %s in GOT"),
509 reloc.index(), reloc.relobj()->name().c_str());
510 continue;
511 }
512 value = psymval->value(object, 0);
513 }
514 else
515 {
516 const Symbol* gsym = reloc.symbol();
517 gold_assert(gsym != NULL);
518 if (gsym->is_forwarder())
519 gsym = this->symbol_table_->resolve_forwards(gsym);
520
521 // We are doing static linking. Issue an error and skip this
522 // relocation if the symbol is undefined or in a discarded_section
523 // unless it is a weakly_undefined symbol.
524 if ((gsym->is_defined_in_discarded_section()
525 || gsym->is_undefined())
526 && !gsym->is_weak_undefined())
527 {
528 gold_error(_("undefined or discarded symbol %s in GOT"),
529 gsym->name());
530 continue;
531 }
532
533 if (!gsym->is_weak_undefined())
534 {
535 const Sized_symbol<size>* sym =
536 static_cast<const Sized_symbol<size>*>(gsym);
537 value = sym->value();
538 }
539 else
540 value = 0;
541 }
542
543 unsigned got_offset = reloc.got_offset();
544 gold_assert(got_offset < oview_size);
545
546 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
547 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
548 Valtype x;
549 switch (reloc.r_type())
550 {
551 case elfcpp::R_AARCH64_TLS_DTPREL64:
552 x = value;
553 break;
554 case elfcpp::R_AARCH64_TLS_TPREL64:
555 x = value + aligned_tcb_address;
556 break;
557 default:
558 gold_unreachable();
559 }
560 elfcpp::Swap<size, big_endian>::writeval(wv, x);
561 }
562
563 of->write_output_view(offset, oview_size, oview);
564 }
565
566 private:
567 // Symbol table of the output object.
568 Symbol_table* symbol_table_;
569 // A pointer to the Layout class, so that we can find the .dynamic
570 // section when we write out the GOT section.
571 Layout* layout_;
572
573 // This class represent dynamic relocations that need to be applied by
574 // gold because we are using TLS relocations in a static link.
575 class Static_reloc
576 {
577 public:
Static_reloc(unsigned int got_offset,unsigned int r_type,Symbol * gsym)578 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
579 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
580 { this->u_.global.symbol = gsym; }
581
Static_reloc(unsigned int got_offset,unsigned int r_type,Sized_relobj_file<size,big_endian> * relobj,unsigned int index)582 Static_reloc(unsigned int got_offset, unsigned int r_type,
583 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
584 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
585 {
586 this->u_.local.relobj = relobj;
587 this->u_.local.index = index;
588 }
589
590 // Return the GOT offset.
591 unsigned int
got_offset() const592 got_offset() const
593 { return this->got_offset_; }
594
595 // Relocation type.
596 unsigned int
r_type() const597 r_type() const
598 { return this->r_type_; }
599
600 // Whether the symbol is global or not.
601 bool
symbol_is_global() const602 symbol_is_global() const
603 { return this->symbol_is_global_; }
604
605 // For a relocation against a global symbol, the global symbol.
606 Symbol*
symbol() const607 symbol() const
608 {
609 gold_assert(this->symbol_is_global_);
610 return this->u_.global.symbol;
611 }
612
613 // For a relocation against a local symbol, the defining object.
614 Sized_relobj_file<size, big_endian>*
relobj() const615 relobj() const
616 {
617 gold_assert(!this->symbol_is_global_);
618 return this->u_.local.relobj;
619 }
620
621 // For a relocation against a local symbol, the local symbol index.
622 unsigned int
index() const623 index() const
624 {
625 gold_assert(!this->symbol_is_global_);
626 return this->u_.local.index;
627 }
628
629 private:
630 // GOT offset of the entry to which this relocation is applied.
631 unsigned int got_offset_;
632 // Type of relocation.
633 unsigned int r_type_;
634 // Whether this relocation is against a global symbol.
635 bool symbol_is_global_;
636 // A global or local symbol.
637 union
638 {
639 struct
640 {
641 // For a global symbol, the symbol itself.
642 Symbol* symbol;
643 } global;
644 struct
645 {
646 // For a local symbol, the object defining the symbol.
647 Sized_relobj_file<size, big_endian>* relobj;
648 // For a local symbol, the symbol index.
649 unsigned int index;
650 } local;
651 } u_;
652 }; // End of inner class Static_reloc
653
654 std::vector<Static_reloc> static_relocs_;
655 }; // End of Output_data_got_aarch64
656
657
658 template<int size, bool big_endian>
659 class AArch64_input_section;
660
661
662 template<int size, bool big_endian>
663 class AArch64_output_section;
664
665
666 template<int size, bool big_endian>
667 class AArch64_relobj;
668
669
670 // Stub type enum constants.
671
672 enum
673 {
674 ST_NONE = 0,
675
676 // Using adrp/add pair, 4 insns (including alignment) without mem access,
677 // the fastest stub. This has a limited jump distance, which is tested by
678 // aarch64_valid_for_adrp_p.
679 ST_ADRP_BRANCH = 1,
680
681 // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
682 // unlimited in jump distance.
683 ST_LONG_BRANCH_ABS = 2,
684
685 // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
686 // mem access, slowest one. Only used in position independent executables.
687 ST_LONG_BRANCH_PCREL = 3,
688
689 // Stub for erratum 843419 handling.
690 ST_E_843419 = 4,
691
692 // Stub for erratum 835769 handling.
693 ST_E_835769 = 5,
694
695 // Number of total stub types.
696 ST_NUMBER = 6
697 };
698
699
700 // Struct that wraps insns for a particular stub. All stub templates are
701 // created/initialized as constants by Stub_template_repertoire.
702
703 template<bool big_endian>
704 struct Stub_template
705 {
706 const typename AArch64_insn_utilities<big_endian>::Insntype* insns;
707 const int insn_num;
708 };
709
710
711 // Simple singleton class that creates/initializes/stores all types of stub
712 // templates.
713
714 template<bool big_endian>
715 class Stub_template_repertoire
716 {
717 public:
718 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
719
720 // Single static method to get stub template for a given stub type.
721 static const Stub_template<big_endian>*
get_stub_template(int type)722 get_stub_template(int type)
723 {
724 static Stub_template_repertoire<big_endian> singleton;
725 return singleton.stub_templates_[type];
726 }
727
728 private:
729 // Constructor - creates/initializes all stub templates.
730 Stub_template_repertoire();
~Stub_template_repertoire()731 ~Stub_template_repertoire()
732 { }
733
734 // Disallowing copy ctor and copy assignment operator.
735 Stub_template_repertoire(Stub_template_repertoire&);
736 Stub_template_repertoire& operator=(Stub_template_repertoire&);
737
738 // Data that stores all insn templates.
739 const Stub_template<big_endian>* stub_templates_[ST_NUMBER];
740 }; // End of "class Stub_template_repertoire".
741
742
743 // Constructor - creates/initilizes all stub templates.
744
745 template<bool big_endian>
Stub_template_repertoire()746 Stub_template_repertoire<big_endian>::Stub_template_repertoire()
747 {
748 // Insn array definitions.
749 const static Insntype ST_NONE_INSNS[] = {};
750
751 const static Insntype ST_ADRP_BRANCH_INSNS[] =
752 {
753 0x90000010, /* adrp ip0, X */
754 /* ADR_PREL_PG_HI21(X) */
755 0x91000210, /* add ip0, ip0, :lo12:X */
756 /* ADD_ABS_LO12_NC(X) */
757 0xd61f0200, /* br ip0 */
758 0x00000000, /* alignment padding */
759 };
760
761 const static Insntype ST_LONG_BRANCH_ABS_INSNS[] =
762 {
763 0x58000050, /* ldr ip0, 0x8 */
764 0xd61f0200, /* br ip0 */
765 0x00000000, /* address field */
766 0x00000000, /* address fields */
767 };
768
769 const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] =
770 {
771 0x58000090, /* ldr ip0, 0x10 */
772 0x10000011, /* adr ip1, #0 */
773 0x8b110210, /* add ip0, ip0, ip1 */
774 0xd61f0200, /* br ip0 */
775 0x00000000, /* address field */
776 0x00000000, /* address field */
777 0x00000000, /* alignment padding */
778 0x00000000, /* alignment padding */
779 };
780
781 const static Insntype ST_E_843419_INSNS[] =
782 {
783 0x00000000, /* Placeholder for erratum insn. */
784 0x14000000, /* b <label> */
785 };
786
787 // ST_E_835769 has the same stub template as ST_E_843419.
788 const static Insntype* ST_E_835769_INSNS = ST_E_843419_INSNS;
789
790 #define install_insn_template(T) \
791 const static Stub_template<big_endian> template_##T = { \
792 T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
793 this->stub_templates_[T] = &template_##T
794
795 install_insn_template(ST_NONE);
796 install_insn_template(ST_ADRP_BRANCH);
797 install_insn_template(ST_LONG_BRANCH_ABS);
798 install_insn_template(ST_LONG_BRANCH_PCREL);
799 install_insn_template(ST_E_843419);
800 install_insn_template(ST_E_835769);
801
802 #undef install_insn_template
803 }
804
805
806 // Base class for stubs.
807
808 template<int size, bool big_endian>
809 class Stub_base
810 {
811 public:
812 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
813 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
814
815 static const AArch64_address invalid_address =
816 static_cast<AArch64_address>(-1);
817
818 static const section_offset_type invalid_offset =
819 static_cast<section_offset_type>(-1);
820
Stub_base(int type)821 Stub_base(int type)
822 : destination_address_(invalid_address),
823 offset_(invalid_offset),
824 type_(type)
825 {}
826
~Stub_base()827 ~Stub_base()
828 {}
829
830 // Get stub type.
831 int
type() const832 type() const
833 { return this->type_; }
834
835 // Get stub template that provides stub insn information.
836 const Stub_template<big_endian>*
stub_template() const837 stub_template() const
838 {
839 return Stub_template_repertoire<big_endian>::
840 get_stub_template(this->type());
841 }
842
843 // Get destination address.
844 AArch64_address
destination_address() const845 destination_address() const
846 {
847 gold_assert(this->destination_address_ != this->invalid_address);
848 return this->destination_address_;
849 }
850
851 // Set destination address.
852 void
set_destination_address(AArch64_address address)853 set_destination_address(AArch64_address address)
854 {
855 gold_assert(address != this->invalid_address);
856 this->destination_address_ = address;
857 }
858
859 // Reset the destination address.
860 void
reset_destination_address()861 reset_destination_address()
862 { this->destination_address_ = this->invalid_address; }
863
864 // Get offset of code stub. For Reloc_stub, it is the offset from the
865 // beginning of its containing stub table; for Erratum_stub, it is the offset
866 // from the end of reloc_stubs.
867 section_offset_type
offset() const868 offset() const
869 {
870 gold_assert(this->offset_ != this->invalid_offset);
871 return this->offset_;
872 }
873
874 // Set stub offset.
875 void
set_offset(section_offset_type offset)876 set_offset(section_offset_type offset)
877 { this->offset_ = offset; }
878
879 // Return the stub insn.
880 const Insntype*
insns() const881 insns() const
882 { return this->stub_template()->insns; }
883
884 // Return num of stub insns.
885 unsigned int
insn_num() const886 insn_num() const
887 { return this->stub_template()->insn_num; }
888
889 // Get size of the stub.
890 int
stub_size() const891 stub_size() const
892 {
893 return this->insn_num() *
894 AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
895 }
896
897 // Write stub to output file.
898 void
write(unsigned char * view,section_size_type view_size)899 write(unsigned char* view, section_size_type view_size)
900 { this->do_write(view, view_size); }
901
902 protected:
903 // Abstract method to be implemented by sub-classes.
904 virtual void
905 do_write(unsigned char*, section_size_type) = 0;
906
907 private:
908 // The last insn of a stub is a jump to destination insn. This field records
909 // the destination address.
910 AArch64_address destination_address_;
911 // The stub offset. Note this has difference interpretations between an
912 // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
913 // beginning of the containing stub_table, whereas for Erratum_stub, this is
914 // the offset from the end of reloc_stubs.
915 section_offset_type offset_;
916 // Stub type.
917 const int type_;
918 }; // End of "Stub_base".
919
920
921 // Erratum stub class. An erratum stub differs from a reloc stub in that for
922 // each erratum occurrence, we generate an erratum stub. We never share erratum
923 // stubs, whereas for reloc stubs, different branches insns share a single reloc
924 // stub as long as the branch targets are the same. (More to the point, reloc
925 // stubs can be shared because they're used to reach a specific target, whereas
926 // erratum stubs branch back to the original control flow.)
927
928 template<int size, bool big_endian>
929 class Erratum_stub : public Stub_base<size, big_endian>
930 {
931 public:
932 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
933 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
934 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
935 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
936
937 static const int STUB_ADDR_ALIGN;
938
939 static const Insntype invalid_insn = static_cast<Insntype>(-1);
940
Erratum_stub(The_aarch64_relobj * relobj,int type,unsigned shndx,unsigned int sh_offset)941 Erratum_stub(The_aarch64_relobj* relobj, int type,
942 unsigned shndx, unsigned int sh_offset)
943 : Stub_base<size, big_endian>(type), relobj_(relobj),
944 shndx_(shndx), sh_offset_(sh_offset),
945 erratum_insn_(invalid_insn),
946 erratum_address_(this->invalid_address)
947 {}
948
~Erratum_stub()949 ~Erratum_stub() {}
950
951 // Return the object that contains the erratum.
952 The_aarch64_relobj*
relobj()953 relobj()
954 { return this->relobj_; }
955
956 // Get section index of the erratum.
957 unsigned int
shndx() const958 shndx() const
959 { return this->shndx_; }
960
961 // Get section offset of the erratum.
962 unsigned int
sh_offset() const963 sh_offset() const
964 { return this->sh_offset_; }
965
966 // Get the erratum insn. This is the insn located at erratum_insn_address.
967 Insntype
erratum_insn() const968 erratum_insn() const
969 {
970 gold_assert(this->erratum_insn_ != this->invalid_insn);
971 return this->erratum_insn_;
972 }
973
974 // Set the insn that the erratum happens to.
975 void
set_erratum_insn(Insntype insn)976 set_erratum_insn(Insntype insn)
977 { this->erratum_insn_ = insn; }
978
979 // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
980 // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
981 // is no longer the one we want to write out to the stub, update erratum_insn_
982 // with relocated version. Also note that in this case xn must not be "PC", so
983 // it is safe to move the erratum insn from the origin place to the stub. For
984 // 835769, the erratum insn is multiply-accumulate insn, which could not be a
985 // relocation spot (assertion added though).
986 void
update_erratum_insn(Insntype insn)987 update_erratum_insn(Insntype insn)
988 {
989 gold_assert(this->erratum_insn_ != this->invalid_insn);
990 switch (this->type())
991 {
992 case ST_E_843419:
993 gold_assert(Insn_utilities::aarch64_ldst_uimm(insn));
994 gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
995 gold_assert(Insn_utilities::aarch64_rd(insn) ==
996 Insn_utilities::aarch64_rd(this->erratum_insn()));
997 gold_assert(Insn_utilities::aarch64_rn(insn) ==
998 Insn_utilities::aarch64_rn(this->erratum_insn()));
999 // Update plain ld/st insn with relocated insn.
1000 this->erratum_insn_ = insn;
1001 break;
1002 case ST_E_835769:
1003 gold_assert(insn == this->erratum_insn());
1004 break;
1005 default:
1006 gold_unreachable();
1007 }
1008 }
1009
1010
1011 // Return the address where an erratum must be done.
1012 AArch64_address
erratum_address() const1013 erratum_address() const
1014 {
1015 gold_assert(this->erratum_address_ != this->invalid_address);
1016 return this->erratum_address_;
1017 }
1018
1019 // Set the address where an erratum must be done.
1020 void
set_erratum_address(AArch64_address addr)1021 set_erratum_address(AArch64_address addr)
1022 { this->erratum_address_ = addr; }
1023
1024 // Comparator used to group Erratum_stubs in a set by (obj, shndx,
1025 // sh_offset). We do not include 'type' in the calculation, becuase there is
1026 // at most one stub type at (obj, shndx, sh_offset).
1027 bool
operator <(const Erratum_stub<size,big_endian> & k) const1028 operator<(const Erratum_stub<size, big_endian>& k) const
1029 {
1030 if (this == &k)
1031 return false;
1032 // We group stubs by relobj.
1033 if (this->relobj_ != k.relobj_)
1034 return this->relobj_ < k.relobj_;
1035 // Then by section index.
1036 if (this->shndx_ != k.shndx_)
1037 return this->shndx_ < k.shndx_;
1038 // Lastly by section offset.
1039 return this->sh_offset_ < k.sh_offset_;
1040 }
1041
1042 protected:
1043 virtual void
1044 do_write(unsigned char*, section_size_type);
1045
1046 private:
1047 // The object that needs to be fixed.
1048 The_aarch64_relobj* relobj_;
1049 // The shndx in the object that needs to be fixed.
1050 const unsigned int shndx_;
1051 // The section offset in the obejct that needs to be fixed.
1052 const unsigned int sh_offset_;
1053 // The insn to be fixed.
1054 Insntype erratum_insn_;
1055 // The address of the above insn.
1056 AArch64_address erratum_address_;
1057 }; // End of "Erratum_stub".
1058
1059
1060 // Erratum sub class to wrap additional info needed by 843419. In fixing this
1061 // erratum, we may choose to replace 'adrp' with 'adr', in this case, we need
1062 // adrp's code position (two or three insns before erratum insn itself).
1063
1064 template<int size, bool big_endian>
1065 class E843419_stub : public Erratum_stub<size, big_endian>
1066 {
1067 public:
1068 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
1069
E843419_stub(AArch64_relobj<size,big_endian> * relobj,unsigned int shndx,unsigned int sh_offset,unsigned int adrp_sh_offset)1070 E843419_stub(AArch64_relobj<size, big_endian>* relobj,
1071 unsigned int shndx, unsigned int sh_offset,
1072 unsigned int adrp_sh_offset)
1073 : Erratum_stub<size, big_endian>(relobj, ST_E_843419, shndx, sh_offset),
1074 adrp_sh_offset_(adrp_sh_offset)
1075 {}
1076
1077 unsigned int
adrp_sh_offset() const1078 adrp_sh_offset() const
1079 { return this->adrp_sh_offset_; }
1080
1081 private:
1082 // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we
1083 // can can obtain it from its parent.)
1084 const unsigned int adrp_sh_offset_;
1085 };
1086
1087
1088 template<int size, bool big_endian>
1089 const int Erratum_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1090
1091 // Comparator used in set definition.
1092 template<int size, bool big_endian>
1093 struct Erratum_stub_less
1094 {
1095 bool
operator ()__anon20db65070111::Erratum_stub_less1096 operator()(const Erratum_stub<size, big_endian>* s1,
1097 const Erratum_stub<size, big_endian>* s2) const
1098 { return *s1 < *s2; }
1099 };
1100
1101 // Erratum_stub implementation for writing stub to output file.
1102
1103 template<int size, bool big_endian>
1104 void
do_write(unsigned char * view,section_size_type)1105 Erratum_stub<size, big_endian>::do_write(unsigned char* view, section_size_type)
1106 {
1107 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1108 const Insntype* insns = this->insns();
1109 uint32_t num_insns = this->insn_num();
1110 Insntype* ip = reinterpret_cast<Insntype*>(view);
1111 // For current implemented erratum 843419 and 835769, the first insn in the
1112 // stub is always a copy of the problematic insn (in 843419, the mem access
1113 // insn, in 835769, the mac insn), followed by a jump-back.
1114 elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn());
1115 for (uint32_t i = 1; i < num_insns; ++i)
1116 elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1117 }
1118
1119
1120 // Reloc stub class.
1121
1122 template<int size, bool big_endian>
1123 class Reloc_stub : public Stub_base<size, big_endian>
1124 {
1125 public:
1126 typedef Reloc_stub<size, big_endian> This;
1127 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1128
1129 // Branch range. This is used to calculate the section group size, as well as
1130 // determine whether a stub is needed.
1131 static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
1132 static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
1133
1134 // Constant used to determine if an offset fits in the adrp instruction
1135 // encoding.
1136 static const int MAX_ADRP_IMM = (1 << 20) - 1;
1137 static const int MIN_ADRP_IMM = -(1 << 20);
1138
1139 static const int BYTES_PER_INSN = 4;
1140 static const int STUB_ADDR_ALIGN;
1141
1142 // Determine whether the offset fits in the jump/branch instruction.
1143 static bool
aarch64_valid_branch_offset_p(int64_t offset)1144 aarch64_valid_branch_offset_p(int64_t offset)
1145 { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
1146
1147 // Determine whether the offset fits in the adrp immediate field.
1148 static bool
aarch64_valid_for_adrp_p(AArch64_address location,AArch64_address dest)1149 aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
1150 {
1151 typedef AArch64_relocate_functions<size, big_endian> Reloc;
1152 int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12;
1153 return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
1154 }
1155
1156 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1157 // needed.
1158 static int
1159 stub_type_for_reloc(unsigned int r_type, AArch64_address address,
1160 AArch64_address target);
1161
Reloc_stub(int type)1162 Reloc_stub(int type)
1163 : Stub_base<size, big_endian>(type)
1164 { }
1165
~Reloc_stub()1166 ~Reloc_stub()
1167 { }
1168
1169 // The key class used to index the stub instance in the stub table's stub map.
1170 class Key
1171 {
1172 public:
Key(int type,const Symbol * symbol,const Relobj * relobj,unsigned int r_sym,int32_t addend)1173 Key(int type, const Symbol* symbol, const Relobj* relobj,
1174 unsigned int r_sym, int32_t addend)
1175 : type_(type), addend_(addend)
1176 {
1177 if (symbol != NULL)
1178 {
1179 this->r_sym_ = Reloc_stub::invalid_index;
1180 this->u_.symbol = symbol;
1181 }
1182 else
1183 {
1184 gold_assert(relobj != NULL && r_sym != invalid_index);
1185 this->r_sym_ = r_sym;
1186 this->u_.relobj = relobj;
1187 }
1188 }
1189
~Key()1190 ~Key()
1191 { }
1192
1193 // Return stub type.
1194 int
type() const1195 type() const
1196 { return this->type_; }
1197
1198 // Return the local symbol index or invalid_index.
1199 unsigned int
r_sym() const1200 r_sym() const
1201 { return this->r_sym_; }
1202
1203 // Return the symbol if there is one.
1204 const Symbol*
symbol() const1205 symbol() const
1206 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
1207
1208 // Return the relobj if there is one.
1209 const Relobj*
relobj() const1210 relobj() const
1211 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
1212
1213 // Whether this equals to another key k.
1214 bool
eq(const Key & k) const1215 eq(const Key& k) const
1216 {
1217 return ((this->type_ == k.type_)
1218 && (this->r_sym_ == k.r_sym_)
1219 && ((this->r_sym_ != Reloc_stub::invalid_index)
1220 ? (this->u_.relobj == k.u_.relobj)
1221 : (this->u_.symbol == k.u_.symbol))
1222 && (this->addend_ == k.addend_));
1223 }
1224
1225 // Return a hash value.
1226 size_t
hash_value() const1227 hash_value() const
1228 {
1229 size_t name_hash_value = gold::string_hash<char>(
1230 (this->r_sym_ != Reloc_stub::invalid_index)
1231 ? this->u_.relobj->name().c_str()
1232 : this->u_.symbol->name());
1233 // We only have 4 stub types.
1234 size_t stub_type_hash_value = 0x03 & this->type_;
1235 return (name_hash_value
1236 ^ stub_type_hash_value
1237 ^ ((this->r_sym_ & 0x3fff) << 2)
1238 ^ ((this->addend_ & 0xffff) << 16));
1239 }
1240
1241 // Functors for STL associative containers.
1242 struct hash
1243 {
1244 size_t
operator ()__anon20db65070111::Reloc_stub::Key::hash1245 operator()(const Key& k) const
1246 { return k.hash_value(); }
1247 };
1248
1249 struct equal_to
1250 {
1251 bool
operator ()__anon20db65070111::Reloc_stub::Key::equal_to1252 operator()(const Key& k1, const Key& k2) const
1253 { return k1.eq(k2); }
1254 };
1255
1256 private:
1257 // Stub type.
1258 const int type_;
1259 // If this is a local symbol, this is the index in the defining object.
1260 // Otherwise, it is invalid_index for a global symbol.
1261 unsigned int r_sym_;
1262 // If r_sym_ is an invalid index, this points to a global symbol.
1263 // Otherwise, it points to a relobj. We used the unsized and target
1264 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
1265 // Arm_relobj, in order to avoid making the stub class a template
1266 // as most of the stub machinery is endianness-neutral. However, it
1267 // may require a bit of casting done by users of this class.
1268 union
1269 {
1270 const Symbol* symbol;
1271 const Relobj* relobj;
1272 } u_;
1273 // Addend associated with a reloc.
1274 int32_t addend_;
1275 }; // End of inner class Reloc_stub::Key
1276
1277 protected:
1278 // This may be overridden in the child class.
1279 virtual void
1280 do_write(unsigned char*, section_size_type);
1281
1282 private:
1283 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
1284 }; // End of Reloc_stub
1285
1286 template<int size, bool big_endian>
1287 const int Reloc_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1288
1289 // Write data to output file.
1290
1291 template<int size, bool big_endian>
1292 void
1293 Reloc_stub<size, big_endian>::
do_write(unsigned char * view,section_size_type)1294 do_write(unsigned char* view, section_size_type)
1295 {
1296 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1297 const uint32_t* insns = this->insns();
1298 uint32_t num_insns = this->insn_num();
1299 Insntype* ip = reinterpret_cast<Insntype*>(view);
1300 for (uint32_t i = 0; i < num_insns; ++i)
1301 elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1302 }
1303
1304
1305 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1306 // needed.
1307
1308 template<int size, bool big_endian>
1309 inline int
stub_type_for_reloc(unsigned int r_type,AArch64_address location,AArch64_address dest)1310 Reloc_stub<size, big_endian>::stub_type_for_reloc(
1311 unsigned int r_type, AArch64_address location, AArch64_address dest)
1312 {
1313 int64_t branch_offset = 0;
1314 switch(r_type)
1315 {
1316 case elfcpp::R_AARCH64_CALL26:
1317 case elfcpp::R_AARCH64_JUMP26:
1318 branch_offset = dest - location;
1319 break;
1320 default:
1321 gold_unreachable();
1322 }
1323
1324 if (aarch64_valid_branch_offset_p(branch_offset))
1325 return ST_NONE;
1326
1327 if (aarch64_valid_for_adrp_p(location, dest))
1328 return ST_ADRP_BRANCH;
1329
1330 // Always use PC-relative addressing in case of -shared or -pie.
1331 if (parameters->options().output_is_position_independent())
1332 return ST_LONG_BRANCH_PCREL;
1333
1334 // This saves 2 insns per stub, compared to ST_LONG_BRANCH_PCREL.
1335 // But is only applicable to non-shared or non-pie.
1336 return ST_LONG_BRANCH_ABS;
1337 }
1338
1339 // A class to hold stubs for the ARM target.
1340
1341 template<int size, bool big_endian>
1342 class Stub_table : public Output_data
1343 {
1344 public:
1345 typedef Target_aarch64<size, big_endian> The_target_aarch64;
1346 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1347 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1348 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1349 typedef Reloc_stub<size, big_endian> The_reloc_stub;
1350 typedef typename The_reloc_stub::Key The_reloc_stub_key;
1351 typedef Erratum_stub<size, big_endian> The_erratum_stub;
1352 typedef Erratum_stub_less<size, big_endian> The_erratum_stub_less;
1353 typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
1354 typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
1355 typedef Stub_table<size, big_endian> The_stub_table;
1356 typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
1357 The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
1358 Reloc_stub_map;
1359 typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
1360 typedef Relocate_info<size, big_endian> The_relocate_info;
1361
1362 typedef std::set<The_erratum_stub*, The_erratum_stub_less> Erratum_stub_set;
1363 typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter;
1364
Stub_table(The_aarch64_input_section * owner)1365 Stub_table(The_aarch64_input_section* owner)
1366 : Output_data(), owner_(owner), reloc_stubs_size_(0),
1367 erratum_stubs_size_(0), prev_data_size_(0)
1368 { }
1369
~Stub_table()1370 ~Stub_table()
1371 { }
1372
1373 The_aarch64_input_section*
owner() const1374 owner() const
1375 { return owner_; }
1376
1377 // Whether this stub table is empty.
1378 bool
empty() const1379 empty() const
1380 { return reloc_stubs_.empty() && erratum_stubs_.empty(); }
1381
1382 // Return the current data size.
1383 off_t
current_data_size() const1384 current_data_size() const
1385 { return this->current_data_size_for_child(); }
1386
1387 // Add a STUB using KEY. The caller is responsible for avoiding addition
1388 // if a STUB with the same key has already been added.
1389 void
1390 add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
1391
1392 // Add an erratum stub into the erratum stub set. The set is ordered by
1393 // (relobj, shndx, sh_offset).
1394 void
1395 add_erratum_stub(The_erratum_stub* stub);
1396
1397 // Find if such erratum exists for any given (obj, shndx, sh_offset).
1398 The_erratum_stub*
1399 find_erratum_stub(The_aarch64_relobj* a64relobj,
1400 unsigned int shndx, unsigned int sh_offset);
1401
1402 // Find all the erratums for a given input section. The return value is a pair
1403 // of iterators [begin, end).
1404 std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1405 find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj,
1406 unsigned int shndx);
1407
1408 // Compute the erratum stub address.
1409 AArch64_address
erratum_stub_address(The_erratum_stub * stub) const1410 erratum_stub_address(The_erratum_stub* stub) const
1411 {
1412 AArch64_address r = align_address(this->address() + this->reloc_stubs_size_,
1413 The_erratum_stub::STUB_ADDR_ALIGN);
1414 r += stub->offset();
1415 return r;
1416 }
1417
1418 // Finalize stubs. No-op here, just for completeness.
1419 void
finalize_stubs()1420 finalize_stubs()
1421 { }
1422
1423 // Look up a relocation stub using KEY. Return NULL if there is none.
1424 The_reloc_stub*
find_reloc_stub(The_reloc_stub_key & key)1425 find_reloc_stub(The_reloc_stub_key& key)
1426 {
1427 Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
1428 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
1429 }
1430
1431 // Relocate stubs in this stub table.
1432 void
1433 relocate_stubs(const The_relocate_info*,
1434 The_target_aarch64*,
1435 Output_section*,
1436 unsigned char*,
1437 AArch64_address,
1438 section_size_type);
1439
1440 // Update data size at the end of a relaxation pass. Return true if data size
1441 // is different from that of the previous relaxation pass.
1442 bool
update_data_size_changed_p()1443 update_data_size_changed_p()
1444 {
1445 // No addralign changed here.
1446 off_t s = align_address(this->reloc_stubs_size_,
1447 The_erratum_stub::STUB_ADDR_ALIGN)
1448 + this->erratum_stubs_size_;
1449 bool changed = (s != this->prev_data_size_);
1450 this->prev_data_size_ = s;
1451 return changed;
1452 }
1453
1454 protected:
1455 // Write out section contents.
1456 void
1457 do_write(Output_file*);
1458
1459 // Return the required alignment.
1460 uint64_t
do_addralign() const1461 do_addralign() const
1462 {
1463 return std::max(The_reloc_stub::STUB_ADDR_ALIGN,
1464 The_erratum_stub::STUB_ADDR_ALIGN);
1465 }
1466
1467 // Reset address and file offset.
1468 void
do_reset_address_and_file_offset()1469 do_reset_address_and_file_offset()
1470 { this->set_current_data_size_for_child(this->prev_data_size_); }
1471
1472 // Set final data size.
1473 void
set_final_data_size()1474 set_final_data_size()
1475 { this->set_data_size(this->current_data_size()); }
1476
1477 private:
1478 // Relocate one stub.
1479 void
1480 relocate_stub(The_reloc_stub*,
1481 const The_relocate_info*,
1482 The_target_aarch64*,
1483 Output_section*,
1484 unsigned char*,
1485 AArch64_address,
1486 section_size_type);
1487
1488 private:
1489 // Owner of this stub table.
1490 The_aarch64_input_section* owner_;
1491 // The relocation stubs.
1492 Reloc_stub_map reloc_stubs_;
1493 // The erratum stubs.
1494 Erratum_stub_set erratum_stubs_;
1495 // Size of reloc stubs.
1496 off_t reloc_stubs_size_;
1497 // Size of erratum stubs.
1498 off_t erratum_stubs_size_;
1499 // data size of this in the previous pass.
1500 off_t prev_data_size_;
1501 }; // End of Stub_table
1502
1503
1504 // Add an erratum stub into the erratum stub set. The set is ordered by
1505 // (relobj, shndx, sh_offset).
1506
1507 template<int size, bool big_endian>
1508 void
add_erratum_stub(The_erratum_stub * stub)1509 Stub_table<size, big_endian>::add_erratum_stub(The_erratum_stub* stub)
1510 {
1511 std::pair<Erratum_stub_set_iter, bool> ret =
1512 this->erratum_stubs_.insert(stub);
1513 gold_assert(ret.second);
1514 this->erratum_stubs_size_ = align_address(
1515 this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1516 stub->set_offset(this->erratum_stubs_size_);
1517 this->erratum_stubs_size_ += stub->stub_size();
1518 }
1519
1520
1521 // Find if such erratum exists for given (obj, shndx, sh_offset).
1522
1523 template<int size, bool big_endian>
1524 Erratum_stub<size, big_endian>*
find_erratum_stub(The_aarch64_relobj * a64relobj,unsigned int shndx,unsigned int sh_offset)1525 Stub_table<size, big_endian>::find_erratum_stub(
1526 The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset)
1527 {
1528 // A dummy object used as key to search in the set.
1529 The_erratum_stub key(a64relobj, ST_NONE,
1530 shndx, sh_offset);
1531 Erratum_stub_set_iter i = this->erratum_stubs_.find(&key);
1532 if (i != this->erratum_stubs_.end())
1533 {
1534 The_erratum_stub* stub(*i);
1535 gold_assert(stub->erratum_insn() != 0);
1536 return stub;
1537 }
1538 return NULL;
1539 }
1540
1541
1542 // Find all the errata for a given input section. The return value is a pair of
1543 // iterators [begin, end).
1544
1545 template<int size, bool big_endian>
1546 std::pair<typename Stub_table<size, big_endian>::Erratum_stub_set_iter,
1547 typename Stub_table<size, big_endian>::Erratum_stub_set_iter>
find_erratum_stubs_for_input_section(The_aarch64_relobj * a64relobj,unsigned int shndx)1548 Stub_table<size, big_endian>::find_erratum_stubs_for_input_section(
1549 The_aarch64_relobj* a64relobj, unsigned int shndx)
1550 {
1551 typedef std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> Result_pair;
1552 Erratum_stub_set_iter start, end;
1553 The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0);
1554 start = this->erratum_stubs_.lower_bound(&low_key);
1555 if (start == this->erratum_stubs_.end())
1556 return Result_pair(this->erratum_stubs_.end(),
1557 this->erratum_stubs_.end());
1558 end = start;
1559 while (end != this->erratum_stubs_.end() &&
1560 (*end)->relobj() == a64relobj && (*end)->shndx() == shndx)
1561 ++end;
1562 return Result_pair(start, end);
1563 }
1564
1565
1566 // Add a STUB using KEY. The caller is responsible for avoiding addition
1567 // if a STUB with the same key has already been added.
1568
1569 template<int size, bool big_endian>
1570 void
add_reloc_stub(The_reloc_stub * stub,const The_reloc_stub_key & key)1571 Stub_table<size, big_endian>::add_reloc_stub(
1572 The_reloc_stub* stub, const The_reloc_stub_key& key)
1573 {
1574 gold_assert(stub->type() == key.type());
1575 this->reloc_stubs_[key] = stub;
1576
1577 // Assign stub offset early. We can do this because we never remove
1578 // reloc stubs and they are in the beginning of the stub table.
1579 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
1580 The_reloc_stub::STUB_ADDR_ALIGN);
1581 stub->set_offset(this->reloc_stubs_size_);
1582 this->reloc_stubs_size_ += stub->stub_size();
1583 }
1584
1585
1586 // Relocate all stubs in this stub table.
1587
1588 template<int size, bool big_endian>
1589 void
1590 Stub_table<size, big_endian>::
relocate_stubs(const The_relocate_info * relinfo,The_target_aarch64 * target_aarch64,Output_section * output_section,unsigned char * view,AArch64_address address,section_size_type view_size)1591 relocate_stubs(const The_relocate_info* relinfo,
1592 The_target_aarch64* target_aarch64,
1593 Output_section* output_section,
1594 unsigned char* view,
1595 AArch64_address address,
1596 section_size_type view_size)
1597 {
1598 // "view_size" is the total size of the stub_table.
1599 gold_assert(address == this->address() &&
1600 view_size == static_cast<section_size_type>(this->data_size()));
1601 for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
1602 p != this->reloc_stubs_.end(); ++p)
1603 relocate_stub(p->second, relinfo, target_aarch64, output_section,
1604 view, address, view_size);
1605
1606 // Just for convenience.
1607 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1608
1609 // Now 'relocate' erratum stubs.
1610 for(Erratum_stub_set_iter i = this->erratum_stubs_.begin();
1611 i != this->erratum_stubs_.end(); ++i)
1612 {
1613 AArch64_address stub_address = this->erratum_stub_address(*i);
1614 // The address of "b" in the stub that is to be "relocated".
1615 AArch64_address stub_b_insn_address;
1616 // Branch offset that is to be filled in "b" insn.
1617 int b_offset = 0;
1618 switch ((*i)->type())
1619 {
1620 case ST_E_843419:
1621 case ST_E_835769:
1622 // The 1st insn of the erratum could be a relocation spot,
1623 // in this case we need to fix it with
1624 // "(*i)->erratum_insn()".
1625 elfcpp::Swap<32, big_endian>::writeval(
1626 view + (stub_address - this->address()),
1627 (*i)->erratum_insn());
1628 // For the erratum, the 2nd insn is a b-insn to be patched
1629 // (relocated).
1630 stub_b_insn_address = stub_address + 1 * BPI;
1631 b_offset = (*i)->destination_address() - stub_b_insn_address;
1632 AArch64_relocate_functions<size, big_endian>::construct_b(
1633 view + (stub_b_insn_address - this->address()),
1634 ((unsigned int)(b_offset)) & 0xfffffff);
1635 break;
1636 default:
1637 gold_unreachable();
1638 break;
1639 }
1640 }
1641 }
1642
1643
1644 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
1645
1646 template<int size, bool big_endian>
1647 void
1648 Stub_table<size, big_endian>::
relocate_stub(The_reloc_stub * stub,const The_relocate_info * relinfo,The_target_aarch64 * target_aarch64,Output_section * output_section,unsigned char * view,AArch64_address address,section_size_type view_size)1649 relocate_stub(The_reloc_stub* stub,
1650 const The_relocate_info* relinfo,
1651 The_target_aarch64* target_aarch64,
1652 Output_section* output_section,
1653 unsigned char* view,
1654 AArch64_address address,
1655 section_size_type view_size)
1656 {
1657 // "offset" is the offset from the beginning of the stub_table.
1658 section_size_type offset = stub->offset();
1659 section_size_type stub_size = stub->stub_size();
1660 // "view_size" is the total size of the stub_table.
1661 gold_assert(offset + stub_size <= view_size);
1662
1663 target_aarch64->relocate_stub(stub, relinfo, output_section,
1664 view + offset, address + offset, view_size);
1665 }
1666
1667
1668 // Write out the stubs to file.
1669
1670 template<int size, bool big_endian>
1671 void
do_write(Output_file * of)1672 Stub_table<size, big_endian>::do_write(Output_file* of)
1673 {
1674 off_t offset = this->offset();
1675 const section_size_type oview_size =
1676 convert_to_section_size_type(this->data_size());
1677 unsigned char* const oview = of->get_output_view(offset, oview_size);
1678
1679 // Write relocation stubs.
1680 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
1681 p != this->reloc_stubs_.end(); ++p)
1682 {
1683 The_reloc_stub* stub = p->second;
1684 AArch64_address address = this->address() + stub->offset();
1685 gold_assert(address ==
1686 align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
1687 stub->write(oview + stub->offset(), stub->stub_size());
1688 }
1689
1690 // Write erratum stubs.
1691 unsigned int erratum_stub_start_offset =
1692 align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1693 for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin();
1694 p != this->erratum_stubs_.end(); ++p)
1695 {
1696 The_erratum_stub* stub(*p);
1697 stub->write(oview + erratum_stub_start_offset + stub->offset(),
1698 stub->stub_size());
1699 }
1700
1701 of->write_output_view(this->offset(), oview_size, oview);
1702 }
1703
1704
1705 // AArch64_relobj class.
1706
1707 template<int size, bool big_endian>
1708 class AArch64_relobj : public Sized_relobj_file<size, big_endian>
1709 {
1710 public:
1711 typedef AArch64_relobj<size, big_endian> This;
1712 typedef Target_aarch64<size, big_endian> The_target_aarch64;
1713 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1714 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1715 typedef Stub_table<size, big_endian> The_stub_table;
1716 typedef Erratum_stub<size, big_endian> The_erratum_stub;
1717 typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter;
1718 typedef std::vector<The_stub_table*> Stub_table_list;
1719 static const AArch64_address invalid_address =
1720 static_cast<AArch64_address>(-1);
1721
AArch64_relobj(const std::string & name,Input_file * input_file,off_t offset,const typename elfcpp::Ehdr<size,big_endian> & ehdr)1722 AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
1723 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1724 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1725 stub_tables_()
1726 { }
1727
~AArch64_relobj()1728 ~AArch64_relobj()
1729 { }
1730
1731 // Return the stub table of the SHNDX-th section if there is one.
1732 The_stub_table*
stub_table(unsigned int shndx) const1733 stub_table(unsigned int shndx) const
1734 {
1735 gold_assert(shndx < this->stub_tables_.size());
1736 return this->stub_tables_[shndx];
1737 }
1738
1739 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1740 void
set_stub_table(unsigned int shndx,The_stub_table * stub_table)1741 set_stub_table(unsigned int shndx, The_stub_table* stub_table)
1742 {
1743 gold_assert(shndx < this->stub_tables_.size());
1744 this->stub_tables_[shndx] = stub_table;
1745 }
1746
1747 // Entrance to errata scanning.
1748 void
1749 scan_errata(unsigned int shndx,
1750 const elfcpp::Shdr<size, big_endian>&,
1751 Output_section*, const Symbol_table*,
1752 The_target_aarch64*);
1753
1754 // Scan all relocation sections for stub generation.
1755 void
1756 scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
1757 const Layout*);
1758
1759 // Whether a section is a scannable text section.
1760 bool
1761 text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
1762 const Output_section*, const Symbol_table*);
1763
1764 // Convert regular input section with index SHNDX to a relaxed section.
1765 void
convert_input_section_to_relaxed_section(unsigned)1766 convert_input_section_to_relaxed_section(unsigned /* shndx */)
1767 {
1768 // The stubs have relocations and we need to process them after writing
1769 // out the stubs. So relocation now must follow section write.
1770 this->set_relocs_must_follow_section_writes();
1771 }
1772
1773 // Structure for mapping symbol position.
1774 struct Mapping_symbol_position
1775 {
Mapping_symbol_position__anon20db65070111::AArch64_relobj::Mapping_symbol_position1776 Mapping_symbol_position(unsigned int shndx, AArch64_address offset):
1777 shndx_(shndx), offset_(offset)
1778 {}
1779
1780 // "<" comparator used in ordered_map container.
1781 bool
operator <__anon20db65070111::AArch64_relobj::Mapping_symbol_position1782 operator<(const Mapping_symbol_position& p) const
1783 {
1784 return (this->shndx_ < p.shndx_
1785 || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_));
1786 }
1787
1788 // Section index.
1789 unsigned int shndx_;
1790
1791 // Section offset.
1792 AArch64_address offset_;
1793 };
1794
1795 typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info;
1796
1797 protected:
1798 // Post constructor setup.
1799 void
do_setup()1800 do_setup()
1801 {
1802 // Call parent's setup method.
1803 Sized_relobj_file<size, big_endian>::do_setup();
1804
1805 // Initialize look-up tables.
1806 this->stub_tables_.resize(this->shnum());
1807 }
1808
1809 virtual void
1810 do_relocate_sections(
1811 const Symbol_table* symtab, const Layout* layout,
1812 const unsigned char* pshdrs, Output_file* of,
1813 typename Sized_relobj_file<size, big_endian>::Views* pviews);
1814
1815 // Count local symbols and (optionally) record mapping info.
1816 virtual void
1817 do_count_local_symbols(Stringpool_template<char>*,
1818 Stringpool_template<char>*);
1819
1820 private:
1821 // Fix all errata in the object.
1822 void
1823 fix_errata(typename Sized_relobj_file<size, big_endian>::Views* pviews);
1824
1825 // Try to fix erratum 843419 in an optimized way. Return true if patch is
1826 // applied.
1827 bool
1828 try_fix_erratum_843419_optimized(
1829 The_erratum_stub*,
1830 typename Sized_relobj_file<size, big_endian>::View_size&);
1831
1832 // Whether a section needs to be scanned for relocation stubs.
1833 bool
1834 section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
1835 const Relobj::Output_sections&,
1836 const Symbol_table*, const unsigned char*);
1837
1838 // List of stub tables.
1839 Stub_table_list stub_tables_;
1840
1841 // Mapping symbol information sorted by (section index, section_offset).
1842 Mapping_symbol_info mapping_symbol_info_;
1843 }; // End of AArch64_relobj
1844
1845
1846 // Override to record mapping symbol information.
1847 template<int size, bool big_endian>
1848 void
do_count_local_symbols(Stringpool_template<char> * pool,Stringpool_template<char> * dynpool)1849 AArch64_relobj<size, big_endian>::do_count_local_symbols(
1850 Stringpool_template<char>* pool, Stringpool_template<char>* dynpool)
1851 {
1852 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
1853
1854 // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1855 // processing if not fixing erratum.
1856 if (!parameters->options().fix_cortex_a53_843419()
1857 && !parameters->options().fix_cortex_a53_835769())
1858 return;
1859
1860 const unsigned int loccount = this->local_symbol_count();
1861 if (loccount == 0)
1862 return;
1863
1864 // Read the symbol table section header.
1865 const unsigned int symtab_shndx = this->symtab_shndx();
1866 elfcpp::Shdr<size, big_endian>
1867 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
1868 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1869
1870 // Read the local symbols.
1871 const int sym_size =elfcpp::Elf_sizes<size>::sym_size;
1872 gold_assert(loccount == symtabshdr.get_sh_info());
1873 off_t locsize = loccount * sym_size;
1874 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1875 locsize, true, true);
1876
1877 // For mapping symbol processing, we need to read the symbol names.
1878 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
1879 if (strtab_shndx >= this->shnum())
1880 {
1881 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
1882 return;
1883 }
1884
1885 elfcpp::Shdr<size, big_endian>
1886 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
1887 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
1888 {
1889 this->error(_("symbol table name section has wrong type: %u"),
1890 static_cast<unsigned int>(strtabshdr.get_sh_type()));
1891 return;
1892 }
1893
1894 const char* pnames =
1895 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
1896 strtabshdr.get_sh_size(),
1897 false, false));
1898
1899 // Skip the first dummy symbol.
1900 psyms += sym_size;
1901 typename Sized_relobj_file<size, big_endian>::Local_values*
1902 plocal_values = this->local_values();
1903 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1904 {
1905 elfcpp::Sym<size, big_endian> sym(psyms);
1906 Symbol_value<size>& lv((*plocal_values)[i]);
1907 AArch64_address input_value = lv.input_value();
1908
1909 // Check to see if this is a mapping symbol. AArch64 mapping symbols are
1910 // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping
1911 // symbols.
1912 // Mapping symbols could be one of the following 4 forms -
1913 // a) $x
1914 // b) $x.<any...>
1915 // c) $d
1916 // d) $d.<any...>
1917 const char* sym_name = pnames + sym.get_st_name();
1918 if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd')
1919 && (sym_name[2] == '\0' || sym_name[2] == '.'))
1920 {
1921 bool is_ordinary;
1922 unsigned int input_shndx =
1923 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
1924 gold_assert(is_ordinary);
1925
1926 Mapping_symbol_position msp(input_shndx, input_value);
1927 // Insert mapping_symbol_info into map whose ordering is defined by
1928 // (shndx, offset_within_section).
1929 this->mapping_symbol_info_[msp] = sym_name[1];
1930 }
1931 }
1932 }
1933
1934
1935 // Fix all errata in the object.
1936
1937 template<int size, bool big_endian>
1938 void
fix_errata(typename Sized_relobj_file<size,big_endian>::Views * pviews)1939 AArch64_relobj<size, big_endian>::fix_errata(
1940 typename Sized_relobj_file<size, big_endian>::Views* pviews)
1941 {
1942 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
1943 unsigned int shnum = this->shnum();
1944 for (unsigned int i = 1; i < shnum; ++i)
1945 {
1946 The_stub_table* stub_table = this->stub_table(i);
1947 if (!stub_table)
1948 continue;
1949 std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1950 ipair(stub_table->find_erratum_stubs_for_input_section(this, i));
1951 Erratum_stub_set_iter p = ipair.first, end = ipair.second;
1952 while (p != end)
1953 {
1954 The_erratum_stub* stub = *p;
1955 typename Sized_relobj_file<size, big_endian>::View_size&
1956 pview((*pviews)[i]);
1957
1958 // Double check data before fix.
1959 gold_assert(pview.address + stub->sh_offset()
1960 == stub->erratum_address());
1961
1962 // Update previously recorded erratum insn with relocated
1963 // version.
1964 Insntype* ip =
1965 reinterpret_cast<Insntype*>(pview.view + stub->sh_offset());
1966 Insntype insn_to_fix = ip[0];
1967 stub->update_erratum_insn(insn_to_fix);
1968
1969 // First try to see if erratum is 843419 and if it can be fixed
1970 // without using branch-to-stub.
1971 if (!try_fix_erratum_843419_optimized(stub, pview))
1972 {
1973 // Replace the erratum insn with a branch-to-stub.
1974 AArch64_address stub_address =
1975 stub_table->erratum_stub_address(stub);
1976 unsigned int b_offset = stub_address - stub->erratum_address();
1977 AArch64_relocate_functions<size, big_endian>::construct_b(
1978 pview.view + stub->sh_offset(), b_offset & 0xfffffff);
1979 }
1980 ++p;
1981 }
1982 }
1983 }
1984
1985
1986 // This is an optimization for 843419. This erratum requires the sequence begin
1987 // with 'adrp', when final value calculated by adrp fits in adr, we can just
1988 // replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however,
1989 // in this case, we do not delete the erratum stub (too late to do so), it is
1990 // merely generated without ever being called.)
1991
1992 template<int size, bool big_endian>
1993 bool
try_fix_erratum_843419_optimized(The_erratum_stub * stub,typename Sized_relobj_file<size,big_endian>::View_size & pview)1994 AArch64_relobj<size, big_endian>::try_fix_erratum_843419_optimized(
1995 The_erratum_stub* stub,
1996 typename Sized_relobj_file<size, big_endian>::View_size& pview)
1997 {
1998 if (stub->type() != ST_E_843419)
1999 return false;
2000
2001 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2002 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
2003 E843419_stub<size, big_endian>* e843419_stub =
2004 reinterpret_cast<E843419_stub<size, big_endian>*>(stub);
2005 AArch64_address pc = pview.address + e843419_stub->adrp_sh_offset();
2006 Insntype* adrp_view = reinterpret_cast<Insntype*>(
2007 pview.view + e843419_stub->adrp_sh_offset());
2008 Insntype adrp_insn = adrp_view[0];
2009 gold_assert(Insn_utilities::is_adrp(adrp_insn));
2010 // Get adrp 33-bit signed imm value.
2011 int64_t adrp_imm = Insn_utilities::
2012 aarch64_adrp_decode_imm(adrp_insn);
2013 // adrp - final value transferred to target register is calculated as:
2014 // PC[11:0] = Zeros(12)
2015 // adrp_dest_value = PC + adrp_imm;
2016 int64_t adrp_dest_value = (pc & ~((1 << 12) - 1)) + adrp_imm;
2017 // adr -final value transferred to target register is calucalted as:
2018 // PC + adr_imm
2019 // So we have:
2020 // PC + adr_imm = adrp_dest_value
2021 // ==>
2022 // adr_imm = adrp_dest_value - PC
2023 int64_t adr_imm = adrp_dest_value - pc;
2024 // Check if imm fits in adr (21-bit signed).
2025 if (-(1 << 20) <= adr_imm && adr_imm < (1 << 20))
2026 {
2027 // Convert 'adrp' into 'adr'.
2028 Insntype adr_insn = adrp_insn & ((1 << 31) - 1);
2029 adr_insn = Insn_utilities::
2030 aarch64_adr_encode_imm(adr_insn, adr_imm);
2031 elfcpp::Swap<32, big_endian>::writeval(adrp_view, adr_insn);
2032 return true;
2033 }
2034 return false;
2035 }
2036
2037
2038 // Relocate sections.
2039
2040 template<int size, bool big_endian>
2041 void
do_relocate_sections(const Symbol_table * symtab,const Layout * layout,const unsigned char * pshdrs,Output_file * of,typename Sized_relobj_file<size,big_endian>::Views * pviews)2042 AArch64_relobj<size, big_endian>::do_relocate_sections(
2043 const Symbol_table* symtab, const Layout* layout,
2044 const unsigned char* pshdrs, Output_file* of,
2045 typename Sized_relobj_file<size, big_endian>::Views* pviews)
2046 {
2047 // Call parent to relocate sections.
2048 Sized_relobj_file<size, big_endian>::do_relocate_sections(symtab, layout,
2049 pshdrs, of, pviews);
2050
2051 // We do not generate stubs if doing a relocatable link.
2052 if (parameters->options().relocatable())
2053 return;
2054
2055 if (parameters->options().fix_cortex_a53_843419()
2056 || parameters->options().fix_cortex_a53_835769())
2057 this->fix_errata(pviews);
2058
2059 Relocate_info<size, big_endian> relinfo;
2060 relinfo.symtab = symtab;
2061 relinfo.layout = layout;
2062 relinfo.object = this;
2063
2064 // Relocate stub tables.
2065 unsigned int shnum = this->shnum();
2066 The_target_aarch64* target = The_target_aarch64::current_target();
2067
2068 for (unsigned int i = 1; i < shnum; ++i)
2069 {
2070 The_aarch64_input_section* aarch64_input_section =
2071 target->find_aarch64_input_section(this, i);
2072 if (aarch64_input_section != NULL
2073 && aarch64_input_section->is_stub_table_owner()
2074 && !aarch64_input_section->stub_table()->empty())
2075 {
2076 Output_section* os = this->output_section(i);
2077 gold_assert(os != NULL);
2078
2079 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
2080 relinfo.reloc_shdr = NULL;
2081 relinfo.data_shndx = i;
2082 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
2083
2084 typename Sized_relobj_file<size, big_endian>::View_size&
2085 view_struct = (*pviews)[i];
2086 gold_assert(view_struct.view != NULL);
2087
2088 The_stub_table* stub_table = aarch64_input_section->stub_table();
2089 off_t offset = stub_table->address() - view_struct.address;
2090 unsigned char* view = view_struct.view + offset;
2091 AArch64_address address = stub_table->address();
2092 section_size_type view_size = stub_table->data_size();
2093 stub_table->relocate_stubs(&relinfo, target, os, view, address,
2094 view_size);
2095 }
2096 }
2097 }
2098
2099
2100 // Determine if an input section is scannable for stub processing. SHDR is
2101 // the header of the section and SHNDX is the section index. OS is the output
2102 // section for the input section and SYMTAB is the global symbol table used to
2103 // look up ICF information.
2104
2105 template<int size, bool big_endian>
2106 bool
text_section_is_scannable(const elfcpp::Shdr<size,big_endian> & text_shdr,unsigned int text_shndx,const Output_section * os,const Symbol_table * symtab)2107 AArch64_relobj<size, big_endian>::text_section_is_scannable(
2108 const elfcpp::Shdr<size, big_endian>& text_shdr,
2109 unsigned int text_shndx,
2110 const Output_section* os,
2111 const Symbol_table* symtab)
2112 {
2113 // Skip any empty sections, unallocated sections or sections whose
2114 // type are not SHT_PROGBITS.
2115 if (text_shdr.get_sh_size() == 0
2116 || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
2117 || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2118 return false;
2119
2120 // Skip any discarded or ICF'ed sections.
2121 if (os == NULL || symtab->is_section_folded(this, text_shndx))
2122 return false;
2123
2124 // Skip exception frame.
2125 if (strcmp(os->name(), ".eh_frame") == 0)
2126 return false ;
2127
2128 gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
2129 os->find_relaxed_input_section(this, text_shndx) != NULL);
2130
2131 return true;
2132 }
2133
2134
2135 // Determine if we want to scan the SHNDX-th section for relocation stubs.
2136 // This is a helper for AArch64_relobj::scan_sections_for_stubs().
2137
2138 template<int size, bool big_endian>
2139 bool
section_needs_reloc_stub_scanning(const elfcpp::Shdr<size,big_endian> & shdr,const Relobj::Output_sections & out_sections,const Symbol_table * symtab,const unsigned char * pshdrs)2140 AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
2141 const elfcpp::Shdr<size, big_endian>& shdr,
2142 const Relobj::Output_sections& out_sections,
2143 const Symbol_table* symtab,
2144 const unsigned char* pshdrs)
2145 {
2146 unsigned int sh_type = shdr.get_sh_type();
2147 if (sh_type != elfcpp::SHT_RELA)
2148 return false;
2149
2150 // Ignore empty section.
2151 off_t sh_size = shdr.get_sh_size();
2152 if (sh_size == 0)
2153 return false;
2154
2155 // Ignore reloc section with unexpected symbol table. The
2156 // error will be reported in the final link.
2157 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
2158 return false;
2159
2160 gold_assert(sh_type == elfcpp::SHT_RELA);
2161 unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2162
2163 // Ignore reloc section with unexpected entsize or uneven size.
2164 // The error will be reported in the final link.
2165 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
2166 return false;
2167
2168 // Ignore reloc section with bad info. This error will be
2169 // reported in the final link.
2170 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
2171 if (text_shndx >= this->shnum())
2172 return false;
2173
2174 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2175 const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
2176 text_shndx * shdr_size);
2177 return this->text_section_is_scannable(text_shdr, text_shndx,
2178 out_sections[text_shndx], symtab);
2179 }
2180
2181
2182 // Scan section SHNDX for erratum 843419 and 835769.
2183
2184 template<int size, bool big_endian>
2185 void
scan_errata(unsigned int shndx,const elfcpp::Shdr<size,big_endian> & shdr,Output_section * os,const Symbol_table * symtab,The_target_aarch64 * target)2186 AArch64_relobj<size, big_endian>::scan_errata(
2187 unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr,
2188 Output_section* os, const Symbol_table* symtab,
2189 The_target_aarch64* target)
2190 {
2191 if (shdr.get_sh_size() == 0
2192 || (shdr.get_sh_flags() &
2193 (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0
2194 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2195 return;
2196
2197 if (!os || symtab->is_section_folded(this, shndx)) return;
2198
2199 AArch64_address output_offset = this->get_output_section_offset(shndx);
2200 AArch64_address output_address;
2201 if (output_offset != invalid_address)
2202 output_address = os->address() + output_offset;
2203 else
2204 {
2205 const Output_relaxed_input_section* poris =
2206 os->find_relaxed_input_section(this, shndx);
2207 if (!poris) return;
2208 output_address = poris->address();
2209 }
2210
2211 section_size_type input_view_size = 0;
2212 const unsigned char* input_view =
2213 this->section_contents(shndx, &input_view_size, false);
2214
2215 Mapping_symbol_position section_start(shndx, 0);
2216 // Find the first mapping symbol record within section shndx.
2217 typename Mapping_symbol_info::const_iterator p =
2218 this->mapping_symbol_info_.lower_bound(section_start);
2219 while (p != this->mapping_symbol_info_.end() &&
2220 p->first.shndx_ == shndx)
2221 {
2222 typename Mapping_symbol_info::const_iterator prev = p;
2223 ++p;
2224 if (prev->second == 'x')
2225 {
2226 section_size_type span_start =
2227 convert_to_section_size_type(prev->first.offset_);
2228 section_size_type span_end;
2229 if (p != this->mapping_symbol_info_.end()
2230 && p->first.shndx_ == shndx)
2231 span_end = convert_to_section_size_type(p->first.offset_);
2232 else
2233 span_end = convert_to_section_size_type(shdr.get_sh_size());
2234
2235 // Here we do not share the scanning code of both errata. For 843419,
2236 // only the last few insns of each page are examined, which is fast,
2237 // whereas, for 835769, every insn pair needs to be checked.
2238
2239 if (parameters->options().fix_cortex_a53_843419())
2240 target->scan_erratum_843419_span(
2241 this, shndx, span_start, span_end,
2242 const_cast<unsigned char*>(input_view), output_address);
2243
2244 if (parameters->options().fix_cortex_a53_835769())
2245 target->scan_erratum_835769_span(
2246 this, shndx, span_start, span_end,
2247 const_cast<unsigned char*>(input_view), output_address);
2248 }
2249 }
2250 }
2251
2252
2253 // Scan relocations for stub generation.
2254
2255 template<int size, bool big_endian>
2256 void
scan_sections_for_stubs(The_target_aarch64 * target,const Symbol_table * symtab,const Layout * layout)2257 AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
2258 The_target_aarch64* target,
2259 const Symbol_table* symtab,
2260 const Layout* layout)
2261 {
2262 unsigned int shnum = this->shnum();
2263 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2264
2265 // Read the section headers.
2266 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2267 shnum * shdr_size,
2268 true, true);
2269
2270 // To speed up processing, we set up hash tables for fast lookup of
2271 // input offsets to output addresses.
2272 this->initialize_input_to_output_maps();
2273
2274 const Relobj::Output_sections& out_sections(this->output_sections());
2275
2276 Relocate_info<size, big_endian> relinfo;
2277 relinfo.symtab = symtab;
2278 relinfo.layout = layout;
2279 relinfo.object = this;
2280
2281 // Do relocation stubs scanning.
2282 const unsigned char* p = pshdrs + shdr_size;
2283 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
2284 {
2285 const elfcpp::Shdr<size, big_endian> shdr(p);
2286 if (parameters->options().fix_cortex_a53_843419()
2287 || parameters->options().fix_cortex_a53_835769())
2288 scan_errata(i, shdr, out_sections[i], symtab, target);
2289 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
2290 pshdrs))
2291 {
2292 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
2293 AArch64_address output_offset =
2294 this->get_output_section_offset(index);
2295 AArch64_address output_address;
2296 if (output_offset != invalid_address)
2297 {
2298 output_address = out_sections[index]->address() + output_offset;
2299 }
2300 else
2301 {
2302 // Currently this only happens for a relaxed section.
2303 const Output_relaxed_input_section* poris =
2304 out_sections[index]->find_relaxed_input_section(this, index);
2305 gold_assert(poris != NULL);
2306 output_address = poris->address();
2307 }
2308
2309 // Get the relocations.
2310 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
2311 shdr.get_sh_size(),
2312 true, false);
2313
2314 // Get the section contents.
2315 section_size_type input_view_size = 0;
2316 const unsigned char* input_view =
2317 this->section_contents(index, &input_view_size, false);
2318
2319 relinfo.reloc_shndx = i;
2320 relinfo.data_shndx = index;
2321 unsigned int sh_type = shdr.get_sh_type();
2322 unsigned int reloc_size;
2323 gold_assert (sh_type == elfcpp::SHT_RELA);
2324 reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2325
2326 Output_section* os = out_sections[index];
2327 target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
2328 shdr.get_sh_size() / reloc_size,
2329 os,
2330 output_offset == invalid_address,
2331 input_view, output_address,
2332 input_view_size);
2333 }
2334 }
2335 }
2336
2337
2338 // A class to wrap an ordinary input section containing executable code.
2339
2340 template<int size, bool big_endian>
2341 class AArch64_input_section : public Output_relaxed_input_section
2342 {
2343 public:
2344 typedef Stub_table<size, big_endian> The_stub_table;
2345
AArch64_input_section(Relobj * relobj,unsigned int shndx)2346 AArch64_input_section(Relobj* relobj, unsigned int shndx)
2347 : Output_relaxed_input_section(relobj, shndx, 1),
2348 stub_table_(NULL),
2349 original_contents_(NULL), original_size_(0),
2350 original_addralign_(1)
2351 { }
2352
~AArch64_input_section()2353 ~AArch64_input_section()
2354 { delete[] this->original_contents_; }
2355
2356 // Initialize.
2357 void
2358 init();
2359
2360 // Set the stub_table.
2361 void
set_stub_table(The_stub_table * st)2362 set_stub_table(The_stub_table* st)
2363 { this->stub_table_ = st; }
2364
2365 // Whether this is a stub table owner.
2366 bool
is_stub_table_owner() const2367 is_stub_table_owner() const
2368 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
2369
2370 // Return the original size of the section.
2371 uint32_t
original_size() const2372 original_size() const
2373 { return this->original_size_; }
2374
2375 // Return the stub table.
2376 The_stub_table*
stub_table()2377 stub_table()
2378 { return stub_table_; }
2379
2380 protected:
2381 // Write out this input section.
2382 void
2383 do_write(Output_file*);
2384
2385 // Return required alignment of this.
2386 uint64_t
do_addralign() const2387 do_addralign() const
2388 {
2389 if (this->is_stub_table_owner())
2390 return std::max(this->stub_table_->addralign(),
2391 static_cast<uint64_t>(this->original_addralign_));
2392 else
2393 return this->original_addralign_;
2394 }
2395
2396 // Finalize data size.
2397 void
2398 set_final_data_size();
2399
2400 // Reset address and file offset.
2401 void
2402 do_reset_address_and_file_offset();
2403
2404 // Output offset.
2405 bool
do_output_offset(const Relobj * object,unsigned int shndx,section_offset_type offset,section_offset_type * poutput) const2406 do_output_offset(const Relobj* object, unsigned int shndx,
2407 section_offset_type offset,
2408 section_offset_type* poutput) const
2409 {
2410 if ((object == this->relobj())
2411 && (shndx == this->shndx())
2412 && (offset >= 0)
2413 && (offset <=
2414 convert_types<section_offset_type, uint32_t>(this->original_size_)))
2415 {
2416 *poutput = offset;
2417 return true;
2418 }
2419 else
2420 return false;
2421 }
2422
2423 private:
2424 // Copying is not allowed.
2425 AArch64_input_section(const AArch64_input_section&);
2426 AArch64_input_section& operator=(const AArch64_input_section&);
2427
2428 // The relocation stubs.
2429 The_stub_table* stub_table_;
2430 // Original section contents. We have to make a copy here since the file
2431 // containing the original section may not be locked when we need to access
2432 // the contents.
2433 unsigned char* original_contents_;
2434 // Section size of the original input section.
2435 uint32_t original_size_;
2436 // Address alignment of the original input section.
2437 uint32_t original_addralign_;
2438 }; // End of AArch64_input_section
2439
2440
2441 // Finalize data size.
2442
2443 template<int size, bool big_endian>
2444 void
set_final_data_size()2445 AArch64_input_section<size, big_endian>::set_final_data_size()
2446 {
2447 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2448
2449 if (this->is_stub_table_owner())
2450 {
2451 this->stub_table_->finalize_data_size();
2452 off = align_address(off, this->stub_table_->addralign());
2453 off += this->stub_table_->data_size();
2454 }
2455 this->set_data_size(off);
2456 }
2457
2458
2459 // Reset address and file offset.
2460
2461 template<int size, bool big_endian>
2462 void
do_reset_address_and_file_offset()2463 AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
2464 {
2465 // Size of the original input section contents.
2466 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2467
2468 // If this is a stub table owner, account for the stub table size.
2469 if (this->is_stub_table_owner())
2470 {
2471 The_stub_table* stub_table = this->stub_table_;
2472
2473 // Reset the stub table's address and file offset. The
2474 // current data size for child will be updated after that.
2475 stub_table_->reset_address_and_file_offset();
2476 off = align_address(off, stub_table_->addralign());
2477 off += stub_table->current_data_size();
2478 }
2479
2480 this->set_current_data_size(off);
2481 }
2482
2483
2484 // Initialize an Arm_input_section.
2485
2486 template<int size, bool big_endian>
2487 void
init()2488 AArch64_input_section<size, big_endian>::init()
2489 {
2490 Relobj* relobj = this->relobj();
2491 unsigned int shndx = this->shndx();
2492
2493 // We have to cache original size, alignment and contents to avoid locking
2494 // the original file.
2495 this->original_addralign_ =
2496 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
2497
2498 // This is not efficient but we expect only a small number of relaxed
2499 // input sections for stubs.
2500 section_size_type section_size;
2501 const unsigned char* section_contents =
2502 relobj->section_contents(shndx, §ion_size, false);
2503 this->original_size_ =
2504 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
2505
2506 gold_assert(this->original_contents_ == NULL);
2507 this->original_contents_ = new unsigned char[section_size];
2508 memcpy(this->original_contents_, section_contents, section_size);
2509
2510 // We want to make this look like the original input section after
2511 // output sections are finalized.
2512 Output_section* os = relobj->output_section(shndx);
2513 off_t offset = relobj->output_section_offset(shndx);
2514 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
2515 this->set_address(os->address() + offset);
2516 this->set_file_offset(os->offset() + offset);
2517 this->set_current_data_size(this->original_size_);
2518 this->finalize_data_size();
2519 }
2520
2521
2522 // Write data to output file.
2523
2524 template<int size, bool big_endian>
2525 void
do_write(Output_file * of)2526 AArch64_input_section<size, big_endian>::do_write(Output_file* of)
2527 {
2528 // We have to write out the original section content.
2529 gold_assert(this->original_contents_ != NULL);
2530 of->write(this->offset(), this->original_contents_,
2531 this->original_size_);
2532
2533 // If this owns a stub table and it is not empty, write it.
2534 if (this->is_stub_table_owner() && !this->stub_table_->empty())
2535 this->stub_table_->write(of);
2536 }
2537
2538
2539 // Arm output section class. This is defined mainly to add a number of stub
2540 // generation methods.
2541
2542 template<int size, bool big_endian>
2543 class AArch64_output_section : public Output_section
2544 {
2545 public:
2546 typedef Target_aarch64<size, big_endian> The_target_aarch64;
2547 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2548 typedef Stub_table<size, big_endian> The_stub_table;
2549 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2550
2551 public:
AArch64_output_section(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags)2552 AArch64_output_section(const char* name, elfcpp::Elf_Word type,
2553 elfcpp::Elf_Xword flags)
2554 : Output_section(name, type, flags)
2555 { }
2556
~AArch64_output_section()2557 ~AArch64_output_section() {}
2558
2559 // Group input sections for stub generation.
2560 void
2561 group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
2562 const Task*);
2563
2564 private:
2565 typedef Output_section::Input_section Input_section;
2566 typedef Output_section::Input_section_list Input_section_list;
2567
2568 // Create a stub group.
2569 void
2570 create_stub_group(Input_section_list::const_iterator,
2571 Input_section_list::const_iterator,
2572 Input_section_list::const_iterator,
2573 The_target_aarch64*,
2574 std::vector<Output_relaxed_input_section*>&,
2575 const Task*);
2576 }; // End of AArch64_output_section
2577
2578
2579 // Create a stub group for input sections from FIRST to LAST. OWNER points to
2580 // the input section that will be the owner of the stub table.
2581
2582 template<int size, bool big_endian> void
create_stub_group(Input_section_list::const_iterator first,Input_section_list::const_iterator last,Input_section_list::const_iterator owner,The_target_aarch64 * target,std::vector<Output_relaxed_input_section * > & new_relaxed_sections,const Task * task)2583 AArch64_output_section<size, big_endian>::create_stub_group(
2584 Input_section_list::const_iterator first,
2585 Input_section_list::const_iterator last,
2586 Input_section_list::const_iterator owner,
2587 The_target_aarch64* target,
2588 std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
2589 const Task* task)
2590 {
2591 // Currently we convert ordinary input sections into relaxed sections only
2592 // at this point.
2593 The_aarch64_input_section* input_section;
2594 if (owner->is_relaxed_input_section())
2595 gold_unreachable();
2596 else
2597 {
2598 gold_assert(owner->is_input_section());
2599 // Create a new relaxed input section. We need to lock the original
2600 // file.
2601 Task_lock_obj<Object> tl(task, owner->relobj());
2602 input_section =
2603 target->new_aarch64_input_section(owner->relobj(), owner->shndx());
2604 new_relaxed_sections.push_back(input_section);
2605 }
2606
2607 // Create a stub table.
2608 The_stub_table* stub_table =
2609 target->new_stub_table(input_section);
2610
2611 input_section->set_stub_table(stub_table);
2612
2613 Input_section_list::const_iterator p = first;
2614 // Look for input sections or relaxed input sections in [first ... last].
2615 do
2616 {
2617 if (p->is_input_section() || p->is_relaxed_input_section())
2618 {
2619 // The stub table information for input sections live
2620 // in their objects.
2621 The_aarch64_relobj* aarch64_relobj =
2622 static_cast<The_aarch64_relobj*>(p->relobj());
2623 aarch64_relobj->set_stub_table(p->shndx(), stub_table);
2624 }
2625 }
2626 while (p++ != last);
2627 }
2628
2629
2630 // Group input sections for stub generation. GROUP_SIZE is roughly the limit of
2631 // stub groups. We grow a stub group by adding input section until the size is
2632 // just below GROUP_SIZE. The last input section will be converted into a stub
2633 // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
2634 // after the stub table, effectively doubling the group size.
2635 //
2636 // This is similar to the group_sections() function in elf32-arm.c but is
2637 // implemented differently.
2638
2639 template<int size, bool big_endian>
group_sections(section_size_type group_size,bool stubs_always_after_branch,Target_aarch64<size,big_endian> * target,const Task * task)2640 void AArch64_output_section<size, big_endian>::group_sections(
2641 section_size_type group_size,
2642 bool stubs_always_after_branch,
2643 Target_aarch64<size, big_endian>* target,
2644 const Task* task)
2645 {
2646 typedef enum
2647 {
2648 NO_GROUP,
2649 FINDING_STUB_SECTION,
2650 HAS_STUB_SECTION
2651 } State;
2652
2653 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
2654
2655 State state = NO_GROUP;
2656 section_size_type off = 0;
2657 section_size_type group_begin_offset = 0;
2658 section_size_type group_end_offset = 0;
2659 section_size_type stub_table_end_offset = 0;
2660 Input_section_list::const_iterator group_begin =
2661 this->input_sections().end();
2662 Input_section_list::const_iterator stub_table =
2663 this->input_sections().end();
2664 Input_section_list::const_iterator group_end = this->input_sections().end();
2665 for (Input_section_list::const_iterator p = this->input_sections().begin();
2666 p != this->input_sections().end();
2667 ++p)
2668 {
2669 section_size_type section_begin_offset =
2670 align_address(off, p->addralign());
2671 section_size_type section_end_offset =
2672 section_begin_offset + p->data_size();
2673
2674 // Check to see if we should group the previously seen sections.
2675 switch (state)
2676 {
2677 case NO_GROUP:
2678 break;
2679
2680 case FINDING_STUB_SECTION:
2681 // Adding this section makes the group larger than GROUP_SIZE.
2682 if (section_end_offset - group_begin_offset >= group_size)
2683 {
2684 if (stubs_always_after_branch)
2685 {
2686 gold_assert(group_end != this->input_sections().end());
2687 this->create_stub_group(group_begin, group_end, group_end,
2688 target, new_relaxed_sections,
2689 task);
2690 state = NO_GROUP;
2691 }
2692 else
2693 {
2694 // Input sections up to stub_group_size bytes after the stub
2695 // table can be handled by it too.
2696 state = HAS_STUB_SECTION;
2697 stub_table = group_end;
2698 stub_table_end_offset = group_end_offset;
2699 }
2700 }
2701 break;
2702
2703 case HAS_STUB_SECTION:
2704 // Adding this section makes the post stub-section group larger
2705 // than GROUP_SIZE.
2706 gold_unreachable();
2707 // NOT SUPPORTED YET. For completeness only.
2708 if (section_end_offset - stub_table_end_offset >= group_size)
2709 {
2710 gold_assert(group_end != this->input_sections().end());
2711 this->create_stub_group(group_begin, group_end, stub_table,
2712 target, new_relaxed_sections, task);
2713 state = NO_GROUP;
2714 }
2715 break;
2716
2717 default:
2718 gold_unreachable();
2719 }
2720
2721 // If we see an input section and currently there is no group, start
2722 // a new one. Skip any empty sections. We look at the data size
2723 // instead of calling p->relobj()->section_size() to avoid locking.
2724 if ((p->is_input_section() || p->is_relaxed_input_section())
2725 && (p->data_size() != 0))
2726 {
2727 if (state == NO_GROUP)
2728 {
2729 state = FINDING_STUB_SECTION;
2730 group_begin = p;
2731 group_begin_offset = section_begin_offset;
2732 }
2733
2734 // Keep track of the last input section seen.
2735 group_end = p;
2736 group_end_offset = section_end_offset;
2737 }
2738
2739 off = section_end_offset;
2740 }
2741
2742 // Create a stub group for any ungrouped sections.
2743 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
2744 {
2745 gold_assert(group_end != this->input_sections().end());
2746 this->create_stub_group(group_begin, group_end,
2747 (state == FINDING_STUB_SECTION
2748 ? group_end
2749 : stub_table),
2750 target, new_relaxed_sections, task);
2751 }
2752
2753 if (!new_relaxed_sections.empty())
2754 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
2755
2756 // Update the section offsets
2757 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
2758 {
2759 The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
2760 new_relaxed_sections[i]->relobj());
2761 unsigned int shndx = new_relaxed_sections[i]->shndx();
2762 // Tell AArch64_relobj that this input section is converted.
2763 relobj->convert_input_section_to_relaxed_section(shndx);
2764 }
2765 } // End of AArch64_output_section::group_sections
2766
2767
2768 AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
2769
2770
2771 // The aarch64 target class.
2772 // See the ABI at
2773 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2774 template<int size, bool big_endian>
2775 class Target_aarch64 : public Sized_target<size, big_endian>
2776 {
2777 public:
2778 typedef Target_aarch64<size, big_endian> This;
2779 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2780 Reloc_section;
2781 typedef Relocate_info<size, big_endian> The_relocate_info;
2782 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2783 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2784 typedef Reloc_stub<size, big_endian> The_reloc_stub;
2785 typedef Erratum_stub<size, big_endian> The_erratum_stub;
2786 typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
2787 typedef Stub_table<size, big_endian> The_stub_table;
2788 typedef std::vector<The_stub_table*> Stub_table_list;
2789 typedef typename Stub_table_list::iterator Stub_table_iterator;
2790 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2791 typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
2792 typedef Unordered_map<Section_id,
2793 AArch64_input_section<size, big_endian>*,
2794 Section_id_hash> AArch64_input_section_map;
2795 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2796 const static int TCB_SIZE = size / 8 * 2;
2797
Target_aarch64(const Target::Target_info * info=& aarch64_info)2798 Target_aarch64(const Target::Target_info* info = &aarch64_info)
2799 : Sized_target<size, big_endian>(info),
2800 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2801 got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
2802 rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
2803 got_mod_index_offset_(-1U),
2804 tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
2805 stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
2806 { }
2807
2808 // Scan the relocations to determine unreferenced sections for
2809 // garbage collection.
2810 void
2811 gc_process_relocs(Symbol_table* symtab,
2812 Layout* layout,
2813 Sized_relobj_file<size, big_endian>* object,
2814 unsigned int data_shndx,
2815 unsigned int sh_type,
2816 const unsigned char* prelocs,
2817 size_t reloc_count,
2818 Output_section* output_section,
2819 bool needs_special_offset_handling,
2820 size_t local_symbol_count,
2821 const unsigned char* plocal_symbols);
2822
2823 // Scan the relocations to look for symbol adjustments.
2824 void
2825 scan_relocs(Symbol_table* symtab,
2826 Layout* layout,
2827 Sized_relobj_file<size, big_endian>* object,
2828 unsigned int data_shndx,
2829 unsigned int sh_type,
2830 const unsigned char* prelocs,
2831 size_t reloc_count,
2832 Output_section* output_section,
2833 bool needs_special_offset_handling,
2834 size_t local_symbol_count,
2835 const unsigned char* plocal_symbols);
2836
2837 // Finalize the sections.
2838 void
2839 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2840
2841 // Return the value to use for a dynamic which requires special
2842 // treatment.
2843 uint64_t
2844 do_dynsym_value(const Symbol*) const;
2845
2846 // Relocate a section.
2847 void
2848 relocate_section(const Relocate_info<size, big_endian>*,
2849 unsigned int sh_type,
2850 const unsigned char* prelocs,
2851 size_t reloc_count,
2852 Output_section* output_section,
2853 bool needs_special_offset_handling,
2854 unsigned char* view,
2855 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2856 section_size_type view_size,
2857 const Reloc_symbol_changes*);
2858
2859 // Scan the relocs during a relocatable link.
2860 void
2861 scan_relocatable_relocs(Symbol_table* symtab,
2862 Layout* layout,
2863 Sized_relobj_file<size, big_endian>* object,
2864 unsigned int data_shndx,
2865 unsigned int sh_type,
2866 const unsigned char* prelocs,
2867 size_t reloc_count,
2868 Output_section* output_section,
2869 bool needs_special_offset_handling,
2870 size_t local_symbol_count,
2871 const unsigned char* plocal_symbols,
2872 Relocatable_relocs*);
2873
2874 // Relocate a section during a relocatable link.
2875 void
2876 relocate_relocs(
2877 const Relocate_info<size, big_endian>*,
2878 unsigned int sh_type,
2879 const unsigned char* prelocs,
2880 size_t reloc_count,
2881 Output_section* output_section,
2882 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
2883 const Relocatable_relocs*,
2884 unsigned char* view,
2885 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2886 section_size_type view_size,
2887 unsigned char* reloc_view,
2888 section_size_type reloc_view_size);
2889
2890 // Return the symbol index to use for a target specific relocation.
2891 // The only target specific relocation is R_AARCH64_TLSDESC for a
2892 // local symbol, which is an absolute reloc.
2893 unsigned int
do_reloc_symbol_index(void *,unsigned int r_type) const2894 do_reloc_symbol_index(void*, unsigned int r_type) const
2895 {
2896 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
2897 return 0;
2898 }
2899
2900 // Return the addend to use for a target specific relocation.
2901 uint64_t
2902 do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
2903
2904 // Return the PLT section.
2905 uint64_t
do_plt_address_for_global(const Symbol * gsym) const2906 do_plt_address_for_global(const Symbol* gsym) const
2907 { return this->plt_section()->address_for_global(gsym); }
2908
2909 uint64_t
do_plt_address_for_local(const Relobj * relobj,unsigned int symndx) const2910 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2911 { return this->plt_section()->address_for_local(relobj, symndx); }
2912
2913 // This function should be defined in targets that can use relocation
2914 // types to determine (implemented in local_reloc_may_be_function_pointer
2915 // and global_reloc_may_be_function_pointer)
2916 // if a function's pointer is taken. ICF uses this in safe mode to only
2917 // fold those functions whose pointer is defintely not taken.
2918 bool
do_can_check_for_function_pointers() const2919 do_can_check_for_function_pointers() const
2920 { return true; }
2921
2922 // Return the number of entries in the PLT.
2923 unsigned int
2924 plt_entry_count() const;
2925
2926 //Return the offset of the first non-reserved PLT entry.
2927 unsigned int
2928 first_plt_entry_offset() const;
2929
2930 // Return the size of each PLT entry.
2931 unsigned int
2932 plt_entry_size() const;
2933
2934 // Create a stub table.
2935 The_stub_table*
2936 new_stub_table(The_aarch64_input_section*);
2937
2938 // Create an aarch64 input section.
2939 The_aarch64_input_section*
2940 new_aarch64_input_section(Relobj*, unsigned int);
2941
2942 // Find an aarch64 input section instance for a given OBJ and SHNDX.
2943 The_aarch64_input_section*
2944 find_aarch64_input_section(Relobj*, unsigned int) const;
2945
2946 // Return the thread control block size.
2947 unsigned int
tcb_size() const2948 tcb_size() const { return This::TCB_SIZE; }
2949
2950 // Scan a section for stub generation.
2951 void
2952 scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
2953 const unsigned char*, size_t, Output_section*,
2954 bool, const unsigned char*,
2955 Address,
2956 section_size_type);
2957
2958 // Scan a relocation section for stub.
2959 template<int sh_type>
2960 void
2961 scan_reloc_section_for_stubs(
2962 const The_relocate_info* relinfo,
2963 const unsigned char* prelocs,
2964 size_t reloc_count,
2965 Output_section* output_section,
2966 bool needs_special_offset_handling,
2967 const unsigned char* view,
2968 Address view_address,
2969 section_size_type);
2970
2971 // Relocate a single stub.
2972 void
2973 relocate_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
2974 Output_section*, unsigned char*, Address,
2975 section_size_type);
2976
2977 // Get the default AArch64 target.
2978 static This*
current_target()2979 current_target()
2980 {
2981 gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
2982 && parameters->target().get_size() == size
2983 && parameters->target().is_big_endian() == big_endian);
2984 return static_cast<This*>(parameters->sized_target<size, big_endian>());
2985 }
2986
2987
2988 // Scan erratum 843419 for a part of a section.
2989 void
2990 scan_erratum_843419_span(
2991 AArch64_relobj<size, big_endian>*,
2992 unsigned int,
2993 const section_size_type,
2994 const section_size_type,
2995 unsigned char*,
2996 Address);
2997
2998 // Scan erratum 835769 for a part of a section.
2999 void
3000 scan_erratum_835769_span(
3001 AArch64_relobj<size, big_endian>*,
3002 unsigned int,
3003 const section_size_type,
3004 const section_size_type,
3005 unsigned char*,
3006 Address);
3007
3008 protected:
3009 void
do_select_as_default_target()3010 do_select_as_default_target()
3011 {
3012 gold_assert(aarch64_reloc_property_table == NULL);
3013 aarch64_reloc_property_table = new AArch64_reloc_property_table();
3014 }
3015
3016 // Add a new reloc argument, returning the index in the vector.
3017 size_t
add_tlsdesc_info(Sized_relobj_file<size,big_endian> * object,unsigned int r_sym)3018 add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
3019 unsigned int r_sym)
3020 {
3021 this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
3022 return this->tlsdesc_reloc_info_.size() - 1;
3023 }
3024
3025 virtual Output_data_plt_aarch64<size, big_endian>*
do_make_data_plt(Layout * layout,Output_data_got_aarch64<size,big_endian> * got,Output_data_space * got_plt,Output_data_space * got_irelative)3026 do_make_data_plt(Layout* layout,
3027 Output_data_got_aarch64<size, big_endian>* got,
3028 Output_data_space* got_plt,
3029 Output_data_space* got_irelative)
3030 {
3031 return new Output_data_plt_aarch64_standard<size, big_endian>(
3032 layout, got, got_plt, got_irelative);
3033 }
3034
3035
3036 // do_make_elf_object to override the same function in the base class.
3037 Object*
3038 do_make_elf_object(const std::string&, Input_file*, off_t,
3039 const elfcpp::Ehdr<size, big_endian>&);
3040
3041 Output_data_plt_aarch64<size, big_endian>*
make_data_plt(Layout * layout,Output_data_got_aarch64<size,big_endian> * got,Output_data_space * got_plt,Output_data_space * got_irelative)3042 make_data_plt(Layout* layout,
3043 Output_data_got_aarch64<size, big_endian>* got,
3044 Output_data_space* got_plt,
3045 Output_data_space* got_irelative)
3046 {
3047 return this->do_make_data_plt(layout, got, got_plt, got_irelative);
3048 }
3049
3050 // We only need to generate stubs, and hence perform relaxation if we are
3051 // not doing relocatable linking.
3052 virtual bool
do_may_relax() const3053 do_may_relax() const
3054 { return !parameters->options().relocatable(); }
3055
3056 // Relaxation hook. This is where we do stub generation.
3057 virtual bool
3058 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
3059
3060 void
3061 group_sections(Layout* layout,
3062 section_size_type group_size,
3063 bool stubs_always_after_branch,
3064 const Task* task);
3065
3066 void
3067 scan_reloc_for_stub(const The_relocate_info*, unsigned int,
3068 const Sized_symbol<size>*, unsigned int,
3069 const Symbol_value<size>*,
3070 typename elfcpp::Elf_types<size>::Elf_Swxword,
3071 Address Elf_Addr);
3072
3073 // Make an output section.
3074 Output_section*
do_make_output_section(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags)3075 do_make_output_section(const char* name, elfcpp::Elf_Word type,
3076 elfcpp::Elf_Xword flags)
3077 { return new The_aarch64_output_section(name, type, flags); }
3078
3079 private:
3080 // The class which scans relocations.
3081 class Scan
3082 {
3083 public:
Scan()3084 Scan()
3085 : issued_non_pic_error_(false)
3086 { }
3087
3088 inline void
3089 local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3090 Sized_relobj_file<size, big_endian>* object,
3091 unsigned int data_shndx,
3092 Output_section* output_section,
3093 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3094 const elfcpp::Sym<size, big_endian>& lsym,
3095 bool is_discarded);
3096
3097 inline void
3098 global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3099 Sized_relobj_file<size, big_endian>* object,
3100 unsigned int data_shndx,
3101 Output_section* output_section,
3102 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3103 Symbol* gsym);
3104
3105 inline bool
3106 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3107 Target_aarch64<size, big_endian>* ,
3108 Sized_relobj_file<size, big_endian>* ,
3109 unsigned int ,
3110 Output_section* ,
3111 const elfcpp::Rela<size, big_endian>& ,
3112 unsigned int r_type,
3113 const elfcpp::Sym<size, big_endian>&);
3114
3115 inline bool
3116 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3117 Target_aarch64<size, big_endian>* ,
3118 Sized_relobj_file<size, big_endian>* ,
3119 unsigned int ,
3120 Output_section* ,
3121 const elfcpp::Rela<size, big_endian>& ,
3122 unsigned int r_type,
3123 Symbol* gsym);
3124
3125 private:
3126 static void
3127 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3128 unsigned int r_type);
3129
3130 static void
3131 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3132 unsigned int r_type, Symbol*);
3133
3134 inline bool
3135 possible_function_pointer_reloc(unsigned int r_type);
3136
3137 void
3138 check_non_pic(Relobj*, unsigned int r_type);
3139
3140 bool
3141 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
3142 unsigned int r_type);
3143
3144 // Whether we have issued an error about a non-PIC compilation.
3145 bool issued_non_pic_error_;
3146 };
3147
3148 // The class which implements relocation.
3149 class Relocate
3150 {
3151 public:
Relocate()3152 Relocate()
3153 : skip_call_tls_get_addr_(false)
3154 { }
3155
~Relocate()3156 ~Relocate()
3157 { }
3158
3159 // Do a relocation. Return false if the caller should not issue
3160 // any warnings about this relocation.
3161 inline bool
3162 relocate(const Relocate_info<size, big_endian>*, Target_aarch64*,
3163 Output_section*,
3164 size_t relnum, const elfcpp::Rela<size, big_endian>&,
3165 unsigned int r_type, const Sized_symbol<size>*,
3166 const Symbol_value<size>*,
3167 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
3168 section_size_type);
3169
3170 private:
3171 inline typename AArch64_relocate_functions<size, big_endian>::Status
3172 relocate_tls(const Relocate_info<size, big_endian>*,
3173 Target_aarch64<size, big_endian>*,
3174 size_t,
3175 const elfcpp::Rela<size, big_endian>&,
3176 unsigned int r_type, const Sized_symbol<size>*,
3177 const Symbol_value<size>*,
3178 unsigned char*,
3179 typename elfcpp::Elf_types<size>::Elf_Addr);
3180
3181 inline typename AArch64_relocate_functions<size, big_endian>::Status
3182 tls_gd_to_le(
3183 const Relocate_info<size, big_endian>*,
3184 Target_aarch64<size, big_endian>*,
3185 const elfcpp::Rela<size, big_endian>&,
3186 unsigned int,
3187 unsigned char*,
3188 const Symbol_value<size>*);
3189
3190 inline typename AArch64_relocate_functions<size, big_endian>::Status
3191 tls_ld_to_le(
3192 const Relocate_info<size, big_endian>*,
3193 Target_aarch64<size, big_endian>*,
3194 const elfcpp::Rela<size, big_endian>&,
3195 unsigned int,
3196 unsigned char*,
3197 const Symbol_value<size>*);
3198
3199 inline typename AArch64_relocate_functions<size, big_endian>::Status
3200 tls_ie_to_le(
3201 const Relocate_info<size, big_endian>*,
3202 Target_aarch64<size, big_endian>*,
3203 const elfcpp::Rela<size, big_endian>&,
3204 unsigned int,
3205 unsigned char*,
3206 const Symbol_value<size>*);
3207
3208 inline typename AArch64_relocate_functions<size, big_endian>::Status
3209 tls_desc_gd_to_le(
3210 const Relocate_info<size, big_endian>*,
3211 Target_aarch64<size, big_endian>*,
3212 const elfcpp::Rela<size, big_endian>&,
3213 unsigned int,
3214 unsigned char*,
3215 const Symbol_value<size>*);
3216
3217 inline typename AArch64_relocate_functions<size, big_endian>::Status
3218 tls_desc_gd_to_ie(
3219 const Relocate_info<size, big_endian>*,
3220 Target_aarch64<size, big_endian>*,
3221 const elfcpp::Rela<size, big_endian>&,
3222 unsigned int,
3223 unsigned char*,
3224 const Symbol_value<size>*,
3225 typename elfcpp::Elf_types<size>::Elf_Addr,
3226 typename elfcpp::Elf_types<size>::Elf_Addr);
3227
3228 bool skip_call_tls_get_addr_;
3229
3230 }; // End of class Relocate
3231
3232 // A class which returns the size required for a relocation type,
3233 // used while scanning relocs during a relocatable link.
3234 class Relocatable_size_for_reloc
3235 {
3236 public:
3237 unsigned int
3238 get_size_for_reloc(unsigned int, Relobj*);
3239 };
3240
3241 // Adjust TLS relocation type based on the options and whether this
3242 // is a local symbol.
3243 static tls::Tls_optimization
3244 optimize_tls_reloc(bool is_final, int r_type);
3245
3246 // Get the GOT section, creating it if necessary.
3247 Output_data_got_aarch64<size, big_endian>*
3248 got_section(Symbol_table*, Layout*);
3249
3250 // Get the GOT PLT section.
3251 Output_data_space*
got_plt_section() const3252 got_plt_section() const
3253 {
3254 gold_assert(this->got_plt_ != NULL);
3255 return this->got_plt_;
3256 }
3257
3258 // Get the GOT section for TLSDESC entries.
3259 Output_data_got<size, big_endian>*
got_tlsdesc_section() const3260 got_tlsdesc_section() const
3261 {
3262 gold_assert(this->got_tlsdesc_ != NULL);
3263 return this->got_tlsdesc_;
3264 }
3265
3266 // Create the PLT section.
3267 void
3268 make_plt_section(Symbol_table* symtab, Layout* layout);
3269
3270 // Create a PLT entry for a global symbol.
3271 void
3272 make_plt_entry(Symbol_table*, Layout*, Symbol*);
3273
3274 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
3275 void
3276 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
3277 Sized_relobj_file<size, big_endian>* relobj,
3278 unsigned int local_sym_index);
3279
3280 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3281 void
3282 define_tls_base_symbol(Symbol_table*, Layout*);
3283
3284 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3285 void
3286 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
3287
3288 // Create a GOT entry for the TLS module index.
3289 unsigned int
3290 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3291 Sized_relobj_file<size, big_endian>* object);
3292
3293 // Get the PLT section.
3294 Output_data_plt_aarch64<size, big_endian>*
plt_section() const3295 plt_section() const
3296 {
3297 gold_assert(this->plt_ != NULL);
3298 return this->plt_;
3299 }
3300
3301 // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769. For
3302 // ST_E_843419, we need an additional field for adrp offset.
3303 void create_erratum_stub(
3304 AArch64_relobj<size, big_endian>* relobj,
3305 unsigned int shndx,
3306 section_size_type erratum_insn_offset,
3307 Address erratum_address,
3308 typename Insn_utilities::Insntype erratum_insn,
3309 int erratum_type,
3310 unsigned int e843419_adrp_offset=0);
3311
3312 // Return whether this is a 3-insn erratum sequence.
3313 bool is_erratum_843419_sequence(
3314 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
3315 typename elfcpp::Swap<32,big_endian>::Valtype insn2,
3316 typename elfcpp::Swap<32,big_endian>::Valtype insn3);
3317
3318 // Return whether this is a 835769 sequence.
3319 // (Similarly implemented as in elfnn-aarch64.c.)
3320 bool is_erratum_835769_sequence(
3321 typename elfcpp::Swap<32,big_endian>::Valtype,
3322 typename elfcpp::Swap<32,big_endian>::Valtype);
3323
3324 // Get the dynamic reloc section, creating it if necessary.
3325 Reloc_section*
3326 rela_dyn_section(Layout*);
3327
3328 // Get the section to use for TLSDESC relocations.
3329 Reloc_section*
3330 rela_tlsdesc_section(Layout*) const;
3331
3332 // Get the section to use for IRELATIVE relocations.
3333 Reloc_section*
3334 rela_irelative_section(Layout*);
3335
3336 // Add a potential copy relocation.
3337 void
copy_reloc(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int shndx,Output_section * output_section,Symbol * sym,const elfcpp::Rela<size,big_endian> & reloc)3338 copy_reloc(Symbol_table* symtab, Layout* layout,
3339 Sized_relobj_file<size, big_endian>* object,
3340 unsigned int shndx, Output_section* output_section,
3341 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
3342 {
3343 this->copy_relocs_.copy_reloc(symtab, layout,
3344 symtab->get_sized_symbol<size>(sym),
3345 object, shndx, output_section,
3346 reloc, this->rela_dyn_section(layout));
3347 }
3348
3349 // Information about this specific target which we pass to the
3350 // general Target structure.
3351 static const Target::Target_info aarch64_info;
3352
3353 // The types of GOT entries needed for this platform.
3354 // These values are exposed to the ABI in an incremental link.
3355 // Do not renumber existing values without changing the version
3356 // number of the .gnu_incremental_inputs section.
3357 enum Got_type
3358 {
3359 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
3360 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
3361 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
3362 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
3363 };
3364
3365 // This type is used as the argument to the target specific
3366 // relocation routines. The only target specific reloc is
3367 // R_AARCh64_TLSDESC against a local symbol.
3368 struct Tlsdesc_info
3369 {
Tlsdesc_info__anon20db65070111::Target_aarch64::Tlsdesc_info3370 Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
3371 unsigned int a_r_sym)
3372 : object(a_object), r_sym(a_r_sym)
3373 { }
3374
3375 // The object in which the local symbol is defined.
3376 Sized_relobj_file<size, big_endian>* object;
3377 // The local symbol index in the object.
3378 unsigned int r_sym;
3379 };
3380
3381 // The GOT section.
3382 Output_data_got_aarch64<size, big_endian>* got_;
3383 // The PLT section.
3384 Output_data_plt_aarch64<size, big_endian>* plt_;
3385 // The GOT PLT section.
3386 Output_data_space* got_plt_;
3387 // The GOT section for IRELATIVE relocations.
3388 Output_data_space* got_irelative_;
3389 // The GOT section for TLSDESC relocations.
3390 Output_data_got<size, big_endian>* got_tlsdesc_;
3391 // The _GLOBAL_OFFSET_TABLE_ symbol.
3392 Symbol* global_offset_table_;
3393 // The dynamic reloc section.
3394 Reloc_section* rela_dyn_;
3395 // The section to use for IRELATIVE relocs.
3396 Reloc_section* rela_irelative_;
3397 // Relocs saved to avoid a COPY reloc.
3398 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
3399 // Offset of the GOT entry for the TLS module index.
3400 unsigned int got_mod_index_offset_;
3401 // We handle R_AARCH64_TLSDESC against a local symbol as a target
3402 // specific relocation. Here we store the object and local symbol
3403 // index for the relocation.
3404 std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
3405 // True if the _TLS_MODULE_BASE_ symbol has been defined.
3406 bool tls_base_symbol_defined_;
3407 // List of stub_tables
3408 Stub_table_list stub_tables_;
3409 // Actual stub group size
3410 section_size_type stub_group_size_;
3411 AArch64_input_section_map aarch64_input_section_map_;
3412 }; // End of Target_aarch64
3413
3414
3415 template<>
3416 const Target::Target_info Target_aarch64<64, false>::aarch64_info =
3417 {
3418 64, // size
3419 false, // is_big_endian
3420 elfcpp::EM_AARCH64, // machine_code
3421 false, // has_make_symbol
3422 false, // has_resolve
3423 false, // has_code_fill
3424 true, // is_default_stack_executable
3425 true, // can_icf_inline_merge_sections
3426 '\0', // wrap_char
3427 "/lib/ld.so.1", // program interpreter
3428 0x400000, // default_text_segment_address
3429 0x1000, // abi_pagesize (overridable by -z max-page-size)
3430 0x1000, // common_pagesize (overridable by -z common-page-size)
3431 false, // isolate_execinstr
3432 0, // rosegment_gap
3433 elfcpp::SHN_UNDEF, // small_common_shndx
3434 elfcpp::SHN_UNDEF, // large_common_shndx
3435 0, // small_common_section_flags
3436 0, // large_common_section_flags
3437 NULL, // attributes_section
3438 NULL, // attributes_vendor
3439 "_start" // entry_symbol_name
3440 };
3441
3442 template<>
3443 const Target::Target_info Target_aarch64<32, false>::aarch64_info =
3444 {
3445 32, // size
3446 false, // is_big_endian
3447 elfcpp::EM_AARCH64, // machine_code
3448 false, // has_make_symbol
3449 false, // has_resolve
3450 false, // has_code_fill
3451 true, // is_default_stack_executable
3452 false, // can_icf_inline_merge_sections
3453 '\0', // wrap_char
3454 "/lib/ld.so.1", // program interpreter
3455 0x400000, // default_text_segment_address
3456 0x1000, // abi_pagesize (overridable by -z max-page-size)
3457 0x1000, // common_pagesize (overridable by -z common-page-size)
3458 false, // isolate_execinstr
3459 0, // rosegment_gap
3460 elfcpp::SHN_UNDEF, // small_common_shndx
3461 elfcpp::SHN_UNDEF, // large_common_shndx
3462 0, // small_common_section_flags
3463 0, // large_common_section_flags
3464 NULL, // attributes_section
3465 NULL, // attributes_vendor
3466 "_start" // entry_symbol_name
3467 };
3468
3469 template<>
3470 const Target::Target_info Target_aarch64<64, true>::aarch64_info =
3471 {
3472 64, // size
3473 true, // is_big_endian
3474 elfcpp::EM_AARCH64, // machine_code
3475 false, // has_make_symbol
3476 false, // has_resolve
3477 false, // has_code_fill
3478 true, // is_default_stack_executable
3479 true, // can_icf_inline_merge_sections
3480 '\0', // wrap_char
3481 "/lib/ld.so.1", // program interpreter
3482 0x400000, // default_text_segment_address
3483 0x1000, // abi_pagesize (overridable by -z max-page-size)
3484 0x1000, // common_pagesize (overridable by -z common-page-size)
3485 false, // isolate_execinstr
3486 0, // rosegment_gap
3487 elfcpp::SHN_UNDEF, // small_common_shndx
3488 elfcpp::SHN_UNDEF, // large_common_shndx
3489 0, // small_common_section_flags
3490 0, // large_common_section_flags
3491 NULL, // attributes_section
3492 NULL, // attributes_vendor
3493 "_start" // entry_symbol_name
3494 };
3495
3496 template<>
3497 const Target::Target_info Target_aarch64<32, true>::aarch64_info =
3498 {
3499 32, // size
3500 true, // is_big_endian
3501 elfcpp::EM_AARCH64, // machine_code
3502 false, // has_make_symbol
3503 false, // has_resolve
3504 false, // has_code_fill
3505 true, // is_default_stack_executable
3506 false, // can_icf_inline_merge_sections
3507 '\0', // wrap_char
3508 "/lib/ld.so.1", // program interpreter
3509 0x400000, // default_text_segment_address
3510 0x1000, // abi_pagesize (overridable by -z max-page-size)
3511 0x1000, // common_pagesize (overridable by -z common-page-size)
3512 false, // isolate_execinstr
3513 0, // rosegment_gap
3514 elfcpp::SHN_UNDEF, // small_common_shndx
3515 elfcpp::SHN_UNDEF, // large_common_shndx
3516 0, // small_common_section_flags
3517 0, // large_common_section_flags
3518 NULL, // attributes_section
3519 NULL, // attributes_vendor
3520 "_start" // entry_symbol_name
3521 };
3522
3523 // Get the GOT section, creating it if necessary.
3524
3525 template<int size, bool big_endian>
3526 Output_data_got_aarch64<size, big_endian>*
got_section(Symbol_table * symtab,Layout * layout)3527 Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
3528 Layout* layout)
3529 {
3530 if (this->got_ == NULL)
3531 {
3532 gold_assert(symtab != NULL && layout != NULL);
3533
3534 // When using -z now, we can treat .got.plt as a relro section.
3535 // Without -z now, it is modified after program startup by lazy
3536 // PLT relocations.
3537 bool is_got_plt_relro = parameters->options().now();
3538 Output_section_order got_order = (is_got_plt_relro
3539 ? ORDER_RELRO
3540 : ORDER_RELRO_LAST);
3541 Output_section_order got_plt_order = (is_got_plt_relro
3542 ? ORDER_RELRO
3543 : ORDER_NON_RELRO_FIRST);
3544
3545 // Layout of .got and .got.plt sections.
3546 // .got[0] &_DYNAMIC <-_GLOBAL_OFFSET_TABLE_
3547 // ...
3548 // .gotplt[0] reserved for ld.so (&linkmap) <--DT_PLTGOT
3549 // .gotplt[1] reserved for ld.so (resolver)
3550 // .gotplt[2] reserved
3551
3552 // Generate .got section.
3553 this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
3554 layout);
3555 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3556 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
3557 this->got_, got_order, true);
3558 // The first word of GOT is reserved for the address of .dynamic.
3559 // We put 0 here now. The value will be replaced later in
3560 // Output_data_got_aarch64::do_write.
3561 this->got_->add_constant(0);
3562
3563 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3564 // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
3565 // even if there is a .got.plt section.
3566 this->global_offset_table_ =
3567 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3568 Symbol_table::PREDEFINED,
3569 this->got_,
3570 0, 0, elfcpp::STT_OBJECT,
3571 elfcpp::STB_LOCAL,
3572 elfcpp::STV_HIDDEN, 0,
3573 false, false);
3574
3575 // Generate .got.plt section.
3576 this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
3577 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3578 (elfcpp::SHF_ALLOC
3579 | elfcpp::SHF_WRITE),
3580 this->got_plt_, got_plt_order,
3581 is_got_plt_relro);
3582
3583 // The first three entries are reserved.
3584 this->got_plt_->set_current_data_size(
3585 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3586
3587 // If there are any IRELATIVE relocations, they get GOT entries
3588 // in .got.plt after the jump slot entries.
3589 this->got_irelative_ = new Output_data_space(size / 8,
3590 "** GOT IRELATIVE PLT");
3591 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3592 (elfcpp::SHF_ALLOC
3593 | elfcpp::SHF_WRITE),
3594 this->got_irelative_,
3595 got_plt_order,
3596 is_got_plt_relro);
3597
3598 // If there are any TLSDESC relocations, they get GOT entries in
3599 // .got.plt after the jump slot and IRELATIVE entries.
3600 this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
3601 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3602 (elfcpp::SHF_ALLOC
3603 | elfcpp::SHF_WRITE),
3604 this->got_tlsdesc_,
3605 got_plt_order,
3606 is_got_plt_relro);
3607
3608 if (!is_got_plt_relro)
3609 {
3610 // Those bytes can go into the relro segment.
3611 layout->increase_relro(
3612 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3613 }
3614
3615 }
3616 return this->got_;
3617 }
3618
3619 // Get the dynamic reloc section, creating it if necessary.
3620
3621 template<int size, bool big_endian>
3622 typename Target_aarch64<size, big_endian>::Reloc_section*
rela_dyn_section(Layout * layout)3623 Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
3624 {
3625 if (this->rela_dyn_ == NULL)
3626 {
3627 gold_assert(layout != NULL);
3628 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3629 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3630 elfcpp::SHF_ALLOC, this->rela_dyn_,
3631 ORDER_DYNAMIC_RELOCS, false);
3632 }
3633 return this->rela_dyn_;
3634 }
3635
3636 // Get the section to use for IRELATIVE relocs, creating it if
3637 // necessary. These go in .rela.dyn, but only after all other dynamic
3638 // relocations. They need to follow the other dynamic relocations so
3639 // that they can refer to global variables initialized by those
3640 // relocs.
3641
3642 template<int size, bool big_endian>
3643 typename Target_aarch64<size, big_endian>::Reloc_section*
rela_irelative_section(Layout * layout)3644 Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
3645 {
3646 if (this->rela_irelative_ == NULL)
3647 {
3648 // Make sure we have already created the dynamic reloc section.
3649 this->rela_dyn_section(layout);
3650 this->rela_irelative_ = new Reloc_section(false);
3651 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3652 elfcpp::SHF_ALLOC, this->rela_irelative_,
3653 ORDER_DYNAMIC_RELOCS, false);
3654 gold_assert(this->rela_dyn_->output_section()
3655 == this->rela_irelative_->output_section());
3656 }
3657 return this->rela_irelative_;
3658 }
3659
3660
3661 // do_make_elf_object to override the same function in the base class. We need
3662 // to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
3663 // store backend specific information. Hence we need to have our own ELF object
3664 // creation.
3665
3666 template<int size, bool big_endian>
3667 Object*
do_make_elf_object(const std::string & name,Input_file * input_file,off_t offset,const elfcpp::Ehdr<size,big_endian> & ehdr)3668 Target_aarch64<size, big_endian>::do_make_elf_object(
3669 const std::string& name,
3670 Input_file* input_file,
3671 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
3672 {
3673 int et = ehdr.get_e_type();
3674 // ET_EXEC files are valid input for --just-symbols/-R,
3675 // and we treat them as relocatable objects.
3676 if (et == elfcpp::ET_EXEC && input_file->just_symbols())
3677 return Sized_target<size, big_endian>::do_make_elf_object(
3678 name, input_file, offset, ehdr);
3679 else if (et == elfcpp::ET_REL)
3680 {
3681 AArch64_relobj<size, big_endian>* obj =
3682 new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
3683 obj->setup();
3684 return obj;
3685 }
3686 else if (et == elfcpp::ET_DYN)
3687 {
3688 // Keep base implementation.
3689 Sized_dynobj<size, big_endian>* obj =
3690 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
3691 obj->setup();
3692 return obj;
3693 }
3694 else
3695 {
3696 gold_error(_("%s: unsupported ELF file type %d"),
3697 name.c_str(), et);
3698 return NULL;
3699 }
3700 }
3701
3702
3703 // Scan a relocation for stub generation.
3704
3705 template<int size, bool big_endian>
3706 void
scan_reloc_for_stub(const Relocate_info<size,big_endian> * relinfo,unsigned int r_type,const Sized_symbol<size> * gsym,unsigned int r_sym,const Symbol_value<size> * psymval,typename elfcpp::Elf_types<size>::Elf_Swxword addend,Address address)3707 Target_aarch64<size, big_endian>::scan_reloc_for_stub(
3708 const Relocate_info<size, big_endian>* relinfo,
3709 unsigned int r_type,
3710 const Sized_symbol<size>* gsym,
3711 unsigned int r_sym,
3712 const Symbol_value<size>* psymval,
3713 typename elfcpp::Elf_types<size>::Elf_Swxword addend,
3714 Address address)
3715 {
3716 const AArch64_relobj<size, big_endian>* aarch64_relobj =
3717 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3718
3719 Symbol_value<size> symval;
3720 if (gsym != NULL)
3721 {
3722 const AArch64_reloc_property* arp = aarch64_reloc_property_table->
3723 get_reloc_property(r_type);
3724 if (gsym->use_plt_offset(arp->reference_flags()))
3725 {
3726 // This uses a PLT, change the symbol value.
3727 symval.set_output_value(this->plt_section()->address()
3728 + gsym->plt_offset());
3729 psymval = &symval;
3730 }
3731 else if (gsym->is_undefined())
3732 // There is no need to generate a stub symbol is undefined.
3733 return;
3734 }
3735
3736 // Get the symbol value.
3737 typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
3738
3739 // Owing to pipelining, the PC relative branches below actually skip
3740 // two instructions when the branch offset is 0.
3741 Address destination = static_cast<Address>(-1);
3742 switch (r_type)
3743 {
3744 case elfcpp::R_AARCH64_CALL26:
3745 case elfcpp::R_AARCH64_JUMP26:
3746 destination = value + addend;
3747 break;
3748 default:
3749 gold_unreachable();
3750 }
3751
3752 int stub_type = The_reloc_stub::
3753 stub_type_for_reloc(r_type, address, destination);
3754 if (stub_type == ST_NONE)
3755 return;
3756
3757 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
3758 gold_assert(stub_table != NULL);
3759
3760 The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
3761 The_reloc_stub* stub = stub_table->find_reloc_stub(key);
3762 if (stub == NULL)
3763 {
3764 stub = new The_reloc_stub(stub_type);
3765 stub_table->add_reloc_stub(stub, key);
3766 }
3767 stub->set_destination_address(destination);
3768 } // End of Target_aarch64::scan_reloc_for_stub
3769
3770
3771 // This function scans a relocation section for stub generation.
3772 // The template parameter Relocate must be a class type which provides
3773 // a single function, relocate(), which implements the machine
3774 // specific part of a relocation.
3775
3776 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
3777 // SHT_REL or SHT_RELA.
3778
3779 // PRELOCS points to the relocation data. RELOC_COUNT is the number
3780 // of relocs. OUTPUT_SECTION is the output section.
3781 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3782 // mapped to output offsets.
3783
3784 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
3785 // VIEW_SIZE is the size. These refer to the input section, unless
3786 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3787 // the output section.
3788
3789 template<int size, bool big_endian>
3790 template<int sh_type>
3791 void inline
scan_reloc_section_for_stubs(const Relocate_info<size,big_endian> * relinfo,const unsigned char * prelocs,size_t reloc_count,Output_section *,bool,const unsigned char *,Address view_address,section_size_type)3792 Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
3793 const Relocate_info<size, big_endian>* relinfo,
3794 const unsigned char* prelocs,
3795 size_t reloc_count,
3796 Output_section* /*output_section*/,
3797 bool /*needs_special_offset_handling*/,
3798 const unsigned char* /*view*/,
3799 Address view_address,
3800 section_size_type)
3801 {
3802 typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
3803
3804 const int reloc_size =
3805 Reloc_types<sh_type,size,big_endian>::reloc_size;
3806 AArch64_relobj<size, big_endian>* object =
3807 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3808 unsigned int local_count = object->local_symbol_count();
3809
3810 gold::Default_comdat_behavior default_comdat_behavior;
3811 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
3812
3813 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
3814 {
3815 Reltype reloc(prelocs);
3816 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
3817 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
3818 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
3819 if (r_type != elfcpp::R_AARCH64_CALL26
3820 && r_type != elfcpp::R_AARCH64_JUMP26)
3821 continue;
3822
3823 section_offset_type offset =
3824 convert_to_section_size_type(reloc.get_r_offset());
3825
3826 // Get the addend.
3827 typename elfcpp::Elf_types<size>::Elf_Swxword addend =
3828 reloc.get_r_addend();
3829
3830 const Sized_symbol<size>* sym;
3831 Symbol_value<size> symval;
3832 const Symbol_value<size> *psymval;
3833 bool is_defined_in_discarded_section;
3834 unsigned int shndx;
3835 if (r_sym < local_count)
3836 {
3837 sym = NULL;
3838 psymval = object->local_symbol(r_sym);
3839
3840 // If the local symbol belongs to a section we are discarding,
3841 // and that section is a debug section, try to find the
3842 // corresponding kept section and map this symbol to its
3843 // counterpart in the kept section. The symbol must not
3844 // correspond to a section we are folding.
3845 bool is_ordinary;
3846 shndx = psymval->input_shndx(&is_ordinary);
3847 is_defined_in_discarded_section =
3848 (is_ordinary
3849 && shndx != elfcpp::SHN_UNDEF
3850 && !object->is_section_included(shndx)
3851 && !relinfo->symtab->is_section_folded(object, shndx));
3852
3853 // We need to compute the would-be final value of this local
3854 // symbol.
3855 if (!is_defined_in_discarded_section)
3856 {
3857 typedef Sized_relobj_file<size, big_endian> ObjType;
3858 typename ObjType::Compute_final_local_value_status status =
3859 object->compute_final_local_value(r_sym, psymval, &symval,
3860 relinfo->symtab);
3861 if (status == ObjType::CFLV_OK)
3862 {
3863 // Currently we cannot handle a branch to a target in
3864 // a merged section. If this is the case, issue an error
3865 // and also free the merge symbol value.
3866 if (!symval.has_output_value())
3867 {
3868 const std::string& section_name =
3869 object->section_name(shndx);
3870 object->error(_("cannot handle branch to local %u "
3871 "in a merged section %s"),
3872 r_sym, section_name.c_str());
3873 }
3874 psymval = &symval;
3875 }
3876 else
3877 {
3878 // We cannot determine the final value.
3879 continue;
3880 }
3881 }
3882 }
3883 else
3884 {
3885 const Symbol* gsym;
3886 gsym = object->global_symbol(r_sym);
3887 gold_assert(gsym != NULL);
3888 if (gsym->is_forwarder())
3889 gsym = relinfo->symtab->resolve_forwards(gsym);
3890
3891 sym = static_cast<const Sized_symbol<size>*>(gsym);
3892 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
3893 symval.set_output_symtab_index(sym->symtab_index());
3894 else
3895 symval.set_no_output_symtab_entry();
3896
3897 // We need to compute the would-be final value of this global
3898 // symbol.
3899 const Symbol_table* symtab = relinfo->symtab;
3900 const Sized_symbol<size>* sized_symbol =
3901 symtab->get_sized_symbol<size>(gsym);
3902 Symbol_table::Compute_final_value_status status;
3903 typename elfcpp::Elf_types<size>::Elf_Addr value =
3904 symtab->compute_final_value<size>(sized_symbol, &status);
3905
3906 // Skip this if the symbol has not output section.
3907 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
3908 continue;
3909 symval.set_output_value(value);
3910
3911 if (gsym->type() == elfcpp::STT_TLS)
3912 symval.set_is_tls_symbol();
3913 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3914 symval.set_is_ifunc_symbol();
3915 psymval = &symval;
3916
3917 is_defined_in_discarded_section =
3918 (gsym->is_defined_in_discarded_section()
3919 && gsym->is_undefined());
3920 shndx = 0;
3921 }
3922
3923 Symbol_value<size> symval2;
3924 if (is_defined_in_discarded_section)
3925 {
3926 if (comdat_behavior == CB_UNDETERMINED)
3927 {
3928 std::string name = object->section_name(relinfo->data_shndx);
3929 comdat_behavior = default_comdat_behavior.get(name.c_str());
3930 }
3931 if (comdat_behavior == CB_PRETEND)
3932 {
3933 bool found;
3934 typename elfcpp::Elf_types<size>::Elf_Addr value =
3935 object->map_to_kept_section(shndx, &found);
3936 if (found)
3937 symval2.set_output_value(value + psymval->input_value());
3938 else
3939 symval2.set_output_value(0);
3940 }
3941 else
3942 {
3943 if (comdat_behavior == CB_WARNING)
3944 gold_warning_at_location(relinfo, i, offset,
3945 _("relocation refers to discarded "
3946 "section"));
3947 symval2.set_output_value(0);
3948 }
3949 symval2.set_no_output_symtab_entry();
3950 psymval = &symval2;
3951 }
3952
3953 // If symbol is a section symbol, we don't know the actual type of
3954 // destination. Give up.
3955 if (psymval->is_section_symbol())
3956 continue;
3957
3958 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
3959 addend, view_address + offset);
3960 } // End of iterating relocs in a section
3961 } // End of Target_aarch64::scan_reloc_section_for_stubs
3962
3963
3964 // Scan an input section for stub generation.
3965
3966 template<int size, bool big_endian>
3967 void
scan_section_for_stubs(const Relocate_info<size,big_endian> * relinfo,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,const unsigned char * view,Address view_address,section_size_type view_size)3968 Target_aarch64<size, big_endian>::scan_section_for_stubs(
3969 const Relocate_info<size, big_endian>* relinfo,
3970 unsigned int sh_type,
3971 const unsigned char* prelocs,
3972 size_t reloc_count,
3973 Output_section* output_section,
3974 bool needs_special_offset_handling,
3975 const unsigned char* view,
3976 Address view_address,
3977 section_size_type view_size)
3978 {
3979 gold_assert(sh_type == elfcpp::SHT_RELA);
3980 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
3981 relinfo,
3982 prelocs,
3983 reloc_count,
3984 output_section,
3985 needs_special_offset_handling,
3986 view,
3987 view_address,
3988 view_size);
3989 }
3990
3991
3992 // Relocate a single stub.
3993
3994 template<int size, bool big_endian>
3995 void Target_aarch64<size, big_endian>::
relocate_stub(The_reloc_stub * stub,const The_relocate_info *,Output_section *,unsigned char * view,Address address,section_size_type)3996 relocate_stub(The_reloc_stub* stub,
3997 const The_relocate_info*,
3998 Output_section*,
3999 unsigned char* view,
4000 Address address,
4001 section_size_type)
4002 {
4003 typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
4004 typedef typename The_reloc_functions::Status The_reloc_functions_status;
4005 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
4006
4007 Insntype* ip = reinterpret_cast<Insntype*>(view);
4008 int insn_number = stub->insn_num();
4009 const uint32_t* insns = stub->insns();
4010 // Check the insns are really those stub insns.
4011 for (int i = 0; i < insn_number; ++i)
4012 {
4013 Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
4014 gold_assert(((uint32_t)insn == insns[i]));
4015 }
4016
4017 Address dest = stub->destination_address();
4018
4019 switch(stub->type())
4020 {
4021 case ST_ADRP_BRANCH:
4022 {
4023 // 1st reloc is ADR_PREL_PG_HI21
4024 The_reloc_functions_status status =
4025 The_reloc_functions::adrp(view, dest, address);
4026 // An error should never arise in the above step. If so, please
4027 // check 'aarch64_valid_for_adrp_p'.
4028 gold_assert(status == The_reloc_functions::STATUS_OKAY);
4029
4030 // 2nd reloc is ADD_ABS_LO12_NC
4031 const AArch64_reloc_property* arp =
4032 aarch64_reloc_property_table->get_reloc_property(
4033 elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
4034 gold_assert(arp != NULL);
4035 status = The_reloc_functions::template
4036 rela_general<32>(view + 4, dest, 0, arp);
4037 // An error should never arise, it is an "_NC" relocation.
4038 gold_assert(status == The_reloc_functions::STATUS_OKAY);
4039 }
4040 break;
4041
4042 case ST_LONG_BRANCH_ABS:
4043 // 1st reloc is R_AARCH64_PREL64, at offset 8
4044 elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
4045 break;
4046
4047 case ST_LONG_BRANCH_PCREL:
4048 {
4049 // "PC" calculation is the 2nd insn in the stub.
4050 uint64_t offset = dest - (address + 4);
4051 // Offset is placed at offset 4 and 5.
4052 elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
4053 }
4054 break;
4055
4056 default:
4057 gold_unreachable();
4058 }
4059 }
4060
4061
4062 // A class to handle the PLT data.
4063 // This is an abstract base class that handles most of the linker details
4064 // but does not know the actual contents of PLT entries. The derived
4065 // classes below fill in those details.
4066
4067 template<int size, bool big_endian>
4068 class Output_data_plt_aarch64 : public Output_section_data
4069 {
4070 public:
4071 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
4072 Reloc_section;
4073 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4074
Output_data_plt_aarch64(Layout * layout,uint64_t addralign,Output_data_got_aarch64<size,big_endian> * got,Output_data_space * got_plt,Output_data_space * got_irelative)4075 Output_data_plt_aarch64(Layout* layout,
4076 uint64_t addralign,
4077 Output_data_got_aarch64<size, big_endian>* got,
4078 Output_data_space* got_plt,
4079 Output_data_space* got_irelative)
4080 : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
4081 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
4082 count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
4083 { this->init(layout); }
4084
4085 // Initialize the PLT section.
4086 void
4087 init(Layout* layout);
4088
4089 // Add an entry to the PLT.
4090 void
4091 add_entry(Symbol_table*, Layout*, Symbol* gsym);
4092
4093 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
4094 unsigned int
4095 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
4096 Sized_relobj_file<size, big_endian>* relobj,
4097 unsigned int local_sym_index);
4098
4099 // Add the relocation for a PLT entry.
4100 void
4101 add_relocation(Symbol_table*, Layout*, Symbol* gsym,
4102 unsigned int got_offset);
4103
4104 // Add the reserved TLSDESC_PLT entry to the PLT.
4105 void
reserve_tlsdesc_entry(unsigned int got_offset)4106 reserve_tlsdesc_entry(unsigned int got_offset)
4107 { this->tlsdesc_got_offset_ = got_offset; }
4108
4109 // Return true if a TLSDESC_PLT entry has been reserved.
4110 bool
has_tlsdesc_entry() const4111 has_tlsdesc_entry() const
4112 { return this->tlsdesc_got_offset_ != -1U; }
4113
4114 // Return the GOT offset for the reserved TLSDESC_PLT entry.
4115 unsigned int
get_tlsdesc_got_offset() const4116 get_tlsdesc_got_offset() const
4117 { return this->tlsdesc_got_offset_; }
4118
4119 // Return the PLT offset of the reserved TLSDESC_PLT entry.
4120 unsigned int
get_tlsdesc_plt_offset() const4121 get_tlsdesc_plt_offset() const
4122 {
4123 return (this->first_plt_entry_offset() +
4124 (this->count_ + this->irelative_count_)
4125 * this->get_plt_entry_size());
4126 }
4127
4128 // Return the .rela.plt section data.
4129 Reloc_section*
rela_plt()4130 rela_plt()
4131 { return this->rel_; }
4132
4133 // Return where the TLSDESC relocations should go.
4134 Reloc_section*
4135 rela_tlsdesc(Layout*);
4136
4137 // Return where the IRELATIVE relocations should go in the PLT
4138 // relocations.
4139 Reloc_section*
4140 rela_irelative(Symbol_table*, Layout*);
4141
4142 // Return whether we created a section for IRELATIVE relocations.
4143 bool
has_irelative_section() const4144 has_irelative_section() const
4145 { return this->irelative_rel_ != NULL; }
4146
4147 // Return the number of PLT entries.
4148 unsigned int
entry_count() const4149 entry_count() const
4150 { return this->count_ + this->irelative_count_; }
4151
4152 // Return the offset of the first non-reserved PLT entry.
4153 unsigned int
first_plt_entry_offset() const4154 first_plt_entry_offset() const
4155 { return this->do_first_plt_entry_offset(); }
4156
4157 // Return the size of a PLT entry.
4158 unsigned int
get_plt_entry_size() const4159 get_plt_entry_size() const
4160 { return this->do_get_plt_entry_size(); }
4161
4162 // Return the reserved tlsdesc entry size.
4163 unsigned int
get_plt_tlsdesc_entry_size() const4164 get_plt_tlsdesc_entry_size() const
4165 { return this->do_get_plt_tlsdesc_entry_size(); }
4166
4167 // Return the PLT address to use for a global symbol.
4168 uint64_t
4169 address_for_global(const Symbol*);
4170
4171 // Return the PLT address to use for a local symbol.
4172 uint64_t
4173 address_for_local(const Relobj*, unsigned int symndx);
4174
4175 protected:
4176 // Fill in the first PLT entry.
4177 void
fill_first_plt_entry(unsigned char * pov,Address got_address,Address plt_address)4178 fill_first_plt_entry(unsigned char* pov,
4179 Address got_address,
4180 Address plt_address)
4181 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
4182
4183 // Fill in a normal PLT entry.
4184 void
fill_plt_entry(unsigned char * pov,Address got_address,Address plt_address,unsigned int got_offset,unsigned int plt_offset)4185 fill_plt_entry(unsigned char* pov,
4186 Address got_address,
4187 Address plt_address,
4188 unsigned int got_offset,
4189 unsigned int plt_offset)
4190 {
4191 this->do_fill_plt_entry(pov, got_address, plt_address,
4192 got_offset, plt_offset);
4193 }
4194
4195 // Fill in the reserved TLSDESC PLT entry.
4196 void
fill_tlsdesc_entry(unsigned char * pov,Address gotplt_address,Address plt_address,Address got_base,unsigned int tlsdesc_got_offset,unsigned int plt_offset)4197 fill_tlsdesc_entry(unsigned char* pov,
4198 Address gotplt_address,
4199 Address plt_address,
4200 Address got_base,
4201 unsigned int tlsdesc_got_offset,
4202 unsigned int plt_offset)
4203 {
4204 this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4205 tlsdesc_got_offset, plt_offset);
4206 }
4207
4208 virtual unsigned int
4209 do_first_plt_entry_offset() const = 0;
4210
4211 virtual unsigned int
4212 do_get_plt_entry_size() const = 0;
4213
4214 virtual unsigned int
4215 do_get_plt_tlsdesc_entry_size() const = 0;
4216
4217 virtual void
4218 do_fill_first_plt_entry(unsigned char* pov,
4219 Address got_addr,
4220 Address plt_addr) = 0;
4221
4222 virtual void
4223 do_fill_plt_entry(unsigned char* pov,
4224 Address got_address,
4225 Address plt_address,
4226 unsigned int got_offset,
4227 unsigned int plt_offset) = 0;
4228
4229 virtual void
4230 do_fill_tlsdesc_entry(unsigned char* pov,
4231 Address gotplt_address,
4232 Address plt_address,
4233 Address got_base,
4234 unsigned int tlsdesc_got_offset,
4235 unsigned int plt_offset) = 0;
4236
4237 void
4238 do_adjust_output_section(Output_section* os);
4239
4240 // Write to a map file.
4241 void
do_print_to_mapfile(Mapfile * mapfile) const4242 do_print_to_mapfile(Mapfile* mapfile) const
4243 { mapfile->print_output_data(this, _("** PLT")); }
4244
4245 private:
4246 // Set the final size.
4247 void
4248 set_final_data_size();
4249
4250 // Write out the PLT data.
4251 void
4252 do_write(Output_file*);
4253
4254 // The reloc section.
4255 Reloc_section* rel_;
4256
4257 // The TLSDESC relocs, if necessary. These must follow the regular
4258 // PLT relocs.
4259 Reloc_section* tlsdesc_rel_;
4260
4261 // The IRELATIVE relocs, if necessary. These must follow the
4262 // regular PLT relocations.
4263 Reloc_section* irelative_rel_;
4264
4265 // The .got section.
4266 Output_data_got_aarch64<size, big_endian>* got_;
4267
4268 // The .got.plt section.
4269 Output_data_space* got_plt_;
4270
4271 // The part of the .got.plt section used for IRELATIVE relocs.
4272 Output_data_space* got_irelative_;
4273
4274 // The number of PLT entries.
4275 unsigned int count_;
4276
4277 // Number of PLT entries with R_AARCH64_IRELATIVE relocs. These
4278 // follow the regular PLT entries.
4279 unsigned int irelative_count_;
4280
4281 // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
4282 // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
4283 // indicates an offset is not allocated.
4284 unsigned int tlsdesc_got_offset_;
4285 };
4286
4287 // Initialize the PLT section.
4288
4289 template<int size, bool big_endian>
4290 void
init(Layout * layout)4291 Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
4292 {
4293 this->rel_ = new Reloc_section(false);
4294 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4295 elfcpp::SHF_ALLOC, this->rel_,
4296 ORDER_DYNAMIC_PLT_RELOCS, false);
4297 }
4298
4299 template<int size, bool big_endian>
4300 void
do_adjust_output_section(Output_section * os)4301 Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
4302 Output_section* os)
4303 {
4304 os->set_entsize(this->get_plt_entry_size());
4305 }
4306
4307 // Add an entry to the PLT.
4308
4309 template<int size, bool big_endian>
4310 void
add_entry(Symbol_table * symtab,Layout * layout,Symbol * gsym)4311 Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
4312 Layout* layout, Symbol* gsym)
4313 {
4314 gold_assert(!gsym->has_plt_offset());
4315
4316 unsigned int* pcount;
4317 unsigned int plt_reserved;
4318 Output_section_data_build* got;
4319
4320 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4321 && gsym->can_use_relative_reloc(false))
4322 {
4323 pcount = &this->irelative_count_;
4324 plt_reserved = 0;
4325 got = this->got_irelative_;
4326 }
4327 else
4328 {
4329 pcount = &this->count_;
4330 plt_reserved = this->first_plt_entry_offset();
4331 got = this->got_plt_;
4332 }
4333
4334 gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
4335 + plt_reserved);
4336
4337 ++*pcount;
4338
4339 section_offset_type got_offset = got->current_data_size();
4340
4341 // Every PLT entry needs a GOT entry which points back to the PLT
4342 // entry (this will be changed by the dynamic linker, normally
4343 // lazily when the function is called).
4344 got->set_current_data_size(got_offset + size / 8);
4345
4346 // Every PLT entry needs a reloc.
4347 this->add_relocation(symtab, layout, gsym, got_offset);
4348
4349 // Note that we don't need to save the symbol. The contents of the
4350 // PLT are independent of which symbols are used. The symbols only
4351 // appear in the relocations.
4352 }
4353
4354 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
4355 // the PLT offset.
4356
4357 template<int size, bool big_endian>
4358 unsigned int
add_local_ifunc_entry(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * relobj,unsigned int local_sym_index)4359 Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
4360 Symbol_table* symtab,
4361 Layout* layout,
4362 Sized_relobj_file<size, big_endian>* relobj,
4363 unsigned int local_sym_index)
4364 {
4365 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
4366 ++this->irelative_count_;
4367
4368 section_offset_type got_offset = this->got_irelative_->current_data_size();
4369
4370 // Every PLT entry needs a GOT entry which points back to the PLT
4371 // entry.
4372 this->got_irelative_->set_current_data_size(got_offset + size / 8);
4373
4374 // Every PLT entry needs a reloc.
4375 Reloc_section* rela = this->rela_irelative(symtab, layout);
4376 rela->add_symbolless_local_addend(relobj, local_sym_index,
4377 elfcpp::R_AARCH64_IRELATIVE,
4378 this->got_irelative_, got_offset, 0);
4379
4380 return plt_offset;
4381 }
4382
4383 // Add the relocation for a PLT entry.
4384
4385 template<int size, bool big_endian>
4386 void
add_relocation(Symbol_table * symtab,Layout * layout,Symbol * gsym,unsigned int got_offset)4387 Output_data_plt_aarch64<size, big_endian>::add_relocation(
4388 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
4389 {
4390 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4391 && gsym->can_use_relative_reloc(false))
4392 {
4393 Reloc_section* rela = this->rela_irelative(symtab, layout);
4394 rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
4395 this->got_irelative_, got_offset, 0);
4396 }
4397 else
4398 {
4399 gsym->set_needs_dynsym_entry();
4400 this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
4401 got_offset, 0);
4402 }
4403 }
4404
4405 // Return where the TLSDESC relocations should go, creating it if
4406 // necessary. These follow the JUMP_SLOT relocations.
4407
4408 template<int size, bool big_endian>
4409 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
rela_tlsdesc(Layout * layout)4410 Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
4411 {
4412 if (this->tlsdesc_rel_ == NULL)
4413 {
4414 this->tlsdesc_rel_ = new Reloc_section(false);
4415 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4416 elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
4417 ORDER_DYNAMIC_PLT_RELOCS, false);
4418 gold_assert(this->tlsdesc_rel_->output_section()
4419 == this->rel_->output_section());
4420 }
4421 return this->tlsdesc_rel_;
4422 }
4423
4424 // Return where the IRELATIVE relocations should go in the PLT. These
4425 // follow the JUMP_SLOT and the TLSDESC relocations.
4426
4427 template<int size, bool big_endian>
4428 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
rela_irelative(Symbol_table * symtab,Layout * layout)4429 Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
4430 Layout* layout)
4431 {
4432 if (this->irelative_rel_ == NULL)
4433 {
4434 // Make sure we have a place for the TLSDESC relocations, in
4435 // case we see any later on.
4436 this->rela_tlsdesc(layout);
4437 this->irelative_rel_ = new Reloc_section(false);
4438 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4439 elfcpp::SHF_ALLOC, this->irelative_rel_,
4440 ORDER_DYNAMIC_PLT_RELOCS, false);
4441 gold_assert(this->irelative_rel_->output_section()
4442 == this->rel_->output_section());
4443
4444 if (parameters->doing_static_link())
4445 {
4446 // A statically linked executable will only have a .rela.plt
4447 // section to hold R_AARCH64_IRELATIVE relocs for
4448 // STT_GNU_IFUNC symbols. The library will use these
4449 // symbols to locate the IRELATIVE relocs at program startup
4450 // time.
4451 symtab->define_in_output_data("__rela_iplt_start", NULL,
4452 Symbol_table::PREDEFINED,
4453 this->irelative_rel_, 0, 0,
4454 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4455 elfcpp::STV_HIDDEN, 0, false, true);
4456 symtab->define_in_output_data("__rela_iplt_end", NULL,
4457 Symbol_table::PREDEFINED,
4458 this->irelative_rel_, 0, 0,
4459 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4460 elfcpp::STV_HIDDEN, 0, true, true);
4461 }
4462 }
4463 return this->irelative_rel_;
4464 }
4465
4466 // Return the PLT address to use for a global symbol.
4467
4468 template<int size, bool big_endian>
4469 uint64_t
address_for_global(const Symbol * gsym)4470 Output_data_plt_aarch64<size, big_endian>::address_for_global(
4471 const Symbol* gsym)
4472 {
4473 uint64_t offset = 0;
4474 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4475 && gsym->can_use_relative_reloc(false))
4476 offset = (this->first_plt_entry_offset() +
4477 this->count_ * this->get_plt_entry_size());
4478 return this->address() + offset + gsym->plt_offset();
4479 }
4480
4481 // Return the PLT address to use for a local symbol. These are always
4482 // IRELATIVE relocs.
4483
4484 template<int size, bool big_endian>
4485 uint64_t
address_for_local(const Relobj * object,unsigned int r_sym)4486 Output_data_plt_aarch64<size, big_endian>::address_for_local(
4487 const Relobj* object,
4488 unsigned int r_sym)
4489 {
4490 return (this->address()
4491 + this->first_plt_entry_offset()
4492 + this->count_ * this->get_plt_entry_size()
4493 + object->local_plt_offset(r_sym));
4494 }
4495
4496 // Set the final size.
4497
4498 template<int size, bool big_endian>
4499 void
set_final_data_size()4500 Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
4501 {
4502 unsigned int count = this->count_ + this->irelative_count_;
4503 unsigned int extra_size = 0;
4504 if (this->has_tlsdesc_entry())
4505 extra_size += this->get_plt_tlsdesc_entry_size();
4506 this->set_data_size(this->first_plt_entry_offset()
4507 + count * this->get_plt_entry_size()
4508 + extra_size);
4509 }
4510
4511 template<int size, bool big_endian>
4512 class Output_data_plt_aarch64_standard :
4513 public Output_data_plt_aarch64<size, big_endian>
4514 {
4515 public:
4516 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
Output_data_plt_aarch64_standard(Layout * layout,Output_data_got_aarch64<size,big_endian> * got,Output_data_space * got_plt,Output_data_space * got_irelative)4517 Output_data_plt_aarch64_standard(
4518 Layout* layout,
4519 Output_data_got_aarch64<size, big_endian>* got,
4520 Output_data_space* got_plt,
4521 Output_data_space* got_irelative)
4522 : Output_data_plt_aarch64<size, big_endian>(layout,
4523 size == 32 ? 4 : 8,
4524 got, got_plt,
4525 got_irelative)
4526 { }
4527
4528 protected:
4529 // Return the offset of the first non-reserved PLT entry.
4530 virtual unsigned int
do_first_plt_entry_offset() const4531 do_first_plt_entry_offset() const
4532 { return this->first_plt_entry_size; }
4533
4534 // Return the size of a PLT entry
4535 virtual unsigned int
do_get_plt_entry_size() const4536 do_get_plt_entry_size() const
4537 { return this->plt_entry_size; }
4538
4539 // Return the size of a tlsdesc entry
4540 virtual unsigned int
do_get_plt_tlsdesc_entry_size() const4541 do_get_plt_tlsdesc_entry_size() const
4542 { return this->plt_tlsdesc_entry_size; }
4543
4544 virtual void
4545 do_fill_first_plt_entry(unsigned char* pov,
4546 Address got_address,
4547 Address plt_address);
4548
4549 virtual void
4550 do_fill_plt_entry(unsigned char* pov,
4551 Address got_address,
4552 Address plt_address,
4553 unsigned int got_offset,
4554 unsigned int plt_offset);
4555
4556 virtual void
4557 do_fill_tlsdesc_entry(unsigned char* pov,
4558 Address gotplt_address,
4559 Address plt_address,
4560 Address got_base,
4561 unsigned int tlsdesc_got_offset,
4562 unsigned int plt_offset);
4563
4564 private:
4565 // The size of the first plt entry size.
4566 static const int first_plt_entry_size = 32;
4567 // The size of the plt entry size.
4568 static const int plt_entry_size = 16;
4569 // The size of the plt tlsdesc entry size.
4570 static const int plt_tlsdesc_entry_size = 32;
4571 // Template for the first PLT entry.
4572 static const uint32_t first_plt_entry[first_plt_entry_size / 4];
4573 // Template for subsequent PLT entries.
4574 static const uint32_t plt_entry[plt_entry_size / 4];
4575 // The reserved TLSDESC entry in the PLT for an executable.
4576 static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
4577 };
4578
4579 // The first entry in the PLT for an executable.
4580
4581 template<>
4582 const uint32_t
4583 Output_data_plt_aarch64_standard<32, false>::
4584 first_plt_entry[first_plt_entry_size / 4] =
4585 {
4586 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4587 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4588 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4589 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4590 0xd61f0220, /* br x17 */
4591 0xd503201f, /* nop */
4592 0xd503201f, /* nop */
4593 0xd503201f, /* nop */
4594 };
4595
4596
4597 template<>
4598 const uint32_t
4599 Output_data_plt_aarch64_standard<32, true>::
4600 first_plt_entry[first_plt_entry_size / 4] =
4601 {
4602 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4603 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4604 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4605 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4606 0xd61f0220, /* br x17 */
4607 0xd503201f, /* nop */
4608 0xd503201f, /* nop */
4609 0xd503201f, /* nop */
4610 };
4611
4612
4613 template<>
4614 const uint32_t
4615 Output_data_plt_aarch64_standard<64, false>::
4616 first_plt_entry[first_plt_entry_size / 4] =
4617 {
4618 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4619 0x90000010, /* adrp x16, PLT_GOT+16 */
4620 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4621 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4622 0xd61f0220, /* br x17 */
4623 0xd503201f, /* nop */
4624 0xd503201f, /* nop */
4625 0xd503201f, /* nop */
4626 };
4627
4628
4629 template<>
4630 const uint32_t
4631 Output_data_plt_aarch64_standard<64, true>::
4632 first_plt_entry[first_plt_entry_size / 4] =
4633 {
4634 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4635 0x90000010, /* adrp x16, PLT_GOT+16 */
4636 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4637 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4638 0xd61f0220, /* br x17 */
4639 0xd503201f, /* nop */
4640 0xd503201f, /* nop */
4641 0xd503201f, /* nop */
4642 };
4643
4644
4645 template<>
4646 const uint32_t
4647 Output_data_plt_aarch64_standard<32, false>::
4648 plt_entry[plt_entry_size / 4] =
4649 {
4650 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4651 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4652 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4653 0xd61f0220, /* br x17. */
4654 };
4655
4656
4657 template<>
4658 const uint32_t
4659 Output_data_plt_aarch64_standard<32, true>::
4660 plt_entry[plt_entry_size / 4] =
4661 {
4662 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4663 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4664 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4665 0xd61f0220, /* br x17. */
4666 };
4667
4668
4669 template<>
4670 const uint32_t
4671 Output_data_plt_aarch64_standard<64, false>::
4672 plt_entry[plt_entry_size / 4] =
4673 {
4674 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4675 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4676 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4677 0xd61f0220, /* br x17. */
4678 };
4679
4680
4681 template<>
4682 const uint32_t
4683 Output_data_plt_aarch64_standard<64, true>::
4684 plt_entry[plt_entry_size / 4] =
4685 {
4686 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4687 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4688 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4689 0xd61f0220, /* br x17. */
4690 };
4691
4692
4693 template<int size, bool big_endian>
4694 void
do_fill_first_plt_entry(unsigned char * pov,Address got_address,Address plt_address)4695 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
4696 unsigned char* pov,
4697 Address got_address,
4698 Address plt_address)
4699 {
4700 // PLT0 of the small PLT looks like this in ELF64 -
4701 // stp x16, x30, [sp, #-16]! Save the reloc and lr on stack.
4702 // adrp x16, PLT_GOT + 16 Get the page base of the GOTPLT
4703 // ldr x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
4704 // symbol resolver
4705 // add x16, x16, #:lo12:PLT_GOT+16 Load the lo12 bits of the
4706 // GOTPLT entry for this.
4707 // br x17
4708 // PLT0 will be slightly different in ELF32 due to different got entry
4709 // size.
4710 memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
4711 Address gotplt_2nd_ent = got_address + (size / 8) * 2;
4712
4713 // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
4714 // ADRP: (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
4715 // FIXME: This only works for 64bit
4716 AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
4717 gotplt_2nd_ent, plt_address + 4);
4718
4719 // Fill in R_AARCH64_LDST8_LO12
4720 elfcpp::Swap<32, big_endian>::writeval(
4721 pov + 8,
4722 ((this->first_plt_entry[2] & 0xffc003ff)
4723 | ((gotplt_2nd_ent & 0xff8) << 7)));
4724
4725 // Fill in R_AARCH64_ADD_ABS_LO12
4726 elfcpp::Swap<32, big_endian>::writeval(
4727 pov + 12,
4728 ((this->first_plt_entry[3] & 0xffc003ff)
4729 | ((gotplt_2nd_ent & 0xfff) << 10)));
4730 }
4731
4732
4733 // Subsequent entries in the PLT for an executable.
4734 // FIXME: This only works for 64bit
4735
4736 template<int size, bool big_endian>
4737 void
do_fill_plt_entry(unsigned char * pov,Address got_address,Address plt_address,unsigned int got_offset,unsigned int plt_offset)4738 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
4739 unsigned char* pov,
4740 Address got_address,
4741 Address plt_address,
4742 unsigned int got_offset,
4743 unsigned int plt_offset)
4744 {
4745 memcpy(pov, this->plt_entry, this->plt_entry_size);
4746
4747 Address gotplt_entry_address = got_address + got_offset;
4748 Address plt_entry_address = plt_address + plt_offset;
4749
4750 // Fill in R_AARCH64_PCREL_ADR_HI21
4751 AArch64_relocate_functions<size, big_endian>::adrp(
4752 pov,
4753 gotplt_entry_address,
4754 plt_entry_address);
4755
4756 // Fill in R_AARCH64_LDST64_ABS_LO12
4757 elfcpp::Swap<32, big_endian>::writeval(
4758 pov + 4,
4759 ((this->plt_entry[1] & 0xffc003ff)
4760 | ((gotplt_entry_address & 0xff8) << 7)));
4761
4762 // Fill in R_AARCH64_ADD_ABS_LO12
4763 elfcpp::Swap<32, big_endian>::writeval(
4764 pov + 8,
4765 ((this->plt_entry[2] & 0xffc003ff)
4766 | ((gotplt_entry_address & 0xfff) <<10)));
4767
4768 }
4769
4770
4771 template<>
4772 const uint32_t
4773 Output_data_plt_aarch64_standard<32, false>::
4774 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4775 {
4776 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4777 0x90000002, /* adrp x2, 0 */
4778 0x90000003, /* adrp x3, 0 */
4779 0xb9400042, /* ldr w2, [w2, #0] */
4780 0x11000063, /* add w3, w3, 0 */
4781 0xd61f0040, /* br x2 */
4782 0xd503201f, /* nop */
4783 0xd503201f, /* nop */
4784 };
4785
4786 template<>
4787 const uint32_t
4788 Output_data_plt_aarch64_standard<32, true>::
4789 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4790 {
4791 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4792 0x90000002, /* adrp x2, 0 */
4793 0x90000003, /* adrp x3, 0 */
4794 0xb9400042, /* ldr w2, [w2, #0] */
4795 0x11000063, /* add w3, w3, 0 */
4796 0xd61f0040, /* br x2 */
4797 0xd503201f, /* nop */
4798 0xd503201f, /* nop */
4799 };
4800
4801 template<>
4802 const uint32_t
4803 Output_data_plt_aarch64_standard<64, false>::
4804 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4805 {
4806 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4807 0x90000002, /* adrp x2, 0 */
4808 0x90000003, /* adrp x3, 0 */
4809 0xf9400042, /* ldr x2, [x2, #0] */
4810 0x91000063, /* add x3, x3, 0 */
4811 0xd61f0040, /* br x2 */
4812 0xd503201f, /* nop */
4813 0xd503201f, /* nop */
4814 };
4815
4816 template<>
4817 const uint32_t
4818 Output_data_plt_aarch64_standard<64, true>::
4819 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4820 {
4821 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4822 0x90000002, /* adrp x2, 0 */
4823 0x90000003, /* adrp x3, 0 */
4824 0xf9400042, /* ldr x2, [x2, #0] */
4825 0x91000063, /* add x3, x3, 0 */
4826 0xd61f0040, /* br x2 */
4827 0xd503201f, /* nop */
4828 0xd503201f, /* nop */
4829 };
4830
4831 template<int size, bool big_endian>
4832 void
do_fill_tlsdesc_entry(unsigned char * pov,Address gotplt_address,Address plt_address,Address got_base,unsigned int tlsdesc_got_offset,unsigned int plt_offset)4833 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
4834 unsigned char* pov,
4835 Address gotplt_address,
4836 Address plt_address,
4837 Address got_base,
4838 unsigned int tlsdesc_got_offset,
4839 unsigned int plt_offset)
4840 {
4841 memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
4842
4843 // move DT_TLSDESC_GOT address into x2
4844 // move .got.plt address into x3
4845 Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
4846 Address plt_entry_address = plt_address + plt_offset;
4847
4848 // R_AARCH64_ADR_PREL_PG_HI21
4849 AArch64_relocate_functions<size, big_endian>::adrp(
4850 pov + 4,
4851 tlsdesc_got_entry,
4852 plt_entry_address + 4);
4853
4854 // R_AARCH64_ADR_PREL_PG_HI21
4855 AArch64_relocate_functions<size, big_endian>::adrp(
4856 pov + 8,
4857 gotplt_address,
4858 plt_entry_address + 8);
4859
4860 // R_AARCH64_LDST64_ABS_LO12
4861 elfcpp::Swap<32, big_endian>::writeval(
4862 pov + 12,
4863 ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
4864 | ((tlsdesc_got_entry & 0xff8) << 7)));
4865
4866 // R_AARCH64_ADD_ABS_LO12
4867 elfcpp::Swap<32, big_endian>::writeval(
4868 pov + 16,
4869 ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
4870 | ((gotplt_address & 0xfff) << 10)));
4871 }
4872
4873 // Write out the PLT. This uses the hand-coded instructions above,
4874 // and adjusts them as needed. This is specified by the AMD64 ABI.
4875
4876 template<int size, bool big_endian>
4877 void
do_write(Output_file * of)4878 Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
4879 {
4880 const off_t offset = this->offset();
4881 const section_size_type oview_size =
4882 convert_to_section_size_type(this->data_size());
4883 unsigned char* const oview = of->get_output_view(offset, oview_size);
4884
4885 const off_t got_file_offset = this->got_plt_->offset();
4886 gold_assert(got_file_offset + this->got_plt_->data_size()
4887 == this->got_irelative_->offset());
4888
4889 const section_size_type got_size =
4890 convert_to_section_size_type(this->got_plt_->data_size()
4891 + this->got_irelative_->data_size());
4892 unsigned char* const got_view = of->get_output_view(got_file_offset,
4893 got_size);
4894
4895 unsigned char* pov = oview;
4896
4897 // The base address of the .plt section.
4898 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
4899 // The base address of the PLT portion of the .got section.
4900 typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
4901 = this->got_plt_->address();
4902
4903 this->fill_first_plt_entry(pov, gotplt_address, plt_address);
4904 pov += this->first_plt_entry_offset();
4905
4906 // The first three entries in .got.plt are reserved.
4907 unsigned char* got_pov = got_view;
4908 memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
4909 got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4910
4911 unsigned int plt_offset = this->first_plt_entry_offset();
4912 unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4913 const unsigned int count = this->count_ + this->irelative_count_;
4914 for (unsigned int plt_index = 0;
4915 plt_index < count;
4916 ++plt_index,
4917 pov += this->get_plt_entry_size(),
4918 got_pov += size / 8,
4919 plt_offset += this->get_plt_entry_size(),
4920 got_offset += size / 8)
4921 {
4922 // Set and adjust the PLT entry itself.
4923 this->fill_plt_entry(pov, gotplt_address, plt_address,
4924 got_offset, plt_offset);
4925
4926 // Set the entry in the GOT, which points to plt0.
4927 elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
4928 }
4929
4930 if (this->has_tlsdesc_entry())
4931 {
4932 // Set and adjust the reserved TLSDESC PLT entry.
4933 unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
4934 // The base address of the .base section.
4935 typename elfcpp::Elf_types<size>::Elf_Addr got_base =
4936 this->got_->address();
4937 this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4938 tlsdesc_got_offset, plt_offset);
4939 pov += this->get_plt_tlsdesc_entry_size();
4940 }
4941
4942 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
4943 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
4944
4945 of->write_output_view(offset, oview_size, oview);
4946 of->write_output_view(got_file_offset, got_size, got_view);
4947 }
4948
4949 // Telling how to update the immediate field of an instruction.
4950 struct AArch64_howto
4951 {
4952 // The immediate field mask.
4953 elfcpp::Elf_Xword dst_mask;
4954
4955 // The offset to apply relocation immediate
4956 int doffset;
4957
4958 // The second part offset, if the immediate field has two parts.
4959 // -1 if the immediate field has only one part.
4960 int doffset2;
4961 };
4962
4963 static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
4964 {
4965 {0, -1, -1}, // DATA
4966 {0x1fffe0, 5, -1}, // MOVW [20:5]-imm16
4967 {0xffffe0, 5, -1}, // LD [23:5]-imm19
4968 {0x60ffffe0, 29, 5}, // ADR [30:29]-immlo [23:5]-immhi
4969 {0x60ffffe0, 29, 5}, // ADRP [30:29]-immlo [23:5]-immhi
4970 {0x3ffc00, 10, -1}, // ADD [21:10]-imm12
4971 {0x3ffc00, 10, -1}, // LDST [21:10]-imm12
4972 {0x7ffe0, 5, -1}, // TBZNZ [18:5]-imm14
4973 {0xffffe0, 5, -1}, // CONDB [23:5]-imm19
4974 {0x3ffffff, 0, -1}, // B [25:0]-imm26
4975 {0x3ffffff, 0, -1}, // CALL [25:0]-imm26
4976 };
4977
4978 // AArch64 relocate function class
4979
4980 template<int size, bool big_endian>
4981 class AArch64_relocate_functions
4982 {
4983 public:
4984 typedef enum
4985 {
4986 STATUS_OKAY, // No error during relocation.
4987 STATUS_OVERFLOW, // Relocation overflow.
4988 STATUS_BAD_RELOC, // Relocation cannot be applied.
4989 } Status;
4990
4991 typedef AArch64_relocate_functions<size, big_endian> This;
4992 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4993 typedef Relocate_info<size, big_endian> The_relocate_info;
4994 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
4995 typedef Reloc_stub<size, big_endian> The_reloc_stub;
4996 typedef Stub_table<size, big_endian> The_stub_table;
4997 typedef elfcpp::Rela<size, big_endian> The_rela;
4998 typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
4999
5000 // Return the page address of the address.
5001 // Page(address) = address & ~0xFFF
5002
5003 static inline AArch64_valtype
Page(Address address)5004 Page(Address address)
5005 {
5006 return (address & (~static_cast<Address>(0xFFF)));
5007 }
5008
5009 private:
5010 // Update instruction (pointed by view) with selected bits (immed).
5011 // val = (val & ~dst_mask) | (immed << doffset)
5012
5013 template<int valsize>
5014 static inline void
update_view(unsigned char * view,AArch64_valtype immed,elfcpp::Elf_Xword doffset,elfcpp::Elf_Xword dst_mask)5015 update_view(unsigned char* view,
5016 AArch64_valtype immed,
5017 elfcpp::Elf_Xword doffset,
5018 elfcpp::Elf_Xword dst_mask)
5019 {
5020 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5021 Valtype* wv = reinterpret_cast<Valtype*>(view);
5022 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5023
5024 // Clear immediate fields.
5025 val &= ~dst_mask;
5026 elfcpp::Swap<valsize, big_endian>::writeval(wv,
5027 static_cast<Valtype>(val | (immed << doffset)));
5028 }
5029
5030 // Update two parts of an instruction (pointed by view) with selected
5031 // bits (immed1 and immed2).
5032 // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
5033
5034 template<int valsize>
5035 static inline void
update_view_two_parts(unsigned char * view,AArch64_valtype immed1,AArch64_valtype immed2,elfcpp::Elf_Xword doffset1,elfcpp::Elf_Xword doffset2,elfcpp::Elf_Xword dst_mask)5036 update_view_two_parts(
5037 unsigned char* view,
5038 AArch64_valtype immed1,
5039 AArch64_valtype immed2,
5040 elfcpp::Elf_Xword doffset1,
5041 elfcpp::Elf_Xword doffset2,
5042 elfcpp::Elf_Xword dst_mask)
5043 {
5044 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5045 Valtype* wv = reinterpret_cast<Valtype*>(view);
5046 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5047 val &= ~dst_mask;
5048 elfcpp::Swap<valsize, big_endian>::writeval(wv,
5049 static_cast<Valtype>(val | (immed1 << doffset1) |
5050 (immed2 << doffset2)));
5051 }
5052
5053 // Update adr or adrp instruction with immed.
5054 // In adr and adrp: [30:29] immlo [23:5] immhi
5055
5056 static inline void
update_adr(unsigned char * view,AArch64_valtype immed)5057 update_adr(unsigned char* view, AArch64_valtype immed)
5058 {
5059 elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
5060 This::template update_view_two_parts<32>(
5061 view,
5062 immed & 0x3,
5063 (immed & 0x1ffffc) >> 2,
5064 29,
5065 5,
5066 dst_mask);
5067 }
5068
5069 // Update movz/movn instruction with bits immed.
5070 // Set instruction to movz if is_movz is true, otherwise set instruction
5071 // to movn.
5072
5073 static inline void
update_movnz(unsigned char * view,AArch64_valtype immed,bool is_movz)5074 update_movnz(unsigned char* view,
5075 AArch64_valtype immed,
5076 bool is_movz)
5077 {
5078 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5079 Valtype* wv = reinterpret_cast<Valtype*>(view);
5080 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
5081
5082 const elfcpp::Elf_Xword doffset =
5083 aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
5084 const elfcpp::Elf_Xword dst_mask =
5085 aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
5086
5087 // Clear immediate fields and opc code.
5088 val &= ~(dst_mask | (0x3 << 29));
5089
5090 // Set instruction to movz or movn.
5091 // movz: [30:29] is 10 movn: [30:29] is 00
5092 if (is_movz)
5093 val |= (0x2 << 29);
5094
5095 elfcpp::Swap<32, big_endian>::writeval(wv,
5096 static_cast<Valtype>(val | (immed << doffset)));
5097 }
5098
5099 // Update selected bits in text.
5100
5101 template<int valsize>
5102 static inline typename This::Status
reloc_common(unsigned char * view,Address x,const AArch64_reloc_property * reloc_property)5103 reloc_common(unsigned char* view, Address x,
5104 const AArch64_reloc_property* reloc_property)
5105 {
5106 // Select bits from X.
5107 Address immed = reloc_property->select_x_value(x);
5108
5109 // Update view.
5110 const AArch64_reloc_property::Reloc_inst inst =
5111 reloc_property->reloc_inst();
5112 // If it is a data relocation or instruction has 2 parts of immediate
5113 // fields, you should not call pcrela_general.
5114 gold_assert(aarch64_howto[inst].doffset2 == -1 &&
5115 aarch64_howto[inst].doffset != -1);
5116 This::template update_view<valsize>(view, immed,
5117 aarch64_howto[inst].doffset,
5118 aarch64_howto[inst].dst_mask);
5119
5120 // Do check overflow or alignment if needed.
5121 return (reloc_property->checkup_x_value(x)
5122 ? This::STATUS_OKAY
5123 : This::STATUS_OVERFLOW);
5124 }
5125
5126 public:
5127
5128 // Construct a B insn. Note, although we group it here with other relocation
5129 // operation, there is actually no 'relocation' involved here.
5130 static inline void
construct_b(unsigned char * view,unsigned int branch_offset)5131 construct_b(unsigned char* view, unsigned int branch_offset)
5132 {
5133 update_view_two_parts<32>(view, 0x05, (branch_offset >> 2),
5134 26, 0, 0xffffffff);
5135 }
5136
5137 // Do a simple rela relocation at unaligned addresses.
5138
5139 template<int valsize>
5140 static inline typename This::Status
rela_ua(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,AArch64_valtype addend,const AArch64_reloc_property * reloc_property)5141 rela_ua(unsigned char* view,
5142 const Sized_relobj_file<size, big_endian>* object,
5143 const Symbol_value<size>* psymval,
5144 AArch64_valtype addend,
5145 const AArch64_reloc_property* reloc_property)
5146 {
5147 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5148 Valtype;
5149 typename elfcpp::Elf_types<size>::Elf_Addr x =
5150 psymval->value(object, addend);
5151 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5152 static_cast<Valtype>(x));
5153 return (reloc_property->checkup_x_value(x)
5154 ? This::STATUS_OKAY
5155 : This::STATUS_OVERFLOW);
5156 }
5157
5158 // Do a simple pc-relative relocation at unaligned addresses.
5159
5160 template<int valsize>
5161 static inline typename This::Status
pcrela_ua(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,AArch64_valtype addend,Address address,const AArch64_reloc_property * reloc_property)5162 pcrela_ua(unsigned char* view,
5163 const Sized_relobj_file<size, big_endian>* object,
5164 const Symbol_value<size>* psymval,
5165 AArch64_valtype addend,
5166 Address address,
5167 const AArch64_reloc_property* reloc_property)
5168 {
5169 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5170 Valtype;
5171 Address x = psymval->value(object, addend) - address;
5172 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5173 static_cast<Valtype>(x));
5174 return (reloc_property->checkup_x_value(x)
5175 ? This::STATUS_OKAY
5176 : This::STATUS_OVERFLOW);
5177 }
5178
5179 // Do a simple rela relocation at aligned addresses.
5180
5181 template<int valsize>
5182 static inline typename This::Status
rela(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,AArch64_valtype addend,const AArch64_reloc_property * reloc_property)5183 rela(
5184 unsigned char* view,
5185 const Sized_relobj_file<size, big_endian>* object,
5186 const Symbol_value<size>* psymval,
5187 AArch64_valtype addend,
5188 const AArch64_reloc_property* reloc_property)
5189 {
5190 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5191 Valtype* wv = reinterpret_cast<Valtype*>(view);
5192 Address x = psymval->value(object, addend);
5193 elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
5194 return (reloc_property->checkup_x_value(x)
5195 ? This::STATUS_OKAY
5196 : This::STATUS_OVERFLOW);
5197 }
5198
5199 // Do relocate. Update selected bits in text.
5200 // new_val = (val & ~dst_mask) | (immed << doffset)
5201
5202 template<int valsize>
5203 static inline typename This::Status
rela_general(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,AArch64_valtype addend,const AArch64_reloc_property * reloc_property)5204 rela_general(unsigned char* view,
5205 const Sized_relobj_file<size, big_endian>* object,
5206 const Symbol_value<size>* psymval,
5207 AArch64_valtype addend,
5208 const AArch64_reloc_property* reloc_property)
5209 {
5210 // Calculate relocation.
5211 Address x = psymval->value(object, addend);
5212 return This::template reloc_common<valsize>(view, x, reloc_property);
5213 }
5214
5215 // Do relocate. Update selected bits in text.
5216 // new val = (val & ~dst_mask) | (immed << doffset)
5217
5218 template<int valsize>
5219 static inline typename This::Status
rela_general(unsigned char * view,AArch64_valtype s,AArch64_valtype addend,const AArch64_reloc_property * reloc_property)5220 rela_general(
5221 unsigned char* view,
5222 AArch64_valtype s,
5223 AArch64_valtype addend,
5224 const AArch64_reloc_property* reloc_property)
5225 {
5226 // Calculate relocation.
5227 Address x = s + addend;
5228 return This::template reloc_common<valsize>(view, x, reloc_property);
5229 }
5230
5231 // Do address relative relocate. Update selected bits in text.
5232 // new val = (val & ~dst_mask) | (immed << doffset)
5233
5234 template<int valsize>
5235 static inline typename This::Status
pcrela_general(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,AArch64_valtype addend,Address address,const AArch64_reloc_property * reloc_property)5236 pcrela_general(
5237 unsigned char* view,
5238 const Sized_relobj_file<size, big_endian>* object,
5239 const Symbol_value<size>* psymval,
5240 AArch64_valtype addend,
5241 Address address,
5242 const AArch64_reloc_property* reloc_property)
5243 {
5244 // Calculate relocation.
5245 Address x = psymval->value(object, addend) - address;
5246 return This::template reloc_common<valsize>(view, x, reloc_property);
5247 }
5248
5249
5250 // Calculate (S + A) - address, update adr instruction.
5251
5252 static inline typename This::Status
adr(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,Address addend,Address address,const AArch64_reloc_property *)5253 adr(unsigned char* view,
5254 const Sized_relobj_file<size, big_endian>* object,
5255 const Symbol_value<size>* psymval,
5256 Address addend,
5257 Address address,
5258 const AArch64_reloc_property* /* reloc_property */)
5259 {
5260 AArch64_valtype x = psymval->value(object, addend) - address;
5261 // Pick bits [20:0] of X.
5262 AArch64_valtype immed = x & 0x1fffff;
5263 update_adr(view, immed);
5264 // Check -2^20 <= X < 2^20
5265 return (size == 64 && Bits<21>::has_overflow((x))
5266 ? This::STATUS_OVERFLOW
5267 : This::STATUS_OKAY);
5268 }
5269
5270 // Calculate PG(S+A) - PG(address), update adrp instruction.
5271 // R_AARCH64_ADR_PREL_PG_HI21
5272
5273 static inline typename This::Status
adrp(unsigned char * view,Address sa,Address address)5274 adrp(
5275 unsigned char* view,
5276 Address sa,
5277 Address address)
5278 {
5279 AArch64_valtype x = This::Page(sa) - This::Page(address);
5280 // Pick [32:12] of X.
5281 AArch64_valtype immed = (x >> 12) & 0x1fffff;
5282 update_adr(view, immed);
5283 // Check -2^32 <= X < 2^32
5284 return (size == 64 && Bits<33>::has_overflow((x))
5285 ? This::STATUS_OVERFLOW
5286 : This::STATUS_OKAY);
5287 }
5288
5289 // Calculate PG(S+A) - PG(address), update adrp instruction.
5290 // R_AARCH64_ADR_PREL_PG_HI21
5291
5292 static inline typename This::Status
adrp(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,Address addend,Address address,const AArch64_reloc_property * reloc_property)5293 adrp(unsigned char* view,
5294 const Sized_relobj_file<size, big_endian>* object,
5295 const Symbol_value<size>* psymval,
5296 Address addend,
5297 Address address,
5298 const AArch64_reloc_property* reloc_property)
5299 {
5300 Address sa = psymval->value(object, addend);
5301 AArch64_valtype x = This::Page(sa) - This::Page(address);
5302 // Pick [32:12] of X.
5303 AArch64_valtype immed = (x >> 12) & 0x1fffff;
5304 update_adr(view, immed);
5305 return (reloc_property->checkup_x_value(x)
5306 ? This::STATUS_OKAY
5307 : This::STATUS_OVERFLOW);
5308 }
5309
5310 // Update mov[n/z] instruction. Check overflow if needed.
5311 // If X >=0, set the instruction to movz and its immediate value to the
5312 // selected bits S.
5313 // If X < 0, set the instruction to movn and its immediate value to
5314 // NOT (selected bits of).
5315
5316 static inline typename This::Status
movnz(unsigned char * view,AArch64_valtype x,const AArch64_reloc_property * reloc_property)5317 movnz(unsigned char* view,
5318 AArch64_valtype x,
5319 const AArch64_reloc_property* reloc_property)
5320 {
5321 // Select bits from X.
5322 Address immed;
5323 bool is_movz;
5324 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
5325 if (static_cast<SignedW>(x) >= 0)
5326 {
5327 immed = reloc_property->select_x_value(x);
5328 is_movz = true;
5329 }
5330 else
5331 {
5332 immed = reloc_property->select_x_value(~x);;
5333 is_movz = false;
5334 }
5335
5336 // Update movnz instruction.
5337 update_movnz(view, immed, is_movz);
5338
5339 // Do check overflow or alignment if needed.
5340 return (reloc_property->checkup_x_value(x)
5341 ? This::STATUS_OKAY
5342 : This::STATUS_OVERFLOW);
5343 }
5344
5345 static inline bool
5346 maybe_apply_stub(unsigned int,
5347 const The_relocate_info*,
5348 const The_rela&,
5349 unsigned char*,
5350 Address,
5351 const Sized_symbol<size>*,
5352 const Symbol_value<size>*,
5353 const Sized_relobj_file<size, big_endian>*,
5354 section_size_type);
5355
5356 }; // End of AArch64_relocate_functions
5357
5358
5359 // For a certain relocation type (usually jump/branch), test to see if the
5360 // destination needs a stub to fulfil. If so, re-route the destination of the
5361 // original instruction to the stub, note, at this time, the stub has already
5362 // been generated.
5363
5364 template<int size, bool big_endian>
5365 bool
5366 AArch64_relocate_functions<size, big_endian>::
maybe_apply_stub(unsigned int r_type,const The_relocate_info * relinfo,const The_rela & rela,unsigned char * view,Address address,const Sized_symbol<size> * gsym,const Symbol_value<size> * psymval,const Sized_relobj_file<size,big_endian> * object,section_size_type current_group_size)5367 maybe_apply_stub(unsigned int r_type,
5368 const The_relocate_info* relinfo,
5369 const The_rela& rela,
5370 unsigned char* view,
5371 Address address,
5372 const Sized_symbol<size>* gsym,
5373 const Symbol_value<size>* psymval,
5374 const Sized_relobj_file<size, big_endian>* object,
5375 section_size_type current_group_size)
5376 {
5377 if (parameters->options().relocatable())
5378 return false;
5379
5380 typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
5381 Address branch_target = psymval->value(object, 0) + addend;
5382 int stub_type =
5383 The_reloc_stub::stub_type_for_reloc(r_type, address, branch_target);
5384 if (stub_type == ST_NONE)
5385 return false;
5386
5387 const The_aarch64_relobj* aarch64_relobj =
5388 static_cast<const The_aarch64_relobj*>(object);
5389 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
5390 gold_assert(stub_table != NULL);
5391
5392 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5393 typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
5394 The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
5395 gold_assert(stub != NULL);
5396
5397 Address new_branch_target = stub_table->address() + stub->offset();
5398 typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
5399 new_branch_target - address;
5400 const AArch64_reloc_property* arp =
5401 aarch64_reloc_property_table->get_reloc_property(r_type);
5402 gold_assert(arp != NULL);
5403 typename This::Status status = This::template
5404 rela_general<32>(view, branch_offset, 0, arp);
5405 if (status != This::STATUS_OKAY)
5406 gold_error(_("Stub is too far away, try a smaller value "
5407 "for '--stub-group-size'. The current value is 0x%lx."),
5408 static_cast<unsigned long>(current_group_size));
5409 return true;
5410 }
5411
5412
5413 // Group input sections for stub generation.
5414 //
5415 // We group input sections in an output section so that the total size,
5416 // including any padding space due to alignment is smaller than GROUP_SIZE
5417 // unless the only input section in group is bigger than GROUP_SIZE already.
5418 // Then an ARM stub table is created to follow the last input section
5419 // in group. For each group an ARM stub table is created an is placed
5420 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
5421 // extend the group after the stub table.
5422
5423 template<int size, bool big_endian>
5424 void
group_sections(Layout * layout,section_size_type group_size,bool stubs_always_after_branch,const Task * task)5425 Target_aarch64<size, big_endian>::group_sections(
5426 Layout* layout,
5427 section_size_type group_size,
5428 bool stubs_always_after_branch,
5429 const Task* task)
5430 {
5431 // Group input sections and insert stub table
5432 Layout::Section_list section_list;
5433 layout->get_executable_sections(§ion_list);
5434 for (Layout::Section_list::const_iterator p = section_list.begin();
5435 p != section_list.end();
5436 ++p)
5437 {
5438 AArch64_output_section<size, big_endian>* output_section =
5439 static_cast<AArch64_output_section<size, big_endian>*>(*p);
5440 output_section->group_sections(group_size, stubs_always_after_branch,
5441 this, task);
5442 }
5443 }
5444
5445
5446 // Find the AArch64_input_section object corresponding to the SHNDX-th input
5447 // section of RELOBJ.
5448
5449 template<int size, bool big_endian>
5450 AArch64_input_section<size, big_endian>*
find_aarch64_input_section(Relobj * relobj,unsigned int shndx) const5451 Target_aarch64<size, big_endian>::find_aarch64_input_section(
5452 Relobj* relobj, unsigned int shndx) const
5453 {
5454 Section_id sid(relobj, shndx);
5455 typename AArch64_input_section_map::const_iterator p =
5456 this->aarch64_input_section_map_.find(sid);
5457 return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
5458 }
5459
5460
5461 // Make a new AArch64_input_section object.
5462
5463 template<int size, bool big_endian>
5464 AArch64_input_section<size, big_endian>*
new_aarch64_input_section(Relobj * relobj,unsigned int shndx)5465 Target_aarch64<size, big_endian>::new_aarch64_input_section(
5466 Relobj* relobj, unsigned int shndx)
5467 {
5468 Section_id sid(relobj, shndx);
5469
5470 AArch64_input_section<size, big_endian>* input_section =
5471 new AArch64_input_section<size, big_endian>(relobj, shndx);
5472 input_section->init();
5473
5474 // Register new AArch64_input_section in map for look-up.
5475 std::pair<typename AArch64_input_section_map::iterator,bool> ins =
5476 this->aarch64_input_section_map_.insert(
5477 std::make_pair(sid, input_section));
5478
5479 // Make sure that it we have not created another AArch64_input_section
5480 // for this input section already.
5481 gold_assert(ins.second);
5482
5483 return input_section;
5484 }
5485
5486
5487 // Relaxation hook. This is where we do stub generation.
5488
5489 template<int size, bool big_endian>
5490 bool
do_relax(int pass,const Input_objects * input_objects,Symbol_table * symtab,Layout * layout,const Task * task)5491 Target_aarch64<size, big_endian>::do_relax(
5492 int pass,
5493 const Input_objects* input_objects,
5494 Symbol_table* symtab,
5495 Layout* layout ,
5496 const Task* task)
5497 {
5498 gold_assert(!parameters->options().relocatable());
5499 if (pass == 1)
5500 {
5501 // We don't handle negative stub_group_size right now.
5502 this->stub_group_size_ = abs(parameters->options().stub_group_size());
5503 if (this->stub_group_size_ == 1)
5504 {
5505 // Leave room for 4096 4-byte stub entries. If we exceed that, then we
5506 // will fail to link. The user will have to relink with an explicit
5507 // group size option.
5508 this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
5509 4096 * 4;
5510 }
5511 group_sections(layout, this->stub_group_size_, true, task);
5512 }
5513 else
5514 {
5515 // If this is not the first pass, addresses and file offsets have
5516 // been reset at this point, set them here.
5517 for (Stub_table_iterator sp = this->stub_tables_.begin();
5518 sp != this->stub_tables_.end(); ++sp)
5519 {
5520 The_stub_table* stt = *sp;
5521 The_aarch64_input_section* owner = stt->owner();
5522 off_t off = align_address(owner->original_size(),
5523 stt->addralign());
5524 stt->set_address_and_file_offset(owner->address() + off,
5525 owner->offset() + off);
5526 }
5527 }
5528
5529 // Scan relocs for relocation stubs
5530 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
5531 op != input_objects->relobj_end();
5532 ++op)
5533 {
5534 The_aarch64_relobj* aarch64_relobj =
5535 static_cast<The_aarch64_relobj*>(*op);
5536 // Lock the object so we can read from it. This is only called
5537 // single-threaded from Layout::finalize, so it is OK to lock.
5538 Task_lock_obj<Object> tl(task, aarch64_relobj);
5539 aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
5540 }
5541
5542 bool any_stub_table_changed = false;
5543 for (Stub_table_iterator siter = this->stub_tables_.begin();
5544 siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
5545 {
5546 The_stub_table* stub_table = *siter;
5547 if (stub_table->update_data_size_changed_p())
5548 {
5549 The_aarch64_input_section* owner = stub_table->owner();
5550 uint64_t address = owner->address();
5551 off_t offset = owner->offset();
5552 owner->reset_address_and_file_offset();
5553 owner->set_address_and_file_offset(address, offset);
5554
5555 any_stub_table_changed = true;
5556 }
5557 }
5558
5559 // Do not continue relaxation.
5560 bool continue_relaxation = any_stub_table_changed;
5561 if (!continue_relaxation)
5562 for (Stub_table_iterator sp = this->stub_tables_.begin();
5563 (sp != this->stub_tables_.end());
5564 ++sp)
5565 (*sp)->finalize_stubs();
5566
5567 return continue_relaxation;
5568 }
5569
5570
5571 // Make a new Stub_table.
5572
5573 template<int size, bool big_endian>
5574 Stub_table<size, big_endian>*
new_stub_table(AArch64_input_section<size,big_endian> * owner)5575 Target_aarch64<size, big_endian>::new_stub_table(
5576 AArch64_input_section<size, big_endian>* owner)
5577 {
5578 Stub_table<size, big_endian>* stub_table =
5579 new Stub_table<size, big_endian>(owner);
5580 stub_table->set_address(align_address(
5581 owner->address() + owner->data_size(), 8));
5582 stub_table->set_file_offset(owner->offset() + owner->data_size());
5583 stub_table->finalize_data_size();
5584
5585 this->stub_tables_.push_back(stub_table);
5586
5587 return stub_table;
5588 }
5589
5590
5591 template<int size, bool big_endian>
5592 uint64_t
do_reloc_addend(void * arg,unsigned int r_type,uint64_t) const5593 Target_aarch64<size, big_endian>::do_reloc_addend(
5594 void* arg, unsigned int r_type, uint64_t) const
5595 {
5596 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
5597 uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5598 gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5599 const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5600 const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5601 gold_assert(psymval->is_tls_symbol());
5602 // The value of a TLS symbol is the offset in the TLS segment.
5603 return psymval->value(ti.object, 0);
5604 }
5605
5606 // Return the number of entries in the PLT.
5607
5608 template<int size, bool big_endian>
5609 unsigned int
plt_entry_count() const5610 Target_aarch64<size, big_endian>::plt_entry_count() const
5611 {
5612 if (this->plt_ == NULL)
5613 return 0;
5614 return this->plt_->entry_count();
5615 }
5616
5617 // Return the offset of the first non-reserved PLT entry.
5618
5619 template<int size, bool big_endian>
5620 unsigned int
first_plt_entry_offset() const5621 Target_aarch64<size, big_endian>::first_plt_entry_offset() const
5622 {
5623 return this->plt_->first_plt_entry_offset();
5624 }
5625
5626 // Return the size of each PLT entry.
5627
5628 template<int size, bool big_endian>
5629 unsigned int
plt_entry_size() const5630 Target_aarch64<size, big_endian>::plt_entry_size() const
5631 {
5632 return this->plt_->get_plt_entry_size();
5633 }
5634
5635 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
5636
5637 template<int size, bool big_endian>
5638 void
define_tls_base_symbol(Symbol_table * symtab,Layout * layout)5639 Target_aarch64<size, big_endian>::define_tls_base_symbol(
5640 Symbol_table* symtab, Layout* layout)
5641 {
5642 if (this->tls_base_symbol_defined_)
5643 return;
5644
5645 Output_segment* tls_segment = layout->tls_segment();
5646 if (tls_segment != NULL)
5647 {
5648 // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
5649 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
5650 Symbol_table::PREDEFINED,
5651 tls_segment, 0, 0,
5652 elfcpp::STT_TLS,
5653 elfcpp::STB_LOCAL,
5654 elfcpp::STV_HIDDEN, 0,
5655 Symbol::SEGMENT_START,
5656 true);
5657 }
5658 this->tls_base_symbol_defined_ = true;
5659 }
5660
5661 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
5662
5663 template<int size, bool big_endian>
5664 void
reserve_tlsdesc_entries(Symbol_table * symtab,Layout * layout)5665 Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
5666 Symbol_table* symtab, Layout* layout)
5667 {
5668 if (this->plt_ == NULL)
5669 this->make_plt_section(symtab, layout);
5670
5671 if (!this->plt_->has_tlsdesc_entry())
5672 {
5673 // Allocate the TLSDESC_GOT entry.
5674 Output_data_got_aarch64<size, big_endian>* got =
5675 this->got_section(symtab, layout);
5676 unsigned int got_offset = got->add_constant(0);
5677
5678 // Allocate the TLSDESC_PLT entry.
5679 this->plt_->reserve_tlsdesc_entry(got_offset);
5680 }
5681 }
5682
5683 // Create a GOT entry for the TLS module index.
5684
5685 template<int size, bool big_endian>
5686 unsigned int
got_mod_index_entry(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object)5687 Target_aarch64<size, big_endian>::got_mod_index_entry(
5688 Symbol_table* symtab, Layout* layout,
5689 Sized_relobj_file<size, big_endian>* object)
5690 {
5691 if (this->got_mod_index_offset_ == -1U)
5692 {
5693 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5694 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5695 Output_data_got_aarch64<size, big_endian>* got =
5696 this->got_section(symtab, layout);
5697 unsigned int got_offset = got->add_constant(0);
5698 rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
5699 got_offset, 0);
5700 got->add_constant(0);
5701 this->got_mod_index_offset_ = got_offset;
5702 }
5703 return this->got_mod_index_offset_;
5704 }
5705
5706 // Optimize the TLS relocation type based on what we know about the
5707 // symbol. IS_FINAL is true if the final address of this symbol is
5708 // known at link time.
5709
5710 template<int size, bool big_endian>
5711 tls::Tls_optimization
optimize_tls_reloc(bool is_final,int r_type)5712 Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
5713 int r_type)
5714 {
5715 // If we are generating a shared library, then we can't do anything
5716 // in the linker
5717 if (parameters->options().shared())
5718 return tls::TLSOPT_NONE;
5719
5720 switch (r_type)
5721 {
5722 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5723 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5724 case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
5725 case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
5726 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5727 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5728 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5729 case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
5730 case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
5731 case elfcpp::R_AARCH64_TLSDESC_LDR:
5732 case elfcpp::R_AARCH64_TLSDESC_ADD:
5733 case elfcpp::R_AARCH64_TLSDESC_CALL:
5734 // These are General-Dynamic which permits fully general TLS
5735 // access. Since we know that we are generating an executable,
5736 // we can convert this to Initial-Exec. If we also know that
5737 // this is a local symbol, we can further switch to Local-Exec.
5738 if (is_final)
5739 return tls::TLSOPT_TO_LE;
5740 return tls::TLSOPT_TO_IE;
5741
5742 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5743 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5744 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5745 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5746 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5747 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5748 // These are Local-Dynamic, which refer to local symbols in the
5749 // dynamic TLS block. Since we know that we generating an
5750 // executable, we can switch to Local-Exec.
5751 return tls::TLSOPT_TO_LE;
5752
5753 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5754 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5755 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5756 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5757 case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5758 // These are Initial-Exec relocs which get the thread offset
5759 // from the GOT. If we know that we are linking against the
5760 // local symbol, we can switch to Local-Exec, which links the
5761 // thread offset into the instruction.
5762 if (is_final)
5763 return tls::TLSOPT_TO_LE;
5764 return tls::TLSOPT_NONE;
5765
5766 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5767 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5768 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5769 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5770 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5771 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5772 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5773 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5774 // When we already have Local-Exec, there is nothing further we
5775 // can do.
5776 return tls::TLSOPT_NONE;
5777
5778 default:
5779 gold_unreachable();
5780 }
5781 }
5782
5783 // Returns true if this relocation type could be that of a function pointer.
5784
5785 template<int size, bool big_endian>
5786 inline bool
possible_function_pointer_reloc(unsigned int r_type)5787 Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
5788 unsigned int r_type)
5789 {
5790 switch (r_type)
5791 {
5792 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5793 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5794 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5795 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5796 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5797 {
5798 return true;
5799 }
5800 }
5801 return false;
5802 }
5803
5804 // For safe ICF, scan a relocation for a local symbol to check if it
5805 // corresponds to a function pointer being taken. In that case mark
5806 // the function whose pointer was taken as not foldable.
5807
5808 template<int size, bool big_endian>
5809 inline bool
local_reloc_may_be_function_pointer(Symbol_table *,Layout *,Target_aarch64<size,big_endian> *,Sized_relobj_file<size,big_endian> *,unsigned int,Output_section *,const elfcpp::Rela<size,big_endian> &,unsigned int r_type,const elfcpp::Sym<size,big_endian> &)5810 Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
5811 Symbol_table* ,
5812 Layout* ,
5813 Target_aarch64<size, big_endian>* ,
5814 Sized_relobj_file<size, big_endian>* ,
5815 unsigned int ,
5816 Output_section* ,
5817 const elfcpp::Rela<size, big_endian>& ,
5818 unsigned int r_type,
5819 const elfcpp::Sym<size, big_endian>&)
5820 {
5821 // When building a shared library, do not fold any local symbols.
5822 return (parameters->options().shared()
5823 || possible_function_pointer_reloc(r_type));
5824 }
5825
5826 // For safe ICF, scan a relocation for a global symbol to check if it
5827 // corresponds to a function pointer being taken. In that case mark
5828 // the function whose pointer was taken as not foldable.
5829
5830 template<int size, bool big_endian>
5831 inline bool
global_reloc_may_be_function_pointer(Symbol_table *,Layout *,Target_aarch64<size,big_endian> *,Sized_relobj_file<size,big_endian> *,unsigned int,Output_section *,const elfcpp::Rela<size,big_endian> &,unsigned int r_type,Symbol * gsym)5832 Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
5833 Symbol_table* ,
5834 Layout* ,
5835 Target_aarch64<size, big_endian>* ,
5836 Sized_relobj_file<size, big_endian>* ,
5837 unsigned int ,
5838 Output_section* ,
5839 const elfcpp::Rela<size, big_endian>& ,
5840 unsigned int r_type,
5841 Symbol* gsym)
5842 {
5843 // When building a shared library, do not fold symbols whose visibility
5844 // is hidden, internal or protected.
5845 return ((parameters->options().shared()
5846 && (gsym->visibility() == elfcpp::STV_INTERNAL
5847 || gsym->visibility() == elfcpp::STV_PROTECTED
5848 || gsym->visibility() == elfcpp::STV_HIDDEN))
5849 || possible_function_pointer_reloc(r_type));
5850 }
5851
5852 // Report an unsupported relocation against a local symbol.
5853
5854 template<int size, bool big_endian>
5855 void
unsupported_reloc_local(Sized_relobj_file<size,big_endian> * object,unsigned int r_type)5856 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
5857 Sized_relobj_file<size, big_endian>* object,
5858 unsigned int r_type)
5859 {
5860 gold_error(_("%s: unsupported reloc %u against local symbol"),
5861 object->name().c_str(), r_type);
5862 }
5863
5864 // We are about to emit a dynamic relocation of type R_TYPE. If the
5865 // dynamic linker does not support it, issue an error.
5866
5867 template<int size, bool big_endian>
5868 void
check_non_pic(Relobj * object,unsigned int r_type)5869 Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
5870 unsigned int r_type)
5871 {
5872 gold_assert(r_type != elfcpp::R_AARCH64_NONE);
5873
5874 switch (r_type)
5875 {
5876 // These are the relocation types supported by glibc for AARCH64.
5877 case elfcpp::R_AARCH64_NONE:
5878 case elfcpp::R_AARCH64_COPY:
5879 case elfcpp::R_AARCH64_GLOB_DAT:
5880 case elfcpp::R_AARCH64_JUMP_SLOT:
5881 case elfcpp::R_AARCH64_RELATIVE:
5882 case elfcpp::R_AARCH64_TLS_DTPREL64:
5883 case elfcpp::R_AARCH64_TLS_DTPMOD64:
5884 case elfcpp::R_AARCH64_TLS_TPREL64:
5885 case elfcpp::R_AARCH64_TLSDESC:
5886 case elfcpp::R_AARCH64_IRELATIVE:
5887 case elfcpp::R_AARCH64_ABS32:
5888 case elfcpp::R_AARCH64_ABS64:
5889 return;
5890
5891 default:
5892 break;
5893 }
5894
5895 // This prevents us from issuing more than one error per reloc
5896 // section. But we can still wind up issuing more than one
5897 // error per object file.
5898 if (this->issued_non_pic_error_)
5899 return;
5900 gold_assert(parameters->options().output_is_position_independent());
5901 object->error(_("requires unsupported dynamic reloc; "
5902 "recompile with -fPIC"));
5903 this->issued_non_pic_error_ = true;
5904 return;
5905 }
5906
5907 // Return whether we need to make a PLT entry for a relocation of the
5908 // given type against a STT_GNU_IFUNC symbol.
5909
5910 template<int size, bool big_endian>
5911 bool
reloc_needs_plt_for_ifunc(Sized_relobj_file<size,big_endian> * object,unsigned int r_type)5912 Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5913 Sized_relobj_file<size, big_endian>* object,
5914 unsigned int r_type)
5915 {
5916 const AArch64_reloc_property* arp =
5917 aarch64_reloc_property_table->get_reloc_property(r_type);
5918 gold_assert(arp != NULL);
5919
5920 int flags = arp->reference_flags();
5921 if (flags & Symbol::TLS_REF)
5922 {
5923 gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
5924 object->name().c_str(), arp->name().c_str());
5925 return false;
5926 }
5927 return flags != 0;
5928 }
5929
5930 // Scan a relocation for a local symbol.
5931
5932 template<int size, bool big_endian>
5933 inline void
local(Symbol_table * symtab,Layout * layout,Target_aarch64<size,big_endian> * target,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,Output_section * output_section,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,const elfcpp::Sym<size,big_endian> & lsym,bool is_discarded)5934 Target_aarch64<size, big_endian>::Scan::local(
5935 Symbol_table* symtab,
5936 Layout* layout,
5937 Target_aarch64<size, big_endian>* target,
5938 Sized_relobj_file<size, big_endian>* object,
5939 unsigned int data_shndx,
5940 Output_section* output_section,
5941 const elfcpp::Rela<size, big_endian>& rela,
5942 unsigned int r_type,
5943 const elfcpp::Sym<size, big_endian>& lsym,
5944 bool is_discarded)
5945 {
5946 if (is_discarded)
5947 return;
5948
5949 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
5950 Reloc_section;
5951 Output_data_got_aarch64<size, big_endian>* got =
5952 target->got_section(symtab, layout);
5953 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5954
5955 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5956 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5957 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
5958 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5959
5960 switch (r_type)
5961 {
5962 case elfcpp::R_AARCH64_ABS32:
5963 case elfcpp::R_AARCH64_ABS16:
5964 if (parameters->options().output_is_position_independent())
5965 {
5966 gold_error(_("%s: unsupported reloc %u in pos independent link."),
5967 object->name().c_str(), r_type);
5968 }
5969 break;
5970
5971 case elfcpp::R_AARCH64_ABS64:
5972 // If building a shared library or pie, we need to mark this as a dynmic
5973 // reloction, so that the dynamic loader can relocate it.
5974 if (parameters->options().output_is_position_independent())
5975 {
5976 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5977 rela_dyn->add_local_relative(object, r_sym,
5978 elfcpp::R_AARCH64_RELATIVE,
5979 output_section,
5980 data_shndx,
5981 rela.get_r_offset(),
5982 rela.get_r_addend(),
5983 is_ifunc);
5984 }
5985 break;
5986
5987 case elfcpp::R_AARCH64_PREL64:
5988 case elfcpp::R_AARCH64_PREL32:
5989 case elfcpp::R_AARCH64_PREL16:
5990 break;
5991
5992 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5993 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5994 // This pair of relocations is used to access a specific GOT entry.
5995 {
5996 bool is_new = false;
5997 // This symbol requires a GOT entry.
5998 if (is_ifunc)
5999 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6000 else
6001 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6002 if (is_new && parameters->options().output_is_position_independent())
6003 target->rela_dyn_section(layout)->
6004 add_local_relative(object,
6005 r_sym,
6006 elfcpp::R_AARCH64_RELATIVE,
6007 got,
6008 object->local_got_offset(r_sym,
6009 GOT_TYPE_STANDARD),
6010 0,
6011 false);
6012 }
6013 break;
6014
6015 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
6016 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
6017 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
6018 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6019 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
6020 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
6021 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
6022 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
6023 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
6024 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6025 break;
6026
6027 // Control flow, pc-relative. We don't need to do anything for a relative
6028 // addressing relocation against a local symbol if it does not reference
6029 // the GOT.
6030 case elfcpp::R_AARCH64_TSTBR14:
6031 case elfcpp::R_AARCH64_CONDBR19:
6032 case elfcpp::R_AARCH64_JUMP26:
6033 case elfcpp::R_AARCH64_CALL26:
6034 break;
6035
6036 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6037 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6038 {
6039 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6040 optimize_tls_reloc(!parameters->options().shared(), r_type);
6041 if (tlsopt == tls::TLSOPT_TO_LE)
6042 break;
6043
6044 layout->set_has_static_tls();
6045 // Create a GOT entry for the tp-relative offset.
6046 if (!parameters->doing_static_link())
6047 {
6048 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
6049 target->rela_dyn_section(layout),
6050 elfcpp::R_AARCH64_TLS_TPREL64);
6051 }
6052 else if (!object->local_has_got_offset(r_sym,
6053 GOT_TYPE_TLS_OFFSET))
6054 {
6055 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
6056 unsigned int got_offset =
6057 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
6058 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6059 gold_assert(addend == 0);
6060 got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
6061 object, r_sym);
6062 }
6063 }
6064 break;
6065
6066 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6067 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6068 {
6069 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6070 optimize_tls_reloc(!parameters->options().shared(), r_type);
6071 if (tlsopt == tls::TLSOPT_TO_LE)
6072 {
6073 layout->set_has_static_tls();
6074 break;
6075 }
6076 gold_assert(tlsopt == tls::TLSOPT_NONE);
6077
6078 got->add_local_pair_with_rel(object,r_sym, data_shndx,
6079 GOT_TYPE_TLS_PAIR,
6080 target->rela_dyn_section(layout),
6081 elfcpp::R_AARCH64_TLS_DTPMOD64);
6082 }
6083 break;
6084
6085 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6086 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6087 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6088 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6089 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6090 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6091 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6092 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6093 {
6094 layout->set_has_static_tls();
6095 bool output_is_shared = parameters->options().shared();
6096 if (output_is_shared)
6097 gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
6098 object->name().c_str(), r_type);
6099 }
6100 break;
6101
6102 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6103 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6104 {
6105 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6106 optimize_tls_reloc(!parameters->options().shared(), r_type);
6107 if (tlsopt == tls::TLSOPT_NONE)
6108 {
6109 // Create a GOT entry for the module index.
6110 target->got_mod_index_entry(symtab, layout, object);
6111 }
6112 else if (tlsopt != tls::TLSOPT_TO_LE)
6113 unsupported_reloc_local(object, r_type);
6114 }
6115 break;
6116
6117 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6118 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6119 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6120 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6121 break;
6122
6123 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6124 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6125 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6126 {
6127 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6128 optimize_tls_reloc(!parameters->options().shared(), r_type);
6129 target->define_tls_base_symbol(symtab, layout);
6130 if (tlsopt == tls::TLSOPT_NONE)
6131 {
6132 // Create reserved PLT and GOT entries for the resolver.
6133 target->reserve_tlsdesc_entries(symtab, layout);
6134
6135 // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
6136 // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
6137 // entry needs to be in an area in .got.plt, not .got. Call
6138 // got_section to make sure the section has been created.
6139 target->got_section(symtab, layout);
6140 Output_data_got<size, big_endian>* got =
6141 target->got_tlsdesc_section();
6142 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6143 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
6144 {
6145 unsigned int got_offset = got->add_constant(0);
6146 got->add_constant(0);
6147 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
6148 got_offset);
6149 Reloc_section* rt = target->rela_tlsdesc_section(layout);
6150 // We store the arguments we need in a vector, and use
6151 // the index into the vector as the parameter to pass
6152 // to the target specific routines.
6153 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
6154 void* arg = reinterpret_cast<void*>(intarg);
6155 rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
6156 got, got_offset, 0);
6157 }
6158 }
6159 else if (tlsopt != tls::TLSOPT_TO_LE)
6160 unsupported_reloc_local(object, r_type);
6161 }
6162 break;
6163
6164 case elfcpp::R_AARCH64_TLSDESC_CALL:
6165 break;
6166
6167 default:
6168 unsupported_reloc_local(object, r_type);
6169 }
6170 }
6171
6172
6173 // Report an unsupported relocation against a global symbol.
6174
6175 template<int size, bool big_endian>
6176 void
unsupported_reloc_global(Sized_relobj_file<size,big_endian> * object,unsigned int r_type,Symbol * gsym)6177 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
6178 Sized_relobj_file<size, big_endian>* object,
6179 unsigned int r_type,
6180 Symbol* gsym)
6181 {
6182 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6183 object->name().c_str(), r_type, gsym->demangled_name().c_str());
6184 }
6185
6186 template<int size, bool big_endian>
6187 inline void
global(Symbol_table * symtab,Layout * layout,Target_aarch64<size,big_endian> * target,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,Output_section * output_section,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,Symbol * gsym)6188 Target_aarch64<size, big_endian>::Scan::global(
6189 Symbol_table* symtab,
6190 Layout* layout,
6191 Target_aarch64<size, big_endian>* target,
6192 Sized_relobj_file<size, big_endian> * object,
6193 unsigned int data_shndx,
6194 Output_section* output_section,
6195 const elfcpp::Rela<size, big_endian>& rela,
6196 unsigned int r_type,
6197 Symbol* gsym)
6198 {
6199 // A STT_GNU_IFUNC symbol may require a PLT entry.
6200 if (gsym->type() == elfcpp::STT_GNU_IFUNC
6201 && this->reloc_needs_plt_for_ifunc(object, r_type))
6202 target->make_plt_entry(symtab, layout, gsym);
6203
6204 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6205 Reloc_section;
6206 const AArch64_reloc_property* arp =
6207 aarch64_reloc_property_table->get_reloc_property(r_type);
6208 gold_assert(arp != NULL);
6209
6210 switch (r_type)
6211 {
6212 case elfcpp::R_AARCH64_ABS16:
6213 case elfcpp::R_AARCH64_ABS32:
6214 case elfcpp::R_AARCH64_ABS64:
6215 {
6216 // Make a PLT entry if necessary.
6217 if (gsym->needs_plt_entry())
6218 {
6219 target->make_plt_entry(symtab, layout, gsym);
6220 // Since this is not a PC-relative relocation, we may be
6221 // taking the address of a function. In that case we need to
6222 // set the entry in the dynamic symbol table to the address of
6223 // the PLT entry.
6224 if (gsym->is_from_dynobj() && !parameters->options().shared())
6225 gsym->set_needs_dynsym_value();
6226 }
6227 // Make a dynamic relocation if necessary.
6228 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6229 {
6230 if (!parameters->options().output_is_position_independent()
6231 && gsym->may_need_copy_reloc())
6232 {
6233 target->copy_reloc(symtab, layout, object,
6234 data_shndx, output_section, gsym, rela);
6235 }
6236 else if (r_type == elfcpp::R_AARCH64_ABS64
6237 && gsym->type() == elfcpp::STT_GNU_IFUNC
6238 && gsym->can_use_relative_reloc(false)
6239 && !gsym->is_from_dynobj()
6240 && !gsym->is_undefined()
6241 && !gsym->is_preemptible())
6242 {
6243 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
6244 // symbol. This makes a function address in a PIE executable
6245 // match the address in a shared library that it links against.
6246 Reloc_section* rela_dyn =
6247 target->rela_irelative_section(layout);
6248 unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
6249 rela_dyn->add_symbolless_global_addend(gsym, r_type,
6250 output_section, object,
6251 data_shndx,
6252 rela.get_r_offset(),
6253 rela.get_r_addend());
6254 }
6255 else if (r_type == elfcpp::R_AARCH64_ABS64
6256 && gsym->can_use_relative_reloc(false))
6257 {
6258 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6259 rela_dyn->add_global_relative(gsym,
6260 elfcpp::R_AARCH64_RELATIVE,
6261 output_section,
6262 object,
6263 data_shndx,
6264 rela.get_r_offset(),
6265 rela.get_r_addend(),
6266 false);
6267 }
6268 else
6269 {
6270 check_non_pic(object, r_type);
6271 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
6272 rela_dyn = target->rela_dyn_section(layout);
6273 rela_dyn->add_global(
6274 gsym, r_type, output_section, object,
6275 data_shndx, rela.get_r_offset(),rela.get_r_addend());
6276 }
6277 }
6278 }
6279 break;
6280
6281 case elfcpp::R_AARCH64_PREL16:
6282 case elfcpp::R_AARCH64_PREL32:
6283 case elfcpp::R_AARCH64_PREL64:
6284 // This is used to fill the GOT absolute address.
6285 if (gsym->needs_plt_entry())
6286 {
6287 target->make_plt_entry(symtab, layout, gsym);
6288 }
6289 break;
6290
6291 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
6292 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
6293 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
6294 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6295 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
6296 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
6297 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
6298 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
6299 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
6300 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6301 {
6302 if (gsym->needs_plt_entry())
6303 target->make_plt_entry(symtab, layout, gsym);
6304 // Make a dynamic relocation if necessary.
6305 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6306 {
6307 if (parameters->options().output_is_executable()
6308 && gsym->may_need_copy_reloc())
6309 {
6310 target->copy_reloc(symtab, layout, object,
6311 data_shndx, output_section, gsym, rela);
6312 }
6313 }
6314 break;
6315 }
6316
6317 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6318 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6319 {
6320 // This pair of relocations is used to access a specific GOT entry.
6321 // Note a GOT entry is an *address* to a symbol.
6322 // The symbol requires a GOT entry
6323 Output_data_got_aarch64<size, big_endian>* got =
6324 target->got_section(symtab, layout);
6325 if (gsym->final_value_is_known())
6326 {
6327 // For a STT_GNU_IFUNC symbol we want the PLT address.
6328 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
6329 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6330 else
6331 got->add_global(gsym, GOT_TYPE_STANDARD);
6332 }
6333 else
6334 {
6335 // If this symbol is not fully resolved, we need to add a dynamic
6336 // relocation for it.
6337 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6338
6339 // Use a GLOB_DAT rather than a RELATIVE reloc if:
6340 //
6341 // 1) The symbol may be defined in some other module.
6342 // 2) We are building a shared library and this is a protected
6343 // symbol; using GLOB_DAT means that the dynamic linker can use
6344 // the address of the PLT in the main executable when appropriate
6345 // so that function address comparisons work.
6346 // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
6347 // again so that function address comparisons work.
6348 if (gsym->is_from_dynobj()
6349 || gsym->is_undefined()
6350 || gsym->is_preemptible()
6351 || (gsym->visibility() == elfcpp::STV_PROTECTED
6352 && parameters->options().shared())
6353 || (gsym->type() == elfcpp::STT_GNU_IFUNC
6354 && parameters->options().output_is_position_independent()))
6355 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
6356 rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
6357 else
6358 {
6359 // For a STT_GNU_IFUNC symbol we want to write the PLT
6360 // offset into the GOT, so that function pointer
6361 // comparisons work correctly.
6362 bool is_new;
6363 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
6364 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
6365 else
6366 {
6367 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6368 // Tell the dynamic linker to use the PLT address
6369 // when resolving relocations.
6370 if (gsym->is_from_dynobj()
6371 && !parameters->options().shared())
6372 gsym->set_needs_dynsym_value();
6373 }
6374 if (is_new)
6375 {
6376 rela_dyn->add_global_relative(
6377 gsym, elfcpp::R_AARCH64_RELATIVE,
6378 got,
6379 gsym->got_offset(GOT_TYPE_STANDARD),
6380 0,
6381 false);
6382 }
6383 }
6384 }
6385 break;
6386 }
6387
6388 case elfcpp::R_AARCH64_TSTBR14:
6389 case elfcpp::R_AARCH64_CONDBR19:
6390 case elfcpp::R_AARCH64_JUMP26:
6391 case elfcpp::R_AARCH64_CALL26:
6392 {
6393 if (gsym->final_value_is_known())
6394 break;
6395
6396 if (gsym->is_defined() &&
6397 !gsym->is_from_dynobj() &&
6398 !gsym->is_preemptible())
6399 break;
6400
6401 // Make plt entry for function call.
6402 target->make_plt_entry(symtab, layout, gsym);
6403 break;
6404 }
6405
6406 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6407 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // General dynamic
6408 {
6409 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6410 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6411 if (tlsopt == tls::TLSOPT_TO_LE)
6412 {
6413 layout->set_has_static_tls();
6414 break;
6415 }
6416 gold_assert(tlsopt == tls::TLSOPT_NONE);
6417
6418 // General dynamic.
6419 Output_data_got_aarch64<size, big_endian>* got =
6420 target->got_section(symtab, layout);
6421 // Create 2 consecutive entries for module index and offset.
6422 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
6423 target->rela_dyn_section(layout),
6424 elfcpp::R_AARCH64_TLS_DTPMOD64,
6425 elfcpp::R_AARCH64_TLS_DTPREL64);
6426 }
6427 break;
6428
6429 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6430 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local dynamic
6431 {
6432 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6433 optimize_tls_reloc(!parameters->options().shared(), r_type);
6434 if (tlsopt == tls::TLSOPT_NONE)
6435 {
6436 // Create a GOT entry for the module index.
6437 target->got_mod_index_entry(symtab, layout, object);
6438 }
6439 else if (tlsopt != tls::TLSOPT_TO_LE)
6440 unsupported_reloc_local(object, r_type);
6441 }
6442 break;
6443
6444 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6445 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6446 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6447 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC: // Other local dynamic
6448 break;
6449
6450 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6451 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial executable
6452 {
6453 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6454 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6455 if (tlsopt == tls::TLSOPT_TO_LE)
6456 break;
6457
6458 layout->set_has_static_tls();
6459 // Create a GOT entry for the tp-relative offset.
6460 Output_data_got_aarch64<size, big_endian>* got
6461 = target->got_section(symtab, layout);
6462 if (!parameters->doing_static_link())
6463 {
6464 got->add_global_with_rel(
6465 gsym, GOT_TYPE_TLS_OFFSET,
6466 target->rela_dyn_section(layout),
6467 elfcpp::R_AARCH64_TLS_TPREL64);
6468 }
6469 if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
6470 {
6471 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
6472 unsigned int got_offset =
6473 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
6474 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6475 gold_assert(addend == 0);
6476 got->add_static_reloc(got_offset,
6477 elfcpp::R_AARCH64_TLS_TPREL64, gsym);
6478 }
6479 }
6480 break;
6481
6482 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6483 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6484 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6485 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6486 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6487 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6488 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6489 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: // Local executable
6490 layout->set_has_static_tls();
6491 if (parameters->options().shared())
6492 gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
6493 object->name().c_str(), r_type);
6494 break;
6495
6496 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6497 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6498 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12: // TLS descriptor
6499 {
6500 target->define_tls_base_symbol(symtab, layout);
6501 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6502 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6503 if (tlsopt == tls::TLSOPT_NONE)
6504 {
6505 // Create reserved PLT and GOT entries for the resolver.
6506 target->reserve_tlsdesc_entries(symtab, layout);
6507
6508 // Create a double GOT entry with an R_AARCH64_TLSDESC
6509 // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
6510 // entry needs to be in an area in .got.plt, not .got. Call
6511 // got_section to make sure the section has been created.
6512 target->got_section(symtab, layout);
6513 Output_data_got<size, big_endian>* got =
6514 target->got_tlsdesc_section();
6515 Reloc_section* rt = target->rela_tlsdesc_section(layout);
6516 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
6517 elfcpp::R_AARCH64_TLSDESC, 0);
6518 }
6519 else if (tlsopt == tls::TLSOPT_TO_IE)
6520 {
6521 // Create a GOT entry for the tp-relative offset.
6522 Output_data_got<size, big_endian>* got
6523 = target->got_section(symtab, layout);
6524 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
6525 target->rela_dyn_section(layout),
6526 elfcpp::R_AARCH64_TLS_TPREL64);
6527 }
6528 else if (tlsopt != tls::TLSOPT_TO_LE)
6529 unsupported_reloc_global(object, r_type, gsym);
6530 }
6531 break;
6532
6533 case elfcpp::R_AARCH64_TLSDESC_CALL:
6534 break;
6535
6536 default:
6537 gold_error(_("%s: unsupported reloc type in global scan"),
6538 aarch64_reloc_property_table->
6539 reloc_name_in_error_message(r_type).c_str());
6540 }
6541 return;
6542 } // End of Scan::global
6543
6544
6545 // Create the PLT section.
6546 template<int size, bool big_endian>
6547 void
make_plt_section(Symbol_table * symtab,Layout * layout)6548 Target_aarch64<size, big_endian>::make_plt_section(
6549 Symbol_table* symtab, Layout* layout)
6550 {
6551 if (this->plt_ == NULL)
6552 {
6553 // Create the GOT section first.
6554 this->got_section(symtab, layout);
6555
6556 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
6557 this->got_irelative_);
6558
6559 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
6560 (elfcpp::SHF_ALLOC
6561 | elfcpp::SHF_EXECINSTR),
6562 this->plt_, ORDER_PLT, false);
6563
6564 // Make the sh_info field of .rela.plt point to .plt.
6565 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
6566 rela_plt_os->set_info_section(this->plt_->output_section());
6567 }
6568 }
6569
6570 // Return the section for TLSDESC relocations.
6571
6572 template<int size, bool big_endian>
6573 typename Target_aarch64<size, big_endian>::Reloc_section*
rela_tlsdesc_section(Layout * layout) const6574 Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
6575 {
6576 return this->plt_section()->rela_tlsdesc(layout);
6577 }
6578
6579 // Create a PLT entry for a global symbol.
6580
6581 template<int size, bool big_endian>
6582 void
make_plt_entry(Symbol_table * symtab,Layout * layout,Symbol * gsym)6583 Target_aarch64<size, big_endian>::make_plt_entry(
6584 Symbol_table* symtab,
6585 Layout* layout,
6586 Symbol* gsym)
6587 {
6588 if (gsym->has_plt_offset())
6589 return;
6590
6591 if (this->plt_ == NULL)
6592 this->make_plt_section(symtab, layout);
6593
6594 this->plt_->add_entry(symtab, layout, gsym);
6595 }
6596
6597 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6598
6599 template<int size, bool big_endian>
6600 void
make_local_ifunc_plt_entry(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * relobj,unsigned int local_sym_index)6601 Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
6602 Symbol_table* symtab, Layout* layout,
6603 Sized_relobj_file<size, big_endian>* relobj,
6604 unsigned int local_sym_index)
6605 {
6606 if (relobj->local_has_plt_offset(local_sym_index))
6607 return;
6608 if (this->plt_ == NULL)
6609 this->make_plt_section(symtab, layout);
6610 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
6611 relobj,
6612 local_sym_index);
6613 relobj->set_local_plt_offset(local_sym_index, plt_offset);
6614 }
6615
6616 template<int size, bool big_endian>
6617 void
gc_process_relocs(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_symbols)6618 Target_aarch64<size, big_endian>::gc_process_relocs(
6619 Symbol_table* symtab,
6620 Layout* layout,
6621 Sized_relobj_file<size, big_endian>* object,
6622 unsigned int data_shndx,
6623 unsigned int sh_type,
6624 const unsigned char* prelocs,
6625 size_t reloc_count,
6626 Output_section* output_section,
6627 bool needs_special_offset_handling,
6628 size_t local_symbol_count,
6629 const unsigned char* plocal_symbols)
6630 {
6631 if (sh_type == elfcpp::SHT_REL)
6632 {
6633 return;
6634 }
6635
6636 gold::gc_process_relocs<
6637 size, big_endian,
6638 Target_aarch64<size, big_endian>,
6639 elfcpp::SHT_RELA,
6640 typename Target_aarch64<size, big_endian>::Scan,
6641 typename Target_aarch64<size, big_endian>::Relocatable_size_for_reloc>(
6642 symtab,
6643 layout,
6644 this,
6645 object,
6646 data_shndx,
6647 prelocs,
6648 reloc_count,
6649 output_section,
6650 needs_special_offset_handling,
6651 local_symbol_count,
6652 plocal_symbols);
6653 }
6654
6655 // Scan relocations for a section.
6656
6657 template<int size, bool big_endian>
6658 void
scan_relocs(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_symbols)6659 Target_aarch64<size, big_endian>::scan_relocs(
6660 Symbol_table* symtab,
6661 Layout* layout,
6662 Sized_relobj_file<size, big_endian>* object,
6663 unsigned int data_shndx,
6664 unsigned int sh_type,
6665 const unsigned char* prelocs,
6666 size_t reloc_count,
6667 Output_section* output_section,
6668 bool needs_special_offset_handling,
6669 size_t local_symbol_count,
6670 const unsigned char* plocal_symbols)
6671 {
6672 if (sh_type == elfcpp::SHT_REL)
6673 {
6674 gold_error(_("%s: unsupported REL reloc section"),
6675 object->name().c_str());
6676 return;
6677 }
6678 gold::scan_relocs<size, big_endian, Target_aarch64, elfcpp::SHT_RELA, Scan>(
6679 symtab,
6680 layout,
6681 this,
6682 object,
6683 data_shndx,
6684 prelocs,
6685 reloc_count,
6686 output_section,
6687 needs_special_offset_handling,
6688 local_symbol_count,
6689 plocal_symbols);
6690 }
6691
6692 // Return the value to use for a dynamic which requires special
6693 // treatment. This is how we support equality comparisons of function
6694 // pointers across shared library boundaries, as described in the
6695 // processor specific ABI supplement.
6696
6697 template<int size, bool big_endian>
6698 uint64_t
do_dynsym_value(const Symbol * gsym) const6699 Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
6700 {
6701 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
6702 return this->plt_address_for_global(gsym);
6703 }
6704
6705
6706 // Finalize the sections.
6707
6708 template<int size, bool big_endian>
6709 void
do_finalize_sections(Layout * layout,const Input_objects *,Symbol_table * symtab)6710 Target_aarch64<size, big_endian>::do_finalize_sections(
6711 Layout* layout,
6712 const Input_objects*,
6713 Symbol_table* symtab)
6714 {
6715 const Reloc_section* rel_plt = (this->plt_ == NULL
6716 ? NULL
6717 : this->plt_->rela_plt());
6718 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
6719 this->rela_dyn_, true, false);
6720
6721 // Emit any relocs we saved in an attempt to avoid generating COPY
6722 // relocs.
6723 if (this->copy_relocs_.any_saved_relocs())
6724 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6725
6726 // Fill in some more dynamic tags.
6727 Output_data_dynamic* const odyn = layout->dynamic_data();
6728 if (odyn != NULL)
6729 {
6730 if (this->plt_ != NULL
6731 && this->plt_->output_section() != NULL
6732 && this->plt_ ->has_tlsdesc_entry())
6733 {
6734 unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
6735 unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
6736 this->got_->finalize_data_size();
6737 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
6738 this->plt_, plt_offset);
6739 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
6740 this->got_, got_offset);
6741 }
6742 }
6743
6744 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
6745 // the .got.plt section.
6746 Symbol* sym = this->global_offset_table_;
6747 if (sym != NULL)
6748 {
6749 uint64_t data_size = this->got_plt_->current_data_size();
6750 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
6751
6752 // If the .got section is more than 0x8000 bytes, we add
6753 // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6754 // bit relocations have a greater chance of working.
6755 if (data_size >= 0x8000)
6756 symtab->get_sized_symbol<size>(sym)->set_value(
6757 symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
6758 }
6759
6760 if (parameters->doing_static_link()
6761 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
6762 {
6763 // If linking statically, make sure that the __rela_iplt symbols
6764 // were defined if necessary, even if we didn't create a PLT.
6765 static const Define_symbol_in_segment syms[] =
6766 {
6767 {
6768 "__rela_iplt_start", // name
6769 elfcpp::PT_LOAD, // segment_type
6770 elfcpp::PF_W, // segment_flags_set
6771 elfcpp::PF(0), // segment_flags_clear
6772 0, // value
6773 0, // size
6774 elfcpp::STT_NOTYPE, // type
6775 elfcpp::STB_GLOBAL, // binding
6776 elfcpp::STV_HIDDEN, // visibility
6777 0, // nonvis
6778 Symbol::SEGMENT_START, // offset_from_base
6779 true // only_if_ref
6780 },
6781 {
6782 "__rela_iplt_end", // name
6783 elfcpp::PT_LOAD, // segment_type
6784 elfcpp::PF_W, // segment_flags_set
6785 elfcpp::PF(0), // segment_flags_clear
6786 0, // value
6787 0, // size
6788 elfcpp::STT_NOTYPE, // type
6789 elfcpp::STB_GLOBAL, // binding
6790 elfcpp::STV_HIDDEN, // visibility
6791 0, // nonvis
6792 Symbol::SEGMENT_START, // offset_from_base
6793 true // only_if_ref
6794 }
6795 };
6796
6797 symtab->define_symbols(layout, 2, syms,
6798 layout->script_options()->saw_sections_clause());
6799 }
6800
6801 return;
6802 }
6803
6804 // Perform a relocation.
6805
6806 template<int size, bool big_endian>
6807 inline bool
relocate(const Relocate_info<size,big_endian> * relinfo,Target_aarch64<size,big_endian> * target,Output_section *,size_t relnum,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,const Sized_symbol<size> * gsym,const Symbol_value<size> * psymval,unsigned char * view,typename elfcpp::Elf_types<size>::Elf_Addr address,section_size_type)6808 Target_aarch64<size, big_endian>::Relocate::relocate(
6809 const Relocate_info<size, big_endian>* relinfo,
6810 Target_aarch64<size, big_endian>* target,
6811 Output_section* ,
6812 size_t relnum,
6813 const elfcpp::Rela<size, big_endian>& rela,
6814 unsigned int r_type,
6815 const Sized_symbol<size>* gsym,
6816 const Symbol_value<size>* psymval,
6817 unsigned char* view,
6818 typename elfcpp::Elf_types<size>::Elf_Addr address,
6819 section_size_type /* view_size */)
6820 {
6821 if (view == NULL)
6822 return true;
6823
6824 typedef AArch64_relocate_functions<size, big_endian> Reloc;
6825
6826 const AArch64_reloc_property* reloc_property =
6827 aarch64_reloc_property_table->get_reloc_property(r_type);
6828
6829 if (reloc_property == NULL)
6830 {
6831 std::string reloc_name =
6832 aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
6833 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6834 _("cannot relocate %s in object file"),
6835 reloc_name.c_str());
6836 return true;
6837 }
6838
6839 const Sized_relobj_file<size, big_endian>* object = relinfo->object;
6840
6841 // Pick the value to use for symbols defined in the PLT.
6842 Symbol_value<size> symval;
6843 if (gsym != NULL
6844 && gsym->use_plt_offset(reloc_property->reference_flags()))
6845 {
6846 symval.set_output_value(target->plt_address_for_global(gsym));
6847 psymval = &symval;
6848 }
6849 else if (gsym == NULL && psymval->is_ifunc_symbol())
6850 {
6851 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6852 if (object->local_has_plt_offset(r_sym))
6853 {
6854 symval.set_output_value(target->plt_address_for_local(object, r_sym));
6855 psymval = &symval;
6856 }
6857 }
6858
6859 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6860
6861 // Get the GOT offset if needed.
6862 // For aarch64, the GOT pointer points to the start of the GOT section.
6863 bool have_got_offset = false;
6864 int got_offset = 0;
6865 int got_base = (target->got_ != NULL
6866 ? (target->got_->current_data_size() >= 0x8000
6867 ? 0x8000 : 0)
6868 : 0);
6869 switch (r_type)
6870 {
6871 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
6872 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
6873 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
6874 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
6875 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
6876 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
6877 case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
6878 case elfcpp::R_AARCH64_GOTREL64:
6879 case elfcpp::R_AARCH64_GOTREL32:
6880 case elfcpp::R_AARCH64_GOT_LD_PREL19:
6881 case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
6882 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6883 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6884 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6885 if (gsym != NULL)
6886 {
6887 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6888 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
6889 }
6890 else
6891 {
6892 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6893 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6894 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
6895 - got_base);
6896 }
6897 have_got_offset = true;
6898 break;
6899
6900 default:
6901 break;
6902 }
6903
6904 typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
6905 typename elfcpp::Elf_types<size>::Elf_Addr value;
6906 switch (r_type)
6907 {
6908 case elfcpp::R_AARCH64_NONE:
6909 break;
6910
6911 case elfcpp::R_AARCH64_ABS64:
6912 if (!parameters->options().apply_dynamic_relocs()
6913 && parameters->options().output_is_position_independent()
6914 && gsym != NULL
6915 && gsym->needs_dynamic_reloc(reloc_property->reference_flags())
6916 && !gsym->can_use_relative_reloc(false))
6917 // We have generated an absolute dynamic relocation, so do not
6918 // apply the relocation statically. (Works around bugs in older
6919 // Android dynamic linkers.)
6920 break;
6921 reloc_status = Reloc::template rela_ua<64>(
6922 view, object, psymval, addend, reloc_property);
6923 break;
6924
6925 case elfcpp::R_AARCH64_ABS32:
6926 if (!parameters->options().apply_dynamic_relocs()
6927 && parameters->options().output_is_position_independent()
6928 && gsym != NULL
6929 && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
6930 // We have generated an absolute dynamic relocation, so do not
6931 // apply the relocation statically. (Works around bugs in older
6932 // Android dynamic linkers.)
6933 break;
6934 reloc_status = Reloc::template rela_ua<32>(
6935 view, object, psymval, addend, reloc_property);
6936 break;
6937
6938 case elfcpp::R_AARCH64_ABS16:
6939 if (!parameters->options().apply_dynamic_relocs()
6940 && parameters->options().output_is_position_independent()
6941 && gsym != NULL
6942 && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
6943 // We have generated an absolute dynamic relocation, so do not
6944 // apply the relocation statically. (Works around bugs in older
6945 // Android dynamic linkers.)
6946 break;
6947 reloc_status = Reloc::template rela_ua<16>(
6948 view, object, psymval, addend, reloc_property);
6949 break;
6950
6951 case elfcpp::R_AARCH64_PREL64:
6952 reloc_status = Reloc::template pcrela_ua<64>(
6953 view, object, psymval, addend, address, reloc_property);
6954 break;
6955
6956 case elfcpp::R_AARCH64_PREL32:
6957 reloc_status = Reloc::template pcrela_ua<32>(
6958 view, object, psymval, addend, address, reloc_property);
6959 break;
6960
6961 case elfcpp::R_AARCH64_PREL16:
6962 reloc_status = Reloc::template pcrela_ua<16>(
6963 view, object, psymval, addend, address, reloc_property);
6964 break;
6965
6966 case elfcpp::R_AARCH64_LD_PREL_LO19:
6967 reloc_status = Reloc::template pcrela_general<32>(
6968 view, object, psymval, addend, address, reloc_property);
6969 break;
6970
6971 case elfcpp::R_AARCH64_ADR_PREL_LO21:
6972 reloc_status = Reloc::adr(view, object, psymval, addend,
6973 address, reloc_property);
6974 break;
6975
6976 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
6977 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
6978 reloc_status = Reloc::adrp(view, object, psymval, addend, address,
6979 reloc_property);
6980 break;
6981
6982 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
6983 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
6984 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
6985 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
6986 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
6987 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
6988 reloc_status = Reloc::template rela_general<32>(
6989 view, object, psymval, addend, reloc_property);
6990 break;
6991
6992 case elfcpp::R_AARCH64_CALL26:
6993 if (this->skip_call_tls_get_addr_)
6994 {
6995 // Double check that the TLSGD insn has been optimized away.
6996 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
6997 Insntype insn = elfcpp::Swap<32, big_endian>::readval(
6998 reinterpret_cast<Insntype*>(view));
6999 gold_assert((insn & 0xff000000) == 0x91000000);
7000
7001 reloc_status = Reloc::STATUS_OKAY;
7002 this->skip_call_tls_get_addr_ = false;
7003 // Return false to stop further processing this reloc.
7004 return false;
7005 }
7006 // Fallthrough
7007 case elfcpp::R_AARCH64_JUMP26:
7008 if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
7009 gsym, psymval, object,
7010 target->stub_group_size_))
7011 break;
7012 // Fallthrough
7013 case elfcpp::R_AARCH64_TSTBR14:
7014 case elfcpp::R_AARCH64_CONDBR19:
7015 reloc_status = Reloc::template pcrela_general<32>(
7016 view, object, psymval, addend, address, reloc_property);
7017 break;
7018
7019 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
7020 gold_assert(have_got_offset);
7021 value = target->got_->address() + got_base + got_offset;
7022 reloc_status = Reloc::adrp(view, value + addend, address);
7023 break;
7024
7025 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
7026 gold_assert(have_got_offset);
7027 value = target->got_->address() + got_base + got_offset;
7028 reloc_status = Reloc::template rela_general<32>(
7029 view, value, addend, reloc_property);
7030 break;
7031
7032 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7033 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7034 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7035 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7036 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7037 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7038 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7039 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7040 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7041 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7042 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7043 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7044 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7045 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7046 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7047 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7048 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7049 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7050 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7051 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7052 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7053 case elfcpp::R_AARCH64_TLSDESC_CALL:
7054 reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
7055 gsym, psymval, view, address);
7056 break;
7057
7058 // These are dynamic relocations, which are unexpected when linking.
7059 case elfcpp::R_AARCH64_COPY:
7060 case elfcpp::R_AARCH64_GLOB_DAT:
7061 case elfcpp::R_AARCH64_JUMP_SLOT:
7062 case elfcpp::R_AARCH64_RELATIVE:
7063 case elfcpp::R_AARCH64_IRELATIVE:
7064 case elfcpp::R_AARCH64_TLS_DTPREL64:
7065 case elfcpp::R_AARCH64_TLS_DTPMOD64:
7066 case elfcpp::R_AARCH64_TLS_TPREL64:
7067 case elfcpp::R_AARCH64_TLSDESC:
7068 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7069 _("unexpected reloc %u in object file"),
7070 r_type);
7071 break;
7072
7073 default:
7074 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7075 _("unsupported reloc %s"),
7076 reloc_property->name().c_str());
7077 break;
7078 }
7079
7080 // Report any errors.
7081 switch (reloc_status)
7082 {
7083 case Reloc::STATUS_OKAY:
7084 break;
7085 case Reloc::STATUS_OVERFLOW:
7086 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7087 _("relocation overflow in %s"),
7088 reloc_property->name().c_str());
7089 break;
7090 case Reloc::STATUS_BAD_RELOC:
7091 gold_error_at_location(
7092 relinfo,
7093 relnum,
7094 rela.get_r_offset(),
7095 _("unexpected opcode while processing relocation %s"),
7096 reloc_property->name().c_str());
7097 break;
7098 default:
7099 gold_unreachable();
7100 }
7101
7102 return true;
7103 }
7104
7105
7106 template<int size, bool big_endian>
7107 inline
7108 typename AArch64_relocate_functions<size, big_endian>::Status
relocate_tls(const Relocate_info<size,big_endian> * relinfo,Target_aarch64<size,big_endian> * target,size_t relnum,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,const Sized_symbol<size> * gsym,const Symbol_value<size> * psymval,unsigned char * view,typename elfcpp::Elf_types<size>::Elf_Addr address)7109 Target_aarch64<size, big_endian>::Relocate::relocate_tls(
7110 const Relocate_info<size, big_endian>* relinfo,
7111 Target_aarch64<size, big_endian>* target,
7112 size_t relnum,
7113 const elfcpp::Rela<size, big_endian>& rela,
7114 unsigned int r_type, const Sized_symbol<size>* gsym,
7115 const Symbol_value<size>* psymval,
7116 unsigned char* view,
7117 typename elfcpp::Elf_types<size>::Elf_Addr address)
7118 {
7119 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7120 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7121
7122 Output_segment* tls_segment = relinfo->layout->tls_segment();
7123 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7124 const AArch64_reloc_property* reloc_property =
7125 aarch64_reloc_property_table->get_reloc_property(r_type);
7126 gold_assert(reloc_property != NULL);
7127
7128 const bool is_final = (gsym == NULL
7129 ? !parameters->options().shared()
7130 : gsym->final_value_is_known());
7131 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
7132 optimize_tls_reloc(is_final, r_type);
7133
7134 Sized_relobj_file<size, big_endian>* object = relinfo->object;
7135 int tls_got_offset_type;
7136 switch (r_type)
7137 {
7138 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7139 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // Global-dynamic
7140 {
7141 if (tlsopt == tls::TLSOPT_TO_LE)
7142 {
7143 if (tls_segment == NULL)
7144 {
7145 gold_assert(parameters->errors()->error_count() > 0
7146 || issue_undefined_symbol_error(gsym));
7147 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7148 }
7149 return tls_gd_to_le(relinfo, target, rela, r_type, view,
7150 psymval);
7151 }
7152 else if (tlsopt == tls::TLSOPT_NONE)
7153 {
7154 tls_got_offset_type = GOT_TYPE_TLS_PAIR;
7155 // Firstly get the address for the got entry.
7156 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7157 if (gsym != NULL)
7158 {
7159 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7160 got_entry_address = target->got_->address() +
7161 gsym->got_offset(tls_got_offset_type);
7162 }
7163 else
7164 {
7165 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7166 gold_assert(
7167 object->local_has_got_offset(r_sym, tls_got_offset_type));
7168 got_entry_address = target->got_->address() +
7169 object->local_got_offset(r_sym, tls_got_offset_type);
7170 }
7171
7172 // Relocate the address into adrp/ld, adrp/add pair.
7173 switch (r_type)
7174 {
7175 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7176 return aarch64_reloc_funcs::adrp(
7177 view, got_entry_address + addend, address);
7178
7179 break;
7180
7181 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7182 return aarch64_reloc_funcs::template rela_general<32>(
7183 view, got_entry_address, addend, reloc_property);
7184 break;
7185
7186 default:
7187 gold_unreachable();
7188 }
7189 }
7190 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7191 _("unsupported gd_to_ie relaxation on %u"),
7192 r_type);
7193 }
7194 break;
7195
7196 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7197 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local-dynamic
7198 {
7199 if (tlsopt == tls::TLSOPT_TO_LE)
7200 {
7201 if (tls_segment == NULL)
7202 {
7203 gold_assert(parameters->errors()->error_count() > 0
7204 || issue_undefined_symbol_error(gsym));
7205 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7206 }
7207 return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
7208 psymval);
7209 }
7210
7211 gold_assert(tlsopt == tls::TLSOPT_NONE);
7212 // Relocate the field with the offset of the GOT entry for
7213 // the module index.
7214 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7215 got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
7216 target->got_->address());
7217
7218 switch (r_type)
7219 {
7220 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7221 return aarch64_reloc_funcs::adrp(
7222 view, got_entry_address + addend, address);
7223 break;
7224
7225 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7226 return aarch64_reloc_funcs::template rela_general<32>(
7227 view, got_entry_address, addend, reloc_property);
7228 break;
7229
7230 default:
7231 gold_unreachable();
7232 }
7233 }
7234 break;
7235
7236 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7237 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7238 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7239 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC: // Other local-dynamic
7240 {
7241 AArch64_address value = psymval->value(object, 0);
7242 if (tlsopt == tls::TLSOPT_TO_LE)
7243 {
7244 if (tls_segment == NULL)
7245 {
7246 gold_assert(parameters->errors()->error_count() > 0
7247 || issue_undefined_symbol_error(gsym));
7248 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7249 }
7250 }
7251 switch (r_type)
7252 {
7253 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7254 return aarch64_reloc_funcs::movnz(view, value + addend,
7255 reloc_property);
7256 break;
7257
7258 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7259 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7260 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7261 return aarch64_reloc_funcs::template rela_general<32>(
7262 view, value, addend, reloc_property);
7263 break;
7264
7265 default:
7266 gold_unreachable();
7267 }
7268 // We should never reach here.
7269 }
7270 break;
7271
7272 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7273 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial-exec
7274 {
7275 if (tlsopt == tls::TLSOPT_TO_LE)
7276 {
7277 if (tls_segment == NULL)
7278 {
7279 gold_assert(parameters->errors()->error_count() > 0
7280 || issue_undefined_symbol_error(gsym));
7281 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7282 }
7283 return tls_ie_to_le(relinfo, target, rela, r_type, view,
7284 psymval);
7285 }
7286 tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
7287
7288 // Firstly get the address for the got entry.
7289 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7290 if (gsym != NULL)
7291 {
7292 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7293 got_entry_address = target->got_->address() +
7294 gsym->got_offset(tls_got_offset_type);
7295 }
7296 else
7297 {
7298 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7299 gold_assert(
7300 object->local_has_got_offset(r_sym, tls_got_offset_type));
7301 got_entry_address = target->got_->address() +
7302 object->local_got_offset(r_sym, tls_got_offset_type);
7303 }
7304 // Relocate the address into adrp/ld, adrp/add pair.
7305 switch (r_type)
7306 {
7307 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7308 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7309 address);
7310 break;
7311 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7312 return aarch64_reloc_funcs::template rela_general<32>(
7313 view, got_entry_address, addend, reloc_property);
7314 default:
7315 gold_unreachable();
7316 }
7317 }
7318 // We shall never reach here.
7319 break;
7320
7321 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7322 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7323 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7324 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7325 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7326 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7327 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7328 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7329 {
7330 gold_assert(tls_segment != NULL);
7331 AArch64_address value = psymval->value(object, 0);
7332
7333 if (!parameters->options().shared())
7334 {
7335 AArch64_address aligned_tcb_size =
7336 align_address(target->tcb_size(),
7337 tls_segment->maximum_alignment());
7338 value += aligned_tcb_size;
7339 switch (r_type)
7340 {
7341 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7342 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7343 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7344 return aarch64_reloc_funcs::movnz(view, value + addend,
7345 reloc_property);
7346 default:
7347 return aarch64_reloc_funcs::template
7348 rela_general<32>(view,
7349 value,
7350 addend,
7351 reloc_property);
7352 }
7353 }
7354 else
7355 gold_error(_("%s: unsupported reloc %u "
7356 "in non-static TLSLE mode."),
7357 object->name().c_str(), r_type);
7358 }
7359 break;
7360
7361 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7362 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7363 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7364 case elfcpp::R_AARCH64_TLSDESC_CALL:
7365 {
7366 if (tlsopt == tls::TLSOPT_TO_LE)
7367 {
7368 if (tls_segment == NULL)
7369 {
7370 gold_assert(parameters->errors()->error_count() > 0
7371 || issue_undefined_symbol_error(gsym));
7372 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7373 }
7374 return tls_desc_gd_to_le(relinfo, target, rela, r_type,
7375 view, psymval);
7376 }
7377 else
7378 {
7379 tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
7380 ? GOT_TYPE_TLS_OFFSET
7381 : GOT_TYPE_TLS_DESC);
7382 unsigned int got_tlsdesc_offset = 0;
7383 if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
7384 && tlsopt == tls::TLSOPT_NONE)
7385 {
7386 // We created GOT entries in the .got.tlsdesc portion of the
7387 // .got.plt section, but the offset stored in the symbol is the
7388 // offset within .got.tlsdesc.
7389 got_tlsdesc_offset = (target->got_->data_size()
7390 + target->got_plt_section()->data_size());
7391 }
7392 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7393 if (gsym != NULL)
7394 {
7395 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7396 got_entry_address = target->got_->address()
7397 + got_tlsdesc_offset
7398 + gsym->got_offset(tls_got_offset_type);
7399 }
7400 else
7401 {
7402 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7403 gold_assert(
7404 object->local_has_got_offset(r_sym, tls_got_offset_type));
7405 got_entry_address = target->got_->address() +
7406 got_tlsdesc_offset +
7407 object->local_got_offset(r_sym, tls_got_offset_type);
7408 }
7409 if (tlsopt == tls::TLSOPT_TO_IE)
7410 {
7411 if (tls_segment == NULL)
7412 {
7413 gold_assert(parameters->errors()->error_count() > 0
7414 || issue_undefined_symbol_error(gsym));
7415 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7416 }
7417 return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
7418 view, psymval, got_entry_address,
7419 address);
7420 }
7421
7422 // Now do tlsdesc relocation.
7423 switch (r_type)
7424 {
7425 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7426 return aarch64_reloc_funcs::adrp(view,
7427 got_entry_address + addend,
7428 address);
7429 break;
7430 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7431 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7432 return aarch64_reloc_funcs::template rela_general<32>(
7433 view, got_entry_address, addend, reloc_property);
7434 break;
7435 case elfcpp::R_AARCH64_TLSDESC_CALL:
7436 return aarch64_reloc_funcs::STATUS_OKAY;
7437 break;
7438 default:
7439 gold_unreachable();
7440 }
7441 }
7442 }
7443 break;
7444
7445 default:
7446 gold_error(_("%s: unsupported TLS reloc %u."),
7447 object->name().c_str(), r_type);
7448 }
7449 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7450 } // End of relocate_tls.
7451
7452
7453 template<int size, bool big_endian>
7454 inline
7455 typename AArch64_relocate_functions<size, big_endian>::Status
tls_gd_to_le(const Relocate_info<size,big_endian> * relinfo,Target_aarch64<size,big_endian> * target,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,unsigned char * view,const Symbol_value<size> * psymval)7456 Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
7457 const Relocate_info<size, big_endian>* relinfo,
7458 Target_aarch64<size, big_endian>* target,
7459 const elfcpp::Rela<size, big_endian>& rela,
7460 unsigned int r_type,
7461 unsigned char* view,
7462 const Symbol_value<size>* psymval)
7463 {
7464 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7465 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7466 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7467
7468 Insntype* ip = reinterpret_cast<Insntype*>(view);
7469 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7470 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7471 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7472
7473 if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
7474 {
7475 // This is the 2nd relocs, optimization should already have been
7476 // done.
7477 gold_assert((insn1 & 0xfff00000) == 0x91400000);
7478 return aarch64_reloc_funcs::STATUS_OKAY;
7479 }
7480
7481 // The original sequence is -
7482 // 90000000 adrp x0, 0 <main>
7483 // 91000000 add x0, x0, #0x0
7484 // 94000000 bl 0 <__tls_get_addr>
7485 // optimized to sequence -
7486 // d53bd040 mrs x0, tpidr_el0
7487 // 91400000 add x0, x0, #0x0, lsl #12
7488 // 91000000 add x0, x0, #0x0
7489
7490 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7491 // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
7492 // have to change "bl tls_get_addr", which does not have a corresponding tls
7493 // relocation type. So before proceeding, we need to make sure compiler
7494 // does not change the sequence.
7495 if(!(insn1 == 0x90000000 // adrp x0,0
7496 && insn2 == 0x91000000 // add x0, x0, #0x0
7497 && insn3 == 0x94000000)) // bl 0
7498 {
7499 // Ideally we should give up gd_to_le relaxation and do gd access.
7500 // However the gd_to_le relaxation decision has been made early
7501 // in the scan stage, where we did not allocate any GOT entry for
7502 // this symbol. Therefore we have to exit and report error now.
7503 gold_error(_("unexpected reloc insn sequence while relaxing "
7504 "tls gd to le for reloc %u."), r_type);
7505 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7506 }
7507
7508 // Write new insns.
7509 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
7510 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
7511 insn3 = 0x91000000; // add x0, x0, #0x0
7512 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7513 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7514 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7515
7516 // Calculate tprel value.
7517 Output_segment* tls_segment = relinfo->layout->tls_segment();
7518 gold_assert(tls_segment != NULL);
7519 AArch64_address value = psymval->value(relinfo->object, 0);
7520 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7521 AArch64_address aligned_tcb_size =
7522 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7523 AArch64_address x = value + aligned_tcb_size;
7524
7525 // After new insns are written, apply TLSLE relocs.
7526 const AArch64_reloc_property* rp1 =
7527 aarch64_reloc_property_table->get_reloc_property(
7528 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7529 const AArch64_reloc_property* rp2 =
7530 aarch64_reloc_property_table->get_reloc_property(
7531 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7532 gold_assert(rp1 != NULL && rp2 != NULL);
7533
7534 typename aarch64_reloc_funcs::Status s1 =
7535 aarch64_reloc_funcs::template rela_general<32>(view + 4,
7536 x,
7537 addend,
7538 rp1);
7539 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7540 return s1;
7541
7542 typename aarch64_reloc_funcs::Status s2 =
7543 aarch64_reloc_funcs::template rela_general<32>(view + 8,
7544 x,
7545 addend,
7546 rp2);
7547
7548 this->skip_call_tls_get_addr_ = true;
7549 return s2;
7550 } // End of tls_gd_to_le
7551
7552
7553 template<int size, bool big_endian>
7554 inline
7555 typename AArch64_relocate_functions<size, big_endian>::Status
tls_ld_to_le(const Relocate_info<size,big_endian> * relinfo,Target_aarch64<size,big_endian> * target,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,unsigned char * view,const Symbol_value<size> * psymval)7556 Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
7557 const Relocate_info<size, big_endian>* relinfo,
7558 Target_aarch64<size, big_endian>* target,
7559 const elfcpp::Rela<size, big_endian>& rela,
7560 unsigned int r_type,
7561 unsigned char* view,
7562 const Symbol_value<size>* psymval)
7563 {
7564 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7565 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7566 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7567
7568 Insntype* ip = reinterpret_cast<Insntype*>(view);
7569 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7570 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7571 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7572
7573 if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
7574 {
7575 // This is the 2nd relocs, optimization should already have been
7576 // done.
7577 gold_assert((insn1 & 0xfff00000) == 0x91400000);
7578 return aarch64_reloc_funcs::STATUS_OKAY;
7579 }
7580
7581 // The original sequence is -
7582 // 90000000 adrp x0, 0 <main>
7583 // 91000000 add x0, x0, #0x0
7584 // 94000000 bl 0 <__tls_get_addr>
7585 // optimized to sequence -
7586 // d53bd040 mrs x0, tpidr_el0
7587 // 91400000 add x0, x0, #0x0, lsl #12
7588 // 91000000 add x0, x0, #0x0
7589
7590 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7591 // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
7592 // have to change "bl tls_get_addr", which does not have a corresponding tls
7593 // relocation type. So before proceeding, we need to make sure compiler
7594 // does not change the sequence.
7595 if(!(insn1 == 0x90000000 // adrp x0,0
7596 && insn2 == 0x91000000 // add x0, x0, #0x0
7597 && insn3 == 0x94000000)) // bl 0
7598 {
7599 // Ideally we should give up gd_to_le relaxation and do gd access.
7600 // However the gd_to_le relaxation decision has been made early
7601 // in the scan stage, where we did not allocate any GOT entry for
7602 // this symbol. Therefore we have to exit and report error now.
7603 gold_error(_("unexpected reloc insn sequence while relaxing "
7604 "tls gd to le for reloc %u."), r_type);
7605 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7606 }
7607
7608 // Write new insns.
7609 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
7610 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
7611 insn3 = 0x91000000; // add x0, x0, #0x0
7612 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7613 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7614 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7615
7616 // Calculate tprel value.
7617 Output_segment* tls_segment = relinfo->layout->tls_segment();
7618 gold_assert(tls_segment != NULL);
7619 AArch64_address value = psymval->value(relinfo->object, 0);
7620 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7621 AArch64_address aligned_tcb_size =
7622 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7623 AArch64_address x = value + aligned_tcb_size;
7624
7625 // After new insns are written, apply TLSLE relocs.
7626 const AArch64_reloc_property* rp1 =
7627 aarch64_reloc_property_table->get_reloc_property(
7628 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7629 const AArch64_reloc_property* rp2 =
7630 aarch64_reloc_property_table->get_reloc_property(
7631 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7632 gold_assert(rp1 != NULL && rp2 != NULL);
7633
7634 typename aarch64_reloc_funcs::Status s1 =
7635 aarch64_reloc_funcs::template rela_general<32>(view + 4,
7636 x,
7637 addend,
7638 rp1);
7639 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7640 return s1;
7641
7642 typename aarch64_reloc_funcs::Status s2 =
7643 aarch64_reloc_funcs::template rela_general<32>(view + 8,
7644 x,
7645 addend,
7646 rp2);
7647
7648 this->skip_call_tls_get_addr_ = true;
7649 return s2;
7650
7651 } // End of tls_ld_to_le
7652
7653 template<int size, bool big_endian>
7654 inline
7655 typename AArch64_relocate_functions<size, big_endian>::Status
tls_ie_to_le(const Relocate_info<size,big_endian> * relinfo,Target_aarch64<size,big_endian> * target,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,unsigned char * view,const Symbol_value<size> * psymval)7656 Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
7657 const Relocate_info<size, big_endian>* relinfo,
7658 Target_aarch64<size, big_endian>* target,
7659 const elfcpp::Rela<size, big_endian>& rela,
7660 unsigned int r_type,
7661 unsigned char* view,
7662 const Symbol_value<size>* psymval)
7663 {
7664 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7665 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7666 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7667
7668 AArch64_address value = psymval->value(relinfo->object, 0);
7669 Output_segment* tls_segment = relinfo->layout->tls_segment();
7670 AArch64_address aligned_tcb_address =
7671 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7672 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7673 AArch64_address x = value + addend + aligned_tcb_address;
7674 // "x" is the offset to tp, we can only do this if x is within
7675 // range [0, 2^32-1]
7676 if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
7677 {
7678 gold_error(_("TLS variable referred by reloc %u is too far from TP."),
7679 r_type);
7680 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7681 }
7682
7683 Insntype* ip = reinterpret_cast<Insntype*>(view);
7684 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7685 unsigned int regno;
7686 Insntype newinsn;
7687 if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
7688 {
7689 // Generate movz.
7690 regno = (insn & 0x1f);
7691 newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
7692 }
7693 else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
7694 {
7695 // Generate movk.
7696 regno = (insn & 0x1f);
7697 gold_assert(regno == ((insn >> 5) & 0x1f));
7698 newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
7699 }
7700 else
7701 gold_unreachable();
7702
7703 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7704 return aarch64_reloc_funcs::STATUS_OKAY;
7705 } // End of tls_ie_to_le
7706
7707
7708 template<int size, bool big_endian>
7709 inline
7710 typename AArch64_relocate_functions<size, big_endian>::Status
tls_desc_gd_to_le(const Relocate_info<size,big_endian> * relinfo,Target_aarch64<size,big_endian> * target,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,unsigned char * view,const Symbol_value<size> * psymval)7711 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
7712 const Relocate_info<size, big_endian>* relinfo,
7713 Target_aarch64<size, big_endian>* target,
7714 const elfcpp::Rela<size, big_endian>& rela,
7715 unsigned int r_type,
7716 unsigned char* view,
7717 const Symbol_value<size>* psymval)
7718 {
7719 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7720 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7721 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7722
7723 // TLSDESC-GD sequence is like:
7724 // adrp x0, :tlsdesc:v1
7725 // ldr x1, [x0, #:tlsdesc_lo12:v1]
7726 // add x0, x0, :tlsdesc_lo12:v1
7727 // .tlsdesccall v1
7728 // blr x1
7729 // After desc_gd_to_le optimization, the sequence will be like:
7730 // movz x0, #0x0, lsl #16
7731 // movk x0, #0x10
7732 // nop
7733 // nop
7734
7735 // Calculate tprel value.
7736 Output_segment* tls_segment = relinfo->layout->tls_segment();
7737 gold_assert(tls_segment != NULL);
7738 Insntype* ip = reinterpret_cast<Insntype*>(view);
7739 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7740 AArch64_address value = psymval->value(relinfo->object, addend);
7741 AArch64_address aligned_tcb_size =
7742 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7743 AArch64_address x = value + aligned_tcb_size;
7744 // x is the offset to tp, we can only do this if x is within range
7745 // [0, 2^32-1]. If x is out of range, fail and exit.
7746 if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
7747 {
7748 gold_error(_("TLS variable referred by reloc %u is too far from TP. "
7749 "We Can't do gd_to_le relaxation.\n"), r_type);
7750 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7751 }
7752 Insntype newinsn;
7753 switch (r_type)
7754 {
7755 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7756 case elfcpp::R_AARCH64_TLSDESC_CALL:
7757 // Change to nop
7758 newinsn = 0xd503201f;
7759 break;
7760
7761 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7762 // Change to movz.
7763 newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
7764 break;
7765
7766 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7767 // Change to movk.
7768 newinsn = 0xf2800000 | ((x & 0xffff) << 5);
7769 break;
7770
7771 default:
7772 gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
7773 r_type);
7774 gold_unreachable();
7775 }
7776 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7777 return aarch64_reloc_funcs::STATUS_OKAY;
7778 } // End of tls_desc_gd_to_le
7779
7780
7781 template<int size, bool big_endian>
7782 inline
7783 typename AArch64_relocate_functions<size, big_endian>::Status
tls_desc_gd_to_ie(const Relocate_info<size,big_endian> *,Target_aarch64<size,big_endian> *,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,unsigned char * view,const Symbol_value<size> *,typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,typename elfcpp::Elf_types<size>::Elf_Addr address)7784 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
7785 const Relocate_info<size, big_endian>* /* relinfo */,
7786 Target_aarch64<size, big_endian>* /* target */,
7787 const elfcpp::Rela<size, big_endian>& rela,
7788 unsigned int r_type,
7789 unsigned char* view,
7790 const Symbol_value<size>* /* psymval */,
7791 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
7792 typename elfcpp::Elf_types<size>::Elf_Addr address)
7793 {
7794 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7795 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7796
7797 // TLSDESC-GD sequence is like:
7798 // adrp x0, :tlsdesc:v1
7799 // ldr x1, [x0, #:tlsdesc_lo12:v1]
7800 // add x0, x0, :tlsdesc_lo12:v1
7801 // .tlsdesccall v1
7802 // blr x1
7803 // After desc_gd_to_ie optimization, the sequence will be like:
7804 // adrp x0, :tlsie:v1
7805 // ldr x0, [x0, :tlsie_lo12:v1]
7806 // nop
7807 // nop
7808
7809 Insntype* ip = reinterpret_cast<Insntype*>(view);
7810 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7811 Insntype newinsn;
7812 switch (r_type)
7813 {
7814 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7815 case elfcpp::R_AARCH64_TLSDESC_CALL:
7816 // Change to nop
7817 newinsn = 0xd503201f;
7818 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7819 break;
7820
7821 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7822 {
7823 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7824 address);
7825 }
7826 break;
7827
7828 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7829 {
7830 // Set ldr target register to be x0.
7831 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7832 insn &= 0xffffffe0;
7833 elfcpp::Swap<32, big_endian>::writeval(ip, insn);
7834 // Do relocation.
7835 const AArch64_reloc_property* reloc_property =
7836 aarch64_reloc_property_table->get_reloc_property(
7837 elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7838 return aarch64_reloc_funcs::template rela_general<32>(
7839 view, got_entry_address, addend, reloc_property);
7840 }
7841 break;
7842
7843 default:
7844 gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
7845 r_type);
7846 gold_unreachable();
7847 }
7848 return aarch64_reloc_funcs::STATUS_OKAY;
7849 } // End of tls_desc_gd_to_ie
7850
7851 // Relocate section data.
7852
7853 template<int size, bool big_endian>
7854 void
relocate_section(const Relocate_info<size,big_endian> * relinfo,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,unsigned char * view,typename elfcpp::Elf_types<size>::Elf_Addr address,section_size_type view_size,const Reloc_symbol_changes * reloc_symbol_changes)7855 Target_aarch64<size, big_endian>::relocate_section(
7856 const Relocate_info<size, big_endian>* relinfo,
7857 unsigned int sh_type,
7858 const unsigned char* prelocs,
7859 size_t reloc_count,
7860 Output_section* output_section,
7861 bool needs_special_offset_handling,
7862 unsigned char* view,
7863 typename elfcpp::Elf_types<size>::Elf_Addr address,
7864 section_size_type view_size,
7865 const Reloc_symbol_changes* reloc_symbol_changes)
7866 {
7867 gold_assert(sh_type == elfcpp::SHT_RELA);
7868 typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
7869 gold::relocate_section<size, big_endian, Target_aarch64, elfcpp::SHT_RELA,
7870 AArch64_relocate, gold::Default_comdat_behavior>(
7871 relinfo,
7872 this,
7873 prelocs,
7874 reloc_count,
7875 output_section,
7876 needs_special_offset_handling,
7877 view,
7878 address,
7879 view_size,
7880 reloc_symbol_changes);
7881 }
7882
7883 // Return the size of a relocation while scanning during a relocatable
7884 // link.
7885
7886 template<int size, bool big_endian>
7887 unsigned int
7888 Target_aarch64<size, big_endian>::Relocatable_size_for_reloc::
get_size_for_reloc(unsigned int,Relobj *)7889 get_size_for_reloc(
7890 unsigned int ,
7891 Relobj* )
7892 {
7893 // We will never support SHT_REL relocations.
7894 gold_unreachable();
7895 return 0;
7896 }
7897
7898 // Scan the relocs during a relocatable link.
7899
7900 template<int size, bool big_endian>
7901 void
scan_relocatable_relocs(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_symbols,Relocatable_relocs * rr)7902 Target_aarch64<size, big_endian>::scan_relocatable_relocs(
7903 Symbol_table* symtab,
7904 Layout* layout,
7905 Sized_relobj_file<size, big_endian>* object,
7906 unsigned int data_shndx,
7907 unsigned int sh_type,
7908 const unsigned char* prelocs,
7909 size_t reloc_count,
7910 Output_section* output_section,
7911 bool needs_special_offset_handling,
7912 size_t local_symbol_count,
7913 const unsigned char* plocal_symbols,
7914 Relocatable_relocs* rr)
7915 {
7916 gold_assert(sh_type == elfcpp::SHT_RELA);
7917
7918 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
7919 Relocatable_size_for_reloc> Scan_relocatable_relocs;
7920
7921 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7922 Scan_relocatable_relocs>(
7923 symtab,
7924 layout,
7925 object,
7926 data_shndx,
7927 prelocs,
7928 reloc_count,
7929 output_section,
7930 needs_special_offset_handling,
7931 local_symbol_count,
7932 plocal_symbols,
7933 rr);
7934 }
7935
7936 // Relocate a section during a relocatable link.
7937
7938 template<int size, bool big_endian>
7939 void
relocate_relocs(const Relocate_info<size,big_endian> * relinfo,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,const Relocatable_relocs * rr,unsigned char * view,typename elfcpp::Elf_types<size>::Elf_Addr view_address,section_size_type view_size,unsigned char * reloc_view,section_size_type reloc_view_size)7940 Target_aarch64<size, big_endian>::relocate_relocs(
7941 const Relocate_info<size, big_endian>* relinfo,
7942 unsigned int sh_type,
7943 const unsigned char* prelocs,
7944 size_t reloc_count,
7945 Output_section* output_section,
7946 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7947 const Relocatable_relocs* rr,
7948 unsigned char* view,
7949 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
7950 section_size_type view_size,
7951 unsigned char* reloc_view,
7952 section_size_type reloc_view_size)
7953 {
7954 gold_assert(sh_type == elfcpp::SHT_RELA);
7955
7956 gold::relocate_relocs<size, big_endian, elfcpp::SHT_RELA>(
7957 relinfo,
7958 prelocs,
7959 reloc_count,
7960 output_section,
7961 offset_in_output_section,
7962 rr,
7963 view,
7964 view_address,
7965 view_size,
7966 reloc_view,
7967 reloc_view_size);
7968 }
7969
7970
7971 // Return whether this is a 3-insn erratum sequence.
7972
7973 template<int size, bool big_endian>
7974 bool
is_erratum_843419_sequence(typename elfcpp::Swap<32,big_endian>::Valtype insn1,typename elfcpp::Swap<32,big_endian>::Valtype insn2,typename elfcpp::Swap<32,big_endian>::Valtype insn3)7975 Target_aarch64<size, big_endian>::is_erratum_843419_sequence(
7976 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
7977 typename elfcpp::Swap<32,big_endian>::Valtype insn2,
7978 typename elfcpp::Swap<32,big_endian>::Valtype insn3)
7979 {
7980 unsigned rt1, rt2;
7981 bool load, pair;
7982
7983 // The 2nd insn is a single register load or store; or register pair
7984 // store.
7985 if (Insn_utilities::aarch64_mem_op_p(insn2, &rt1, &rt2, &pair, &load)
7986 && (!pair || (pair && !load)))
7987 {
7988 // The 3rd insn is a load or store instruction from the "Load/store
7989 // register (unsigned immediate)" encoding class, using Rn as the
7990 // base address register.
7991 if (Insn_utilities::aarch64_ldst_uimm(insn3)
7992 && (Insn_utilities::aarch64_rn(insn3)
7993 == Insn_utilities::aarch64_rd(insn1)))
7994 return true;
7995 }
7996 return false;
7997 }
7998
7999
8000 // Return whether this is a 835769 sequence.
8001 // (Similarly implemented as in elfnn-aarch64.c.)
8002
8003 template<int size, bool big_endian>
8004 bool
is_erratum_835769_sequence(typename elfcpp::Swap<32,big_endian>::Valtype insn1,typename elfcpp::Swap<32,big_endian>::Valtype insn2)8005 Target_aarch64<size, big_endian>::is_erratum_835769_sequence(
8006 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8007 typename elfcpp::Swap<32,big_endian>::Valtype insn2)
8008 {
8009 uint32_t rt;
8010 uint32_t rt2;
8011 uint32_t rn;
8012 uint32_t rm;
8013 uint32_t ra;
8014 bool pair;
8015 bool load;
8016
8017 if (Insn_utilities::aarch64_mlxl(insn2)
8018 && Insn_utilities::aarch64_mem_op_p (insn1, &rt, &rt2, &pair, &load))
8019 {
8020 /* Any SIMD memory op is independent of the subsequent MLA
8021 by definition of the erratum. */
8022 if (Insn_utilities::aarch64_bit(insn1, 26))
8023 return true;
8024
8025 /* If not SIMD, check for integer memory ops and MLA relationship. */
8026 rn = Insn_utilities::aarch64_rn(insn2);
8027 ra = Insn_utilities::aarch64_ra(insn2);
8028 rm = Insn_utilities::aarch64_rm(insn2);
8029
8030 /* If this is a load and there's a true(RAW) dependency, we are safe
8031 and this is not an erratum sequence. */
8032 if (load &&
8033 (rt == rn || rt == rm || rt == ra
8034 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
8035 return false;
8036
8037 /* We conservatively put out stubs for all other cases (including
8038 writebacks). */
8039 return true;
8040 }
8041
8042 return false;
8043 }
8044
8045
8046 // Helper method to create erratum stub for ST_E_843419 and ST_E_835769.
8047
8048 template<int size, bool big_endian>
8049 void
create_erratum_stub(AArch64_relobj<size,big_endian> * relobj,unsigned int shndx,section_size_type erratum_insn_offset,Address erratum_address,typename Insn_utilities::Insntype erratum_insn,int erratum_type,unsigned int e843419_adrp_offset)8050 Target_aarch64<size, big_endian>::create_erratum_stub(
8051 AArch64_relobj<size, big_endian>* relobj,
8052 unsigned int shndx,
8053 section_size_type erratum_insn_offset,
8054 Address erratum_address,
8055 typename Insn_utilities::Insntype erratum_insn,
8056 int erratum_type,
8057 unsigned int e843419_adrp_offset)
8058 {
8059 gold_assert(erratum_type == ST_E_843419 || erratum_type == ST_E_835769);
8060 The_stub_table* stub_table = relobj->stub_table(shndx);
8061 gold_assert(stub_table != NULL);
8062 if (stub_table->find_erratum_stub(relobj,
8063 shndx,
8064 erratum_insn_offset) == NULL)
8065 {
8066 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8067 The_erratum_stub* stub;
8068 if (erratum_type == ST_E_835769)
8069 stub = new The_erratum_stub(relobj, erratum_type, shndx,
8070 erratum_insn_offset);
8071 else if (erratum_type == ST_E_843419)
8072 stub = new E843419_stub<size, big_endian>(
8073 relobj, shndx, erratum_insn_offset, e843419_adrp_offset);
8074 else
8075 gold_unreachable();
8076 stub->set_erratum_insn(erratum_insn);
8077 stub->set_erratum_address(erratum_address);
8078 // For erratum ST_E_843419 and ST_E_835769, the destination address is
8079 // always the next insn after erratum insn.
8080 stub->set_destination_address(erratum_address + BPI);
8081 stub_table->add_erratum_stub(stub);
8082 }
8083 }
8084
8085
8086 // Scan erratum for section SHNDX range [output_address + span_start,
8087 // output_address + span_end). Note here we do not share the code with
8088 // scan_erratum_843419_span function, because for 843419 we optimize by only
8089 // scanning the last few insns of a page, whereas for 835769, we need to scan
8090 // every insn.
8091
8092 template<int size, bool big_endian>
8093 void
scan_erratum_835769_span(AArch64_relobj<size,big_endian> * relobj,unsigned int shndx,const section_size_type span_start,const section_size_type span_end,unsigned char * input_view,Address output_address)8094 Target_aarch64<size, big_endian>::scan_erratum_835769_span(
8095 AArch64_relobj<size, big_endian>* relobj,
8096 unsigned int shndx,
8097 const section_size_type span_start,
8098 const section_size_type span_end,
8099 unsigned char* input_view,
8100 Address output_address)
8101 {
8102 typedef typename Insn_utilities::Insntype Insntype;
8103
8104 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8105
8106 // Adjust output_address and view to the start of span.
8107 output_address += span_start;
8108 input_view += span_start;
8109
8110 section_size_type span_length = span_end - span_start;
8111 section_size_type offset = 0;
8112 for (offset = 0; offset + BPI < span_length; offset += BPI)
8113 {
8114 Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8115 Insntype insn1 = ip[0];
8116 Insntype insn2 = ip[1];
8117 if (is_erratum_835769_sequence(insn1, insn2))
8118 {
8119 Insntype erratum_insn = insn2;
8120 // "span_start + offset" is the offset for insn1. So for insn2, it is
8121 // "span_start + offset + BPI".
8122 section_size_type erratum_insn_offset = span_start + offset + BPI;
8123 Address erratum_address = output_address + offset + BPI;
8124 gold_info(_("Erratum 835769 found and fixed at \"%s\", "
8125 "section %d, offset 0x%08x."),
8126 relobj->name().c_str(), shndx,
8127 (unsigned int)(span_start + offset));
8128
8129 this->create_erratum_stub(relobj, shndx,
8130 erratum_insn_offset, erratum_address,
8131 erratum_insn, ST_E_835769);
8132 offset += BPI; // Skip mac insn.
8133 }
8134 }
8135 } // End of "Target_aarch64::scan_erratum_835769_span".
8136
8137
8138 // Scan erratum for section SHNDX range
8139 // [output_address + span_start, output_address + span_end).
8140
8141 template<int size, bool big_endian>
8142 void
scan_erratum_843419_span(AArch64_relobj<size,big_endian> * relobj,unsigned int shndx,const section_size_type span_start,const section_size_type span_end,unsigned char * input_view,Address output_address)8143 Target_aarch64<size, big_endian>::scan_erratum_843419_span(
8144 AArch64_relobj<size, big_endian>* relobj,
8145 unsigned int shndx,
8146 const section_size_type span_start,
8147 const section_size_type span_end,
8148 unsigned char* input_view,
8149 Address output_address)
8150 {
8151 typedef typename Insn_utilities::Insntype Insntype;
8152
8153 // Adjust output_address and view to the start of span.
8154 output_address += span_start;
8155 input_view += span_start;
8156
8157 if ((output_address & 0x03) != 0)
8158 return;
8159
8160 section_size_type offset = 0;
8161 section_size_type span_length = span_end - span_start;
8162 // The first instruction must be ending at 0xFF8 or 0xFFC.
8163 unsigned int page_offset = output_address & 0xFFF;
8164 // Make sure starting position, that is "output_address+offset",
8165 // starts at page position 0xff8 or 0xffc.
8166 if (page_offset < 0xff8)
8167 offset = 0xff8 - page_offset;
8168 while (offset + 3 * Insn_utilities::BYTES_PER_INSN <= span_length)
8169 {
8170 Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8171 Insntype insn1 = ip[0];
8172 if (Insn_utilities::is_adrp(insn1))
8173 {
8174 Insntype insn2 = ip[1];
8175 Insntype insn3 = ip[2];
8176 Insntype erratum_insn;
8177 unsigned insn_offset;
8178 bool do_report = false;
8179 if (is_erratum_843419_sequence(insn1, insn2, insn3))
8180 {
8181 do_report = true;
8182 erratum_insn = insn3;
8183 insn_offset = 2 * Insn_utilities::BYTES_PER_INSN;
8184 }
8185 else if (offset + 4 * Insn_utilities::BYTES_PER_INSN <= span_length)
8186 {
8187 // Optionally we can have an insn between ins2 and ins3
8188 Insntype insn_opt = ip[2];
8189 // And insn_opt must not be a branch.
8190 if (!Insn_utilities::aarch64_b(insn_opt)
8191 && !Insn_utilities::aarch64_bl(insn_opt)
8192 && !Insn_utilities::aarch64_blr(insn_opt)
8193 && !Insn_utilities::aarch64_br(insn_opt))
8194 {
8195 // And insn_opt must not write to dest reg in insn1. However
8196 // we do a conservative scan, which means we may fix/report
8197 // more than necessary, but it doesn't hurt.
8198
8199 Insntype insn4 = ip[3];
8200 if (is_erratum_843419_sequence(insn1, insn2, insn4))
8201 {
8202 do_report = true;
8203 erratum_insn = insn4;
8204 insn_offset = 3 * Insn_utilities::BYTES_PER_INSN;
8205 }
8206 }
8207 }
8208 if (do_report)
8209 {
8210 gold_info(_("Erratum 843419 found and fixed at \"%s\", "
8211 "section %d, offset 0x%08x."),
8212 relobj->name().c_str(), shndx,
8213 (unsigned int)(span_start + offset));
8214 unsigned int erratum_insn_offset =
8215 span_start + offset + insn_offset;
8216 Address erratum_address =
8217 output_address + offset + insn_offset;
8218 create_erratum_stub(relobj, shndx,
8219 erratum_insn_offset, erratum_address,
8220 erratum_insn, ST_E_843419,
8221 span_start + offset);
8222 }
8223 }
8224
8225 // Advance to next candidate instruction. We only consider instruction
8226 // sequences starting at a page offset of 0xff8 or 0xffc.
8227 page_offset = (output_address + offset) & 0xfff;
8228 if (page_offset == 0xff8)
8229 offset += 4;
8230 else // (page_offset == 0xffc), we move to next page's 0xff8.
8231 offset += 0xffc;
8232 }
8233 } // End of "Target_aarch64::scan_erratum_843419_span".
8234
8235
8236 // The selector for aarch64 object files.
8237
8238 template<int size, bool big_endian>
8239 class Target_selector_aarch64 : public Target_selector
8240 {
8241 public:
8242 Target_selector_aarch64();
8243
8244 virtual Target*
do_instantiate_target()8245 do_instantiate_target()
8246 { return new Target_aarch64<size, big_endian>(); }
8247 };
8248
8249 template<>
Target_selector_aarch64()8250 Target_selector_aarch64<32, true>::Target_selector_aarch64()
8251 : Target_selector(elfcpp::EM_AARCH64, 32, true,
8252 "elf32-bigaarch64", "aarch64_elf32_be_vec")
8253 { }
8254
8255 template<>
Target_selector_aarch64()8256 Target_selector_aarch64<32, false>::Target_selector_aarch64()
8257 : Target_selector(elfcpp::EM_AARCH64, 32, false,
8258 "elf32-littleaarch64", "aarch64_elf32_le_vec")
8259 { }
8260
8261 template<>
Target_selector_aarch64()8262 Target_selector_aarch64<64, true>::Target_selector_aarch64()
8263 : Target_selector(elfcpp::EM_AARCH64, 64, true,
8264 "elf64-bigaarch64", "aarch64_elf64_be_vec")
8265 { }
8266
8267 template<>
Target_selector_aarch64()8268 Target_selector_aarch64<64, false>::Target_selector_aarch64()
8269 : Target_selector(elfcpp::EM_AARCH64, 64, false,
8270 "elf64-littleaarch64", "aarch64_elf64_le_vec")
8271 { }
8272
8273 Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
8274 Target_selector_aarch64<32, false> target_selector_aarch64elf32;
8275 Target_selector_aarch64<64, true> target_selector_aarch64elfb;
8276 Target_selector_aarch64<64, false> target_selector_aarch64elf;
8277
8278 } // End anonymous namespace.
8279